Big Bang Nucleosynthesis-Post Planck

- BBN and the WMAP/Planck determination of η , $\Omega_B h^2$
- Observations and Comparison with Theory

$$-D/H - {}^{4}He - {}^{7}Li$$

- Impact of new cross section measurements
- Neutrinos
- Constraints on BSM physics
- The Future (CMB-S4)

It all started with:

George Gamow

Ralph Alpher

Robert Herman

It all started with:

George Gamow

Ralph Alpher

Robert Herman

It all started with:

Ralph Alpher

Hans Bethe

George Gamow

Letters to the Editor

PUBLICATION of brief reports of important discoveries in physics may be secured by addressing them to this department. The closing date for this department is five weeks prior to the date of issue. No proof will be sent to the authors. The Board of Editors does not hold itself responsible for the opinions expressed by the correspondents. Communications should not exceed 600 words in length.

The Origin of Chemical Elements

R. A. Alpher*

Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland

AND

H. BETHE

Cornell University, Ithaca, New York

AND

G. GAMOW

The George Washington University, Washington, D. C. February 18, 1948

Fig. 1.

Log of relative abundance

Atomic weight

Historical Perspective

Intimate connection with CMB

Alpher Herman Gamow

Conditions for BBN:

Require T > 100 keV
$$\Rightarrow$$
 t < 200 s

$$\sigma v(p + n \rightarrow D + \gamma) \approx 5 \times 10^{-20} \text{ cm}^{3/\text{s}}$$

$$\Rightarrow n_{\text{B}} \sim 1/\sigma vt \sim 10^{17} \text{ cm}^{-3}$$

Today:

$$n_{Bo} \sim 10^{-7} \text{ cm}^{-3}$$

and

$$n_R \sim R^{-3} \sim T^3$$

Predicts the CMB temperature

$$T_o = (n_{Bo}/n_B)^{1/3} T_{BBN} \sim 10 \text{ K}$$

Remarks on the Evolution of the Expanding Universe*, †

RALPH A. ALPHER AND ROBERT C. HERMAN
Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland
(Received December 27, 1948)

Because of Eq. (4) a knowledge of $\rho_{m'}$ and $\rho_{r'}$ during the element forming period together with $\rho_{m''}$ fixes a value for $\rho_{r''}$, the present radiation density, which is perhaps the least well-known quantity.

In accordance with Eq. (4), the specification of $\rho_{m''}$, $\rho_{m'}$, and $\rho_{r'}$ fixes the present density of radiation, $\rho_{r''}$. In fact, we find that the value of $\rho_{r''}$ consistent with Eq. (4) is

$$\rho_{r''} \leq 10^{-32} \text{ g/cm}^3,$$
 (12d)

which corresponds to a temperature now of the order of 5°K. This mean temperature for the universe is to be interpreted as the background temperature which would result from the universal expansion alone. However, the thermal energy resulting from the nuclear energy production in stars would increase this value.

Fig. 1. The time dependence of the proper distance L, the densities of matter and radiation, ρ_m , and ρ_r , as well as the temperature, T, are shown for the case where $\rho_{m'} \cong 10^{-30}$ g/cm³, $\rho_{r'} \cong 10^{-32}$ g/cm³, $\rho_{m'} \cong 10^{-6}$ g/cm³, and $\rho_{r'} \cong 1$ g/cm³. [See Eq. (12).]

Remarks on the Evolution of the Expanding Universe*, †

RALPH A. ALPHER AND ROBERT C. HERMAN
Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland
(Received December 27, 1948)

Because of Eq. (4) a knowledge of $\rho_{m'}$ and $\rho_{r'}$ during the element forming p in order to study the choice of density density, which is perhaps the quantity.

In order to study the choice of density following additional satisfy Eq. (4):

In accordance with Eq. (4) $\rho_{m''}$, $\rho_{m'}$, and $\rho_{r'}$ fixes the prestion, $\rho_{r''}$. In fact, we find the consistent with Eq. (4) is

In order to study how sensitive this model is to the choice of densities, we have considered the following additional set of density values which satisfy Eq. (4):

$$\rho_{m'} \cong 1.78 \times 10^{-4} \text{ g/cm}^3,$$
 $\rho_{r'} \cong 1 \text{ g/cm}^3,$
 $\rho_{m''} \cong 10^{-30} \text{ g/cm}^3,$
(15)

and

$$\rho_{\tau''} \cong 10^{-35} \text{ g/cm}^3$$
.

The value obtained for $\rho_{r''}$ in this case corresponds to a present mean temperature of about 1°K. The

$$\rho_{r''} \cong 10^{-32} \text{ g/cm}^3,$$
 (12d)

which corresponds to a temperature now of the order of 5°K. This mean temperature for the universe is to be interpreted as the background temperature which would result from the universal expansion alone. However, the thermal energy resulting from the nuclear energy production in stars would increase this value.

Fig. 1. The time dependence of the proper distance L, the densities of matter and radiation, ρ_m , and ρ_r , as well as the temperature, T, are shown for the case where $\rho_{m'} \cong 10^{-30}$ g/cm³, $\rho_{r'} \cong 10^{-32}$ g/cm³, $\rho_{m'} \cong 10^{-6}$ g/cm³, and $\rho_{r'} \cong 1$ g/cm³. [See Eq. (12).]

Planck best fit

$$\Omega_B h^2 = 0.02237 \pm 0.00015$$

 $\eta_{10} = 6.12 \pm 0.04$

Conditions in the Early Universe:

$$T \gtrsim 1 \text{ MeV}$$

$$\rho = \frac{\pi^2}{30} (2 + \frac{7}{2} + \frac{7}{4} N_{\nu}) T^4$$

$$\eta = n_B / n_{\gamma} \sim 10^{-10}$$

β -Equilibrium maintained by weak interactions

Freeze-out at ~ 1 MeV determined by the competition of expansion rate $H \sim T^2/M_p$ and the weak interaction rate $\Gamma \sim G_F^2 T^5$

$$n + e^{+} \leftrightarrow p + \bar{\nu}_{e}$$

$$n + \nu_{e} \leftrightarrow p + e^{-}$$

$$n \leftrightarrow p + e^{-} + \bar{\nu}_{e}$$

At freezeout n/p fixed modulo free neutron decay, $(n/p) \simeq 1/6 \to 1/7$

Nucleosynthesis Delayed (Deuterium Bottleneck)

$$p+n \rightarrow \mathbf{D}+\gamma$$

$$\Gamma_p \sim n_B \sigma$$

$$p + n \leftarrow \mathbf{D} + \gamma$$

$$\Gamma_d \sim n_\gamma \sigma e^{-E_B/T}$$

Nucleosynthesis begins when $\Gamma_n \sim \Gamma_d$

$$\frac{n_{\gamma}}{n_B}e^{-E_B/T}\sim 1$$

$$\frac{n_{\gamma}}{n_B}e^{-E_B/T}\sim 1$$
 @ $T\sim 0.1~{
m MeV}$

All neutrons \rightarrow ⁴He

$$Y_p = \frac{2(n/p)}{1 + (n/p)} \simeq 25\%$$

Remainder:

D, ${}^{3}\text{He} \sim 10^{-5} \text{ and } {}^{7}\text{Li} \sim 10^{-10} \text{ by number}$

Fig. 1.—Reaction network used in the code. Estimated reactions are shown with dashed lines.

Table 1: Key Nuclear Reactions for BBN

Source	Reactions
NACRE	$d(p,\gamma)^3$ He (b)
	$d(d,n)^3$ He
	d(d,p)t
	$t(d,n)^4$ He
	$t(\alpha, \gamma)^7 \text{Li}$ (d)
	$^3{\rm He}(\alpha,\gamma)^7{\rm Be}$ (c)
	$^7\mathrm{Li}(p,\alpha)^4\mathrm{He}$
SKM	$p(n,\gamma)d$
	3 He $(d,p)^4$ He
	$^7\mathrm{Be}(n,p)^7\mathrm{Li}$ (See below)
This work	$^{3}\mathrm{He}(n,p)t$ (a)
PDG	$ au_n$

NACRE
Cyburt, Fields, KAO
Nollett & Burles
Coc et al.

BBN could <u>not</u> explain the abundances (or patterns) of <u>all</u> the elements.

⇒ growth of stellar nucleosynthesis

But,

Questions persisted:

25% (by mass) of ⁴He?

Resurgence:

BBN could successfully account for the abundance of

D, ³He, ⁴He, ⁷Li.

Fields, Olive, Yeh, Young

Fields, Olive, Yeh, Young

Uncertainties

Fields, Olive, Yeh, Young

Observations

- Production of the Light Elements: D, ³He, ⁴He, ⁷Li
 - ⁴He observed in extragalctic HII regions: abundance by mass = 25%
 - 7 Li observed in the atmospheres of dwarf halo stars: abundance by number = 10^{-10}
 - D observed in quasar absorption systems (and locally): abundance by number = 3×10^{-5}
 - 3 He in solar wind, in meteorites, and in the ISM: abundance by number = 10^{-5}

D/H

- All Observed D is Primordial!
- Observed in the ISM and inferred from meteoritic samples (also HD in Jupiter)
- D/H observed in Quasar Absorption systems

Table 3. PRECISION D/H MEASURES CONSIDERED IN THIS PAPER

QSO	$z_{ m em}$	$z_{ m abs}$	$\log_{10} N(\mathrm{HI})/\mathrm{cm}^{-2}$	[O/H] ^a	$\log_{10} N(\mathrm{DI})/N(\mathrm{HI})$
HS 0105+1619	2.652	2.53651	19.426 ± 0.006	-1.771 ± 0.021	-4.589 ± 0.026
Q0913+072	2.785	2.61829	20.312 ± 0.008	-2.416 ± 0.011	-4.597 ± 0.018
Q1243+307	2.558	2.52564	19.761 ± 0.026	-2.769 ± 0.028	-4.622 ± 0.015
SDSS J1358+0349	2.894	2.85305	20.524 ± 0.006	-2.804 ± 0.015	-4.582 ± 0.012
SDSS J1358+6522	3.173	3.06726	20.495 ± 0.008	-2.335 ± 0.022	-4.588 ± 0.012
SDSS J1419+0829	3.030	3.04973	20.392 ± 0.003	-1.922 ± 0.010	-4.601 ± 0.009
SDSS J1558-0031	2.823	2.70242	20.75 ± 0.03	-1.650 ± 0.040	-4.619 ± 0.026

^aWe adopt the solar value log_{10} (O/H) + 12 = 8.69 (Asplund et al. 2009).

Tytler, O'Meara, Suzuki, Lubin

D/H abundances in Quasar absorption systems

BBN Prediction:

$$10^5 \, \text{D/H} = 2.58 \pm 0.13$$

Obs Average:

$$10^5 \, \text{D/H} = 3.01 \pm 0.21$$

(0.68 sample variance)

Updated
D/H abundances in
Quasar absorption
systems

BBN Prediction: $10^{5} D/H = 2.51 \pm 0.11$

Obs Average: $10^5 D/H = 2.55 \pm 0.03$

Updated
D/H abundances in
Quasar absorption
systems

BBN Prediction: $10^5 D/H = 2.51 \pm 0.11$

Obs Average: $10^5 D/H = 2.55 \pm 0.03$

Fields, Olive, Yeh, Young

Fields, Olive, Yeh, Young

⁴He

Measured in low metallicity extragalactic HII regions (~100) together with O/H and N/H

$$Y_P = Y(O/H \rightarrow 0)$$

Fig. 1. Low dispersion blue spectrogram of NGC 2363, showing the faintest lines measured

Fig. 2. Low dispersion red spectrogram of NGC 2363

Results for He dominated by systematic effects

$$\chi^{2} = \sum_{\lambda} \frac{\left(\frac{F(\lambda)}{F(H\beta)} - \frac{F(\lambda)}{F(H\beta)}_{\text{meas}}\right)^{2}}{\sigma(\lambda)^{2}}$$

9-10 observables

$$(y^+, n_e, a_{He}, \tau, T, C(H\beta), a_H, \xi)$$

8 parameters

$$\frac{F(\lambda)}{F(H\beta)} = y^{+} \frac{E(\lambda)}{E(H\beta)} \frac{\frac{W(H\beta) + a_{H}(H\beta)}{W(H\beta)}}{\frac{W(\lambda) + a_{He}(\lambda)}{W(\lambda)}} f_{\tau}(\lambda) \frac{1 + \frac{C}{R}(\lambda)}{1 + \frac{C}{R}(H\beta)} 10^{-f(\lambda)C(H\beta)}$$

Aver, Olive, Skillman

Improvements

New emissivities

Aver, Olive, Porter, Skillman 2013

Adding new He line

7 He, 3 H lines to fit 8 parameters

Izotov, Thuan, Guseva Aver, Olive, Skillman

2015

Adding new H and He lines

Add 2 He, and 9 H lines (H9-12, and P8-12)

For a total of 21 observables to fit 9 parameters (a_P added).

Aver, Berg, Olive, Pogge, Salzer, Skillman 2021

Applied to Leo P

			=
	Skillman et al. [66]	This Work	_
Emission lines	9	21	
Free Parameters	8	9	
d.o.f.	1	12	
$95\%~{ m CL}~\chi^2$	3.84	21.03	13.7 for 68%
$\mathrm{He^{+}/H^{+}}$	$0.0837^{+0.0084}_{-0.0062}$	$0.0823^{+0.0025}_{-0.0018}$	_
$n_e [cm^{-3}]$	1_{-1}^{+206}	39^{+12}_{-12}	
$a_{He} [Å]$	$0.50^{+0.42}_{-0.42}$	$0.42^{+0.11}_{-0.15}$	
au	$0.00^{+0.66}_{-0.00}$	$0.00^{+0.13}_{-0.00}$	
T_e [K]	$17,060 \stackrel{+1900}{-2900}$	$17,400 \stackrel{+1200}{-1400}$	
$\mathrm{C}(\mathrm{H}eta)$	$0.10^{+0.03}_{-0.07}$	$0.10^{+0.02}_{-0.02}$	
$a_H [Å]$	$0.94^{+1.44}_{-0.94}$	$0.51^{+0.17}_{-0.18}$	
$a_P [Å]$	-	$0.00^{+0.52}_{-0.00}$	
$\xi \times 10^4$	0^{+156}_{-0}	0^{+7}_{-0}	
χ^2	3.3	15.3	
p-value	7%	23%	
$O/H \times 10^5$	1.5 ± 0.1	1.5 ± 0.1	
Y	0.2509 ± 0.0184	0.2475 ± 0.0057	

Aver, Berg, Olive, Pogge, Salzer, Skillman

prior: $Y_P = .2449 \pm 0.0040$

Adding higher metallicity regions from SDSS data

Kurichin, Kislitsyn, Klimenko Balashev, Ivanchik

cf. Aver et al.
$$Y_p = 0.2453 + /- 0.0034$$

 $d(Y)/d(O/H) = 75 + /- 39$

Neutron Lifetime

$$\tau = 885.7 \rightarrow Y = .2481$$

 $\tau = 880.2 \rightarrow Y = .2470$
 $\tau = 879.4 \rightarrow Y = .2468$

Neutron Lifetime

⁴He Prediction: 0.2469 ± 0.0002

Data: Regression: 0.2453 ± 0.0034

Li/H

Measured in low metallicity dwarf halo stars (over 100 observed)

Nuclear Rates

- Nuclear Rates
 - Restricted by solar neutrino flux

Coc et al. Cyburt, Fields, KAO Boyd, et al.

- Nuclear Rates
 - Restricted by solar neutrino flux
 - New Measurements of ⁷Be(n,p)⁷Li
 - Others: ${}^{7}\text{Be}(n,\alpha){}^{4}\text{He}$, ${}^{7}\text{Be}(d,p){}^{4}\text{He}{}^{4}\text{He}$

Coc et al. Cyburt, Fields, KAO Boyd, et al.

n-TOF;
Hou et al.
Kawabata et al.
Lamia et al.
Rigal et al.

- Nuclear Rates
 - Restricted by solar neutrino flux
 - New Measurements of ⁷Be(n,p)⁷Li
 - Others: ${}^{7}\text{Be}(n,\alpha){}^{4}\text{He}$, ${}^{7}\text{Be}(d,p){}^{4}\text{He}{}^{4}\text{He}$

Coc et al. Cyburt, Fields, KAO Boyd, et al.

n-TOF;
Hou et al.
Kawabata et al.
Lamia et al.
Rigal et al.

- Nuclear Rates
 - Restricted by solar neutrino flux
 - New Measurements of ⁷Be(n,p)⁷Li
 - Others: ${}^{7}\text{Be}(n,\alpha){}^{4}\text{He}$, ${}^{7}\text{Be}(d,p){}^{4}\text{He}{}^{4}\text{He}$

Resonant reactions

Coc et al. Cyburt, Fields, KAC Boyd, et al.

n-TOF;
Hou et al.
Kawabata et al.
Lamia et al.
Rigal et al.

Cyburt, Pospelov Chakraborty, Fields, Olive Broggini, Canton, Fiorentini, Villante

Nuclear Rates

- Restricted by solar neutrino flux
- New Measurements of ⁷Be(n,p)⁷Li
- Others: ${}^{7}\text{Be}(n,\alpha){}^{4}\text{He}$, ${}^{7}\text{Be}(d,p){}^{4}\text{He}{}^{4}\text{He}$

Coc et al. Cyburt, Fields, KAC Boyd, et al.

n-TOF;
Hou et al.
Kawabata et al.
Lamia et al.
Rigal et al.

Resonant reactions

$$-$$
 ⁷Be + ³He \rightarrow ¹⁰C

Cyburt, Pospelov Chakraborty, Fields, Olive Broggini, Canton, Fiorentini, Villante

Nuclear Rates

- Restricted by solar neutrino flux
- New Measurements of ⁷Be(n,p)⁷Li
- Others: ${}^{7}\text{Be}(n,\alpha){}^{4}\text{He}$, ${}^{7}\text{Be}(d,p){}^{4}\text{He}{}^{4}\text{He}$

Coc et al. Cyburt, Fields, KAC Boyd, et al.

n-TOF;
Hou et al.
Kawabata et al.
Lamia et al.
Rigal et al.

Resonant reactions

- ⁷Be + ³He \rightarrow ¹⁰C
- Resonance at 15 MeV not seen by experiment

Cyburt, Pospelov Chakraborty, Fields, Olive Broggini, Canton, Fiorentini, Villante

Stellar Depletion

- lack of dispersion in the data, ⁶Li abundance
- standard models (< .05 dex), models (0.2 0.4 dex)

Vauclaire & Charbonnel
Pinsonneault et al.
Richard, Michaud, Richer
Korn et al.
Fu et al.

Broken Spite plateau

Broken Spite plateau SDSS J1035+0641 SDSS J1742+2531†☆ Note A(Li) significant SDSS J0929+023 dispersion SDSS J1029+1729• HE 1327-2326 [Fe/H]

Bonifacio et al. (2018)

Broken Spite plateau

Aguado et al. (2019)

Other possible sources for the discrepancy

- Stellar parameters
- Decaying Particles
- Axion Cooling
- Variable Constants

Monte-Carlo approach combining BBN rates, observations and CMB

$$\mathcal{L}_{\mathrm{OBS}}(X)$$
 Yellow

$$\mathcal{L}_{\mathrm{CMB}}(Y_p) \propto \int \mathcal{L}_{\mathrm{CMB}}(\eta, Y_p) \ d\eta$$
.

Cyan

$$\mathcal{L}_{\text{CMB-BBN}}(X_i) \propto$$

$$\int \mathcal{L}_{\text{CMB}}(\eta, Y_p) \, \mathcal{L}_{\text{BBN}}(\eta; X_i) \, d\eta$$

Purple

Monte-Carlo approach combining BBN rates, observations and CMB

$$Y_p = 0.24693 \pm 0.00018$$
 (0.24693)
 $D/H = (2.51 \pm 0.11) \times 10^{-5}$ (2.50 × 10⁻⁵)
 $^3He/H = (10.4 \pm 0.88) \times 10^{-6}$ (10.4 × 10⁻⁶)
 $^7Li/H = (4.94 \pm 0.72) \times 10^{-10}$ (4.93 × 10⁻¹⁰)

Fields, Olive, Yeh, Young

Importance of $D(p,\gamma)^3$ He

TABLE III. Comparison of BBN Results

	η_{10}	$N_ u$	Y_p	D/H	$^3{ m He/H}$	$^7{ m Li/H}$
CFOY-2016	6.10	3	0.2470	2.579×10^{-5}	0.9996×10^{-5}	4.648×10^{-10}
Pitrou-2018	6.091	3	0.2471	2.459×10^{-5}	1.074×10^{-5}	5.624×10^{-10}
FOYY-2020	6.129	3	0.2470	2.559×10^{-5}	0.9965×10^{-5}	$\boxed{4.702 \times 10^{-10}}$

Some recent claims (Coc et al.; Cooke et al.) claim a discrepancy with theory and observation in D/H.

Based on fit to theoretical S-factor (Marucci et al.)

New cross section measurement

LUNA

$d(p,\gamma)^3$ He rate	mean D/H $\times 10^5$	$\rm peak~D/H~\times10^5$
FOYY [19]	2.574 ± 0.129	2.572
Theory [43]	2.417 ± 0.103	2.416
LUNA20 [47]	2.503 ± 0.106	2.502
This Work	2.506 ± 0.110	2.504

Yeh, Olive, Fields

Importance of $D(p,\gamma)^3$ He

TABLE I. Comparison of BBN Results

	η_{10}	$N_ u$	Y_p	D/H	$^3{ m He/H}$	$^7{ m Li/H}$
CFOY-2016	6.10	3	0.2470	$2.579 (130) \times 10^{-5}$	0.9996×10^{-5}	4.648×10^{-10}
Pitrou-2018	6.091	3	0.2471	$2.459 (046) \times 10^{-5}$	1.074×10^{-5}	5.624×10^{-10}
FOYY-2020	6.129	3	0.2470	$2.559 (129) \times 10^{-5}$	0.9965×10^{-5}	4.702×10^{-10}
Pisanti-2021	6.138	3	0.2469	$2.51(07) \times 10^{-5}$		
Pitrou-2021	6.138	3	0.2472	$2.439 (037) \times 10^{-5}$	1.039×10^{-5}	5.464×10^{-10}
YOF-2021	6.123	3	0.2470	$2.493 (110) \times 10^{-5}$	1.033×10^{-5}	4.926×10^{-10}

Uncertainties

Yeh, Olive, Fields

From Planck:

$$\mathcal{L}_{\text{CMB}}(\eta, Y_p)$$

$$\omega_b = 0.022305 \pm 0.000225$$

$$Y_p = 0.25003 \pm 0.01367$$

Convolved Likelihoods

$$\mathcal{L}_{\text{NCMB}}(\eta, Y_p, N_{\nu})$$

$$\omega_b = 0.022212 \pm 0.000242$$

$$N_{\rm eff} = 2.7542 \pm 0.3064$$

$$Y_p = 0.26116 \pm 0.01812$$

Cyburt, Fields, Olive, Yeh

From Planck 2018:

$$\omega_{\rm b}^{\rm CMB} = 0.022298 \pm 0.000200$$

$$Y_p = 0.239 \pm 0.013$$

$$\omega_{\rm b}^{\rm CMB} = 0.022242 \pm 0.000221$$

$$Y_{p,\text{CMB}} = 0.247 \pm 0.018$$

$$N_{\rm eff} = 2.841 \pm 0.298$$

$$N_v = 3$$

CMB only determination of η and Y_P

3σ BBN Prediction

$$\mathcal{L}_{\mathrm{CMB}}(\eta) \propto \int \mathcal{L}_{\mathrm{CMB}}(\eta, Y_p) \ dY_p \,.$$
 $\mathcal{L}_{\mathrm{CMB-BBN}}(\eta) \propto \int \mathcal{L}_{\mathrm{CMB}}(\eta, Y_p) \ \mathcal{L}_{\mathrm{BBN}}(\eta; Y_p) \ dY_p$

Convolved Likelihoods

Determination of η

$$\mathcal{L}_{\text{BBN-OBS}}(\eta) \propto \int \mathcal{L}_{\text{BBN}}(\eta; X_i) \, \mathcal{L}_{\text{OBS}}(X_i) \, dX_i$$

$$\mathcal{L}_{\text{CMB-BBN-OBS}}(\eta) \propto \int \mathcal{L}_{\text{CMB}}(\eta, Y_p) \mathcal{L}_{\text{BBN}}(\eta; X_i) \, \mathcal{L}_{\text{OBS}}(X_i) \, \prod_i dX_i$$

Convolved Likelihoods

Results for η

Constraints Used	mean η_{10}	$\boxed{\text{peak } \eta_{10}}$
CMB-only	$\boxed{6.104 \pm 0.055}$	6.104
$BBN+Y_p$	$6.741^{+1.220}_{-3.524}$	4.920
BBN+D	6.148 ± 0.191	6.145
$BBN+Y_p+D$	6.143 ± 0.190	6.140
CMB+BBN	6.129 ± 0.041	6.129
$CMB+BBN+Y_p$	6.128 ± 0.041	6.128
CMB+BBN+D	$\boxed{6.130 \pm 0.040}$	6.129
$\boxed{\text{CMB+BBN}+Y_p+D}$	6.129 ± 0.040	6.129

Limits on Particle Properties

$$G_F^2 T^5 \sim \Gamma_{\text{wk}}(T_f) = H(T_f) \sim G_N^{1/2} T^2$$

$$H^2 = \frac{8\pi}{3} G_N \rho$$

$$\rho = \frac{\pi^2}{30} \left(2 + \frac{7}{2} + \frac{7}{4} N_{\nu} \right) T^4,$$

$$\frac{n}{p} \sim e^{-\Delta m/T}$$

$$Y \sim \frac{2(n/p)}{1 + (n/p)}$$

- BBN Concordance rests on balance between interaction rates and expansion rate.
- Allows one to set constraints on:
 - Particle Types
 - Particle Interactions
 - Particle Masses
 - Fundamental Parameters: G_N, G_F, α

e.g.
$$\frac{\Delta \alpha}{\alpha} < \text{few} \times 10^{-4}$$

Sensitivity to N_{ν}

What does N > 3 mean?

Today,
$$\rho_{rad} = \frac{\pi^2}{30} \left(2 + \frac{7}{4} N_{\nu} (\frac{T_{\nu}}{T_{\gamma}})^4 \right) T_{\gamma}^4$$

$$= \frac{\pi^2}{30} \left(2 + \frac{21}{4} \left(\frac{4}{11} \right)^{4/3} + \frac{7}{4} \Delta N \left(\frac{T_{\Delta N}}{T_{\gamma}} \right)^4 \right) T_{\gamma}^4$$

Scalars:
$$\triangle N = 4/7$$

Dirac Fermion:

$$\Delta N = 2$$

Monte-Carlo approach combining BBN rates, observations and CMB

$$\mathcal{L}_{\mathrm{OBS}}(X)$$
 Yellow

$$\mathcal{L}_{ ext{NCMB}}(\eta) \propto \int \mathcal{L}_{ ext{NCMB}}(\eta, Y_p, N_
u) \ dY_p \ dN_
u \,,$$

$$\textbf{Cyan}$$

$$\mathcal{L}_{ ext{NCMB-NBBN}}(\eta) \propto$$

$$\int \mathcal{L}_{ ext{NCMB}}(\eta, Y_p, N_{\nu}) \mathcal{L}_{ ext{NBBN}}(\eta, N_{\nu}; X_i) dY_p dN_{\nu},$$

Purple

CMB only determination of η and N_{ν}

$$\omega_{\rm b}^{\rm CMB} = 0.022242 \pm 0.000221$$

$$Y_{p,{\rm CMB}} = 0.247 \pm 0.018$$

$$N_{\rm eff} = 2.841 \pm 0.298$$

Cyburt, Fields, Olive, Yeh

CMB and BBN determination of η and N_{ν}

CMB and BBN determination of η and N_{ν}

CMB and BBN determination of η and N_{ν}

Convolved Likelihoods

Results for η (N_{ν})

Constraints Used	mean η_{10}	peak η_{10}	mean N_{ν}	$\boxed{\mathrm{peak}\ N_{\nu}}$
CMB-only	6.090 ± 0.061	6.090	2.799 ± 0.294	2.763
$BBN+Y_p+D$	6.084 ± 0.230	6.075	2.878 ± 0.278	2.861
CMB+BBN	6.088 ± 0.060	6.088	2.830 ± 0.189	2.825
$CMB+BBN+Y_p$	6.090 ± 0.055	6.090	2.838 ± 0.158	2.833
CMB+BBN+D	6.088 ± 0.060	6.089	2.838 ± 0.182	2.833
$\boxed{\text{CMB+BBN}+Y_p+D}$	6.090 ± 0.055	6.090	2.843 ± 0.154	2.839

Convolved Likelihoods

Results for η (N_v)

Constraints Used	mean η_{10}	peak η_{10}	mean N_{ν}	$\boxed{\mathrm{peak}\ N_{\nu}}$
CMB-only	6.090 ± 0.061	6.090	2.799 ± 0.294	2.763
$\boxed{\mathrm{BBN} + Y_p + \mathrm{D}}$	6.084 ± 0.230	6.075	2.878 ± 0.278	2.861
CMB+BBN	6.088 ± 0.060	6.088	2.830 ± 0.189	2.825
$CMB+BBN+Y_p$	6.090 ± 0.055	6.090	2.838 ± 0.158	2.833
CMB+BBN+D	6.088 ± 0.060	6.089	2.838 ± 0.182	2.833
$\boxed{\text{CMB+BBN}+Y_p+D}$	6.090 ± 0.055	6.090	2.843 ± 0.154	2.839

 $N_v < 3.15 (95\% CL)$

Convolved Likelihoods

Results for η (N_v)

$d(p,\gamma)^3$ He rate	mean η_{10}	peak η_{10}	mean N_{ν}	$\boxed{\mathrm{peak}\ N_{\nu}}$
FOYY [19]	6.090 ± 0.055	6.090	2.843 ± 0.154	2.839
updated Y_P [19, 29]	6.093 ± 0.054	6.093	2.855 ± 0.146	2.851
Theory [43]	6.092 ± 0.054	6.092	2.918 ± 0.144	2.915
LUNA20 [47]	6.092 ± 0.054	6.093	2.883 ± 0.144	2.879
This Work	$\boxed{6.092 \pm 0.054}$	6.093	2.880 ± 0.144	2.876

Convolved Likelihoods

Results for η (N_v)

$d(p,\gamma)^3$ He rate	mean η_{10}	peak η_{10}	mean N_{ν}	$\boxed{\mathrm{peak}\ N_{\nu}}$
FOYY [19]	6.090 ± 0.055	6.090	2.843 ± 0.154	2.839
updated Y_P [19, 29]	6.093 ± 0.054	6.093	2.855 ± 0.146	2.851
Theory [43]	$\boxed{6.092 \pm 0.054}$	6.092	2.918 ± 0.144	2.915
LUNA20 [47]	$\boxed{6.092 \pm 0.054}$	6.093	2.883 ± 0.144	2.879
This Work	6.092 ± 0.054	6.093	2.880 ± 0.144	2.876

 $N_v < 3.17 (95\% CL)$

CMB-S4 promises significantly improved BBN parameters

$$\sigma_{\rm S4}(Y_p) \simeq 0.005$$

K. N. Abazajian et al. [CMB-S4 Collaboration]

CMB-S4:

$$\sigma_{\rm S4}(N_{\rm eff}) \simeq 0.09$$

Planck 2018

Summary

 BBN and CMB are in excellent agreement wrt D and He

- Li: Problematic
 - BBN ⁷Li high compared to observations
- Wish list:
 - New cross sections measurements for D(D,p) and D(D,n)
 - New high precision measurements of He

• Standard Model ($N_v = 3$) is looking good!