Hydrodynamization and attractors in rapidly expanding fluids

Mauricio Martinez Guerrero North Carolina State University

Special Theoretical Physics Seminar

NC STATE UNIVERSITY

Far-from-equilibrium

?

Equilibrium

Far-from-equilibrium

?

Hydrodynamics

Today: Attractors in kinetic theory and fluid dynamics out of equilibrium

Far-from-equilibrium

Hydrodynamics

Hydrodynamics: one theory to rule them all

Water

Quark-Gluon Plasma

 $T \sim 10^{12} \, K$

New discoveries:

Nearly

Perfect Fluids

Ultracold atoms

$$T \sim 10^{-7} K$$

Fluidity in Heavy Ions

superSONIC for Pb+Pb, \sqrt{s} =5.02 TeV, 0-5%

Weller & Romatschke (2017)

ν_n provides information of the initial spatial geometry of the collision

Fluidity in Cold Atoms

Aspect ratio measures pressures anisotropies

Size of the hydrodynamical gradients

Hydrodynamics provides a good description despite large gradients.... Why?

Introductory textbook: Hydrodynamics works as far as there is a hierarchy of scales

$$Kn = rac{l_{micro}}{L_{macro}} \ll 1$$

Hydro as an effective theory

Coarse-grained procedure reduces # of degrees of freedom

Microscopic:

10²³ particles

Mesoscopic:

 $10^7 - 10^9$ particles $T, \mu, \mu_i, \epsilon, n, p, \dots$

Continuum:

Hydro as an effective theory

How does hydrodynamical limit emerges from an underlying microscopic theory?

Microscopic:

10²³ particles

Mesoscopic:

 $10^7 - 10^9$ particles $T, \mu, \mu_i, \epsilon, n, p, \dots$

Continuum:

Kinetic theory: Boltzmann equation

Microscopic dynamics is encoded in the distribution function f(t, x, p)

11

Asymptotics in the Boltzmann equation

Usually the distribution function is expanded as series in Kn, i.e.,

$$f(x^{\mu}, p) = \sum_{k=0}^{\infty} (Kn)^k f_k(x^{\mu}, p)$$

Macroscopic quantities are simply averages, e.g.,

$$T^{\mu\nu} = \int_{\mathbf{p}} p^{\mu} p^{\nu} f(x^{\mu}, \mathbf{p})$$
 $T^{\mu\nu} = \sum_{k=0}^{\infty} (Kn)^k T_k^{\mu\nu}$

$$T_0^{\mu\nu} = (\epsilon + p(\epsilon))\,u^\mu u^\nu \,+\, p(\epsilon)g^{\mu\nu}$$
 — Ideal fluid $\mathcal{O}(\mathrm{Kn^0})$

$$T_1^{\mu\nu} = -\eta \, \sigma^{\mu\nu} \longrightarrow \mathcal{O}(Kn)$$
: Navier-Stokes

$$T_2^{\mu\nu}$$
 \longrightarrow $\mathcal{O}(\mathrm{Kn^2})$: IS, etc

Warning

$$Kn \sim \frac{l}{L} \sim \lambda_{mfp} \vec{\nabla} \cdot \vec{v} \sim \mathcal{O}(1)$$

Attractor in hydrodynamics

Same late time behavior independent of the IC!!!

Heller and Spalinski (2015)

Divergence of the late-time perturbative expansion

Divergence of perturbative series

$$\bar{\pi} = \sum_{k=1}^{\infty} a_k \left[\operatorname{Kn} \right]^k$$

Resurgence and transseries

Message to take I

- arbitrarily far-from-equilibrium initial conditions used to solve hydro equations merge towards a unique line (attractor).
- Independent of the coupling regime.
- Attractors can be determined from very few terms of the gradient expansion
- At the time when hydrodynamical gradient expansion merges to the attractor, the system is far-from-equilibrium, i.e. large pressure anisotropies are $present\ in\ the\ system\ P_{\!\scriptscriptstyle L}\!\!\neq\!\!P_{\!\scriptscriptstyle T}$ 18

Message to take I

 $Existence\ of\ a\ new\ theory\ for\ far-from-equilibrium\ fluids$

• What are their properties?

Do we have experimental evidence?

Nagle, Zajc (2018)

Flow-like behavior has been measured in collisions of small systems

▶ Hydrodynamical models seem to work in p-Au and d-Au collisions

Physical meaning: Transient non-newtonian behavior

$$\bar{\pi} = \sum_{k=1}^{\infty} [\operatorname{Kn}]^{k} \left[a_{k} + \sum_{l=1}^{\infty} u_{k,l} \left(\sigma e^{-S/\operatorname{Kn}} [\operatorname{Kn}]^{\beta} \right)^{l} \right]$$

$$F_{k}(\sigma e^{-S/\operatorname{Kn}} [\operatorname{Kn}]^{\beta})$$

 $_k$ Each function F_k satisfies:

$$\lim_{Kn\to 0} F_k = a_k$$

$$\frac{F_k}{d(Kn^{-1})} = \beta_k(Kn, F_k, F_{k+1}, F_{k+2}, \dots)$$

Dynamical RG flow structure!!!

Physical meaning: Transient non-newtonian behavior

Generalizes the concept of transport coefficient for far-from-equilibrium!!!

- ▶ It depends on the story of the fluid and thus, its rheology
- ▶ It presents shear thinning and shear thickening

Hydro vs. Non-hydro modes

- ► Hydro **breaks down** around p_T ~ 2.5 GeV
- ▶ Non-hydro modes are dominant at $p_T \ge 2.5$ GeV

δf measures deviations from equilibrium of the full distribution function

Including only one mode (hydro)

$$\delta f_s \sim a_{\bar{\pi}} \, \bar{\pi}$$

Including two modes (non-hydro)

$$\delta f_{s+sh} \sim a_{\bar{\pi}} \bar{\pi} + a_{\bar{c}_{sh}} \bar{c}_{sh}$$

δf measures deviations from equilibrium of the full distribution function

Including only one mode (hydro)

$$\delta f_s \sim a_{\bar{\pi}} \, \bar{\pi}$$

Including two modes (non-hydro)

$$\delta f_{s+sh} \sim a_{\bar{\pi}} \, \bar{\pi} + a_{\bar{c}_{sh}} \, \bar{c}_{sh}$$

- ▶ For intermediate scales of momentum $\delta f(t,x,p)$ requires the two **slowest** non-hydro modes in the **soft** and **semi-hard** momentum sectors
- ▶ Non-hydrodynamic transport: dynamics of non-hydro modes and hydro modes
 - ⇒ **Cold atoms**: pressure anisotropies as non-hydrodynamic degrees of freedom (Bluhm & Schaefer, 2015-2017)

δf measures deviations from equilibrium of the full distribution function

Including only one mode (hydro)

$$\delta f_s \sim a_{\bar{\pi}} \, \bar{\pi}$$

Including two modes (non-hydro)

$$\delta f_{s+sh} \sim a_{\bar{\pi}} \, \bar{\pi} + a_{\bar{c}_{sh}} \, \bar{c}_{sh}$$

- ▶ For intermediate scales of momentum $\delta f(t,x,p)$ requires the two **slowest** non-hydro modes in the **soft** and **semi-hard** momentum sectors
- ▶ Non-hydrodynamic transport: dynamics of non-hydro modes and hydro modes

The asymptotic late time attractor of the distribution function depends not ²⁶ only on the shear but also on other slowest non-hydro modes!!!

Late time asymptotic attractor

Attractor is a 1-d non planar manifold

In Bjorken you see a unique line cause the attractor is a 1d planar curve

- Asymptotic behavior of temperature is not determined by the Knudsen number
- Breaking of asymptotic gradient expansion (see also Denicol & Noronha)

Research directions and opportunities

- ► Emergence of liquid-like behavior in systems at extreme conditions
 - Neutron star mergers, cosmology, chiral effects in nuclear and condensed matter systems
- ► Early time behavior of attractors Behtash et. al., Wiedemann et. al., Heinz et. al.
- ► Entropy production & experiments Giacalone et. al.
- ► Higher dimensional attractors via machine learning Heller et. al.
- Understanding scaling behavior Mazeliauskas and Berges, Venugopalan et. al., Gelis & others

Conclusions

- ► Hydrodynamics is a beautiful 200 year old theory which remains as one of the most active research subjects in physics, chemistry, biology, etc.
- ► The emergence of liquid-like behavior has been observed in a large variety of systems subject to extreme conditions
- We need new ideas to formulate an universal Fluid dynamics for equilibrium and non-equilibrium
- ▶ Need to test these ideas with experiments

Backup slides

Comparing Gubser flow attractors

- Anisotropic hydrodynamics matches the exact attractor to higher numerical accuracy !!!
- Anisotropic hydro is an effective theory which resumes the largest anisotropies of the system in the leading order term

Gubser flow

 Gubser flow is a boost-invariant longitudinal and azimuthally symmetric transverse flow (Gubser 2010, Gubser & Yarom 2010)

Gubser flow

 Gubser flow is a boost-invariant longitudinal and azimuthally symmetric transverse flow (Gubser 2010, Gubser & Yarom 2010)

$$SO(3)_q\otimes SO(1,1)\otimes Z_2$$

In polar Milne Coordinates (τ, r, ϕ, η)

$$u^{\mu} = (\cosh \kappa(\tau, r), \sinh \kappa(\tau, r), 0, 0)$$

$$\kappa(\tau, r) = \tanh^{-1} \left(\frac{2q^2 \tau r}{1 + (qr)^2 + (q\tau)^2} \right)$$

 $oldsymbol{q}$ is a scale parameter

Gubser flow

$$g_{\mu\nu}(x) \to e^{-2\Omega(x)} g_{\mu\nu}(x)$$

Flat Minkowski space

$$\sinh \rho = -\frac{1 - \tilde{\tau}^2 + \tilde{r}^2}{2\tilde{\tau}}, \qquad \tan \theta = \frac{2\tilde{r}}{1 + \tilde{\tau}^2 - \tilde{r}^2}.$$

 $dS_3 \times R$

3d de Sitter space

Complicated dynamics

$$x^{\mu} = (\tau, r, \phi, \eta) \qquad \qquad \hat{x}^{\mu} = (\rho, \theta, \phi, \eta)$$

$$\hat{x}^{\mu} = (\rho, \theta, \phi, \eta)$$

$$ds^2 = -d\tau^2 + dr^2 + r^2 d\phi^2 + d\eta^2$$

$$ds^{2} = -d\tau^{2} + dr^{2} + r^{2} d\phi^{2} + d\eta^{2} \qquad d\hat{s}^{2} = -d\rho^{2} + \cosh^{2} \rho (d\theta^{2} + \sin^{2} \theta d\phi^{2}) + d\eta^{2}$$

$$u^{\mu} = (u^{\tau}(\tau, r), u^{r}(\tau, r), 0, 0)$$

$$\hat{u}^{\mu} = (1, 0, 0, 0)$$

$$\epsilon(\tau,r)$$

$$\hat{\epsilon}(\rho)$$

Exact Gubser solution

• In $dS \otimes R$ the dependence of the distribution function is restricted by the symmetries of the Gubser flow

$$f(\hat{x}^{\mu}, \hat{p}_i) = f\left(\rho, \hat{p}_{\Omega}^2, \hat{p}_{\eta}\right)$$

$$\hat{p}_{\Omega}^2 = \hat{p}_{\theta}^2 + \frac{\hat{p}_{\phi}^2}{\sin^2{\theta}} \longrightarrow Total\ momentum\ in\ the\ (\theta,\phi)\ plane$$

$$\hat{p}_{\eta} \longrightarrow \frac{Momentum\ along}{the\ \eta\ direction}$$

• The RTA Boltzmann equation gets reduced to

$$\frac{\partial}{\partial \rho} f\left(\rho, \hat{p}_{\Omega}^{2}, \hat{p}_{\eta}\right) = -\frac{\hat{T}(\rho)}{c} \left(f\left(\rho, \hat{p}_{\Omega}^{2}, \hat{p}_{\eta}\right) - f_{eq} \left(\hat{p}^{\rho} / \hat{T}(\rho)\right) \right)$$

$$c = 5\frac{\eta}{\mathcal{S}}$$

• The exact solution to this equation is

$$f\left(\rho,\hat{p}_{\Omega}^{2},\hat{p}_{\eta}\right) = D(\rho,\rho_{0}) f_{0}\left(\rho,\hat{p}_{\Omega}^{2},\hat{p}_{\eta}\right) + \frac{1}{c} \int_{\rho_{0}}^{\rho} d\rho' \,\hat{T}(\rho') D(\rho,\rho') f_{eq}\left(\hat{p}^{\rho}/\hat{T}(\rho)\right)_{\mathcal{A}}$$

Boltzmann equation

The macroscopic quantities of the system are simply averages weighted by the solution for the distribution function

$$\varepsilon(x) = \int \frac{d^{3}p}{\sqrt{-g}p^{0}} (p \cdot u)^{2} f(x^{\mu}, p_{i}),$$

$$\mathcal{P}(x) = \frac{1}{3} \int \frac{d^{3}p}{\sqrt{-g}p^{0}} \Delta_{\mu\nu} p^{\nu} p^{\mu} f(x^{\mu}, p_{i}),$$

$$\pi^{\mu\nu}(x) = \int \frac{d^{3}p}{\sqrt{-g}p^{0}} p^{\langle\mu} p^{\nu\rangle} f(x^{\mu}, p_{i}).$$

Solving exactly the Boltzmann eqn. is extremely hard so one needs some method to construct approximate solutions

Fluid models for the Gubser flow

E-M $conservation\ law$

$$\frac{\partial_{\rho}\hat{T}}{\hat{T}} + \frac{2}{3}\tanh\rho = \frac{\bar{\pi}}{3}\tanh\rho$$

DNMR theory

$$\hat{\tau}_{\hat{\pi}} \left(\partial_{\rho} \bar{\pi} + \frac{4}{3} (\bar{\pi})^2 \tanh \rho \right) + \bar{\pi} = \frac{4}{3} \frac{\eta}{s \hat{T}} \tanh \rho + \frac{10}{7} \hat{\tau}_{\hat{\pi}} \bar{\pi} \tanh \rho$$

IS theory

Anisotropic hydrodynamics

$$\partial_{\rho}\bar{\pi} + \frac{\bar{\pi}}{\hat{\tau}_r} = \frac{4}{3}\tanh\rho\left(\frac{5}{16} + \bar{\pi} - \bar{\pi}^2 - \frac{9}{16}\mathcal{F}(\bar{\pi})\right)$$

Statistical field theory method

In the Gaussian approximation (white random noise)

$$G_S^{\mathcal{O}\mathcal{O}}(\omega,0) = \int \frac{d\omega'}{2\pi} \int \frac{d^3\mathbf{k}}{(2\pi)^3} \Big[2a_{\rho\rho}^2 \Delta_S^{\rho\rho}(\omega',\mathbf{k}) \Delta_S^{\rho\rho}(\omega - \omega',\mathbf{k}) + a_{\rho T}^2 \Delta_S^{\rho\rho}(\omega',\mathbf{k}) \Delta_S^{TT}(\omega - \omega',\mathbf{k}) + 2a_{TT}^2 \Delta_S^{TT}(\omega',\mathbf{k}) \Delta_S^{TT}(\omega - \omega',\mathbf{k}) \Big].$$

$$\Delta_S^{TT}(\omega,\mathbf{k}) = \frac{2T^2}{c_P} \frac{D_T \mathbf{k}^2}{\omega^2 + (D_T \mathbf{k}^2)^2} \qquad \qquad \text{Dominated by the diffusive heat wave}$$

Dominated by the

$$\Delta_{S}^{\rho\rho}(\omega, \mathbf{k}) = 2\rho T \left\{ \frac{\Gamma k^{4}}{(\omega^{2} - c_{s}^{2}k^{2})^{2} + (\Gamma\omega k^{2})^{2}} + \frac{\Delta c_{P}}{c_{s}^{2}} \frac{D_{T}\mathbf{k}^{2}}{\omega^{2} + (D_{T}k^{2})^{2}} - \frac{\Delta c_{P}}{c_{s}^{2}} \frac{(\omega^{2} - c_{s}^{2}k^{2})D_{T}\mathbf{k}^{2}}{(\omega^{2} - c_{s}^{2}k^{2})^{2} + (\Gamma\omega k^{2})^{2}} \right\}$$

Mix of sound and diffusive modes

Statistical field theory method

After a long algebra plus pole analysis of propagators

$$G_R^{\mathcal{O}\mathcal{O}}(\omega, \mathbf{0}) = -A_T L(\omega, \Lambda, 2D_T) - A_\Gamma L(\omega, \Lambda, \Gamma)$$

$$L(\omega, \Lambda, D_i) = \frac{1}{2\pi^2} \left\{ \frac{\Lambda^3}{3} + \frac{i\omega\Lambda}{D_i} - \frac{\pi}{2\sqrt{2}} (1+i) \left(\frac{\omega}{D_i}\right)^{3/2} + \ldots \right\}.$$

Resurgence and transseries

A new time-dependent resummation scheme is needed

Asymptotic expansion
$$\bar{\pi} = \sum_{k=1}^{\infty} a_k \, [\mathrm{Kn}]^k$$
 Resurgence Costin (1998)
$$\bar{\pi} = \sum_{k=1}^{\infty} \left[a_k + \sum_{l=1}^{\infty} u_{k,l} \left(\sigma \frac{e^{-S/\mathrm{Kn}} \, [\mathrm{Kn}]^{\beta}}{|\mathrm{Kn}|^{\beta}} \right)^l \right] [\mathrm{Kn}]^k$$
 Instantons

Transseries:

At a given order of the perturbative expansion, transseries resumes the non-perturbative contributions of small perturbations around the asymptotic late time fixed point

Size of the hydrodynamical gradients

Universality of hydrodynamics

- Fluid dynamical equations of motion are universal
 - ⇒ In general fluid dynamics is **not** a particular limit of a weakly (e.g. kinetic theory) or strongly coupled (e.g. AdS/CFT) theory
- Transport coefficients (e.g. shear viscosity) and other thermodynamical properties depend on microscopic details of the system
- Hydrodynamical approach also describes **heat** conduction, volume expansion, etc. $T_1 < T_2$

Non-newtonian fluids and rheology

Non-newtonian fluids and rheology

$$\pi_{yx} \sim \eta \, \partial_y v_x$$

$$\pi_{yx} \sim \eta(\partial_y v_x) \partial_y v_x$$

Shear viscosity

- Becomes a function of the gradient of the flow velocity
- can increase (shear thickening) or decrease (shear thinning) depending on the size of the gradient of the flow velocity

Non-newtonian fluids and rheology

$$\pi_{yx} \sim \eta \, \partial_y v_x$$

$$\pi_{yx} \sim \eta(\partial_y v_x) \partial_y v_x$$

Does the QGP behave like a non-newtonian fluid?

Our idea

 Develop a new truncation scheme which captures some of the main features of far-from-equilibrium fluids (e.g. non-hydrodynamical modes) while being simple enough to perform concrete calculations

$$\tau_{\pi} D_{\tau} \pi^{\mu\nu} + \pi^{\mu\nu} = \eta \sigma^{\mu\nu}$$

$$\tau_{\pi} (\sigma^{\mu\nu}) D_{\tau} \pi^{\mu\nu} + \pi^{\mu\nu} = \eta (\sigma^{\mu\nu}) \sigma^{\mu\nu}$$

Keep track of the deformation history of the fluid ⇒ Study its rheological properties

Effective η /s as a non-hydrodynamical series

At $\mathcal{O}(w^{-1})$ the dominant term of the trans-series is

$$c_1 = \frac{\sum_{l} U_{1l}^{-1} \tilde{u}_{l,1}^{(0)}}{w}$$

On the other hand, Chapman-Enskog expansion gives the asymptotic behavior of c₁

$$c_1 = -\frac{40}{3} \frac{1}{w} \left(\frac{\eta}{s}\right)_0$$

$$\left(\frac{\eta}{s}\right)_0 = -\frac{3}{40} \sum_{l} U_{1l}^{-1} \tilde{u}_{l,1}^{(0)}$$

- Effective η /s is the asymptotic limit of a trans-series
- We can study its rheology by following the 'history' of the corresponding trans-series

Effective η /s as a non-hydrodynamic series

Thus effective η/s is

$$\left(\frac{\eta}{s}\right)_{R} = -\frac{3}{40} \sum_{l} U_{1l}^{-1} \tilde{C}_{l,1} (\sigma e^{-Sw} w^{\tilde{b}})$$

Its RG flow evolution is one of the differential recursive relation of the corresponding trans-series

$$\frac{d}{dw} \left(\frac{\eta}{s}\right)_R = -\frac{3}{40} \sum_l U_{1l}^{-1} \frac{d}{dw} \tilde{C}_{l,1} (\sigma e^{-Sw} w^{\tilde{b}})$$

