Nuclear collisions as seen through photons

Jean-François Paquet February 1, 2023

Theoretical Physics

Arizona State University

The higher end of the electromagnetic spectrum

Image modified from Wikimedia

 $\sim 1 \text{ GeV}$

The higher end of the electromagnetic spectrum

Image modified from Wikimedia

RHIC and **LHC**

Relativistic Heavy Ion Collider (RHIC) [Brookhaven National Lab, Long Island, NY]

$$\sqrt{s_{NN}} \sim 10^2 \text{ GeV}$$

 $\sqrt{s_{NN}} \sim 10^3 - 10^4 \, {\rm GeV}$

Nuclear collisions

Kinetic energy of nuclei ~ 100-2500 times mass of nuclei

Pb-Pb at rest: $\sqrt{s_{NN}} \approx 2 \text{ GeV}$

Nuclear collisions

Kinetic energy of nuclei ~ 100-2500 times mass of nuclei

Pb-Pb at rest: $\sqrt{s_{NN}} \approx 2 \text{ GeV}$

Hadronic decay photons in nuclear collisions

• Kinetic energy of nuclei \sim 100-2500 times mass of nuclei

Pb-Pb at rest: $\sqrt{s_{NN}} \approx 2 \text{ GeV}$

JEAN-FRANÇOIS PAQUET (VANDERBILT)

Hadronic decay photons in nuclear collisions

Ref: F. Bock, PhD thesis

Ref: Chun Shen, PhD thesis

 Σ^0

3.0

3.5

JEAN-FRANÇOIS PAQUET (VANDERBILT)

Hadronic decay photons in nuclear collisions

Ref: F. Bock, PhD thesis

Ref: Chun Shen, PhD thesis

PHOTONS IN PROTON-PROTON COLLISIONS

Ref: Owens (1987) RMP

p p_{\perp} p_{\perp}

Figure adapted from K. Tuchin (2013) AHEP

Direct photons in proton-proton collisions

Direct photons in proton-proton collisions: "low" energy

- Low p_T photons:
 - Few measurements (in proton-proton collisions)
 - Difficult to compute from first principles
 - Non-perturbative effects likely significant

Direct photons in p-p collisions: high energy

 $\frac{\mathrm{d}\sigma_{\gamma}^{pp}}{\mathrm{d}p_{T}} = f_a \otimes f_b \otimes \mathrm{d}\hat{\sigma}_{ab \to \gamma/c+d} [\otimes D_{\gamma/c}]$

Figure ref:

Owens (1987) RMP

Direct photons in p-p collisions: high energy

Nuclear Physics B327 (1989) 105–143 North-Holland, Amsterdam

QCD CORRECTIONS TO PARTON-PARTON SCATTERING PROCESSES

F. AVERSA*, P. CHIAPPETTA, M. GRECO*, J.Ph. GUILLET**

 Can be calculated in collinearfactorization based perturbative QCD, up to next-to-leading order

$$\frac{\mathrm{d}\sigma_{\gamma}^{pp}}{dp_{T}} = f_a \otimes f_b \otimes \mathrm{d}\hat{\sigma}_{ab \to \gamma/c+d} [\otimes D_{\gamma/c}]$$

Frag fct: Bourhis, Fontannaz, Guillet (1998) EPJ

Direct photons in p-p collisions: high energy

Nuclear Physics B327 (1989) 105-143 North-Holland, Amsterdam

QCD CORRECTIONS TO PARTON-PARTON SCATTERING PROCESSES

F. AVERSA*, P. CHIAPPETTA, M. GRECO*, J.Ph. GUILLET**

 Can be calculated in collinearfactorization based perturbative QCD, up to next-to-leading order

$$\frac{\mathrm{d}\sigma_{\gamma}^{pp}}{dp_{T}} = f_a \otimes f_b \otimes \mathrm{d}\hat{\sigma}_{ab \to \gamma/c+d} [\otimes D_{\gamma/c}]$$

Frag fct: Bourhis, Fontannaz, Guillet (1998) EPJ

Direct photons in proton-proton collisions: channels

- Hard partonic collisions
 - "Isolated"

Fragmentation

PHOTONS IN HEAVY-ION COLLISIONS THE PHOTON ENERGY SPECTRUM

Photon energy spectrum in heavy-ion collisions

Systematic excess of low energy photons in nucleus collisions

(also observed by STAR and ALICE Collaborations)

Orange band: Result for incoherent superposition of protonproton collisions

Photon energy spectrum in heavy-ion collisions

Systematic excess of low energy photons in nucleus collisions

(also observed by STAR and ALICE Collaborations)

Orange band: Result for incoherent superposition of protonproton collisions

Photons in heavy-ion collisions: high p_T

Prompt photons produced as superposition of nucleon-nucleon collisions ("binary scaling")

Photons in heavy-ion collisions: high p_T

Prompt photons produced as superposition of nucleon-nucleon collisions ("binary scaling")

$$R_{AA}^{\gamma} = \frac{\frac{\mathrm{d}N_{\gamma}^{AA}}{\mathrm{d}p_{T}}}{\left(\frac{N_{binary}}{\sigma_{pp}^{inel}}\right) \frac{\mathrm{d}\sigma_{\gamma}^{pp}}{\mathrm{d}p_{T}}} \approx 1 \quad (\text{at high } p_{T})$$

A A

Deviations from $R_{AA}^{\gamma} = 1$ originate from:

- Isospin effect (parton content of n vs p)
- Nuclear effects on parton distribution functions
- Parton energy loss [more about this later]

Heavy-ion collisions

0.1

0.01

10

JEAN-FRANÇOIS PAQUET (VANDERBILT)

-10

-15

-10

0 x (fm)

Prompt photons in heavy-ion collisions

10⁻²

- Hard partonic collisions
 - "Isolated"

medium

Fragmentation

g .00000

PHENIX

 10^{1}

ALICE (prelim)

25

JEAN-FRANÇOIS PAQUET (VANDERBILT)

What is the spacetime and momentum profile of quarks/gluons/hadrons?

• How much radiation is emitted in each region?

Note: No clear separation between quark/gluon phase and hadronic phase

What is the spacetime and momentum profile of quarks/gluons/hadrons?

How much radiation is emitted in each region?

Note: No clear separation between quark/gluon phase and hadronic phase

What is the spacetime profile of quarks/gluons/hadrons?

State of matter/TemperaturesGas of hadrons below $T \approx 160$ MeVDeconfinement for $T \approx 160 - 200$ MeVStrongly-coupled quark/gluons
for $T \sim 200 - 500$ MeV

Photon emission rate

Effective hadronic models

Extrapolated rates from low/high temperatures

Lattice QCD, holography, effective models

Weakly-coupled QGP at $T \gg 1$ GeV

Perturbative QCD

Results: Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}, 0-20\%$

Results: Pb-Pb $\sqrt{s_{NN}} = 2760 \text{ GeV}, 0-20\%$

Thermal photons dominate at low energy (p_T)

Results: Pb-Pb $\sqrt{s_{NN}} = 2760 \text{ GeV}, 0-20\%$

Results: Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}, 0-20\%$

Ref.: PHENIX Collaboration (2012) PRL

$$\ln\left(\frac{1}{2\pi E}\frac{dN}{dE\ dy}\right) = cte - \frac{E}{T_{eff}}$$

centrality	$T_{\rm eff}~({\rm GeV}/c)$	$T_{\rm eff}~({ m GeV}/c)$
	$0.8 < p_T < 1.9 \text{ GeV}/c$	$2 < p_T < 4$
0% - 20%	$0.277 \pm 0.017 \ ^{+0.036}_{-0.014}$	$0.428 \pm 0.031 \ ^{+0.031}_{-0.030}$
20% - 40%	$0.264 \pm 0.010 \ ^{+0.014}_{-0.007}$	$0.354 \pm 0.019 {}^{+0.020}_{-0.030}$
40%- $60%$	$0.247 \pm 0.007 {}^{+0.005}_{-0.004}$	$0.392 \pm 0.023 {}^{+0.022}_{-0.022}$
60%– $93%$	$0.253 \pm 0.011 \ ^{+0.012}_{-0.006}$	$0.331 \pm 0.036 {}^{+0.031}_{-0.041}$

(Prompt photons subtracted before fit)

JEAN-FRANÇOIS PAQUET (VANDERBILT)

PHOTONS IN HEAVY-ION COLLISIONS

PLASMA TEMPERATURE VS PHOTON ENERGY SPECTRUM

Photons produced at different temperature, and with different Doppler shifts

Thermal photon spectrum: Doppler shift

$$\ln\left(\frac{1}{E}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}p}\right) = \ln\left(\int \mathrm{d}^{4}X\frac{1}{E}\frac{\mathrm{d}\Gamma_{\gamma}}{\mathrm{d}^{3}p}(p,T(X),u^{\mu}(X),\dots)\right) \sim cte - \frac{E}{T_{eff}}?$$

Photon emission rate:
$$\frac{1}{E}\frac{d\Gamma_{\gamma}}{d^{3}p} \sim e^{-\frac{E}{T}}$$
Doppler shift
$$n\left(\frac{1}{E}\frac{dN_{\gamma}}{d^{3}p}\right) \approx \ln\left(\int d^{4}X \ e^{-\frac{P \cdot u(X)}{T(X)}}\right) + cte = \ln\left(\int d\phi d\eta_{s} dx_{\perp} \ e^{-\frac{P \cdot u(X)}{T(X)}}\right) + cte$$

At midrapidity, $P \cdot u = p_T \left(\cosh(\eta_s) \sqrt{1 + u_{\perp}^2} - u_{\perp} \cos(\phi) \right)$

JEAN-FRANÇOIS PAQUET (VANDERBILT)

Thermal photon spectrum: Doppler shift

$$\ln\left(\frac{1}{E}\frac{dN_{\gamma}}{d^{3}p}\right) = \ln\left(\int d^{4}X \frac{1}{E}\frac{d\Gamma_{\gamma}}{d^{3}p}(p,T(X),u^{\mu}(X),...)\right) \sim cte - \frac{E}{T_{eff}}? \int_{-u}^{u} \int_{-u}^{$$

Thermal photon spectrum: Doppler shift

$$\ln\left(\frac{1}{E}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}p}\right) \approx \ln\left(\int dx_{\perp} \exp\left(-\frac{E}{T\left(1+\frac{u_{\perp}^{2}}{4E/T}\left(1+(E/T-2)(E/T)\right)\right)}\right) + cte$$

Transverse
Doppler shift

Effect of transverse Doppler shift

Local effect of Doppler shift

Ref.: Shen, Heinz, Paquet, Gale (2014) PRC; See also van Hees, Gale, Rapp (2011) PRC

Effect of transverse Doppler shift

Not all Doppler shifts are equal

Not all Doppler shifts are equal

1/(2*π*p_T)dN/dp_Tdy

Photons produced at different temperature, and with different Doppler shifts

Spacetime profile of plasma: complicated, but can look at simple models

Bjorken hydrodynamics for longitudinal-dominated expansion: $T(\tau) = T_0 \left(\frac{\tau_0}{\tau}\right)^{c_s^2}$

→ Black disk approx:
$$T(\tau, r < \sigma) = T_0 \left(\frac{\tau_0}{\tau}\right)^{c_s^2}$$

Gaussian approx: $T(\tau, r) = T_0 e^{-\frac{r^2}{2\sigma^2}} \left(\frac{\tau_0}{\tau}\right)^{c_s^2}$
Paquet and Bass [arXiv:2205.12299]

1 aquet and Dass | arXiv.2203.12299 |

JEAN-FRANÇOIS PAQUET (VANDERBILT)

Thermal photon spectrum $\ln\left(\frac{1}{F}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}n}\right) \approx \ln\left(\int d\phi d\eta_{s} dx_{\perp} e^{-\frac{P \cdot u(x)}{T(X)}}\right) + cte$ $\ln\left(\frac{1}{F}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}n}\right) \approx -\frac{E}{T_{0}} + \frac{3}{2}\log\left(\frac{T_{0}}{E}\right) + cte + O\left(\frac{T_{0}}{E}\right)$ Paquet and Bass [arXiv:2205.12299] $\ln\left(\frac{1}{E}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}n}\right) \approx -\frac{E}{T_{0}} + \frac{5}{2}\log\left(\frac{T_{0}}{E}\right) + cte + O\left(\frac{T_{0}}{E}\right)$ $\ln\left(\frac{1}{E}\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}n}\right) \approx -\frac{E}{T_{0}} + \mu\log\left(\frac{T_{0}}{E}\right) + cte \approx -\frac{E}{T_{off}} + cte$ JEAN-FRANÇOIS PAQUET (VANDERBILT)

Results: Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}, 0-20\%$

Paquet and Bass [arXiv:2205.12299]

$$\ln\left(\frac{1}{2\pi E}\frac{dN}{dE \, dy}\right) = cte - \frac{E}{T_{eff}}; \quad T_0 \approx \frac{T_{eff}}{1 - \frac{T_{eff}}{E}\mu\ln\mu}$$

centrality	$T_0(GeV)$	$T_{\rm eff}~({\rm GeV}/c)$	$T_0(GeV)$	$T_{\rm eff}~({\rm GeV}/c)$
		$0.8 < p_T < 1.9 \ \mathrm{GeV}/c$		$2 < p_T < 4$
0% - 20%	0.48	$0.277 \pm 0.017 \ ^{+0.036}_{-0.014}$	0.64	$0.428 \pm 0.031 \ ^{+0.031}_{-0.030}$

Non-trivial relation between inverse slope and plasma temperature

Remember: Doppler shift introduces more complications

Results: Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}, 0-20\%$

JEAN-FRANÇOIS PAQUET (VANDERBILT)

PRE-EQUILIBRIUM PHOTONS

Photons from the early stage of the collision

JEAN-FRANÇOIS PAQUET (VANDERBILT)

Quark-gluon chemical equilibration time

Estimating the effect of chemical equilibration time

Kurkela and Mazeliauskas (2019) PRL

Delayed chemical equilibration: significant effect on the photon spectra

Photons from the early stage of the collision

Gale, Paquet, Schenke, Shen (2022) PRC

JEAN-FRANÇOIS PAQUET (VANDERBILT)

PHOTON MOMENTUM ANISOTROPY

Results: momentum anisotropy

Figure adapted from K. Tuchin (2013) AHEP

$$\frac{1}{2\pi p_T}\frac{dN}{dp_T d\phi} = \left(\frac{1}{2\pi p_T}\frac{dN}{dp_T}\right) \left[1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n))\right]$$

 More precisely: momentum anisotropy through photon-hadron correlation

$$v_n\{SP\}(p_T) = \frac{\left\langle v_n^{\gamma}(p_T)v_n^h \cos\left(n\left(\Psi_n^{\gamma}(p_T) - \Psi_n^h\right)\right)\right\rangle}{\sqrt{\left\langle \left(v_n^h\right)^2\right\rangle}}$$

JEAN-FRANÇOIS PAQUET (VANDERBILT)

Momentum anisotropy from geometrical anisotropy

JEAN-FRANÇOIS PAQUET (VANDERBILT)

Results: Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}$

High $p_T v_2^{\gamma}$ increased by delayed chemical equilibration

The direct photon puzzle

SUMMARY AND OUTLOOK

Summary

- High-energy photons: heavy-ion collisions similar to proton-proton case
- Low-energy photons:
 - Enhancement with respect to proton-proton collisions
 - Exponential spectrum \pm consistent with thermal radiation from $T_{max} \sim 500 \, \textit{MeV}$ deconfined plasma
 - Azimuthal anisotropy: important complementary information

Outlook

- Studying the early stage of heavy-ion collisions with photons
- "Multi-messenger" study of heavy-ion collisions
- Understanding low p_T photons in proton-proton collisions?

Many opportunities with dileptons as well

