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The Noise of Photons

Electromagnetic fields are quantum fields whose quanta are photons

The photons reveal themselves in situations with low photon number

They appear as random fluctuations — noise
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where hand side of Eq. (3.6) vanishes, so that the Frenkel
= G 4-momentum also leads to the energy given by Eq. (3.4).
e(x2)=+1 ;or '\l\xl (3.7 Our system, characterized by Eqgs. (3.1) to (3.5), can

=—1 for #'<at,

now be quantized by putting L=##. For either posi-
tronium (e electronic charge, m=1m electron mass) or
hydrogen (e, m electronic charge and mass, 7 proton
mass), the resulting quantized motions are all nonrela-
tivistic. They are the usual Bohr motions with small
corrections for retardation and other relativistic effects
and, in the case of hydrogen, with small corrections for
the motion of the nucleus.

Because of the infinite integrations in Eq. (3.6), it is
clear that the additional term is either zero or infinite for
a periodic motion of the system. Thus, for periodic
motions the Frenkel 4-momentum either coincides with
the canonical 4-momentum or gives infinite results. In
our case of point charges in circular motion, the right-
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Methods are developed for discussing the photon statistics of arbitrary radiation fields in fully quantum-
mechanical terms. In order to keep the classical limit of quantum electrodynamics plainly in view, extensive
use is made of the coherent states of the field. These states, which reduce the field correlation functions to
factorized forms, are shown to offer a convenient basis for the description of fields of all types. Although
they are not orthogonal to one another, the coherent states form a complete set. It is shown that any quan-
tum state of the field may be expanded in terms of them in a unique way. Expansions are also developed
for arbitrary operators in terms of products of the coherent state vectors. These expansions are discussed as a
general method of representing the density operator for the field. A particular form is exhibited for the
density operator which makes it possible to carry out many quantum-mechanical calculations by methods
resembling those of classical theory. This representation permits clear insights into the essential distinction
between the quantum and classical descriptions of the field. It leads, in addition, to a simple formulation
of a superposition law for photon fields. Detailed discussions are given of the incoherent fields which are
generated by superposing the outputs of many stationary sources. These fields are all shown to have inti-
mately related properties, some of which have been known for the particular case of blackbody radiation.

I. INTRODUCTION

EW problems of physics have received more atten-
tion in the past than those posed by the dual wave-
particle properties of light, The story of the solution of
these problems is a familiar one. It has culminated in
the development of a remarkably versatile quantum
theory of the electromagnetic field. Yet, for reasons
which are partly mathematical and partly, perhaps, the
accident of history, very little of the insight of quantum
electrodynamics has been brought to bear on the
problems of optics. The statistical properties of photon
beams, for example, have been discussed to date almost
exclusively in classical or semiclassical terms. Such
discussions may indeed be informative, but they in-
evitably leave open serious questions of self-consistency,
and risk overlooking quantum phenomena which have
no classical analogs. The wave-particle duality, which
should be central to any correct treatment of photon
statistics, does not survive the transition to the classical
limit. The need for a more consistent theory has led us

* Supported in part by the U. S. Air Force Office of Scientific
Research under Contract No. AF 49(638)-589.

to begin the development of a fully quantum-mechanical
approach to the problems of photon statistics. We have
quoted several of the results of this work in a recent
note,! and shall devote much of the present paper to
explaining the background of the material reported
there,

Most of the mathematical development of quantum
electrodynamics to date has been carried out through
the use of a particular set of quantum states for the
field. These are the stationary states of the non-
interacting field, which corresponds to the presence of
a precisely defined number of photons. The need to use
these states has seemed almost axiomatic inasmuch as
nearly all quantum electrodynamical calculations have
been carried out by means of perturbation theory. It is
characteristic of electrodynamical perturbation theory
that in each successive order of approximation it
describes processes which either increase or decrease
the number of photons present by one. Calculations
performed by such methods have only rarely been able
to deal with more than a few photons at a time. The

1 R. J. Glauber, Phys. Rev. Letters 10, 84 (1963).




Dyson’s Critigue of the Detectablility of Gravitons

Dyson argued that since there are ~ 103/ gravitons within one cubic wavelength. ..

... and since we have only barely managed to detect gravitational waves

... we would have to improve sensitivity by ~3/ orders of magnrtude
in order to detect individual gravitons
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Abstract

We show that when the gravitational field is treated quantum-mechanically, it induces
fluctuations — noise - in the lengths of the arms of gravitational wave detectors. The
characteristics of the noise depend on the quantum state of the gravitational field, and
can be calculated exactly in several interesting cases. For coherent states the noise is
very small, but it can be greatly enhanced in thermal and (especially) squeezed states.
Detection of this fundamental noise would constitute direct evidence for the quantization

of gravity and the existence of gravitons.
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Gravitational Waves




Gravitational Waves




Geodesic Deviation Equation

= —ngo Y curvature of spacetime
geodesIc separation

gravitational wave

i
Riojo(t,0) = — §hz’j (¢,0)

e
£=che

This equation describes the separation of free-falling particles when
subject to a gravitational wave h(t)



Gravitational Wave Interferometers




Quantum Geodesic Deviation Equation?

1..
£=he

This Is the geodesic deviation equation in the presence of a
classical gravitational wave

What is the generalization of this equation when the
spacetime metric Is treated as a quantum field!



Model Gravitational Wave Detector

Background coordinate
system (7, x, y, 2)

Reference /

geodesic

Detector arm length or
geodesic deviation




Action

e [d4 Gy J‘” \/ IX7 X Jd \/ 77 dr”
el V2 TR O Sui e

Einstein-Hilbert action + relativistic action for two free-falling particles

Use Fermi normal coordinates, putting heavy particle on classical trajectory
X* = (¢,0)

Let the other particle be at

—

YH = (tv )



Action

Next, insert metric in Fermi normal coordinates into particle action:

goo(t, &) = —1 — Ryp;0(t,0)€°€7 + O(€°)

Gl 6 ) = —gRsz‘k(t, 0)&7¢" + 0(&%)
Tl 6 =T — %Rikjl(taO)gkgl +0(&%) .

Expand action to lowest order in metric perturbation in transverse-traceless gauge:

By k] 1 gupis 5 fidi G figd
o 647TG/dx6’thc‘9h +/dt2mo(5w§§ hiséiél )




Strategy

VWe wish to calculate the effect of a quantized gravitational field on the gravitational wave
detector. We have the action.We can quantize the theory.

Suppose the gravitational field is initially In state ‘\I/>

We don't know what the final state of the field is

VWe wish to calculate the transition probability of the
detector to go from state A to state Bintime T



Quantum Mechanics

Thus we wish to calculate

Py(A — B) =) 5 (f, BIU(T)|¥, A)|?

Here the amplitudes are evaluated as path integrals using the action we have found

The relatively simple form of the action allows the
calculation to be performed exactly



Aside: Influence Functionals

Feynman and Vernon (1963) considered a very general problem in
quantum mechanics

Suppose we have two Interacting systems but we only have
access to or Interest In one of them

Then the effect of the system we are not interested in on
the system we are interested In Is completely encoded by
the influence functional

The influence functional is a double path integral



Integrating Out Gravity

In our context, we wish to integrate out gravity to
see the effect on the detector

Py(A = B) ~ J@ggzg'e%fg dtzm(&~L") FoE, €

Here the influence functional F is

Fyl§, €] = /Dh])h’m(shg Sht.g/)
|f)



e

1

o4r(G

Mode Decomposition

/d4CB 8Mhij8“h” NS /dt§m0 (5ij€Z€J 0. hz’jfz‘gj)

Write metric perturbation in Fourier modes:

k,S k78




Detector Arm Length Interacting with Graviton Mode

free particle

. = [ dt (Gm(a? - ) + jmoé? - gié)

simple harmonic
oscillator cubic interaction term



Influence Functional for Gravity

A calculation in ordinary quantum mechanics
yields the influence functional for gravity

mg

Fol = exp [—3%2 [ ] drar aate—e) (X0 - X' 0) (X(¢) = X'(¢)

where

d2

X(t) = —

(€°)



A Mathematical Trick

VWe now exploit the fact that exponentials can be written as Gaussian integrals:
b2 —ay?+b
eda ~u dy e EE o)

The infinite-dimensional generalization of this Is a path integral:

exp {37;7’}22/() /O dtdt' A(t,t") (X (t) — X'(t)) (X(t) X’(t’))}

:/DNexp {;/OT /OTdtdt’A1(t,t’)N(t)N(t’)+;/OTdtTZON(t) (X(t)X’(t))}

N(t) Is a zero-mean Gaussian stochastic function with auto-correlation A(t-t): noise!



Transition Probabllrity

Putting everything together we obtain the
detector transition probability

Py(A — B) ~ / DEDE'eh  bmo(@=E") (o3 17 HHNO(XO-X'0)))
N

Since the detector is well-approximated as
classical, we can take a saddle point to obtain its
effective equation of motion



Langevin Equation

= s % mOG d5 5
5__<h N\If C5 dt5§>€

radiation

classical .
reaction

gravitational wave

quantum noise

This is effectively the generalization of the classical geodesic deviation
equation when the spacetime metric Is a quantum field

Because of the noise term, it Is no longer a deterministic equation but a
stochastic equation



Classical Geodesic Separation by Gravitational Waves

classical gravitational wave

4



The Noise of Gravitons

\\

En (h+ Nu) ¢

-

quantized gravitational wave
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s The Noise Detectable!

For the noise to be detectable:

|. Its amplitude should not be too small

2. Its spectrum should be distinguishable from other sources of noise



Noise Spectrum

The power spectrum is explicitly calculable for many classes of quantum states

Moreover, the noise appears to be correlated between multiple detectors



Noise for Quantum States of Gravitational Field

The magnitude of the noise depends on the quantum state as well as on the detector

detector sensitivity

Dy

ax
variance of 62 o 5(% dG)S(G)) noise power spectrum

fluctuation
arm length

For the vacuum state and for coherent states (classical gravitational waves from weak sources)
60 ~ P&oa)max/c S 10_36 o 10_38111

For thermal states (cosmic gravitational background, evaporating black holes)

< 107% - 107*m

max v

6 ~ o/ kgT/hw

For squeezed states (cosmology, non-linear gravitational waves)

r/2 exponential enhancement In
O~ € O-() .
squeezing parameter



Quantum Free-Fall

classical free-fall ~ quantum free-fall



Summary

VWe have developed a formalism to consider general relativity in
which the spacetime metric Is treated as a quantum field

There are potentially observable quantum gravity effects even here on Earth

Falling objects don't just fall straight down but instead experience quantum
jitters whose form depends on the quantum state of the gravitational field

The subject brings together gravitational waves,
Brownian motion, and quantum mechanics
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