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The Noise of Photons

Electromagnetic fields are quantum fields whose quanta are photons

The photons reveal themselves in situations with low photon number

They appear as random fluctuations — noise





Dyson’s Critique of the Detectability of Gravitons

Dyson argued that since there are ~1037 gravitons within one cubic wavelength…

… and since we have only barely managed to detect gravitational waves

… we would have to improve sensitivity by ~37 orders of magnitude 
in order to detect individual gravitons
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Gravitational Waves



Geodesic Deviation Equation
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This equation describes the separation of free-falling particles when 
subject to a gravitational wave h(t)

geodesic separation
curvature of spacetime

gravitational wave



Gravitational Wave Interferometers

LIGO

LISA

⇠(t)



Quantum Geodesic Deviation Equation?
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This is the geodesic deviation equation in the presence of a 
classical gravitational wave

What is the generalization of this equation when the 
spacetime metric is treated as a quantum field?



Model Gravitational Wave Detector

M ⃗ξ

m0

Background coordinate  
system (t, x, y, z)

Reference  
geodesic

Detector arm length or 
geodesic deviation



Action
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Einstein-Hilbert action + relativistic action for two free-falling particles

Use Fermi normal coordinates, putting heavy particle on classical trajectory

Xµ = (t,~0)

Y µ = (t, ~⇠)

Let the other particle be at



Action

Next, insert metric in Fermi normal coordinates into particle action:

Expand action to lowest order in metric perturbation in transverse-traceless gauge:
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Strategy

We wish to calculate the effect of a quantized gravitational field on the gravitational wave 
detector. We have the action. We can quantize the theory.

Suppose the gravitational field is initially in state 

We don’t know what the final state of the field is

We wish to calculate the transition probability of the 
detector to go from state A to state B in time T

| i



Quantum Mechanics

Thus we wish to calculate

P (A ! B) =
P

|fi |hf,B|Û(T )| , Ai|2

Here the amplitudes are evaluated as path integrals using the action we have found

The relatively simple form of the action allows the 
calculation to be performed exactly 



Aside: Influence Functionals

Feynman and Vernon (1963) considered a very general problem in 
quantum mechanics

Suppose we have two interacting systems but we only have 
access to or interest in one of them

Then the effect of the system we are not interested in on 
the system we are interested in is completely encoded by 

the influence functional

The influence functional is a double path integral



Integrating Out Gravity

In our context, we wish to integrate out gravity to 
see the effect on the detector 

PΨ(A → B) ∼ ∫ 𝒟ξ𝒟ξ′�e i
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Mode Decomposition

Write metric perturbation in Fourier modes:
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Detector Arm Length Interacting with Graviton Mode
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Influence Functional for Gravity

A calculation in ordinary quantum mechanics 
yields the influence functional for gravity

where
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A Mathematical Trick
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We now exploit the fact that exponentials can be written as Gaussian integrals:

The infinite-dimensional generalization of this is a path integral:

N(t) is a zero-mean Gaussian stochastic function with auto-correlation A(t-t’): noise!



Transition Probability
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Putting everything together we obtain the 
detector transition probability

Since the detector is well-approximated as 
classical, we can take a saddle point to obtain its 

effective equation of motion



Langevin Equation
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This is effectively the generalization of the classical geodesic deviation 
equation when the spacetime metric is a quantum field 

Because of the noise term, it is no longer a deterministic equation but a 
stochastic equation



Classical Geodesic Separation by Gravitational Waves
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classical gravitational wave



The Noise of Gravitons
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quantized gravitational wave



Is The Noise Detectable?

For the noise to be detectable:

1. Its amplitude should not be too small

2. Its spectrum should be distinguishable from other sources of noise



Noise Spectrum

The power spectrum is explicitly calculable for many classes of quantum states

Moreover, the noise appears to be correlated between multiple detectors



Noise for Quantum States of Gravitational Field

The magnitude of the noise depends on the quantum state as well as on the detector

For the vacuum state and for coherent states (classical gravitational waves from weak sources)

For thermal states (cosmic gravitational background, evaporating black holes)

For squeezed states (cosmology, non-linear gravitational waves)

σ0 ∼ ℓPξ0ωmax/c ≲ 10−36 − 10−38m

σ ∼ σ0 kBT/ℏωmax ≲ 10−30 − 10−34m

σ ∼ er/2σ0
exponential enhancement in 

squeezing parameter

noise power spectrum

detector sensitivity

variance of 
fluctuation

σ2 ∼ ξ2
0 ∫

ωmax
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Quantum Free-Fall

classical free-fall quantum free-fall



Summary

We have developed a formalism to consider general relativity in 
which the spacetime metric is treated as a quantum field

There are potentially observable quantum gravity effects even here on Earth

Falling objects don’t just fall straight down but instead experience quantum 
jitters whose form depends on the quantum state of the gravitational field

The subject brings together gravitational waves, 
Brownian motion, and quantum mechanics



Thank you


