Big Bang Nucleosynthesis-Post Planck

- BBN and the WMAP/Planck determination of $\eta, \Omega_{B} h^{2}$
- Observations and Comparison with Theory

$$
-\mathrm{D} / \mathrm{H}-{ }^{4} \mathrm{He}-{ }^{7} \mathrm{Li}
$$

- Impact of new cross section measurements
- Neutrinos
- Constraints on BSM physics
- The Future (CMB-S4)

It all started with:

George Gamow

Ralph Alpher

Robert Herman

It all started with:

George Gamow

Ralph Alpher

Robert Herman

It all started with:

Ralph Alpher

Hans Bethe

George Gamow

Letters to the Editor

P
UBLICATION of brief reports of important discoveries in physics may be secured by addressing them to this department. The closing date for this department is five weeks prior to the date of issue. No proof will be sent to the authors. The Board of Editors does not hold itself responsible for the opinions expressed by the correspondents. Communications should not exceed 600 words in length.

The Origin of Chemical Elements

R. A. Alpher*

Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland

AND
H. Bethe

Cornell University, Ithaca, New York
AND
G. Gamow

The George Washington University, Washington, D. C.
February 18, 1948

Fig. 1.
Log of relative abundance
Atomic weight

Historical Perspective

Intimate connection with CMB

Conditions for BBN:
Alpher
Herman

Require $\mathrm{T}>100 \mathrm{keV} \Rightarrow \mathrm{t}<200 \mathrm{~s}$

$$
\begin{gathered}
\sigma v(p+n \rightarrow D+\gamma) \approx 5 \times 10^{-20} \mathrm{~cm}^{3} / \mathrm{s} \\
\Rightarrow n_{B} \sim 1 / \sigma v t \sim 10^{17} \mathrm{~cm}^{-3}
\end{gathered}
$$

Today:

$$
\mathrm{n}_{\mathrm{Bo}} \sim 10^{-7} \mathrm{~cm}^{-3}
$$

and

$$
\mathrm{n}_{\mathrm{B}} \sim \mathrm{R}^{-3} \sim \mathrm{~T}^{3}
$$

Predicts the CMB temperature

$$
\mathrm{T}_{\mathrm{o}}=\left(\mathrm{n}_{\mathrm{Bo}} / \mathrm{n}_{\mathrm{B}}\right)^{1 / 3} \mathrm{~T}_{\mathrm{BBN}} \sim 10 \mathrm{~K}
$$

Remarks on the Evolution of the Expanding Universe* \dagger

Ralph A. Alpher and Robert C. Herman
Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland

(Received December 27, 1948)

Because of Eq. (4) a knowledge of $\rho_{m^{\prime}}$ and $\rho_{r^{\prime}}$ during the element forming period together with $\rho_{m^{\prime \prime}}$ fixes a value for $\rho_{r^{\prime \prime}}$, the present radiation density, which is perhaps the least well-known quantity.

In accordance with Eq. (4), the specification of $\rho_{m^{\prime \prime}}, \rho_{m^{\prime}}$, and $\rho_{r^{\prime}}$ fixes the present density of radiation, $\rho_{r^{\prime \prime}}$. In fact, we find that the value of $\rho_{r^{\prime \prime}}$ consistent with Eq. (4) is

$$
\begin{equation*}
\rho_{r^{\prime}} \cong 10^{-32} \mathrm{~g} / \mathrm{cm}^{3}, \tag{12d}
\end{equation*}
$$

which corresponds to a temperature now of the order of $5^{\circ} \mathrm{K}$. This mean temperature for the universe is to be interpreted as the background temperature which would result from the universal expansion alone. However, the thermal energy resulting from the nuclear energy production in stars would increase this value.

Fig. 1. The time dependence of the proper distance L, the densities of matter and radiation, ρ_{m}, and ρ_{r}, as well as the temperature, T, are shown for the case where $\rho_{m}, \cong 10^{-30}$ $\mathrm{g} / \mathrm{cm}^{3}, \rho_{r^{\prime}} \cong 10^{-32} \mathrm{~g} / \mathrm{cm}^{3}, \rho_{m^{\prime}} \cong 10^{-6} \mathrm{~g} / \mathrm{cm}^{3}$, and $\rho_{r^{\prime}} \cong 1 \mathrm{~g} / \mathrm{cm}^{3}$. [See Eq. (12).]

Remarks on the Evolution of the Expanding Universe*. \dagger

Ralph A. Alpher and Robert C. Herman
Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland

(Received December 27, 1948)

Because of Eq. (4) a knowledge of $\rho_{m^{\prime}}$ and $\rho_{r^{\prime}}$ during the element forming p $\rho_{m^{\prime \prime}}$ fixes a value for $\rho_{r^{\prime \prime}}$, th density, which is perhaps th quantity.

In accordance with Eq. (4) $\rho_{m^{\prime \prime}}, \rho_{m^{\prime}}$, and $\rho_{r^{\prime}}$ fixes the pres tion, $\rho_{r^{\prime}}$. In fact, we find tl consistent with Eq. (4) is

In order to study how sensitive this model is to the choice of densities, we have considered the following additional set of density values which satisfy Eq. (4) :

$$
\begin{align*}
\rho_{m^{\prime}} & \cong 1.78 \times 10^{-4} \mathrm{~g} / \mathrm{cm}^{3} \\
\rho_{r^{\prime}} & \cong 1 \mathrm{~g} / \mathrm{cm}^{3} \tag{15}\\
\rho_{m^{\prime}} & \cong 10^{-30} \mathrm{~g} / \mathrm{cm}^{3}
\end{align*}
$$

and

$$
\rho_{r^{\prime \prime}} \cong 10^{-35} \mathrm{~g} / \mathrm{cm}^{3} .
$$

The value obtained for $\rho_{r^{\prime \prime}}$, in this case corresponds to a present mean temperature of about $1^{\circ} \mathrm{K}$. The

$$
\begin{equation*}
\rho_{r^{\prime}} \cong 10^{-32} \mathrm{~g} / \mathrm{cm}^{3} \tag{12d}
\end{equation*}
$$

which corresponds to a temperature now of the order of $5^{\circ} \mathrm{K}$. This mean temperature for the universe is to be interpreted as the background temperature which would result from the universal expansion alone. However, the thermal energy resulting from the nuclear energy production in stars would increase this value.

Fig. 1. The time dependence of the proper distance L, the densities of matter and radiation, ρ_{m}, and ρ_{r}, as well as the temperature, T, are shown for the case where $\rho_{m},=10^{-30}$ $\mathrm{g} / \mathrm{cm}^{3}, \rho_{r^{\prime}} \cong 10^{-32} \mathrm{~g} / \mathrm{cm}^{3}, \rho_{m} \cong=10^{-6} \mathrm{~g} / \mathrm{cm}^{3}$, and $\rho_{\mathrm{r}} \xlongequal{\varrho} \cong 1 \mathrm{~g} / \mathrm{cm}^{3}$. [See Eq. (12).]

Planck best fit

$\Omega_{B} h^{2}=0.02237 \pm 0.00015$ $\eta_{10}=6.12 \pm 0.04$

Conditions in the Early Universe:

$$
\begin{gathered}
T \gtrsim 1 \mathrm{MeV} \\
\rho=\frac{\pi^{2}}{30}\left(2+\frac{7}{2}+\frac{7}{4} N_{\nu}\right) T^{4} \\
\eta=n_{B} / n_{\gamma} \sim 10^{-10}
\end{gathered}
$$

β-Equilibrium maintained by weak interactions

Freeze-out at $\sim 1 \mathrm{MeV}$ determined by the competition of expansion rate $H \sim T^{2} / M_{p}$ and the weak interaction rate $\Gamma \sim G_{F}^{2} T^{5}$

$$
\begin{aligned}
n+e^{+} & \leftrightarrow p+\bar{\nu}_{e} \\
n+\nu_{e} & \leftrightarrow p+e^{-} \\
n & \leftrightarrow p+e^{-}+\bar{\nu}_{e}
\end{aligned}
$$

At freezeout n / p fixed modulo free neutron decay, $(n / p) \simeq 1 / 6 \rightarrow 1 / 7$

Nucleosynthesis Delayed

(Deuterium Bottleneck)

$$
\begin{array}{ll}
p+n \rightarrow \mathbf{D}+\gamma & \Gamma_{p} \sim n_{B} \sigma \\
p+n \leftarrow \mathbf{D}+\gamma & \Gamma_{d} \sim n_{\gamma} \sigma e^{-E_{B} / T}
\end{array}
$$

Nucleosynthesis begins when $\Gamma_{p} \sim \Gamma_{d}$

$$
\frac{n_{\gamma}}{n_{B}} e^{-E_{B} / T} \sim 1 \quad @ T \sim 0.1 \mathrm{MeV}
$$

All neutrons $\rightarrow{ }^{4} \mathrm{He}$

$$
Y_{p}=\frac{2(n / p)}{1+(n / p)} \simeq 25 \%
$$

Remainder:

Fig. 1.-Reaction network used in the code. Estimated reactions are shown with dashed lines.

Table 1: Key Nuclear Reactions for BBN

BBN could not explain the abundances (or patterns) of all the elements.

\Rightarrow growth of stellar nucleosynthesis

But,
Questions persisted:

$$
\begin{aligned}
& 25 \% \text { (by mass) of }{ }^{4} \mathrm{He} \text { ? } \\
& \text { D? }
\end{aligned}
$$

Resurgence:
BBN could successfully account for the abundance of

$$
\mathrm{D},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li} .
$$

baryon density $\Omega_{b} h^{2}$

baryon density $\Omega_{b} h^{2}$

Fields, Olive, Yeh, Young

Uncertainties

Observations

- Production of the Light Elements: D, ${ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li}$
- $\quad{ }^{4} \mathrm{He}$ observed in extragalctic HII regions: abundance by mass $=25 \%$
- $\quad{ }^{7} \mathrm{Li}$ observed in the atmospheres of dwarf halo stars: abundance by number $=10^{-10}$
- D observed in quasar absorption systems (and locally): abundance by number $=3 \times 10^{-5}$
- ${ }^{3} \mathrm{He}$ in solar wind, in meteorites, and in the ISM:

$$
\text { abundance by number }=10^{-5}
$$

D/H

- All Observed D is Primordial!
- Observed in the ISM and inferred from meteoritic samples (also HD in Jupiter)
- D/H observed in Quasar Absorption systems

Table 3. PRECISION D/H MEASURES CONSIDERED IN THIS PAPER

QSO	z_{em}	z_{abs}	$\log _{10} N\left(\mathrm{H}_{\mathrm{I}}\right) / \mathrm{cm}^{-2}$	$[\mathrm{O} / \mathrm{H}]^{\mathrm{a}}$	$\log _{10} N(\mathrm{D} \mathrm{I}) / N\left(\mathrm{H}_{\mathrm{I}}\right)$
HS 0105+1619	2.652	2.53651	19.426 ± 0.006	-1.771 ± 0.021	-4.589 ± 0.026
Q0913+072	2.785	2.61829	20.312 ± 0.008	-2.416 ± 0.011	-4.597 ± 0.018
Q1243+307	2.558	2.52564	19.761 ± 0.026	-2.769 ± 0.028	-4.622 ± 0.015
SDSS J1358+0349	2.894	2.85305	20.524 ± 0.006	-2.804 ± 0.015	-4.582 ± 0.012
SDSS J1358+6522	3.173	3.06726	20.495 ± 0.008	-2.335 ± 0.022	-4.588 ± 0.012
SDSS J1419+0829	3.030	3.04973	20.392 ± 0.003	-1.922 ± 0.010	-4.601 ± 0.009
SDSS J1558-0031	2.823	2.70242	20.75 ± 0.03	-1.650 ± 0.040	-4.619 ± 0.026
We adopt the solar value $\log _{10}(\mathrm{O} / \mathrm{H})+12=8.69$ (Asplund et al. 2009).					

Cooke et al.

Tytler, O'Meara, Suzuki, Lubin

D/H abundances in
Quasar absorption systems

BBN Prediction:

 $10^{5} \mathrm{D} / \mathrm{H}=2.58 \pm 0.13$Obs Average:
$10^{5} \mathrm{D} / \mathrm{H}=3.01 \pm 0.21$
(0.68 sample variance)

Updated

D/H abundances in Quasar absorption systems

BBN Prediction: $10^{5} \mathrm{D} / \mathrm{H}=2.51 \pm 0.11$

Obs Average: $10^{5} \mathrm{D} / \mathrm{H}=2.55 \pm 0.03$

Updated

D/H abundances in Quasar absorption systems

BBN Prediction: $10^{5} \mathrm{D} / \mathrm{H}=2.51 \pm 0.11$

Obs Average: $10^{5} \mathrm{D} / \mathrm{H}=2.55 \pm 0.03$
baryon density $\Omega_{b} h^{2}$

baryon density $\Omega_{b} h^{2}$

Fields, Olive, Yeh, Young

${ }^{4} \mathrm{He}$

Measured in low metallicity extragalactic HII regions (~100) together with O / H and N / H

$$
\mathrm{Y}_{\mathrm{P}}=\mathrm{Y}(\mathrm{O} / \mathrm{H} \rightarrow 0)
$$

Fig. 1. Low dispersion blue spectrogram of NGC 2363, showing the faintest lines measured

Fig. 2. Low dispersion red spectrogram of NGC 2363

Results for He dominated by systematic effects

$$
\chi^{2}=\sum_{\lambda} \frac{\left(\frac{F(\lambda)}{F(H \beta)}-\frac{F(\lambda)}{F(H \beta)} \text { meas }\right)^{2}}{\sigma(\lambda)^{2}}
$$

9-10 observables

$$
\left(\mathrm{y}^{+}, \mathrm{n}_{e}, \mathrm{a}_{H e}, \tau, \mathrm{~T}, \mathrm{C}(\mathrm{H} \beta), \mathrm{a}_{H}, \xi\right)
$$

8 parameters

$\frac{F(\lambda)}{F(H \beta)}=y^{+} \frac{E(\lambda)}{E(H \beta)} \frac{\frac{W(H \beta)+a_{H}(H \beta)}{W(H \beta)}}{\frac{W(\lambda)+a_{H e}(\lambda)}{W(\lambda)}} f_{\tau}(\lambda) \frac{1+\frac{C}{R}(\lambda)}{1+\frac{C}{R}(H \beta)} 10^{-f(\lambda) C(H \beta)}$
Aver, Olive, Skillman

Improvements

New emissivities
Aver, Olive, Porter, Skillman 2013
Adding new He line
$7 \mathrm{He}, 3 \mathrm{H}$ lines to fit 8 parameters
Izotov, Thuan, GusevaAver, Olive, Skillman2015
Aver, Berg, Olive, Pogge,
Adding new H and He lines
Add 2 He , and 9 H lines (H9-12, and P8-12)Salzer, Skillman2021For a total of 21 observables to fit 9 parameters (ap added).

Applied to Leo P

Aver, Berg, Olive, Pogge, Salzer, Skillman

	Skillman et al. [66]	This Work
Emission lines	9	21
Free Parameters	8	9
d.o.f.	1	12
$95 \% \mathrm{CL} \chi^{2}$	3.84	21.03
$\mathrm{He}^{+} / \mathrm{H}^{+}$	$0.0837_{-0.0062}^{+0.0084}$	$0.0823_{-0.0018}^{+0.0025}$
$\mathrm{n}_{e}\left[\mathrm{~cm}^{-3}\right]$	1_{-1}^{+206}	39_{-12}^{+12}
$\mathrm{a}_{\mathrm{He}}[\AA]$	$0.500_{-0.42}^{+0.42}$	$0.42_{-0.15}^{+0.11}$
τ	$0.00_{-0.00}^{+0.66}$	$0.00_{-0.00}^{+0.13}$
$\mathrm{T}_{e}[\mathrm{~K}]$	17,060 ${ }_{-2900}^{+1900}$	17,400 ${ }_{-1400}^{+1200}$
$\mathrm{C}(\mathrm{H} \beta$)	$0.10_{-0.07}^{+0.03}$	$0.10_{-0.02}^{+0.02}$
$\mathrm{a}_{H}[\AA]$	$0.94_{-0.94}^{+1.44}$	$0.51_{-0.18}^{+0.17}$
$\mathrm{a}_{P}[\AA]$	-	$0.00_{-0.00}^{+0.52}$
$\xi \times 10^{4}$	0_{-0}^{+156}	0_{-0}^{+7}
χ^{2}	3.3	15.3
p-value	7\%	23\%
$\mathrm{O} / \mathrm{H} \times 10^{5}$	1.5 ± 0.1	1.5 ± 0.1
Y	0.2509 ± 0.0184	0.2475 ± 0.0057

prior: $\mathrm{Y}_{\mathrm{P}}=.2449 \pm 0.0040$
Aver, Berg, Olive, Pogge,
Salzer, Skillman

Adding higher metallicity regions from SDSS data

Kurichin, Kislitsyn, Klimenko Balashev, Ivanchik

cf. Aver et al.

$$
\begin{array}{r}
Y_{p}=0.2453+/-0.0034 \\
d(Y) / d(O / H)=75+/-39
\end{array}
$$

Neutron Lifetime

$$
\begin{aligned}
& \tau=885.7 \rightarrow Y=.2481 \\
& \tau=880.2 \rightarrow Y=.2470 \\
& \tau=879.4 \rightarrow Y=.2468
\end{aligned}
$$

Neutron Lifetime

${ }^{4}$ He Prediction: 0.2469 ± 0.0002

Data: Regression: 0.2453 ± 0.0034
baryon density $\Omega_{b} h^{2}$

Li / H

Measured in low metallicity dwarf halo stars (over 100 observed)

[Fe / H]

Possible sources for the discrepancy

Possible sources for the discrepancy

- Nuclear Rates

Possible sources for the discrepancy

- Nuclear Rates
- Restricted by solar neutrino flux

Possible sources for the discrepancy

- Nuclear Rates
- Restricted by solar neutrino flux

Boyd, et al.

- New Measurements of ${ }^{7} \mathrm{Be}(\mathrm{n}, \mathrm{p})^{7} \mathrm{Li}$
- Others: ${ }^{7} \mathrm{Be}(\mathrm{n}, \alpha){ }^{4} \mathrm{He},{ }^{7} \mathrm{Be}(\mathrm{d}, \mathrm{p}){ }^{4} \mathrm{He}{ }^{4} \mathrm{He}$
n-TOF;
Hou et al.
Kawabata et al.
Lamia et al.
Rigal et al.

Possible sources for the discrepancy

- Nuclear Rates
- Restricted by solar neutrino flux

Boyd, et al.

- New Measurements of ${ }^{7} \mathrm{Be}(\mathrm{n}, \mathrm{p})^{7} \mathrm{Li}$
- Others: ${ }^{7} \mathrm{Be}(\mathrm{n}, \alpha){ }^{4} \mathrm{He},{ }^{7} \mathrm{Be}(\mathrm{d}, \mathrm{p}){ }^{4} \mathrm{He}{ }^{4} \mathrm{He}$
n-TOF;
Hou et al.
Kawabata et al.
Lamia et al.
Rigal et al.

Possible sources for the discrepancy

- Nuclear Rates
- Restricted by solar neutrino flux

Cyburt, Fields, KAO Boyd, et al.

- New Measurements of ${ }^{7} \mathrm{Be}(\mathrm{n}, \mathrm{p})^{7} \mathrm{Li}$
- Others: ${ }^{7} \mathrm{Be}(\mathrm{n}, \alpha){ }^{4} \mathrm{He},{ }^{7} \mathrm{Be}(\mathrm{d}, \mathrm{p}){ }^{4} \mathrm{He}{ }^{4} \mathrm{He}$
- Resonant reactions

Cyburt, Pospelov
Chakraborty, Fields, Olive
Broggini, Canton, Fiorentini, Villante

Possible sources for the discrepancy

- Nuclear Rates
- Restricted by solar neutrino flux

Cyburt, Fields, KAO Boyd, et al.

- New Measurements of ${ }^{7} \mathrm{Be}(\mathrm{n}, \mathrm{p})^{7} \mathrm{Li}$
- Others: ${ }^{7} \mathrm{Be}(\mathrm{n}, \alpha){ }^{4} \mathrm{He},{ }^{7} \mathrm{Be}(\mathrm{d}, \mathrm{p}){ }^{4} \mathrm{He}{ }^{4} \mathrm{He}$
- Resonant reactions
$-{ }^{7} \mathrm{Be}+{ }^{3} \mathrm{He} \rightarrow{ }^{10} \mathrm{C}$

Cyburt, Pospelov
Chakraborty, Fields, Olive
Broggini, Canton, Fiorentini, Villante

Possible sources for the discrepancy

- Nuclear Rates

Cyburt, Fields, KAO

- Restricted by solar neutrino flux

Boyd, et al.

- New Measurements of ${ }^{7} \mathrm{Be}(\mathrm{n}, \mathrm{p})^{7} \mathrm{Li}$
- Others: ${ }^{7} \mathrm{Be}(\mathrm{n}, \alpha){ }^{4} \mathrm{He},{ }^{7} \mathrm{Be}(\mathrm{d}, \mathrm{p}){ }^{4} \mathrm{He}{ }^{4} \mathrm{He}$

Kawabata et al.
Lamia et al.
Rigal et al.

- Resonant reactions
$-{ }^{7} \mathrm{Be}+{ }^{3} \mathrm{He} \rightarrow{ }^{10} \mathrm{C}$
- Resonance at 15 MeV not seen by experiment

Cyburt, Pospelov
Chakraborty, Fields, Olive
Broggini, Canton, Fiorentini, Villante

Possible sources for the discrepancy

- Stellar Depletion
- lack of dispersion in the data, ${ }^{6} \mathrm{Li}$ abundance
- standard models (< . 05 dex), models (0.2-0.4 dex)

Vauclaire \& Charbonnel
Pinsonneault et al.
Richard, Michaud, Richer
Korn et al.
Fu et al.

Broken Spite plateau

Sbordone et al. (2010)

Broken Spite plateau

Note significant dispersion

Bonifacio et al. (2018)

Broken Spite plateau

Aguado et al. (2019)

Other possible sources for the discrepancy

- Stellar parameters
- Decaying Particles
- Axion Cooling
- Variable Constants

BBN and the CMB

Monte-Carlo approach combining BBN rates, observations and CMB

$\mathcal{L}_{\text {OBS }}(X) \quad$ Yellow
$\mathcal{L}_{\mathrm{CMB}}\left(Y_{p}\right) \propto \int \mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) d \eta$.
Cyan
$\mathcal{L}_{\text {CMB-BBN }}\left(X_{i}\right) \propto$
$\int \mathcal{L}_{\text {CMB }}\left(\eta, Y_{p}\right) \mathcal{L}_{\mathrm{BBN}}\left(\eta ; X_{i}\right) d \eta$
Purple

Fields, Olive, Yeh, Young

BBN and the CMB

Monte-Carlo approach combining BBN rates, observations and CMB

Fields, Olive, Yeh, Young

Importance of $\mathrm{D}(\mathrm{p}, \gamma)^{3} \mathrm{He}$

TABLE III. Comparison of BBN Results

	η_{10}	N_{ν}	Y_{p}	D/H	${ }^{3} \mathrm{He} / \mathrm{H}$	${ }^{7} \mathrm{Li} / \mathrm{H}$
CFOY-2016	6.10	3	0.2470	2.579×10^{-5}	0.9996×10^{-5}	4.648×10^{-10}
Pitrou-2018	6.091	3	0.2471	2.459×10^{-5}	1.074×10^{-5}	5.624×10^{-10}
FOYY-2020	6.129	3	0.2470	2.559×10^{-5}	0.9965×10^{-5}	4.702×10^{-10}

Some recent claims (Coc et al.; Cooke et al.) claim a discrepancy with theory and observation in D / H.

Based on fit to theoretical S-factor (Marucci et al.)

New cross section measurement

LUNA

Yeh, Olive, Fields

Yeh, Olive, Fields

Importance of $\mathrm{D}(\mathrm{p}, \gamma)^{3} \mathrm{He}$

TABLE I. Comparison of BBN Results

	η_{10}	N_{ν}	Y_{p}	D / H	${ }^{3} \mathrm{He} / \mathrm{H}$	${ }^{7} \mathrm{Li} / \mathrm{H}$
CFOY-2016	6.10	3	0.2470	$2.579(130) \times 10^{-5}$	0.9996×10^{-5}	4.648×10^{-10}
Pitrou-2018	6.091	3	0.2471	$2.459(046) \times 10^{-5}$	1.074×10^{-5}	5.624×10^{-10}
FOYY-2020	6.129	3	0.2470	$2.559(129) \times 10^{-5}$	0.9965×10^{-5}	4.702×10^{-10}
Pisanti-2021	6.138	3	0.2469	$2.51(07) \times 10^{-5}$		
Pitrou-2021	6.138	3	0.2472	$2.439(037) \times 10^{-5}$	1.039×10^{-5}	5.464×10^{-10}
	6.123	3	0.2470	$2.493(110) \times 10^{-5}$	1.033×10^{-5}	4.926×10^{-10}

Uncertainties

BBN and the CMB

From Planck:
Convolved Likelihoods

$$
\begin{gathered}
\mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) \\
\omega_{b}= \\
Y_{p}=0.022305 \pm 0.000225 \\
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{NCMB}}\left(\eta, Y_{p}, N_{\nu}\right) \\
\omega_{b}= & 0.022212 \pm 0.000242 \\
N_{\text {eff }}= & 2.7542 \pm 0.3064 \\
Y_{p}= & 0.26116 \pm 0.01812
\end{aligned}
$$

Cyburt, Fields, Olive, Yeh
From Planck 2018:

$$
\begin{aligned}
\omega_{\mathrm{b}}^{\mathrm{CMB}} & =0.022298 \pm 0.000200 \\
Y_{p} & =0.239 \pm 0.013
\end{aligned}
$$

$$
\begin{gathered}
\omega_{\mathrm{b}}^{\mathrm{CMB}}=0.022242 \pm 0.000221 \\
Y_{p, \mathrm{CMB}}=0.247 \pm 0.018 \\
N_{\mathrm{eff}}=2.841 \pm 0.298
\end{gathered}
$$

Fields, Olive, Yeh, Young

BBN and the CMB

$$
\mathrm{N}_{v}=3
$$

CMB only determination of η and Y_{P}

3σ BBN Prediction

Fields, Olive, Yeh, Young

BBN and the CMB

$\mathcal{L}_{\mathrm{CMB}}(\eta) \propto \int \mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) d Y_{p}$.
Convolved Likelihoods
$\mathcal{L}_{\mathrm{CMB}-\mathrm{BBN}}(\eta) \propto \int \mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) \mathcal{L}_{\mathrm{BBN}}\left(\eta ; Y_{p}\right) d Y_{p}$

Determination of η

$$
\begin{gathered}
\mathcal{L}_{\mathrm{BBN}-\mathrm{OBS}}(\eta) \propto \int \begin{array}{c}
\mathcal{L}_{\mathrm{BBN}}\left(\eta ; X_{i}\right) \mathcal{L}_{\mathrm{OBS}}\left(X_{i}\right) d X_{i} \\
\mathcal{L}_{\mathrm{CMB}-\mathrm{BBN}-\mathrm{OBS}}(\eta) \propto
\end{array} \int \mathcal{L}_{\mathrm{CMB}}\left(\eta, Y_{p}\right) \mathcal{L}_{\mathrm{BBN}}\left(\eta ; X_{i}\right) \mathcal{L}_{\mathrm{OBS}}\left(X_{i}\right) \prod_{i} d X_{i}
\end{gathered}
$$

Fields, Olive, Yeh, Young

BBN and the CMB

Convolved Likelihoods
Results for η

Constraints Used	mean η_{10}	peak η_{10}
CMB-only	6.104 ± 0.055	6.104
BBN $+Y_{p}$	$6.741_{-3.524}^{+1.20}$	4.920
BBN +D	6.148 ± 0.191	6.145
BBN $+Y_{p}+\mathrm{D}$	6.143 ± 0.190	6.140
$\mathrm{CMB}+\mathrm{BBN}$	6.129 ± 0.041	6.129
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}$	6.128 ± 0.041	6.128
$\mathrm{CMB}+\mathrm{BBN}+\mathrm{D}$	6.130 ± 0.040	6.129
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}+\mathrm{D}$	6.129 ± 0.040	6.129

Fields, Olive, Yeh, Young

Limits on Particle Properties

$$
G_{F}^{2} T^{5} \sim \Gamma_{\mathrm{wk}}\left(T_{f}\right)=H\left(T_{f}\right) \sim G_{N}^{1 / 2} T^{2}
$$

$$
\begin{gathered}
H^{2}=\frac{8 \pi}{3} G_{N} \rho \\
\rho=\frac{\pi^{2}}{30}\left(2+\frac{7}{2}+\frac{7}{4} N_{\nu}\right) T^{4},
\end{gathered}
$$

- BBN Concordance rests on balance between interaction rates and expansion rate.
- Allows one to set constraints on:

$$
\frac{n}{p} \sim e^{-\Delta m / T}
$$

- Particle Types
- Particle Interactions

$$
Y \sim \frac{2(n / p)}{1+(n / p)}
$$

- Particle Masses
- Fundamental Parameters: GN, GF, α

$$
\text { e.g. } \quad \frac{\Delta \alpha}{\alpha}<\text { few } \times 10^{-4}
$$

BBN and the CMB

Sensitivity to N_{v}

Fields, Olive, Yeh, Young

What does $\mathrm{N}>3$ mean?

Today,

$$
\rho_{r a d}=\frac{\pi^{2}}{30}\left(2+\frac{7}{4} N_{\nu}\left(\frac{T_{\nu}}{T_{\gamma}}\right)^{4}\right) T_{\gamma}^{4}
$$

$$
=\frac{\pi^{2}}{30}\left(2+\frac{21}{4}\left(\frac{4}{11}\right)^{4 / 3}+\frac{7}{4} \Delta N\left(\frac{T_{\Delta N}}{T_{\gamma}}\right)^{4}\right) T_{\gamma}^{4}
$$

Scalars:

Dirac Fermion:

$$
\Delta N=2
$$

BBN and the CMB

Monte-Carlo approach combining BBN rates, observations and CMB

Fields, Olive, Yeh, Young

BBN and the CMB

CMB only determination of η and N_{v}
$\omega_{\mathrm{b}}^{\mathrm{CMB}}=0.022242 \pm 0.000221$
$Y_{p, \mathrm{CMB}}=0.247 \pm 0.018$
$N_{\text {eff }}=2.841 \pm 0.298$

Cyburt, Fields, Olive, Yeh

BBN and the CMB

CMB and BBN determination of η and N_{v}

Fields, Olive, Yeh, Young

BBN and the CMB

Only D Obs. Constraints

CMB and BBN determination of η and N_{v}

BBN and the CMB

CMB and BBN determination of η and N_{v}

Fields, Olive, Yeh, Young

BBN and the CMB

Convolved Likelihoods Results for $\eta\left(N_{v}\right)$

Constraints Used	mean η_{10}	peak η_{10}	mean N_{ν}	peak N_{ν}
CMB-only	6.090 ± 0.061	6.090	2.799 ± 0.294	2.763
BBN $+Y_{p}+\mathrm{D}$	6.084 ± 0.230	6.075	2.878 ± 0.278	2.861
$\mathrm{CMB}+\mathrm{BBN}$	6.088 ± 0.060	6.088	2.830 ± 0.189	2.825
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}$	6.090 ± 0.055	6.090	2.838 ± 0.158	2.833
$\mathrm{CMB}+\mathrm{BBN}+\mathrm{D}$	6.088 ± 0.060	6.089	2.838 ± 0.182	2.833
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}+\mathrm{D}$	6.090 ± 0.055	6.090	2.843 ± 0.154	2.839

Fields, Olive, Yeh, Young

BBN and the CMB

Convolved Likelihoods Results for $\eta\left(N_{v}\right)$

Constraints Used	mean η_{10}	peak η_{10}	mean N_{ν}	peak N_{ν}
CMB-only	6.090 ± 0.061	6.090	2.799 ± 0.294	2.763
BBN $+Y_{p}+\mathrm{D}$	6.084 ± 0.230	6.075	2.878 ± 0.278	2.861
$\mathrm{CMB}+\mathrm{BBN}$	6.088 ± 0.060	6.088	2.830 ± 0.189	2.825
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}$	6.090 ± 0.055	6.090	2.838 ± 0.158	2.833
$\mathrm{CMB}+\mathrm{BBN}+\mathrm{D}$	6.088 ± 0.060	6.089	2.838 ± 0.182	2.833
$\mathrm{CMB}+\mathrm{BBN}+Y_{p}+\mathrm{D}$	6.090 ± 0.055	6.090	2.843 ± 0.154	2.839

$N_{v}<3.15(95 \% C L)$

Fields, Olive, Yeh, Young

BBN and the CMB

Convolved Likelihoods Results for $\eta\left(N_{v}\right)$

$d(p, \gamma)^{3}$ He rate	mean η_{10}	peak η_{10}	mean N_{ν}	peak N_{ν}
FOYY [19]	6.090 ± 0.055	6.090	2.843 ± 0.154	2.839
updated $Y_{P}[19,[29]$	6.093 ± 0.054	6.093	2.855 ± 0.146	2.851
Theory [43]	6.092 ± 0.054	6.092	2.918 ± 0.144	2.915
LUNA20 [47]	6.092 ± 0.054	6.093	2.883 ± 0.144	2.879
This Work	6.092 ± 0.054	6.093	2.880 ± 0.144	2.876

Yeh, Olive, Fields

BBN and the CMB

Convolved Likelihoods Results for $\eta\left(N_{v}\right)$

$d(p, \gamma)^{3}$ He rate	mean η_{10}	peak η_{10}	mean N_{ν}	peak N_{ν}
FOYY [19]	6.090 ± 0.055	6.090	2.843 ± 0.154	2.839
updated $Y_{P}[19,29]$	6.093 ± 0.054	6.093	2.855 ± 0.146	2.851
Theory [43]	6.092 ± 0.054	6.092	2.918 ± 0.144	2.915
LUNA20 [47]	6.092 ± 0.054	6.093	2.883 ± 0.144	2.879
This Work	6.092 ± 0.054	6.093	2.880 ± 0.144	2.876

$N_{v}<3.17$ (95\% CL)

Yeh, Olive, Fields

BBN and the CMB

CMB-S4 promises significantly improved BBN parameters

$$
\sigma_{\mathrm{S} 4}\left(Y_{p}\right) \simeq 0.005
$$

K. N. Abazajian et al. [CMB-S4 Collaboration]

CMB-S4:

$$
\sigma_{\mathrm{S} 4}\left(N_{\mathrm{eff}}\right) \simeq 0.09
$$

Fields, Olive, Yeh, Young

BBN and the CMB

Summary

- BBN and CMB are in excellent agreement wrt D and He
- Li: Problematic
- BBN ${ }^{7}$ Li high compared to observations
- Wish list:
- New cross sections measurements for $\mathrm{D}(\mathrm{D}, \mathrm{p})$ and $\mathrm{D}(\mathrm{D}, \mathrm{n})$
- New high precision measurements of He
- Standard Model $\left(\mathrm{N}_{v}=3\right)$ is looking good!

