Anomalous transport in the Quark Gluon Plasma

Roy A. Lacey Stony Brook University

Focus: Experimental measurement of anomalous transport (excellent theory presentations given in this series - eg. Landsteiner +)

<u>Outline</u>

- > Introduction
 - ✓ Anomalous transport
- Observables for anomalous transport
 - ✓ Dipole charge separation
 - ✓ Quadrupole charge separation
- Correlator response and sensitivity
 - ✓ Background-only models
 - ✓ Background + signal models
- Experimental Results
 - ✓ Dipole
 - ✓ Quadrupole?
- > Epilogue

N. Magdy, et. al, e-Print: <u>2003.02396</u> N. Magdy, et. al, e-Print: <u>2002.07934</u> N. Magdy, Phys.Rev.C 98 (2018) 6, 061902 N. Magdy, et al, Phys.Rev.C 97 (2018) 6, 061901

STAR Collaboration, e-Print: 2006.04251

Essential takeaway

Precision measurements with a new charge-sensitive correlator, indicates anomalous transport in the quark gluon plasma created in RHIC collisions

Magnetized QGP production

Nuclear Physics A 803, 227 (2008)

 $< e \cdot field > /m_{\pi}^2$

 $10^{12} - 10^{15}$

Anomalous Transport

Two principal anomalous processes are expected in the magnetized plasma [for $\mu_{V,A} \neq 0$]

Chiral Separation Effect (CSE)

$$\vec{J}_A = \frac{e\vec{B}}{2\pi^2}\mu_V, \text{ for } \mu_V \neq 0$$

Vector chemical potential

Derived from the induction of a non-dissipative chiral axial current

Chiral Magnetic Effect (CME)

$$\vec{J}_V = rac{e\vec{B}}{2\pi^2}\mu_A$$
, for $\mu_A
eq 0$
Axial chemical potentia

Characterized by a chiral vector current

(the lowest Landau level is chiral)

Experimental confirmation of the CME;

- ✓ Would be a direct observation of topological effects in QCD.
- ✓ Would manifest the restoration of chiral symmetry in the QGP

Anomalous Transport –Signals

 $\frac{CME}{B}$ Reaction
Plane Ψ_n y y x

- The CME drives a dipole charge separation along the B-field
 - leads to a "dipole moment" in the azimuthal distribution of the produced charged hadrons:

<u>CMW</u> The interplay between the CSE and CME can lead to the production of a gapless collective mode or Chiral Magnetic Wave (CMW)

pre-equilibrium

Lorentz

contracted

ions

 ✓ Stems from the coupling between the density waves of the electric and chiral charges

Magnetized

plasma

Hadronization

Dmitri E. Kharzeev and Ho-Ung Yee, Phys. Rev. D83, 085007 (2011)

The CMW transports positive (negative) charges out-of-plane and negative (positive) charges in-plane to form an electric quadrupole.

The detection and characterization of both the <u>dipole</u> and <u>quadrupole</u> charge separation is paramount

Freeze-ou

Courtesy of S. Bass

Background can account for a sizeable part, if not all, of the observed charge separation ✓ Could one make more discerning

measurements with a different correlator?

Prior/ongoing quadrupole charge separation measurements

A pervasive approach is to measure the elliptic flow difference between negatively- and positively charged particles as a function of charge asymmetry

Background can account for a part, if not all, of the observed charge separation signal with this correlator

 Could one make more discerning measurements with a different correlator?

The $R_{\Psi_m}^{(d)}(\Delta S_d)$ Correlator - Rudiments

N. Magdy, et al. N. Magdy, et al. arXiv:2003.02396 PRC 97, 061901 (2018)

 \blacktriangleright The correlator is constructed for a given event plane $\Psi_{\rm m}$ via a ratio of two

d=1 - dipole

mth order

event plane

 $R_{\Psi_m}^{(d)}(\Delta S_d) = \frac{C_{\Psi_m}(\Delta S_d)}{C_{\Psi_m}^{\perp}(\Delta S_d)} , m = 2 \text{ and } 3$ $C_{\Psi 2}(\Delta S_d)$ quantifies charge separation of order **d** along the *B*-field

correlation functions

The $R_{\Psi_m}^{(d)}(\Delta S_d)$ correlator measures the magnitude of charge separation of order **d** parallel to the B-field, relative to that for charge separation perpendicular to the B-field <u>Note that</u> $R_{\Psi_2}^{(d)}(\Delta S_d)$ is insensitive to the CME- and CMW-driven charge separation (but sensitive to background)

Leverage Small systems p+Pb, p+Au, ...

B-field and $\Psi_2 \sim$ uncorrelated

- ✓ $R_{\Psi_2}^{(d)}(\Delta S_d)$ measurements insensitive to B-field → "no signal"
- ✓ Excellent bench mark

Shuffling of charges within an event breaks the charge separation sensitivity:

 $N(\Delta S_d)_{Sh} = N(\langle S_{\Psi m}^+ \rangle_d - \langle S_{\Psi m}^- \rangle_d)_{Sh}$

 $N(\Delta S_d)^{\perp} = N\left(\langle S_{\Psi m}^+ \rangle_d^{\perp} - \langle S_{\Psi m}^- \rangle_d^{\perp}\right)_{Sh}$

The correlator employs a common operational framework for both the dipole and quadrupole charge separation measurements

Models used to "calibrate" the correlators

- The response and the sensitivity of the correlators were studied with several models;
 - AMPT with varying degrees of proxy CME- and CMW-driven charge separation + background
 - ✓ AVFD with varying degrees of CME-driven charge separation + background
 - ✓ Hydro events with only background

AVFD - CME

The AVFD model, simulates the evolution of fermion currents in the QGP on top VISHNU bulk hydrodynamic flow

Yin Jiang, Shuzhe Shi, Yi Yin, and Jinfeng Liao *Chin.Phys.C* 42 (2018) 1, 011001 e-Print: 1611.04586 $\frac{dN}{d\Delta\phi} \propto \left[1 \pm 2a_1 \sin(\Delta\phi) + \dots\right] \qquad \tilde{a}_1 = \left\langle a_1^2 \right\rangle^{1/2} \propto \mu_5 B$

Guo-Liang Ma and Bin Zhang AMPT - CME Phys. Lett. B700, 39-43 (2011)

CME-induced charge separation generated By switching the p_y values of a fraction of the downward moving u (⁻d) quarks with those of the upward moving (d) quarks to produce a net charge-dipole separation in the initial-state

Signal strength $f_0 = \frac{N_{\uparrow(\downarrow)}^{+(-)} - N_{\downarrow(\uparrow)}^{+(-)}}{N_{\uparrow(\downarrow)}^{+(-)} + N_{\downarrow(\uparrow)}^{+(-)}}, \quad f_0 = \frac{4}{\pi}a_1$

G.-L. Ma. AMPT - CMW Phys. Lett. B 735, 383 (2014) CMW-induced quadrupole charge separation generated by interchanging the position coordinates (x, y, z) for a fraction (f_q) of the in-plane light quarks (u, d and s) carrying positive (negative) charges with out-of-plane quarks carrying negative (positive) charges, at the start of the partonic stage.

Signal strength f_a

> Note::

- \checkmark The input and output signals should not be the same, due to signal loss
- The magnitude of the AVFD output signal should be larger than the AMPT output signal

background = well known backgrounds

 $C_{\Psi_m}(\Delta S), \ C_{\Psi_m}^{\perp}(\Delta S) \text{ and } R^{(1)}_{\Psi_m}(\Delta S) \text{ are Gaussian}$

 \longrightarrow Convexity/Concavity of $R^{1}_{\Psi_{m}}(\Delta S)$ depends on the relative widths

 \rightarrow The width of the distribution encodes the magnitude of charge separation

The $R_{\Psi_m}^{(1)}(\Delta S_1)$ [dipole correlator] - Operational

Corrections for the effects of both number fluctuations and EP-resolution are necessary, but straightforward

Very good sensitivity down to small signals

Comparison of the correlator response for AMPT and AVFD events

The inverse widths are proportional to the input a_1 \checkmark **Different slopes as expected**

 $a_1^{\text{AMPT}} \sim 4a_1^{\text{AVFD}}$

Sensitivity to signal – $R_{\Psi_m}^{(1)}(\Delta S_1)$ [dipole]

Comparison of the correlator response for AMPT and AVFD events

✓ Very good sensitivity down to small input signals

Validation of the expected sensitivity to charge asymmetry

Sensitivity of the $R_{\Psi_m}^{(d)}(\Delta S_d)$ and $\Delta \gamma$ correlators

Calibrations for the $R_{\Psi_2}^{(1)}(\Delta S_1)$ and $\Delta \gamma$ correlators performed with the same events

f_{cme} is NOT a good estimator of the magnitude of the CME signal when the background is significant **Representative results from data** $- R_{\Psi_m}^{(1)}(\Delta S_1)$ [dipole] $\gg R_{\Psi_2}(\Delta S'')$ and $R_{\Psi_3}(\Delta S'')$ measurements for 0-20% central collisions

for different collision systems

Piotr Bozek PRC 97, 034907 (2018)

- Au+Au m = 2 ➡ U+U Cu+Au (a) (c) (b) $m = 3 \Theta$ 0-20% With acceptance weighting AS" 1.05 STAR Preliminary $Fit(x) = a e^{0.5 \left(\frac{x}{\sigma}\right)}$ correction R_ψ (-3 -3 ()
 - ► The $R_{\Psi_2}(\Delta S'')$ correlators are concave-shaped while the $R_{\Psi_3}(\Delta S'')$ correlators are convex-shaped.
 - ✓ This stark difference is *incompatible* with a purely background-driven charge separation

The experimental patterns for $R_{\Psi_{2,3}}(\Delta S'')$ are consistent with CME-driven charge separation in these collisions

Representative results from data – $R_{\Psi_m}^{(1)}(\Delta S_1)$ [dipole]

Piotr Bozek PRC 97, 034907 (2018)

 \succ $R_{\Psi 2}$ for Au+Au collisions is concave-shaped

($R_{\Psi 3}$ is convex-shaped)

- ✓ Significant difference between $R_{\Psi_2}^{(1)}(\Delta S_1)$ & $R_{\Psi_3}^{(1)}(\Delta S_1)$
- ✓ consistent with the expectation for CMEdriven charge separation.

 $\succ R_{\Psi_2}^{(1)}(\Delta S_1)$ for p/d+Au

collisions consistent with the expected pattern of **background-driven** charge separation

✓ Similar to $R_{\Psi_3}^{(1)}(\Delta S_1)$ for Au+Au

Roy A. Lacey, Stony Brook University, August 26th, 2020

Representative results from data – $R_{\Psi_m}^{(1)}(\Delta S_1)$ [dipole]

Event shape selection

Comparison of the $R_{\Psi_2}^{(1)}(\Delta S_1)$ correlators for q_2 selected events for 30-50% central, Au+Au collisions at 200 GeV

For modest CME signal + background, $R_{\Psi_2}^{(1)}(\Delta S_1)$ is insensitive to q_2 selection

The q₂-selected R⁽¹⁾_{Ψm}(ΔS₁) correlators are not strongly influenced by the q₂-dependent v₂-driven background.
 ✓ consistent with the absence of strong v₂-driven background influence.

Representative results from data – $R_{\Psi_m}^{(1)}(\Delta S_1)$ [dipole]

 $\succ \sigma_{\mathrm{R}\Psi_2}^{-1}$ indicates a sizable centrality dependence,

✓ Recall that $R_{\Psi_2}^{(1)}(\Delta S_1)$ is essentially independent of q_2 selection

The data trends are in line with the expected increase in the magnitude of CME-driven charge separation (from central to peripheral collisions) resulting from:

 \checkmark an increase in the B-field

 \checkmark stronger correlation between the \overrightarrow{B} -field and the event plane

enhanced axial charge per entropy

CME signal quantification

Representative calibration curves used to estimate a₁

	Central	Mid-central	Peripheral
$a_1 - AVFD$ (%)	0.250 ± 0.013	065 ± 0:033	1.0 ± 0.05
$a_1 - AMPT$ (%)	1.00 ± 0.050	2.6 ± 0.130	4.0 ± 0.2

Implied f_{CME} ~ 15% (from Δγ correlator for Mid-central collisions) ✓ Consistent with current estimates

> No glaring inconsistency with current f_{cme} measurements

Roy A. Lacey, Stony Brook University, August 26th, 2020

Ongoing $R_{\psi_m}^{(2)}(\Delta S_2)$ experimental measurement

Measurements are complete

- ✓ Will be reported shortly
- ✓ The observed patterns and trends are suggestive

The $R_{\Psi_m}^{(1)}(\Delta S_1)$ Correlator - Isobars

AVFD predictions for the Ru+Ru and Zr+Zr isobaric systems

Ongoing $R_{\psi_m}^{(d)}(\Delta S_d)$ experimental measurements for Isobars

- > Strategy
 - ✓ Measure the signal for each isobar
 - ✓ Measure the relative signal strength of the isobars
 - ✓ Measure the relative background strength of the isobars

Roy A. Lacey, Stony Brook University, August 26th, 2020

Summary

- > A correlator $R_{\psi_m}^{(d)}(\Delta S_d)$, has been developed to enable identification and characterization of both CME- and CMW-driven charge separation
 - ✓ The correlator suppresses, as well as measures the well known background contributions to the CME- and CMW-driven charge separation signal
- Validation tests, performed with several models, indicate that the correlators can give;
 - ✓ discernible responses for background- and CME/CMW-driven charge separation which allows unambiguous identification and characterization of the respective signals
- The experimentally measured correlators (to date) suggests the presence of a CME-driven charge separation in A+A collisions.
 - Experimental CMW measurements are complete and results will be released soon
 - The experimental measurements for isobars are in progress with great anticipation

