Based on arXiv:2112.10238v1 [hep-th] with Robert Konik, Rob Pisarski and Alexei Tsvelik

When cold, dense quarks are not a Fermi liquid

Marton Lajer

ASU Theoretical Physics Colloquium – January 26, 2022

What is QCD?

$$S = \int d^{D+1}x \frac{1}{8\pi g^2} Tr_{\sigma} F_{\mu\nu} F^{\mu\nu} + q_{f,\sigma}^{-} \gamma^{\mu} (i \, \delta_{\sigma\sigma'} \partial_{\mu} + A_{\mu}^{\sigma\sigma'}) q_{f,\sigma'} + m^{(f)} q_{f,\sigma}^{-} q_{f,\sigma'}$$

$$Gluon \text{ kinetic term}$$

$$Gluon \text{ kinetic term}$$

$$F_{\mu\nu} = \partial_{mu} A_{\nu} - \partial_{nu} A_{\mu} + [A_{\mu}, A_{\nu}]$$

$$Quark \text{ kinetic}$$

$$term$$

$$Quark \text{ kinetic}$$

$$Quark \text{ mass}$$

$$Quark \text{ gluon}$$

$$Olimeter \text{ interaction}$$

$$Gluon \text{ kinetic term}$$

$$Quark \text{ sinetic}$$

$$Quark \text{ gluon}$$

$$S = \int d^{D+1}x \frac{1}{8\pi g^2} Tr_{\sigma} F_{\mu\nu} F^{\mu\nu} + q_{f,\sigma}^{-} \gamma^{\mu} (i \, \delta_{\sigma\sigma'} \partial_{\mu} + A_{\mu}^{\sigma\sigma'}) q_{f,\sigma'} + m^{(f)} q_{f,\sigma}^{-} q_{f,\sigma'}$$

$$Quark \text{ mass}$$

$$Quark \text{ mass}$$

$$Quark \text{ gluon}$$

$$S = \int d^{D+1}x \frac{1}{8\pi g^2} Tr_{\sigma} F_{\mu\nu} F^{\mu\nu} + q_{f,\sigma}^{-} \gamma^{\mu} (i \, \delta_{\sigma\sigma'} \partial_{\mu} + A_{\mu}^{\sigma\sigma'}) q_{f,\sigma'} + m^{(f)} q_{f,\sigma'}^{-} q_{f,\sigma'}$$

$$Quark \text{ mass}$$

$$Quark \text{ mass}$$

$$Quark \text{ gluon}$$

$$S = \int d^{D+1}x \frac{1}{8\pi g^2} Tr_{\sigma} F_{\mu\nu} F^{\mu\nu} + q_{f,\sigma}^{-} \gamma^{\mu} (i \, \delta_{\sigma\sigma'} \partial_{\mu} + A_{\mu}^{\sigma\sigma'}) q_{f,\sigma'} + m^{(f)} q_{f,\sigma'}^{-} q_{f,\sigma'}$$

$$Quark \text{ mass}$$

$$Quark \text{ mass}$$

$$Quark \text{ gluon}$$

$$S = \int d^{D+1}x \frac{1}{8\pi g^2} Tr_{\sigma} F_{\mu\nu} F^{\mu\nu} + q_{f,\sigma}^{-} \gamma^{\mu} (i \, \delta_{\sigma\sigma'} \partial_{\mu} + A_{\mu}^{\sigma\sigma'}) q_{f,\sigma'} + m^{(f)} q_{f,\sigma'}^{-} q_{f,\sigma'}$$

$$Quark \text{ mass}$$

$$Quark \text{ mass}$$

$$Quark \text{ gluon}$$

$$S = \int d^{D+1}x \frac{1}{8\pi g^2} Tr_{\sigma} F_{\mu\nu} + q_{\mu}^{-} q_{\mu} q_$$

Low temperature:

$$N_f = 2: (u, d)$$

Phases of QCD

L. McLerran, Nucl. Phys. Proc. Suppl. 195:275-280,2009

QCD at small (zero) density

L. McLerran, Nucl. Phys. Proc. Suppl. 195:275-280,2009

Phases of QCD

L. McLerran, Nucl. Phys. Proc. Suppl. 195:275-280,2009

Regimes of finite-mu QCD phase diagram (T<µ)

• Nuclear matter Som Density: $0 < n < x n_0$

Some O(1) multiplier, x>1

Saturation density for nuclei

Color superconductor

Density: $n_{pert} < n$ No confinement: "electric" (timelike) gluons suffer Debye screening

• Quarkyonic

Density: $x n_0 < n < n_{pert}$

free energy is like that of (interacting) quarks and gluons, but quasiparticles **near** the Fermi surface are confined.

Can't solve QCD at low-T, high-µ

- N_c=3 difficult to probe
 - Lattice: can't go beyond μ_{quark} ~T
 - Quantum computers (of the future)
- Strategy: look at two easier limits
 - $N_c \rightarrow \infty$, $N_c >> N_f$

 $- N_{c}=2$

Expansion in $1/N_{c}$

Lattice: quark determinant real, no sign problem

Plan

1 Quarkyonic matter and its anisotropy

2 What is a Luttinger liquid?

3 QCD in 2D

4 Some insights on neutron star cooling

1 Quarkyonic matter and its anisotropy

- N_c colors, N_f flavors
- Debye mass: $m_D^2 \sim g^2 \left(N_c \frac{T^2}{3} + N_f \frac{\mu^2}{2 \pi^2} \right)$
- Theory **confines** until $\mu > \mu_{pert} \sim \left(\frac{N_c}{N_f}\right)^{\frac{1}{2}} T_{\chi}$

• 4 regimes

$$\mu: m_0 \rightarrow \mu_N = m_0 \left(1 + \frac{\#}{N_c} \right)$$
Nuclear matterQuarkyonic $\mu_N \rightarrow \mu_{\pi q}$ Chiral symm. restored, π/K
condensation (meson chiral spirals) $\mu_{\pi q} \rightarrow \mu_{pert}$ Quark chiral spirals $\mu_{pert} \rightarrow \infty$ Perturbative QCD

• 4 regimes

Is $N_c = 3$ close to $N_c = \infty$?

- Bornyakov et al, 1808.06466
- N_c=2, m_π=740
- Baryons are bosons, Bose condensate (BEC)

Quarkyonic matter (I): $\mu \in [\mu_N, \mu_{\pi q}]$

Fermi surface covered in patches, width ~ $\Lambda_{_{OCD}}$

Quarks (hadrons) near Fermi surface: Scatter back and forth between 2M patches

Each pair of patches \rightarrow density wave

Patch vector ${\boldsymbol{Q}}$

Anisotropic!

 π condensation:

Overhauser, *Phys. Rev. Lett.* **4**, 415 (1960) Migdal, *Soviet Physics JETP* **36**, 1052 (1973)

K condensation: Kaplan, Nelson, *Phys. Lett. B* **175**, 57 (1986)

Quarkyonic matter (II): $\mu \in [\mu_{\pi q}, \mu_{pert}]$

Effective model: U(1) and $SU(2N_f)$ fields for each pair of patches, ~ WZNW

$$\mathcal{F} = \mathcal{F}_{U(1)} + \mathcal{F}_{SU(2N_f)} + V \qquad q = Q/|Q|$$

Iongitudinal transverse
$$\mathcal{F}_{U(1)} = \frac{1}{2} \sum_{\mathbf{q}} \left[\lambda_1 (\mathbf{q} \cdot \nabla \phi_Q)^2 + \lambda_2 [(\mathbf{q} \times \nabla)^2 \phi_q]^2 \right]$$

$$\mathcal{F}_{SU(2N_f)} = \frac{1}{2} \sum_{Q} \left\{ \lambda_1 \operatorname{Tr} (\boldsymbol{q} \cdot \nabla G_Q) (\boldsymbol{q} \cdot \nabla G_Q^{\dagger}) + \lambda_2 \operatorname{Tr} (G_Q^{\dagger} [\boldsymbol{Q} \times \nabla]^2 G_Q)^2 \right\}$$

T. Kojo, R. D. Pisarski, and A. M. Tsvelik (2010) R. D. Pisarski, V. V. Skokov, and A. M. Tsvelik (2018)

Low-dimensional behavior

Linearized meson dispersion relation

2 What is a Luttinger liquid?

Fermi liquid

Occupation number wrt. momentum

Particle-hole excitation spectrum

Well-defined quasiparticles with singular lifetime on the Fermi surface

$$G(\mathbf{k},\omega) \approx \frac{Z_{\mathbf{k}}}{\omega - \epsilon_{\mathbf{k}} + \mu \pm i \Gamma_{\mathbf{k}}}$$

$$A(\mathbf{k}, \omega) \sim \Im G(\mathbf{k}, \omega) \sim \delta(\omega - (\epsilon_{\mathbf{k}} - \mu))$$

At Fermi surface

Luttinger liquid (1+1d)

Luttinger liquid

Bosonization

Dictionary between massless fermions and massless bosons (1+1D)

Compactified massless boson $\phi \equiv \phi + 2 \pi$

Luttinger liquid as a non-Fermi liquid

- Fermionic quasiparticles incoherent (cuts instead of poles in Green's function)
- Critical phase (non-trivial fix point of RG) but correlators follow non-universal power-law behavior

$$G_{\pm}(x,t) \sim \frac{e^{\pm ik_F x}}{\sqrt{x \mp v t}} (x^2 - v^2 t^2)^{-2\Delta} \qquad \Delta = \frac{(K-1)^2}{16 K}$$

QCD in 2D

QCD₁₊₁: Abelian bosonization

$$\begin{split} \psi_{R,f,\sigma} &= \frac{1}{\sqrt{2\pi}} \, \xi_{f,\sigma} \exp\left(i\sqrt{4\pi} \, \varphi_{f,\sigma}\right) & \sigma \in \{1, \dots, N_c\} \\ \psi_{L,f,\sigma} &= \frac{1}{\sqrt{2\pi}} \, \xi_{f,\sigma} \exp\left(-i\sqrt{4\pi} \, \overline{\varphi}_{f,\sigma}\right) & f \in \{1, \dots, N_f\} \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

QCD Hamiltonian density, N_f=1 (Baluni, 1980):

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1$$
$$\mathcal{H}_0 = \frac{1}{2} \sum_i \left[\pi_i^2 + (\partial \phi_i)^2 + 2m\Lambda \left[1 - \cos(\sqrt{4\pi}\phi_i) \right] \right]$$
$$\mathcal{H}_1 = \frac{g^2}{8\pi N_c} \sum_{i,k} (\phi_i - \phi_k)^2 + \sqrt{\pi}\Lambda^2 \sum_{i,k} \left[1 - \int_0^1 d \gamma \cos\sqrt{4\pi} \gamma(\phi_i - \phi_k) \right]$$

Nonabelian bosonization

WZNW = Wess-Zumino-Novikov-Witten CFT

$$S[g] = \frac{1}{8\pi} \int d^2 x \, Tr \left(\partial_{\mu} g \, \partial^{\mu} g^{-1} \right) + \frac{1}{12\pi} \int_{B} d^3 y \, \epsilon^{ijk} \, Tr \left(g^{-1} \partial_{i} g \right) (g^{-1} \partial_{j} g) (g^{-1} \partial_{k} g)$$
Non-linear σ -
model
Topological WZ term

1+1D QCD in vacuum

Complicated for N_f>1

Bosonization (abelian/nonabelian)

Strong coupling, low-energy effective theory derived from first principles:

$$S_{eff} = \int \frac{1}{2} (\partial_{\mu} \phi)^{2} + W [SU_{N_{c}}(N_{f}):g] + \frac{\widetilde{m}}{2\pi} : e^{i\sqrt{\frac{4\pi}{N_{c}N_{f}}}\phi} Tr_{f}g + H.c.:$$

SU(N_f) Wess-Zumino-Novikov-Witten model at level N_c

G: SU(N_f) matrix

 Φ : U(1) compact boson field

See e.g. Frishman-Sonnenschein, 1993

1+1D analogue of Skyrme model, but derived from QCD Lagrangian

1+1 QCD spectrum

Strong coupling limit equivalent to bosonized NJL model

See also: Azaria et al., Phys. Rev. D 94, 045003 (2016)

Spectrum:

Mesons \rightarrow fluctuations of Φ and g Baryons \rightarrow solitons

Baryon number = U(1) (topological) charge

Coupling to baryon number = shift of U(1) boson:

$$H \rightarrow H - \mu \int dx J_0(x)$$

$$\left(\frac{4\pi}{N_c N_f}\right)^{\frac{1}{2}} \phi \rightarrow 2k_F x + \left(\frac{4\pi}{N_c N_f}\right)^{\frac{1}{2}} \phi \qquad k_F = \mu \frac{1}{N_c N_f}$$

$$J_{\mu} = \sum_{f=1}^{N_{f}} \sum_{\sigma=1}^{N_{c}} \overline{\psi}_{f\sigma} \gamma_{\mu} \psi_{f\sigma}$$
$$\downarrow$$
$$\sim -\epsilon_{\mu\nu} \partial_{\nu} \phi$$

Strange metal in 1+1D: Luttinger liquid

Large- k_{F} effective Lagrangian:

$$L_{eff,\mu} = \underbrace{\frac{\widetilde{K}}{2}}_{2} \left[v^{-1} (\partial_{\tau} \phi)^{2} + v (\partial_{x} \phi)^{2} \right] + W (SU_{N_{c}}(N_{f}), \widetilde{G})$$
Luttinger parameter
$$\widetilde{K} \equiv \widetilde{K} (N_{c}, N_{f}, \mu)$$
Fermi velocity
$$v \equiv v (N_{c}, N_{f}, \mu)$$

Coherent excitations are gapless bosons

Nf=1: Integrability

$$S_{SG} = \int d^2 x \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{\widetilde{m}}{2\pi} \cos\left(\sqrt{\frac{4\pi}{N_c}} \phi + 2k_F x\right)$$

Higher spin conserved charges: symmetries include momentum-dependent translations

Special to 1+1, circumvents Coleman-Mandula

Scattering: 1Purely elastic 2Factorises 3Elastic 2 → 2 phases provide complete description

Rapidity parametrization: θ

 $E = m \cosh \theta \qquad \qquad P = m \sinh \theta$

S-matrix elements

$$s = (p1+p2)^{2} \quad t = (p1-p3)^{2} \quad u = (p1-p4)^{2}$$

$$\langle p_{3}, p_{4} | S | p_{1}, p_{2} \rangle = (2\pi)^{2} \delta^{2} (p_{1}+p_{2}-p_{3}-p_{4}) S (s,t,u)$$

$$s + t + u = \sum_{i=1}^{4} m_{i}^{2} \qquad \text{Purely elastic: } p_{1} = p_{4} \qquad S(s,t,u) \equiv S(s)$$

Analytic structure of $2 \rightarrow 2$ elastic S-matrix from optical theorem, general non-integrable case

S-matrix structure

Integrability: no particle creation/decay on-shell

S-matrix analytic structure: only 1 pair of cuts on s- $s \ge (m_1 + m_2)^2$ $s \le (m_1 - m_2)^2$ plane

S: real analytic function

$$S_{ij}^{kl}(s^*) = [S_{ij}^{kl}(s)]^*$$

Transform cuts away: rapidity parametrization

 $s(\theta) = m_1^2 + m_2^2 + 2m_1m_2\cosh\theta$

Function equations for S(θ)

Yang-Baxter equations (hallmark of integrability)

 $S_{ij}^{ab}(\theta_{12})S_{bk}^{cl}(\theta_{13})S_{ac}^{nm}(\theta_{23}) = S_{jk}^{ab}(\theta_{23})S_{ia}^{nc}(\theta_{13})S_{cb}^{ml}(\theta_{12}) \quad F$

Photo (C) Gabriel Cuomo, Simons Center

Unitarity

$$S_{ij}^{kl}(\theta)S_{kl}^{mn}(-\theta) = \delta_i^m \delta_j^n$$

Crossing

 $S_{ij}^{kl}(\theta) = S_{i\bar{l}}^{k\bar{j}}(i\pi - \theta)$

Exact S-matrices

Name the parameters: rapidity, **parameter nu, relate to usual sine-Gordon beta**

Exact S-matrices from maximal analycity, unitarity, crossing, YBE

A.B. Zamolodchikov, Commun. math. Phys. **55**, 183—186 (1977) Karowski et al., Phys. Lett. **67B**, 321 (1977)

Exact S-matrices

$$E = \sum_{j} m_{r_{j}} \cosh \theta_{j},$$

$$P = \sum_{j} m_{r_{j}} \sinh \theta_{j},$$

Sine-Gordon: generally non-diagonal due to $s \bar{s} \rightarrow \bar{s} s$ process

$$N_c \in \mathbb{Z}$$
: Diagonal points

$$S_{ss}(\theta) = S_{s\bar{s}}(\theta) = S_{\bar{s}s}(\theta) = S_{\bar{s}\bar{s}}(\theta)$$

$$S_{sn}(\theta) = S_{ns}(\theta) = S_{\bar{s}n}(\theta) = S_{n\bar{s}}(\theta)$$

Nf=1 spectrum

 μ =0 spectrum from bootstrap

Soliton, antisoliton: mass m_s fermions (baryon)

Breathers: soliton-antisoliton bosonic excited states (mesons)

$$m_n = 2 m_s \sin\left(\frac{\pi n}{2} \frac{1}{2N_c - 1}\right), \quad n = 1, \dots, N_c + 2 = \nu - 1$$

Asymptotic Bethe Ansatz

First quantized picture: N_{tot} particles on a circle of size L

Pointlike interactions (~p-dependent delta-interaction)

Quantization condition for momentum p_i:

$$e^{ip_jL}\prod_{k\neq j}S_{r_jr_k}(\theta_j-\theta_k)=1$$

Take the log \rightarrow Bethe-Yang equations

$$m_{r_j}L\sinh\theta_j + \sum_{k\neq j}\delta_{r_jr_k}(\theta_j - \theta_k) = 2\pi n_j \qquad n_j \in \mathbb{Z}$$

Phase shift:

$$\delta_{r_j r_k}(\theta) = -i \log S_{r_j r_k}(\theta)$$

Thermodynamic Bethe Ansatz

Thermodynamic limit: $N_{tot} \rightarrow \infty$ particles, Continuum formulation of BY equations

 $\rho_{s}(\theta) = L^{-1} \frac{dN}{d\theta} \qquad n_{j} = L \int_{0}^{\theta_{j}} \rho_{s}(\theta') d\theta'$ $m_{s} L \sinh \theta + L \int_{-B}^{B} d\theta' \rho_{s}(\theta') \delta_{ss}(\theta - \theta') = 2\pi L \int_{0}^{\theta} \rho_{s}(\theta') d\theta'$

Introduce the integral kernel (symmetric linear integral operator):

$$\mathscr{K}_{ss}(\theta) = \frac{-1}{2\pi} \partial_{\theta} \delta_{ss}(\theta)$$

The continuum BY can also be written as

$$\frac{m_{\rm s}}{2\pi}\cosh\theta = \rho_{\rm s}(\theta) + \int_{-B}^{B} d\theta' \rho_{\rm s}(\theta') \mathscr{K}_{\rm ss}(\theta - \theta')$$

GS energy

 $(1 - \mathscr{K}_{ss})^{-1}$ symmetric op: by introducing the dispersion

$$\epsilon_{s}(\theta) = (1 - \mathscr{K}_{ss})^{-1} [m_{s} \cosh \theta - \mu]$$

GS energy can be written equivalently as

$$E_0 = L m_s \int_{-B}^{B} \frac{d \theta}{2 \pi} \cosh \theta \epsilon_s(\theta)$$

Dressed charge, excitations...

Same calculation for the U(1) charge...

U(1) charge in the ground state

Dressed charge

 $Q_0 = L \int_{-B}^{B} \rho_s(\theta) d\theta = L m_s \int_{-B}^{B} \frac{d\theta}{2\pi} \cosh \theta \zeta(\theta) \qquad \zeta(\theta) = (1 - \mathscr{K}_{ss})^{-1}(1)$

How to get one-particle excitation energies?

BYE for 1-particle (of type r) excited state above soliton sea

$$2\pi n_j = m_s L \sinh \theta_j + \delta_{rs} (\theta_j - \theta_0) + \sum_{k \neq j} \delta_{ss} (\theta_j - \theta_k) \qquad n_j \in \mathbb{Z}$$

Continuum formulation of BYE

$$\frac{m_s}{2\pi}\cosh\theta = \widetilde{\rho}(\theta) - \frac{1}{2\pi L}\partial_\theta \delta_{rs}(\theta - \theta_0) + \int_{-B}^{B} d\theta' \widetilde{\rho}(\theta') \mathscr{K}_{ss}(\theta - \theta')$$

Thermodynamic Bethe Ansatz

$$\epsilon_{s}(\theta,\mu) + \int_{-B}^{B} \mathscr{K}_{ss}(\theta-\theta') \epsilon_{s}(\theta',\mu) d\theta' = m_{s} \cosh \theta - \mu$$

$$\epsilon_{\bar{s}}(\theta,\mu) + \int_{-B}^{B} \mathscr{K}_{\bar{s}s}(\theta-\theta') \epsilon_{s}(\theta',\mu) d\theta' = m_{s} \cosh \theta + \mu$$

$$\epsilon_{n}(\theta,\mu) + \int_{-B}^{B} \mathscr{K}_{ns}(\theta-\theta') \epsilon_{s}(\theta',\mu) d\theta' = m_{n} \cosh \theta$$

Spectrum

 $\mu > m_s$

Luttinger parameters

$$S_{eff,\mu} = \frac{\widetilde{K}}{2} \left[v^{-1} (\partial_{\tau} \phi)^2 + v (\partial_x \phi)^2 \right] + W(SU_{N_c}(N_f), \widetilde{G})$$

Dressed charge

Excess charge due to extra soliton:

 $Q_1 - Q_0 = 1 + \int_{-B}^{B} D_{\theta_0}(\theta) d\theta = 1 - \int_{-B}^{B} \mathscr{K}_{ss}(\theta - \theta_0) \zeta(\theta) \equiv \zeta(\theta_0)$

Luttinger parameter from dressed charge:

$$\widetilde{K}(\mu) = \zeta^2(B)$$

Group velocity of excitations at the edge of the Fermi sea

$$v_{F} = \frac{\partial \epsilon_{s}(\theta, \mu)}{\partial \theta} \bigg|_{\theta=B} \frac{1}{2 \pi \rho_{s}(B)}$$

Nf>1: mass expansion

Dynamic U(1) susceptibility

$$\chi(q,i\,\omega) = \int_{-\infty}^{\infty} dx \, d \, \tau e^{i\,q\,x+i\,\omega\,\tau} T_{\tau} \Big[\big\langle 0 \big| J_0(x,\tau) J_0(0,0) \big| 0 \big\rangle \Big]$$

For $q \ll 2k_{F}$:

$$\chi(q, i\omega) = \frac{\mathbf{v} \mathbf{K}_c}{\pi} \frac{q^2}{\omega^2 + \mathbf{v}^2 q^2}$$

$$\chi(q, i \,\omega) = \chi_0(q, i \,\omega) + \left(\frac{\widetilde{m}}{4 \,\pi}\right)^2 \chi_1(q, i \,\omega) + \dots$$

Calculated explicitly (conformal perturbation theory)

PT vs. TBA (N_c=3, N_f=1)

37

Baryon correlators in 1+1D

(right-moving) nucleon field

$$n_{R}^{\alpha\beta\gamma} = \epsilon^{abc} R_{a\alpha} R_{b\beta} L_{c\gamma} \sim \exp\left[i\sqrt{\frac{2\pi}{3}}(2\phi - \overline{\phi})\right] \mathcal{F}_{2/5}^{(1)} \overline{\mathcal{F}}_{3/20}^{(1/2)}$$

(right-moving) delta field

$$\Delta_{R}^{\alpha\beta\gamma} = \epsilon^{abc} R_{a\alpha} R_{b\beta} R_{c\gamma} \sim \exp\left[3i\sqrt{\frac{2\pi}{3}}\phi\right] \mathcal{F}_{3/4}^{(3/2)}$$

$$\langle n_{R}(\tau,x)n_{R}^{\dagger}(0,0)\rangle = Z_{n}e^{ik_{F}x} \left[\frac{(\tau v_{F}+ix)(\tau v_{fl}+ix)}{(\tau v_{F}-ix)(\tau v_{fl}-ix)} \right]^{\frac{1}{4}} \left(\frac{\tau_{0}^{2}}{\tau^{2}+x^{2}/v_{F}^{2}} \right)^{\frac{3}{8}\left(\widetilde{K}+\frac{1}{9\widetilde{K}}\right)} \left(\frac{\tau_{0}^{2}}{\tau^{2}+x^{2}/v_{fl}^{2}} \right)^{\frac{11}{20}} \right)^{\frac{11}{20}}$$

$$\langle n_{R}(\tau,x)n_{R}^{\dagger}(0,0)\rangle = Z_{n}e^{3ik_{F}x} \left[\frac{(\tau v_{F}+ix)(\tau v_{fl}+ix)}{(\tau v_{F}-ix)(\tau v_{fl}-ix)} \right]^{\frac{3}{4}} \left(\frac{\tau_{0}^{2}}{\tau^{2}+x^{2}/v_{F}^{2}} \right)^{\frac{3}{8}\left(\widetilde{K}+\frac{1}{\widetilde{K}}\right)} \left(\frac{\tau_{0}^{2}}{\tau^{2}+x^{2}/v_{fl}^{2}} \right)^{\frac{3}{4}}$$

Correlation functions in 1+1D

- Quarks confined, color sector gapped, power-law correlations in baryon correlators
- Correlators depend on Luttinger parameters + velocities
- Baryons "incoherent": not usual poles in Green's function; spectral function is not a delta function on Fermi surface: lifetime ~ 1/E
- Bosonic excitations are coherent

4 Some insights on neutron star cooling

Recap: regimes in QCD₃₊₁

$$m_0 = \frac{m_{Nucleon}}{N_c}$$

$$m_0 \rightarrow \mu_N = m_0 \left(1 + \frac{\#}{N_c} \right)$$

$$\mu_N \rightarrow \mu_{\pi q}$$

$$\mu_{\pi q} \rightarrow \mu_{pert}$$

$$\mu_{pert} \rightarrow \infty$$

Nuclear matter

Fermi sea of nucleons Nucleon superfluidity/superconductivity, gapped Fermi Surface

Quarkyonic (I.)

 π/K condensation (meson chiral spirals) gapped Fermi surface, no goldstones due to anisotropy

Quarkyonic (II.)

quarkyonic condensates/quantum pi liquid. NON-Fermi liquid, no baryons about the Fermi sea, but only bosons.

Perturbative regime

color superconductivity, gapped Fermi surface.

Recap: regimes in QCD₃₊₁

$$m_0 = \frac{m_{Nucleon}}{N_c}$$

$$m_0 \rightarrow \mu_N = m_0 \left(1 + \frac{\#}{N_c} \right)$$

$$\mu_N \rightarrow \mu_{\pi q}$$

$$\mu_{\pi q} \rightarrow \mu_{pert}$$

$$\mu_{pert} \rightarrow \infty$$

μ_{pert} ≈ **1 GeV** Gorda et al., [2103.05658], [2103.07427] Bornyakov et al, [1808.06466]

Nuclear matter

Fermi sea of nucleons Nucleon superfluidity/superconductivity, gapped Fermi Surface

Quarkyonic (I.)

 π/K condensation (meson chiral spirals) gapped Fermi surface, no goldstones due to anisotropy

Quarkyonic (II.)

quarkyonic condensates/quantum pi liquid. NON-Fermi liquid, no baryons about the Fermi sea, but only bosons.

Perturbative regime

color superconductivity, gapped Fermi surface.

Inside neutron stars

Neutrino emission (in Quarkyonic II phase)

Neutron star cooling

by neutrino radiation

See also: A. Schmitt and P. Shternin, Astrophys. Space Sci. Libr. 457, 455 (2018)

So what is it good for?

- Neutron stars may reach quarkyonic densities
- Qualitatively new transport properties
- Non-Fermi liquid
- Affects cooling by v emission
- Lots of work left to do

Thank you

More details: arXiv:2112.10238v1 [hep-th] M.L., Robert Konik, Rob Pisarski and Alexei Tsvelik Soliton density difference compared to the ground state

$$D_{\theta_{0}}(\theta) = L[\widetilde{\rho}(\theta) - \rho_{s}(\theta)]$$

Operator equation for D:

$$D_{\theta_0}(\theta) = (1 - \mathscr{K}_{ss})^{-1} \left[- \mathscr{K}_{rs}(\theta - \theta_0) \right]$$

Thermodynamic Bethe Ansatz

Operator expression for soliton density

$$\rho_{\rm s}(\theta) = (1 - \mathscr{K}_{\rm ss})^{-1} \left[\frac{m_{\rm s}}{2 \,\pi} \cosh \theta \right]$$

Fourier transforms of integral kernels given explicitly:

$$\mathscr{K}_{ss}(\omega) = \frac{\sinh\left[\frac{\pi\omega}{2}\left(1 - \frac{1}{\nu - 1}\right)\right]}{2\sinh\left[\frac{\pi\omega}{2(\nu - 1)}\right]\cosh\left(\frac{\pi\omega}{2}\right)}$$

Energy change due to the presence of the extra particle of rapidity θ_0

$$E_1 - E_0 = \epsilon_r(\theta_0)$$

$$\epsilon_r(\theta_0) = m_r \cosh \theta_0 - \mu Q_r + \int_{-B}^{B} D_{\theta_0}(\theta) (m_s \cosh \theta - \mu) d\theta$$

Exploiting the form of D:

$$\epsilon_r(\theta_0) = m_r \cosh \theta_0 - \mu Q_r + \int_{-B}^{B} \mathscr{K}_{rs}(\theta - \theta_0) \epsilon_s(\theta) d\theta$$
$$Q_s = +1 \qquad Q_{\bar{s}} = -1 \qquad Q_n = 0$$

