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Structure of Matter: An Ancient Quest

Empedocles:
four elements ---
fire, air, water, earth

£

Democritus:
atomic hypothesis
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All matter is made from a set of fundamental entities



A Final Triumph after ~2000 Years

Nobel Prize 2013

THE STANDARD MODEL

FERMIONS (matter) ‘ BOSONS (force carriers)
® Quarks @ Leptons | Gauge bosons @ Higgs boson

What’s next?

® Further “reductionism®:
even more fundamental
structure

*® “Integration” back:
studying the emergent
phenomena




Nuclear Physics: Exploring the Heart of Matter

The physical world has a hierarchy of structures.
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Quantum Chromodynamics (QCD)

The fundamental theory of strong nuclear force:
QCD, a non-Abelian gauge theory of quarks and gluons
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Asymptotic Freedom: coupling becomes large
at low energy or long distance scale.
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Agcp ~ 200MeV R ~ 1fm where “quark math”

becomes very hard!




The QCD Vacuum: Confinement

The missing particles: quarks & gluons (in the QCD lagrangian)
are not seen in physically observed states.

Free Quark Searches

from Particle Data Book

All searches since 1977 have had negative results.
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Non-perturbative QCD force holds the quarks together in hadrons.
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The Quark Math/Mystery: Exotic Hadrons!?!

Standard Hadrons Exotic Hadrons

o 9P

Meson Baryon

Understanding the “quark math” of hadrons:
Unravel the mysteries of nonperturbative QCD force
between quarks/antiquarks;
An exciting frontier of today’s nuclear physics research



Cooking up a “Quark Soup”

4—m—> High Temperature Restoration
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QGP:An Old Phase of Matter

The highest ever temperature was in the beginning of universe.
The QGP temperature was available back then.
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The quark-gluon plasm is an old phase of matter!
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Little Bangs in Heavy lon Collisions (HIC)

QGP: A New phase of matter

our most powerful
heating machine ever
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What Happens in a Heavy lon Collision!?

Out-of-Plane

°x B | A typical (off-central) collision.
-

In-Plane

Quark-gluon plasma is created in such collisions!

The hottest matter!
The most perfect fluid!



What’s Next? Wisdom from CMP

Quantum hall effect

High-Tc
superconductor‘

CauQ)

Cliaios
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Twisted bilayer graphene

The two sheets are twisted by a small angle (),
creating a Moiré pattern that makes the bilayer both
electrically insulating, with conducting edge states
(red arrows), and magnetic.

Graphene  Emergent
sheet magnetism

Graphene
lattice spacing

M
Moiré lattice
spacing

“Magic angle”



Collisions Across Wide Beam Energy Span

Relativistic nuclear collisions have been and will continue
to be done from O(1) GeV to O(1000) GeV beam energy!
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“Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan”,
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Bzdak, Esumi, Koch, JL, Stephanov, Xu, Phys. Rep. 853(2020)1-87.
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Factory for Exotic Quantum Matter
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« C// Opening novel dimensions of
the “nuclear matter universe’”!



A New Paradigm: A Quantum Spin Fluid?!

A nearly perfect fluid
(of energy-momentum)

What happens to the spin
DoF in the fluid???

Need probes to play with spin!
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Spin @ Chirality,Vorticity and Magnetic Field

(

Chirality Rotational Magnetic
Polarization Polarization Polarization
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[arXiv:2004.00569]

The interplay of spin with chirality/vorticity/magnetic field
—> many novel phenomena

[Further source: Miransky & Shovkovy,
Phys.Rept. 576 (2015) 1-209 - e-Print: 1503.00732 [hep-ph]]



17

Einstein-de Hass Effect

Richardson,~1908; Einstein-de Hass,~1915:
Change of a free body’s magnetic momentum —>
Mechanical rotation of the sample

Orbital B q )
contribution: AM = (2M AJ
M T
Spin (- 2;3>< q
contribution: AM = < 2 ) AJ
Barnett (OSU), ~1915:

1st correct measurement, supporting the g~2,
Indicating dominant spin contributions in magnetization.
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SEPTEMBER 24, 1909]

Lehrbuch der Kristalloptik, by E. B. Wilson;
“Notes”; “ New Publications.”

SPECIAL ARTICLES

ON MAGNETIZATION BY ANGULAR ACCELERATION

Some time ago, while thinking about the
origin of the earth’s magnetism, it occurred to
me that any magnetic substance must, accord-
ing to current theory, become magnetized by
receiving an angular velocity.

Thus consider a cylinder of iron or other
substance constituted of atomic or molecular

Aawnbavan wwhana 1w dicldaal ciacmcadla cmavaanéa

Barnett Effect

SCIENCE 413

fectly definite and unquestionable, but exceed-
ingly difficult to account for, viz., a magnetiza-
tion along the rod in a definite direction inde-
pendent of the direction of rotation and of the
direction of the original residual magnetism
of the rod. It was not due to the jarring of
the cylinder as it was rotated in the earth’s
field, nor to a possible minute change in the
direction of its axis produced by the pull of
the motor. In magnitude this effect was sev-
eral times as great as the other, which became
manifest only at the higher of the two speeds
used.

Second Series.

The opposite should

also happen:

AJ = AM

October, 1015

Vol. VI., No. 4

THE

PHYSICAL REVIEW,

MAGNETIZATION BY ROTATION

By S J. Bansurr,

§1. In 1909 it ovcurred to me, while thinking about the origin of
terrestrial magnetism, that a substance which is magnetic (and there-
fore, according to the ideas of Langevin and others, constituted of atomic
or molecular orbital systems with individual magnetic moments fixed
in magnitude and differing in this from zero) must become magnetized
by a sort of molecular gvroscopic action on receiving an angular velocity.



Rotational Polarization

Essential assumption underlying the Barnett effect:
rotational polarization

XY
*tee

Macroscopic rotation; Microscopic spin
Global angular momentum alignment

—

W

It however is a lot tricker to see for a liquid/fluid.
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Rotational Polarization in Condensed Matter

Spin hydrodynamic generation
R. Takahashi &4, M. Matsuo, M. Ono, K. Harii, H. Chudo, S. Okayasu, J. leda, S. Takahashi, S. Maekawa & E. Saitoh

Nature Physics 12, 52-56(2016) | Cite this article

Viscous fluid flow
—> vorticity —> “Fluid Spintronics”
spin polarization

b Liquid flow

Electric voltage Spin voltage




Angular Momentum in Heavy lon Collisions

Huge angular momentum for the
system in non-central collisions

A
L, = bz\/g ~ 10*°h

Liang & Wang ~ 2005:
orbital L —> spin polarization via partonic collision processes

Becattini, et al ~ 2008, 2013: A fluid dynamical scenario
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“Rotating” Quark-Gluon Plasma

I Aby/s L0A~5 What fraction stays in QGP?
¥y 9 ~ — up to ~20%, depending on
collision energy.

PHYSICAL REVIEW C 94, 044910 (2016)

Is this portion conserved?
—YES!

Rotating quark-gluon plasma in relativistic heavy-ion collisions
Yin Jiang,' Zi-Wei Lin, and Jinfeng Liao"’
"Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 North Milo B. Sampson Lane, H ow Q G P accom mOda tes

Bloomington, Indiana 47408, USA - L]
“Department of Physics, East Carolina University, Greenville, North Carolina 27858, USA this ang ular momentum

SRIKEN BNL Research Center, Building 5104, Brookhaven National Laboratory, Upton, New York 11973, USA — Fluid vorticity!
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The Most Vortical Fluid

Time of flight

An exciting discovery from
STAR Collaboration at RHIC:
The most vortical fluid!

LETTER

doi:10.1038/nature23004

Global A hyperon polarization in nuclear collisions

The STAR Collaboration*
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Spin Polarization in the Subatomic Swirls

BBC

7 \é'/?ik STAR Collaboration,
o Nature 2017

wr (94+1) x 1021 s
The most vortical fluid!
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[Trend at O(1)GeV?!
Yu Guo, Hui Zhang, et al: to appear soon.]



A Subatomic Version of Barnett Effect

A possible solution to a puzzle in STAR data:
polarization difference between particle/anti-particle
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Late-time magnetic field could explain the difference;

Charged fluid may enhance B field lifetime via Barnett-like mechanism.

[Guo, Shi, Feng, JL, PLB2019; Guo, JL, Wang, Scientific Reports 2020]
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Further Sources on Rotation

Lecture Notes in Physics

Francesco Becattini
Jinfeng Liao
Michael Lisa Editors

Strongly

Interacting
Matter under
Rotation

@ Springer
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Many exciting new developments:
see upcoming LNP volume!

Strongly Interacting Matter Under Rotation: An
Introduction

Francesco Becattini, Jinfeng Liao, and Michael Lisa

[arXiv:2102.00933]




The Most Magnetized Fluid
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A
A/SNN

with A =115 % 16 GeV - fm/c

x (fm)

Optimal range for B-effects O(~100) GeV



Chiral Magnetic Effect (CME)

Chirality & Chirality &

Topology

Anomalous
Electric <
Current Q.M. Transport

Magnetic Field

CME <—> macroscopic chiral anomaly
CME: a new quantum, non-dissipative electricity

>3 CME: strong interdisciplinary interests




CME: Interplay of B- and Chirality- Polarizations

S — —
3} Sp_4P .
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Intuitive understanding of CME:

Magnetic Polarization —> Chirality Polarization —>
correlation between micro. correlation between directions of
SPIN & EXTERNAL FORCE SPIN & MOMENTUM

# Transport current along magnetic field
Q° =
J =

— ﬁ%B




Further Sources on CME

Chiral magnetic effect reveals the
topology of gauge fields in heavy-ion

collisions

Dmitri E. Kharzeev and Jinfeng Liao

Nature Reviews Physics 3, 55-63 (2021) [arXiv:2102.06623]

Prog. Part. Nucl. Phys.
88(2016)1-28
[arXiv: 1511.04050]
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Progress in Particle and Nuclear Physics 88 (2016) 1-28

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

ELSEVIER journal homepage: www.elsevier.com/locate/ppnp

Review
Chiral magnetic and vortical effects in high-energy nuclear
collisions—A status report

D.E. Kharzeev ™", J. Liao“®*, SA. Voloshin®, G. Wang"'

3 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 117 94-3800, USA
® Deparement of Physics and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 1197 3-5000, USA
< Physics Department and Center for Exploration of Energy and Matter, Indiana University, 7 27 E Third Street, Bloomington, IN 47405,

UsA
9 RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

¢ Deparement of Physics and Astronomy, Wayne State University, 666 W. Hancock, Detroit, MI 48201, USA
' Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA




Looking for CME Signals in Nuclear Collisions

CME transport induces a charge dipole distribution
along magnetic field direction in the QGP fluid.
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A specific emission pattern of charged particles along B field:
Same-sign hadrons emitted preferably side-by-side;
Opposite-sign hadrons emitted preferably back-to-back.
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Have We Seen the CME?

— First measurement ~ 2009 by STAR;

— Efforts in past decades by STAR, ALICE, CMS @ RHIC and LHC
— Search from ~10GeV to ~5020GeV beam energies

— Various colliding systems pA, dA, CuCu, AuAu, UU, PbPb

It proves to be a very difficult search:
Very small signal contaminated by very strong background correlations!

6:" g Y Experimental data
o L gl ] are c_encouragi_ng,
% 4l 19U - ] but inconclusive.
5 [ AVA W 1 7, 7
S 2|
I Optimal range:
2o of O(~100) GeV
a
o _2-
] A related search: chiral

magnetic wave (CMW)

FI



Isobar Collision Experiment

iy . ) Charge-asymmetry
Exciting opportunity of discovery: correlation measurement

3 billion events collected for each

system; results in ~ months!!!
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Theoretical Predictions from EBE-AVFD

Theoretical tool for quantitative predictions of CME and related
backgrounds is crucial: EBE-AVFD (BEST Collaboration effort)

PHYSICAL REVIEW LETTERS 125, 242301 (2020)

Signatures of Chiral Magnetic Effect in the Collisions of Isobars

Shuzhe Shi,'! Hui Zhang.>** Defu Hou.>" and Jinfeng Liao®’'
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Coming Back to A Few Quarks

Let us focus on the so-called charm quark sector
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Heavy Exotics

The c-c-bar system offers unique opportunities for exotics!
c-cbar-q-q-bar?!

0 «
© ®

) Mo

Charmonium

While theoretical speculations were made early on, the
exotics started to be found only in the new century (2003).

@Q X(3872): a compact tetra-quark?
-c@ Or a loose hadronic molecule?

S We are still far from completely
@‘\, understanding the secrets of QCD forces.
» Can we help resolving the quark math
p from relativistic nuclear collisions?



A “High-C” QGP at O(~1000) GeV

Plots from Peter Braun-Munzinger
enhancement factor is 900 for J/y
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My key message here:
The QGP produced @ LHC O(~1000) GeV collisions,

is a “heavy-doping” QGP, with a “large” number of charms

—> a high-“C” QGP
—> ideal for producing heavy exotics!!!

[First set of X-measurements from CMS and LHCb ~2019]



Nailing Down X(3872) Structure

PHYSICAL REVIEW LETTERS 126, 012301 (2021)

Deciphering the Nature of X(3872) in Heavy Ion Collisions

Hui Zhang,""*" Jinfeng Liao,”" Enke Wang,'** Qian Wang,'**® and Hongxi Xing®'?*!
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Nalllng Down X(3872) Structure
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“It is tempting to envision an exciting time
of vibrant and coherent theory and
experiment efforts for exploring heavy ion
collisions as a massive production factory
of exotic hadrons to its fullest extent.”



Summary: Factory for Exotic Quantum Matter
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Nuclear collisions from
O(1) to O(1000) GeV:
Opening novel dimensions of
the “nuclear matter universe”!

ccC//



