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Hydrodynamics:
one theory to rule them all

Olive oll

New discoveries:
Nearly
Perfect Fluids




Fluidity in Heavy lons

superSONIC for Pb+Pb, Vs=5.02 TeV, 0-5%
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Fluidity in Cold Atoms

ASpeCt ratio measures - - - -

pressures anisotropies
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Size of the hydrodynamical gradients

Heavy lon Collision
eavy lon Collisions Cold Atoms
Martinez et. al. (2012) Pressure
P /Py at t=2.50fm/c _ .
8 g anlsotroples
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' S 0 / are not small
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x [fm] Paradox:
Hydrodynamics provides a good description despite large
gradients.... Why?

Introductory textbook: Hydrodynamics works as far as there is
a hierarchy of scales




Hydro as an effective theory

Coarse-grained procedure reduces # of degrees of freedom

o ;
gy -

Microscopic: : .
b Mesoscopic: Continuum:

23 .
10 partICleS 107 — 109 particles T7 oy iy €570, Dy o.n



Hydro as an effective theory

How does hydrodynamical limit emerges from an underlying
microscopic theory?

Microscopic: : .
b Mesoscopic: Continuum:

23 .
10 partICleS 107 — 109 particles T7 oy iy €570, Dy o.n
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Kinetic theory: Boltzmann equation

Microscopic dynamics is encoded in the distribution function f(t,x,p)
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Asymptotics Iin the Boltzmann equation

Usually the distribution function is expanded as series in Kn, i.e.,

o
f(at,p) = (Kn)* fr(z",p)
k=0
Macroscopic quantities are simply averages , e.g.,

T = /p“p”f(af“,p) m—) TV =) (Kn)'TL"
P k=0
15" = (e +ple)) uu” + p(e)gh” » Ideal fluid OK)
T = —not? = O(Kn): Navier-Stokes

T = O(Kn?): 1S, etc



Warning
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Attractor in hydrodynamics
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Same late time behavior independent of the IC!!!
Heller and Spalinski (2015)



Divergence of the late-time perturbative

oe)
Heller & Spalinski: T = E ay, [Kn]®
k=1
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Divergence of perturbative series
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Heller and Spalinski (2015)



Resurgence and transseries

Asymptotic
expansion

aj. [Kn] k

Transseries solutions
> Costin (1998)

-\ Non-perturbative
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Message to take |

Romatschke (2017) BRSSS Boltzmann AdS/CFT

Otht order hydro =— = ;
1d order hydro = = = = numerical
2"% order hydro attractor

0.1 1 10 4.1 1 0.1 1
sl Tt T T

e arbitrarily far-from-equilibrium initial conditions used to solve hydro
equations merge towards a unique line (attractor).

e Independent of the coupling regime.
o Attractors can be determined from very few terms of the gradient expansion

« At the time when hydrodynamical gradient expansion merges to the attractor,
the system is far-from-equilibrium, i.e. large pressure anisotropies are

present in the system Pr#Pr 18



Romatschke (2017)

Message to take |

rBRSSS Boltzmann AdS/CFT

O"E_ht order hydro = = )
1° order hydro = = - - numerical
2"% order hydro attractor

sl Tt T T

Existence of a new theory for far-from-
equilibrium fluids

o What are their properties?

19



Do we have experimental evidence?

nawrec B

Nagle, Zajc (2018)
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Flow-like behavior has been measured in collisions of small systems

» Hydrodynamical models seem to work in p-Au and d-Au collisions
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Physical meaning:

Transient non-newtonian behavior

T = i Kn]* |an + i Ukl (0 e~ 5/Kn [Kn]ﬁ)l

k=1 _ [=1

NG

_J/

Fi (o e S/Kn[Knl|P)
. Each function Fk satisfies:
lim Fk — A
Kn—0
Fy.
— 5k(Kn, Fk, Fk_|_1, Fk—|—27 )

d(Kn—1)

Dynamical RG flow structure!!!

Behtash, Martinez, Kamata, Shi, Cruz-Camacho

21



Physical meaning:
Transient non-newtonian behavior
0.103::
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Generalizes the concept of transport coefficient for far-from-
equilibrium!!!

» [t depends on the story of the fluid and thus, its rheology
» [t presents shear thinning and shear thickening

Behtash, Martinez, Kamata, Shi, Cruz-Camacho; Yan & Blaizot
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Fourier coefficient vn

Non-hydrodynamic transport

Hydro vs. Non-hydro modes

N _ N (1 - Z(Zvn cos(nqb)))
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» Hydro breaks down around pr~ 2.5 GeV
» Non-hydro modes are dominant at pr = 2.5 GeV
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Non-hydrodynamic transport

Breaking of

hydrodynamics —~_

By =2.5GeV
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Martinez et. al., (2018, 2019)
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Of measures deviations from
equilibrium of the full distribution
function

Including only one mode (hydro)

5f5 ~ Cljﬁ-ﬁ'

Including two modes (non-hydro)

5f3—|—sh ~ A T+ ac.,, Csh
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Non-hydrodynamic transport

Of measures deviations from
equilibrium of the full distribution

Breaking of
hydrodynamics ~ F = — 2.5 GeV
0.3 P function
0.2 N f", ‘\\~\\~
> 01" / e Including only one mode (hydro)
O o[ e T
“— E * = _
| 0.0¢ O0fs ~ a=T
g'\ 11 ..
| 2 '_": : Including two modes (non-hydro)
u—, — 0.3 i 5fs—|—sh ~ Gz T + Qg Csh
LS —0 Af l: Martinez et. al., (2018, 2019)
10° 10! 10?

T (fm/c)
» For intermediate scales of momentum 6f(t,x,p) requires the two slowest
non-hydro modes in the soft and semi-hard momentum sectors

» Non-hydrodynamic transport: dynamics of non-hydro modes and

hydro modes
= Cold atoms : pressure anisotropies as non-hydrodynamic degrees of 2°
freedom (Bluhm & Schaefer, 2015-2017)



Non-hydrodynamic transport

Breaking of
hydrodynamics —~_

By =2.5GeV
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function

Including only one mode (hydro)
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Including two modes (non-hydro)

5fs—|—sh ~ A T+ ac.,, Csh

Martinez et. al., (2018, 2019)
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» For intermediate scales of momentum 6f(t,x,p) requires the two slowest
non-hydro modes in the soft and semi-hard momentum sectors
» Non-hydrodynamic transport: dynamics of non-hydro modes and

hydro modes

The asymptotic late time attractor of the distribution function depends not 2

only on the shear but also on other slowest non-hydro modes!!!



Attractors in higher dimensions:
Gubser flow for IS theory

A. Behtash, CN Cruz, M. Martinez
arXiv: .
PRD in press
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Attractors in higher dimensions:
Gubser flow for IS theory

A. Behtash, CN Cruz, M. Martinez
arXiv: .
PRD in press

No universal
line during

& intermediate
- stages
' T
Late time
asymptotic

attractor



Attractors in higher dimensions:
Gubser flow for IS theory

A. Behtash, CN Cruz, M. Martinez
arXiv: .
PRD in press

<Eﬁ 0.1 ‘% :
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Attractor is a 1-d non planar manifold
» In Bjorken you see a unique line cause
the attractor is a 1d planar curve



Attractors in higher dimensions:
Gubser flow for IS theory

A. Behtash, CN Cruz, M. Martinez
arXiv: .
PRD in press

W o?

» Asymptotic behavior of temperature is not
determined by the Knudsen number

» Breaking of asymptotic gradient
expansion (see also Denicol & Noronha)



31



Research directions and
opportunities

» Emergence of liquid-like behavior in systems at
extreme conditions
Neutron star mergers, cosmology, chiral effects in
nuclear and condensed matter systems

» Early time behavior of attractors
Behtash et. al., Wiedemann et. al., Heinz et. al.

» Entropy production & experiments
Giacalone et. al.

» Higher dimensional attractors via machine learning
Heller et. al.

» Understanding scaling behavior
Mazeliauskas and Berges, Venugopalan et. al., Gelis &
others
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Conclusions

» Hydrodynamics is a beautiful 200 year old theory which
remains as one of the most active research subjects In
physics, chemistry, biology, etc.

» The emergence of liquid-like behavior has been
observed in a large variety of systems subject to
extreme conditions

» We need new ideas to formulate an universal Fluid
dynamics for equilibrium and non-equilibrium

» Need to test these ideas with experiments 3
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Comparing Gubser flow attractors

VS. "‘ n:f‘-\»" \k
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® Anisotropic hydrodynamics matches the exact attractor to higher
numerical accuracy !!!
® Anisotropic hydro is an effective theory which resumes the largest_

anisotropies of the system in the leading order term



Gubser flow

. Gubser tlow is a boost—invariant longitudinal and azimuthally
symmetric fransverse tlow (Gubser 2010, Gubser & Yarom 2010)

S0(3), &[SO(1, 1)|e
/ N

Special Conformal Boost Reflections along
transformations + invariance the beam line
rotation along the

beam line



Gubser flow

. Gubser tlow is a boost—invariant longitudinal and azimuthally
symmetric fransverse tlow (Gubser 2010, Gubser & Yarom 2010)

SO(3), ®SO(1,1) @

In polar Milne Coordinates (r,v,¢,7)

A1) = taah™ (1 } ((12;])227: W)

g is a scale parameter

T=0.25fm/c :

T T T m -1
L -04
> ok - l

u = (coshk(r,r),sinh (7, 7),0,0)

r=0.25fm/c 7=2251m/c




Gubser flow

G (T) — e_m(m)gw (z)

Flat Minkowski space dS, xR

space
Complicated dynamics 3d de Sitter space

ZI]H:(T,T,Qb,T]) - @“:(Paeaﬁbﬂ?)
ds? = —dr® + dr® + 12 d¢* + dn? ) 45 = — 45 + cosh® p (df® + sin® Bdo?) + di?

ut = (u" (r,7),u" (1,7),0,0) ‘ ut = (1,0,0,0)
e(T,7) ‘ é(p)



Exact Gubser solution

e IndS QR the dependence of the distribution function is
restricted by the symmetries of the Gubser flow

f(ju7ﬁz) — f (pap\%vﬁn)

P2 = p2 + sii ‘i ; » Total momentum in the (6,¢) plane
P _  Momentum along
g the n direction
e The RTA Boltzmann equation gets reduced to
0 2 T(p) 2 np JrF
57 (D Pn) = —— = (f (0 D8y ) — feq (p”/T(p)))
c = 5%

e The exact solution to this equation s

p A A
f (p.9%sBy) = D(p, po) fo (p, 5 By) + % / dp'T(o') D(p, ') feq (ﬁ"/T (p))
Po )



Boltzmann equation

The macroscopic quantities of the system are simply averages weighted by
the solution for the distribution function

d3p ,,,
e(z) = =" (p-u)*f(a#,pi),
1 [ dp s
P(T) = — \/_gpo /\,u.:,/p pﬁ f(mﬁ'ap?f)?
d’p 3 i1
T (1) = pp” f(z,pi) .

ST

Solving exactly the Boltzmann eqn. is extremely hard so one needs some
method to construct approximate solutions
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Fluid models for the Gubser flow

E-M ; 9,1 2t h —"_Tt ]
conservation law 7 + g R = T

DNMR theory

—,y

4 4 l
T (Qﬂr + 3 ('Fr)2 tanh p) . §% tanh p + 70’?fr7_r tanh p

=
IS theory

Anisotropic hydrodynamics

T 4 5 9
8p7_1'+%: gtanhp(l—6+7_r—7_r2 E]—"(ﬁ))
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Statistical field theory method

arr arr Qop op pT T

Ay A, Ay

In the Gaussian approximation (white random noise)

‘dw’ ; d.‘ﬁk ‘ ’ ’
G99 (1w, 0) = / = / o 202, A% (W K) A% (w — o K)

+ a2p AL (W, k) A" (w — o', k) + 2037457 (W, k) A (w — o k)] .

2T%  Drk? Dominated by the

TT = . .
Ag (w, k) = cp W2+ (Drk2)2 <« diffusive heat wave

Ik Acp  Dpk?
(w? — 2k2)* + (Twk?)” " 2 w? + (Drk?)?
Acp  (w? — k) Drk? < Mix of sound 2and
2 (w2 — 2k2)? + (Twk?)? }N diffusive modes

AP (w,k) = 2,9T{




Statistical field theory method

i rr Qﬂf}- fﬂpp Qﬂﬂﬂ ﬂﬂ]' Qﬂpj
ﬂ_.}...}.. ‘j"-,rilp jhfj’

After a long algebra plus pole analysis of propagators

G9°(w,0) = —ArL(w, A, 2Dyp) — ApL(w, A, T)

( )

1 A3 WA T W 3/2
L(w,\, D;) = — ——(14+12) | — Ceep .
(w, A, D;) 5213 + D, 2\@( + 1) (Dz> +...,

\ /

/N

43



Resurgence and transseries

A new time-dependent resummation scheme is needed

©.©)
- k
Asymptotic T = Z ag [Kn]
k=1

1

expansion

Resurgence
Costin (1998)

oo [ 00
[
. . _S _
s m =37 o+ i (o K)ol
k=1 L =1 \ _

Instantons

Transseries:

At a given order of the perturbative expansion, transseries
resumes the non-perturbative contributions of small
perturbations around the asymptotic late time fixed point 44



Size of the hydrodynamical gradients

Heavy lon Collision

Martinez et. al. (2012) i
P /P at 1=2.50 fm/c Gradients

are not small
Kn~1

Cold Atoms
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Universality of hydrodynamics

+ Fluid dynamical equations of motion are universal

= In general fluid dynamics is not a particular limit of a
weakly (e.g. kinetic theory) or strongly coupled (e.qg.
AdS/CFT) theory

- Transport coefficients (e.g. shear viscosity) and other
thermodynamical properties depend on microscopic
details of the system

- Hydrodynamical approach also describes heat
conduction, volume expansion, etc. _ 11 < 12

46




Non-newtonian fluids and rheology
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Non-newtonian fluids and rheology

o ‘

B

» NN —» v
B
>

M

Typ ™ 1 0yUs Tye ™~ 10,0 ) 0,y

Shear viscosity

» Becomes a function of the gradient
of the flow velocity

» can increase (shear thickening) or
decrease (shear thinning)
depending on the size of the 4
gradient of the flow velocity



Non-newtonian fluids and rheology

o ‘

@
|
\

Typ ™ 1 0yUs Tye ™~ 10,0 ) 0,y

Does the QGP behave like a non-newtonian fluid?
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Our idea

¢ Develop a new truncation scheme which captures some
of the main features of far-from-equilibrium fluids (e.g.
non-hydrodynamical modes) while being simple enough
to perform concrete calculations

T Dyt + t" = not”

/TW(O'Mh)\DTTF'uV + HY :@'@O‘MV
< ]
~ P

Keep track of the deformation history of the fluid
= Study its rheological properties
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Effective n/s as a hon-hydrodynamical

series
At O(w ™) the dominant term of the trans-series is

—1~(0)
_ Zz Uy, U1
w

On the other hand, Chapman-Enskog expansion gives
the asymptotic behavior of c,

40 1 (n)
C1 — —
3 w \s/o

ny 93 —1.~(0)
‘ (;)0 TS Z Uy
[
e Effective n/s is the asymptotic limit of a trans-series

e We can study its rheology by following the ‘history’ of the

corresponding trans-series 51
A. Behtash et. al, Forthcoming
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Effective n/s as a non-hydrodynamic

Thus effective ni/s Is

series

3 1~ B §
(g)R — _EZUUICM(Je Oty )
z

Its RG flow evolution is one of the differential recursive
relation of the corresponding trans-series

)R_ 40Z 1 dwc“("e_swwb)

=2
dw S
0.10 T
* _
0.08 éj (/)0
[ o8
gl
_ p
004 EI1‘ I": _,;;,f-i'rﬂﬁ‘-ﬁﬁ
1.1 l.h’_::_,::_.*
0.02] b Late-time asymptotic value
0.00 - ) |
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06 0.7

0.0

= Log Ip/s(o=1)-1/s(ear=0)|

i Al
\ zu.u/ “LD 2(w)+Log( 500 )

Non-hydrodynamic s
mode S
Decay determined by

Lyapunov exponent

0.1 0.2 0.3 0.4 0.5

w
52

A. Behtash et. al, Forthcoming
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