QCD at non-zero density and phenomenology

CLAUDIA RATTI UNIVERSITY OF HOUSTON

Matter in the Universe

Matter in the Universe

Heat and compress matter

Quark-Gluon Plasma:

new phase of matter at very high temperatures (or densities)

QCD matter under extreme conditions

Research Council of the National Academies: Eleven science questions for the new century

- How did the Universe begin?
- What are the new states of matter at exceedingly high density and temperature?
- What is Dark Matter?
- What is the nature of Dark Energy?
- What are the masses of the neutrinos, how have they shaped the evolution of the Universe?
- Did Enstein have the last word on Gravity?
- How do cosmic accelerators work and what are they accelerating?
- Are protons unstable?
- Are there additional space-time dimensions?
- ▶ How were the elements from Iron to Uranium made?
- Is a new theory of matter and light needed at the highest energies?

QCD matter under extreme conditions

Research Council of the National Academies: Eleven science questions for the new century

- How did the Universe begin?
- What are the new states of matter at exceedingly high density and temperature?

The two questions are related! Quark-Gluon Plasma (QGP) is at T>10¹²K and $\rho \sim 10^{40}$ cm⁻³ The Universe was in the QGP phase a few μ s after Big Bang

Ultimate goals

Ultimate goals

BARYON DENSITY

- What are the degrees of freedom in the vicinity of the phase transition?
- Where is the transition line at high density?
- What are the phases of QCD at high density?
- Are we creating a thermal medium in experiments?

Open Questions

QCD matter under extreme conditions

To address these questions, we need fundamental theory and experiment

Theory: Quantum Chromodynamics

- ▶ QCD is the fundamental theory of strong interactions
- It describes interactions among quarks and gluons

$$L_{QCD} = \sum_{i=1}^{n_f} \overline{\psi}_i \gamma_{\mu} \left(i \partial^{\mu} - g A_a^{\mu} \frac{\lambda_a}{2} \right) \psi_i - m_i \overline{\psi}_i \psi_i - \frac{1}{4} \sum_a F_a^{\mu\nu} F_a^{\mu\nu}$$

$$F_a^{\mu\nu} = \partial^{\mu} A_a^{\nu} - \partial^{\nu} A_a^{\mu} \left(i f_{abc} A_b^{\mu} A_c^{\mu} \right)$$

Experiment: heavy-ion collisions

- ▶ Quark-Gluon Plasma (QGP) discovery at RHIC and LHC:
- ▶ SURPRISE!!! QGP is a PERFECT FLUID
- Changes our idea of QGP (no weak coupling)
- ▶ Microscopic origin still unknown

Relativistic Heavy Ion Collider

Gold nuclei, with 197 protons + neutrons each, are accelerated The beams go through the experimental apparatus 100,000 times per second!

Second Beam Energy Scan (BESII) at RHIC

- Planned for 2019-2020
- 24 weeks of runs each year
- Beam Energies have been chosen to keep the μ_B step
 ~50 MeV
- Chemical potentials of interest: $\mu_B/T\sim 1.5...4$

√s (GeV)	19.6	14.5	11.5	9.1	7-7	6.2	5.2	4-5	3.0
μ _B (MeV)	205	260	315	370	420	487	541	589	720
# Events	400M	300M	230M	160M	100M	100M	100M	100M	100M

Comparison of the facilities

			())							
				Compilation by D. Cebra						
	Facilty	RHIC BESII	SPS	NICA	SIS-100	J-PARC HI				
					SIS-300					
	Ехр.:	STAR	NA61	MPD	CBM	JHITS				
		+FXT		+ BM@N						
	Start:	2019-20	2009	2020	2022	2025				
		2018		2017						
	Energy:	7.7-19.6	4.9-17.3	2.7 - 11	2.7-8.2	2.0-6.2				
	√s _{NN} (GeV)	2.5-7.7		2.0-3.5						
	Rate:	100 HZ	100 HZ	<10 kHz	<10 MHZ	100 MHZ				
	At 8 GeV	2000 Hz								
	Physics:	CP&OD	CP&OD	OD&DHM	OD&DHM	OD&DHM				
	Collider Fixed target Collider Fixed target Fixed target Fixed target Collider Fixed target Fixed target Collider Fixed target Fixed target Collider Fixed target Fixed target Fixed target									
	CD-Critical Point OD-Ongot of Deconfinement DHM-Dongo Hadronic Matter									

The theory of strong interactions

- ♦ Analytic solutions of QCD are not possible in the non-perturbative regime.
- ♦ Numerical approach to solve QCD
- ♦ Simulations are running on the most powerful supercomputers in the world.

Fundamental fields

How can lattice QCD support the experiments?

Equation of state

Needed for hydrodynamic description of the QGP

QCD phase diagram

- Transition line at finite density
- Constraints on the location of the critical point

Fluctuations of conserved charges

- o Can be simulated on the lattice and measured in experiments
- o Can give information on the evolution of heavy-ion collisions
- o Can give information on the critical point

QCD Equation of State at finite density

TAYLOR EXPANSION

ANALYTICAL CONTINUATION FROM IMAGINARY CHEMICAL POTENTIAL

ALTERNATIVE EQUATION OF STATE
AT LARGE DENSITIES

QCD EoS at μ_B =0

- EoS for $N_f=2+1$ known in the continuum limit since 2013
- Good agreement with the HRG model at low temperature
- Charm quark relevant degree of freedom already at T~250 MeV

Constraints on the EoS from the experiments

- Comparison of data from RHIC and LHC to theoretical models through Bayesian analysis
- The posterior distribution of EoS is consistent with the lattice QCD one

Taylor expansion of EoS

Taylor expansion of the pressure:

$$\frac{p(T, \mu_B)}{T^4} = \frac{p(T, 0)}{T^4} + \sum_{n=1}^{\infty} \frac{1}{(2n)!} \frac{\mathrm{d}^{2n}(p/T^4)}{d(\frac{\mu_B}{T})^{2n}} \bigg|_{\mu_B = 0} \left(\frac{\mu_B}{T}\right)^{2n} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n}$$

- Two ways of extracting the Taylor expansion coefficients:
 - Direct simulation
 - Simulations at imaginary μ_B
- Two physics choices:
 - $\mu_B \neq 0, \, \mu_S = \mu_Q = 0$
 - μ_S and μ_O are functions of T and μ_B to match the experimental constraints:

$$< n_S > = 0$$
 $< n_O > = 0.4 < n_B >$

Pressure coefficients

Continuum, O(10⁴) configurations, errors include systematics (WB: NPA (2017))

Strangeness neutrality

Range of validity of equation of state

We now have the equation of state for μ_B/T≤2 or in terms of the RHIC energy scan:

$$\sqrt{s} = 200, 62.4, 39, 27, 19.6, 14.5 \text{GeV}$$

Alternative EoS at large densities

P. Parotto, C. R. et al., PRC (2020)

EoS for QCD with a 3D-Ising critical point

$$T^{4}c_{n}^{LAT}(T) = T^{4}c_{n}^{Non-Ising}(T) + T_{c}^{4}c_{n}^{Ising}(T)$$

- Implement scaling behavior of 3D-Ising model EoS
- Define map from 3D-Ising model to QCD
- Estimate contribution to Taylor coefficients from 3D-Ising model critical point
 - Reconstruct full pressure

Open-source code at https://www.bnl.gov/physics/best/resources.php

• Entropy and baryon density discontinuous at $\mu_B > \mu_{Bc}$

QCD phase diagram

TRANSITION TEMPERATURE

TRANSITION LINE

TRANSITION WIDTH

Phase Diagram from Lattice QCD

• The transition at $\mu_B=0$ is a smooth crossover

Aoki et al., Nature (2006)

Borsanyi et al., JHEP (2010) Bazavov et al., PRD (2012)

QCD transition temperature and curvature

Borsanyi, C. R. et al. PRL (2020)

$$\frac{T_c(\mu_B)}{T_0} = 1 - \kappa_2 \left(\frac{\mu_B}{T_0}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T_0}\right)^4 + \mathcal{O}(\mu_B^6)$$

- QCD transition at μ_B =0 is a crossover Aoki et al., Nature (2006)
- Latest results on To from WB collaboration based on subtracted chiral condensate and chiral susceptibility

$$T_0 = 158.0 \pm 0.6 \text{ MeV}$$

$$\kappa_2 = 0.0153 \pm 0.0018,$$

$$\kappa_4 = 0.00032 \pm 0.00067$$

Limit on the location of the critical point

Borsanyi, C. R. et al. PRL (2020)

• For a genuine phase transition, the height of the peak of the chiral susceptibility diverges and the width shrinks to zero

Height of chiral susceptibility peak

Width of chiral susceptibility peak

• No sign of criticality for μ_B <300 MeV

Fluctuations of conserved charges

COMPARISON TO EXPERIMENT: CHEMICAL FREEZE-OUT PARAMETERS

OFF-DIAGONAL CORRELATORS

Evolution of a heavy-ion collision

- •Chemical freeze-out: inelastic reactions cease: the chemical composition of the system is fixed (particle yields and fluctuations)
- Kinetic freeze-out: elastic reactions cease: spectra and correlations are frozen (free streaming of hadrons)
- Hadrons reach the detector

Freeze-out vs phase transition

Distribution of conserved charges

- Consider the number of electrically charged particles No
- Its average value over the whole ensemble of events is <NQ>
- In experiments it is possible to measure its event-by-event distribution

STAR Collab.: PRL (2014)

Cumulants of multiplicity distribution

- * Deviation of N_Q from its mean in a single event: $\delta N_Q = N_Q \langle N_Q \rangle$
- * The cumulants of the event-by-event distribution of N_Q are:

$$\chi_2 = <(\delta N_Q)^2 > \chi_3 = <(\delta N_Q)^3 > \chi_4 = <(\delta N_Q)^4 > -3 <(\delta N_Q)^2 > 2$$

* The cumulants are related to the central moments of the distribution by:

variance: $\sigma^2 = \chi_2$ Skewness: $S = \chi_3/(\chi_2)^{3/2}$

Fluctuations on the lattice

• Definition:
$$\chi_{lmn}^{BSQ} = \frac{\partial^{\ l+m+n} p/T^4}{\partial (\mu_B/T)^l \partial (\mu_S/T)^m \partial (\mu_Q/T)^n}.$$

- They can be calculated on the lattice and compared to experiment
- variance: $\sigma^2 = \chi_2$ Skewness: $S = \chi_3/(\chi_2)^{3/2}$ Kurtosis: $\kappa = \chi_4/(\chi_2)^2$

$$S\sigma = \chi_3/\chi_2$$

$$M/\sigma^2 = \chi_1/\chi_2$$

$$\kappa \sigma^2 = \chi_4/\chi_2$$

$$S\sigma^3/M = \chi_3/\chi_1$$

Freeze-out line from first principles

Use T- and μ_B-dependence of R₁₂Q and R₁₂B for a combined fit:

$$R_{12}^Q(T,\mu_B) = \frac{\chi_1^Q(T,\mu_B)}{\chi_2^Q(T,\mu_B)} = \frac{\chi_{11}^{QB}(T,0) + \chi_2^Q(T,0)q_1(T) + \chi_{11}^{QS}(T,0)s_1(T)}{\chi_2^Q(T,0)} \frac{\mu_B}{T} + \mathcal{O}(\mu_B^3).$$

$$R_{12}^B(T,\mu_B) = \frac{\chi_1^B(T,\mu_B)}{\chi_2^B(T,\mu_B)} = \frac{\chi_2^B(T,0) + \chi_{11}^{BQ}(T,0)q_1(T) + \chi_{11}^{BS}(T,0)s_1(T)}{\chi_2^B(T,0)} \frac{\mu_B}{T} + \mathcal{O}(\mu_B^3)$$

What about strangeness?

- Data for net-kaon fluctuations seem to prefer a higher freeze-out temperature.
 R. Bellwied, C. R. et al., Phys. Rev. C (2019)
- Separate analysis of particle yields gives a similar result

P. Alba, C. R. et al., Phys. Rev. C (2020)

F. Flor et al., 2009.14781 (2020)

Off-diagonal fluctuations of conserved charges

- The measurable species in HIC are only a handful. How much do they tell us about the correlation between conserved charges?
- Historically, the proxies for B, Q and S have been p, p,π,K and K themselves → what about offdiagonal correlators?
- We want to find:
 - The main contributions to offdiagonal correlators
 - A way to compare lattice to experiment

Off-diagonal correlators

$$\pi^{\pm},\ K^{\pm},\ p\left(\overline{p}\right),\ \Lambda(\overline{\Lambda}),\ \Xi^{-}(\overline{\Xi}^{+}),\ \Omega^{-}(\overline{\Omega}^{+})$$

→ we inevitably lose a good chunk of conserved charges!

• Thanks to the separation between observable and non-observables species, one can pinpoint what can be measured and what cannot of χ_{ijk}^{BQS}

R. Bellwied, C. R. et al., PRD

- For the **proton- and kaon-dominated** χ_{BQ} and χ_{QS} , a large part of the full correlator is carried by measurable particles
- χ_{BS} is less transparent, and requires careful analysis of its contributions

Hadronic proxies

R. Bellwied, C. R. et al., PRD (2020)

Constructing a proxy not a trivial task: consider main contributions to numerator and denominator

- Good proxy for χ_{11}^{BS}/χ_2^S :
- $\widetilde{C}_{BS,SS}^{\Lambda,\Lambda K} = \sigma_{\Lambda}^2/(\sigma_K^2 + \sigma_{\Lambda}^2)$

Fluctuations at the critical point

M. Stephanov, PRL (2009).

The probability distribution for the order parameter

$$P[\sigma] \sim \exp\{-\Omega[\sigma]/T\}$$

$$\Omega = \int d^3x \left[\frac{1}{2} (\nabla \sigma)^2 + \frac{m_\sigma^2}{2} \sigma_2 + \frac{\lambda_3}{3} \sigma^3 + \cdots \right]$$

The correlation length
$$(\xi = m_{\sigma}^{-1})$$

 $\xi \sim |T - T_c|^{-\nu}$ where $\nu > 0$

$$\chi_2 = VT\xi^2$$

$$\chi_3 = 2VT^{3/2}\hat{\lambda}_3\xi^{9/2}$$

$$\chi_4 = 6VT^2[2\hat{\lambda}_3^2 - \hat{\lambda}_4]\xi^7$$

A different approach at large densities

- Use AdS/CFT correspondence
- Fix the parameters to reproduce everything we know from the lattice
- Calculate observables at finite density
- Fluctuations of conserved charges: they are sensitive to the critical point

Black Hole Susceptibilities

Black hole critical point

R. Critelli, C. R. et al., PRD (2017)

The black hole model contains a critical end point at

$$\mu_{\rm B} = 723 \pm 36 \; {\rm MeV}$$

Conclusions

- Need for quantitative results at finite-density to support the experimental programs
 - Equation of state
 - Phase transition line
 - Fluctuations of conserved charges
- Current lattice results for thermodynamics up to $\mu_B/T \le 2$
- Extensions to higher densities by means of lattice-based models
- No indication of Critical Point from lattice QCD in the explored μ_B range

Backup slides

Hadron Resonance Gas model

Dashen, Ma, Bernstein; Prakash, Venugopalan; Karsch, Tawfik, Redlich

- Interacting hadronic matter in the ground state can be well approximated by a non-interacting resonance gas
- The pressure can be written as:

$$p^{HRG}/T^4 = \frac{1}{VT^3} \sum_{i \in mesons} \ln \mathcal{Z}_{m_i}^M(T, V, \mu_{X^a}) + \frac{1}{VT^3} \sum_{i \in baryons} \ln \mathcal{Z}_{m_i}^B(T, V, \mu_{X^a})$$

where

$$\ln \mathcal{Z}_{m_i}^{M/B} = \mp \frac{V d_i}{2\pi^2} \int_0^\infty dk k^2 \ln(1 \mp z_i e^{-\varepsilon_i/T}) ,$$

with energies $\varepsilon_i = \sqrt{k^2 + m_i^2}$, degeneracy factors d_i and fugacities

$$z_i = \exp\left(\left(\sum_a X_i^a \mu_{X^a}\right)/T\right) .$$

 X^a : all possible conserved charges, including the baryon number B, electric charge Q,

strangeness S.

Fugacity expansion for
$$\mu_S = \mu_Q = 0$$
:
$$\frac{p_B}{T^4} = \sum_{i \in B} \frac{d_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 \sum_{N=1}^{\infty} (-1)^{N+1} N^{-2} K_2(N \frac{m_i}{T}) \cosh\left[N \frac{\mu_B}{T}\right]$$

Boltzmann approximation: N=1

Kaon fluctuations on the lattice

J. Noronha-Hostler, C.R. et al., 1607.02527

- Lattice QCD works in terms of conserved charges
- Challenge: isolate the fluctuations of a given particle species
- Assuming an HRG model in the Boltzmann approximation, it is possible to write the pressure as:

$$P(\hat{\mu}_B, \hat{\mu}_S) = P_{00}^{BS} + P_{10}^{BS} \cosh(\hat{\mu}_B) + P_{01}^{BS} \cosh(\hat{\mu}_S) + P_{11}^{BS} \cosh(\hat{\mu}_B - \hat{\mu}_S) + P_{12}^{BS} \cosh(\hat{\mu}_B - 2\hat{\mu}_S) + P_{13}^{BS} \cosh(\hat{\mu}_B - 3\hat{\mu}_S)$$

- Kaons in heavy ion collisions: primordial + decays
- Idea: calculate χ₂^K/χ₁^K in the HRG model for the two cases: only primordial kaons in the Boltzmann approximation vs primordial + resonance decay kaons

Kaon fluctuations on the lattice

J. Noronha-Hostler, C.R. et al., forthcoming

Boltzmann approximation works well for lower order kaon fluctuations

$$\frac{\chi_2^K}{\chi_1^K} = \frac{\cosh(\hat{\mu}_S + \hat{\mu}_Q)}{\sinh(\hat{\mu}_S + \hat{\mu}_Q)}$$

 χ_2^{K}/χ_1^{K} from primordial kaons + decays is very close to the Boltzmann approximation

 μ_S and μ_Q are functions of T and μ_B to match the experimental constraints:

Things to keep in mind

- Effects due to volume variation because of finite centrality bin width
 - Experimentally corrected by centrality-bin-width correction method
 V. Skokov et al., PRC (2013), P. Braun-Munzinger et al., NPA (2017),
- Finite reconstruction efficiency

V. Begun and M. Mackowiak-Pawlowska (2017)

- Experimentally corrected based on binomial distribution
 A.Bzdak, V.Koch, PRC (2012)
- Spallation protons
 - Experimentally removed with proper cuts in p_T
- Canonical vs Gran Canonical ensemble
 - Experimental cuts in the kinematics and acceptance

V. Koch, S. Jeon, PRL (2000)

Baryon number conservation

P. Braun-Munzinger et al., NPA (2017)

- Experimental data need to be corrected for this effect
- Proton multiplicity distributions vs baryon number fluctuations

 M. Asakawa and M. Kitazawa, PRC(2012), M. Nahrgang et al., 1402.1238

 Recipes for treating proton fluctuations
- Final-state interactions in the hadronic phase

J.Steinheimer et al., PRL (2013)

Consistency between different charges = fundamental test

Fluctuations at the critical point

M. Stephanov, PRL (2009).

S_{NN} (GeV)

• Correlation length near the critical point $\xi \sim |T-T_c|^{-\nu}$ where $\nu>0$

$$\chi_2 = VT\xi^2$$

$$\chi_3 = 2VT^{3/2}\hat{\lambda}_3\xi^{9/2}$$

$$\chi_4 = 6VT^2[2\hat{\lambda}_3^2 - \hat{\lambda}_4]\xi^7$$

- Fluctuations are expected to diverge at the critical point
- Fourth-order fluctuations should have a non-monotonic behavior
- Preliminary STAR data seem to confirm this
- Can we describe this trend with lattice QCD?

Fluctuations along the QCD crossover

P. Steinbrecher for HotQCD, 1807.05607

175

185

Net-baryon variance

$\frac{\sigma_B^2(T_c(\mu_B), \mu_B) - \sigma_B^2(T_0, 0)}{\sigma_B^2(T_0, 0)} = \lambda_2 \left(\frac{\mu_B}{T_0}\right)^2 + \lambda_4 \left(\frac{\mu_B}{T_0}\right)^4 + O(\mu_B^6)$ 1.2 $\sigma_B^2(T_c(\mu_B), \mu_B)/\sigma_B^2(T_0, 0) - 1$ $\mathcal{O}(\mu_B^4)$ \bullet $n_S = 0, \frac{n_Q}{n_B} = 0.4$ 0.8 $\mathcal{O}(\mu_R^2)$ 0.6 HRG -0.4 0.2 $\mu_B \, [{\rm MeV}]$ -0.250 100 150 200 300 250

- Expected to be larger than HRG model result near the CP
- No sign of criticality

Disconnected chiral susceptibility

$$\chi_{\text{sub}} \equiv \frac{T}{V} m_s \left(\frac{\partial}{\partial m_u} + \frac{\partial}{\partial m_d} \right) \left[m_s (\Sigma_u + \Sigma_d) - (m_u + m_d) \Sigma_s \right]$$

$$100.0$$

$$80.0$$

$$60.0$$

$$40.0$$

$$125.0 \text{ MeV}$$

$$200.0 \text{ MeV}$$

$$200.0 \text{ MeV}$$

$$100.0$$

$$125.0 \text{ MeV}$$

 Peak height expected to increase near the CP

155

165

No sign of criticality

145

0.0

135

195

Higher order fluctuations

suppression

Off-diagonal correlators

- Simulation of the lower order correlators at imaginary μ_B
- Fit to extract higher order terms
- Results exist also for BS, QS and BQS correlators

$$\chi_{11}^{BS}(\hat{\mu}_B) = \chi_{11}^{BS} + \frac{1}{2!}\chi_{31}^{BS}\hat{\mu}_B^2 + \frac{1}{4!}\chi_{51}^{BS}\hat{\mu}_B^4 + \frac{1}{6!}\chi_{71}^{BS}\hat{\mu}_B^6 + \frac{1}{8!}\chi_{91}^{BS}\hat{\mu}_B^8$$

$$\chi_{21}^{BS}(\hat{\mu}_B) = \chi_{31}^{BS}\hat{\mu}_B + \frac{1}{3!}\chi_{51}^{BS}\hat{\mu}_B^3 + \frac{1}{5!}\chi_{71}^{BS}\hat{\mu}_B^5 + \frac{1}{7!}\chi_{91}^{BS}\hat{\mu}_B^7$$

$$\chi_{31}^{BS}(\hat{\mu}_B) = \chi_{31}^{BS} + \frac{1}{2!}\chi_{51}^{BS}\hat{\mu}_B^2 + \frac{1}{4!}\chi_{71}^{BS}\hat{\mu}_B^4 + \frac{1}{6!}\chi_{91}^{BS}\hat{\mu}_B^6$$

Off-diagonal correlators

WB, 1805.04445 (2018)

- Simulation of the lower order correlators at imaginary μ_B
- Fit to extract higher order terms
- Results exist also for BS, QS and BQS correlators

Nt=12-0.01-0.05-0.02 χ_{11}^{BS} -0.10 -0.03-0.15-0.04-0.05-0.20-0.06-0.25135 160 185 210 135 160 185 210 T/MeV T/MeV 0.10 0.08 0.2 0.06 0.1 χ_{71}^{BS} χ_{51}^{BS} 0.04 0.02 -0.10.00 -0.2-0.02-0.04-0.3185 210 160 185 210 160 135 T/MeV T/MeV $\chi_{11}^{BS}(\hat{\mu}_B) = \chi_{11}^{BS} + \frac{1}{2!}\chi_{31}^{BS}\hat{\mu}_B^2 + \frac{1}{4!}\chi_{51}^{BS}\hat{\mu}_B^4 + \frac{1}{6!}\chi_{71}^{BS}\hat{\mu}_B^6 + \frac{1}{8!}\chi_{91}^{BS}\hat{\mu}_B^8$ $\chi_{21}^{BS}(\hat{\mu}_B) = \chi_{31}^{BS}\hat{\mu}_B + \frac{1}{3!}\chi_{51}^{BS}\hat{\mu}_B^3 + \frac{1}{5!}\chi_{71}^{BS}\hat{\mu}_B^5 + \frac{1}{7!}\chi_{91}^{BS}\hat{\mu}_B^7$

 $\chi_{31}^{BS}(\hat{\mu}_B) = \chi_{31}^{BS} + \frac{1}{2!}\chi_{51}^{BS}\hat{\mu}_B^2 + \frac{1}{4!}\chi_{71}^{BS}\hat{\mu}_B^4 + \frac{1}{6!}\chi_{91}^{BS}\hat{\mu}_B^6$

Off-diagonal correlators

- Simulation of the lower order correlators at imaginary μ_B
- Fit to extract higher order terms
- Results exist also for BS, QS and BQS correlators

WB, 1805.04445 (2018)

Other approaches I did not have time to address

Reweighting techniques

(Fodor & Katz)

- Canonical ensemble
- (Alexandru et al., Kratochvila, de Forcrand, Ejiri, Bornyakov, Goy, Lombardo, Nakamura)
- Density of state methods

(Fodor, Katz & Schmidt, Alexandru et al.)

Two-color QCD

(ITEP Moscow lattice group, Kogut et al., S. Hands et al., von Smekal et al.)

Scalar field theories with complex actions

(See talk by M. Ogilvie on Tuesday)

- Complex Langevin
 - (see talks by D. Sinclair, S. Tsutsui, F. Attanasio, Y. Ito, A. Joseph on Monday)
- Lefshetz Thimble
 - (see talks by K. Zambello, S. Lawrence, N. Warrington, H. Lamm on Monday)
- Phase unwrapping (see talks by G. Kanwar and M. Wagman on Friday)

Conclusions

- Need for quantitative results at finite-density to support the experimental programs
 - Equation of state
 - Phase transition line
 - Fluctuations of conserved charges
- Current lattice results for thermodynamics up to $\mu_B/T \le 2$
- Extensions to higher densities by means of lattice-based models
- No indication of Critical Point from lattice QCD in the explored μ_B range

Kaon fluctuations on the lattice

T [MeV]

Fluctuations of conserved charges?

*By studying a sufficiently small subsystem, the fluctuations of conserved quantities become meaningful

- ∆Ytotal: range for total charge multiplicity distribution
- □ ∆Ykick: rapidity shift that charges receive during and after hadronization.

QCD matter under extreme conditions

To address these questions we need fundamental theory and experiment

Theory: Quantum Chromodynamics

- QCD is the fundamental theory of strong interactions
- It describes interactions among quarks and gluons

$$L_{QCD} = \sum_{i=1}^{n_f} \overline{\psi}_i \gamma_{\mu} \left(i \partial^{\mu} - g A_a^{\mu} \frac{\lambda_a}{2} \right) \psi_i - m_i \overline{\psi}_i \psi_i - \frac{1}{4} \sum_a F_a^{\mu\nu} F_a^{\mu\nu}$$

Experiment: heavy-ion collisions

- Quark-gluon plasma (QGP) discovery at RHIC and the LHC
- QGP is a strongly interacting (almost) perfect fluid

Cumulants of multiplicity distribution

• The cumulants of the event-by-event distribution of NQ are:

$$\chi_2 = <(\delta NQ)^2 > \chi_3 = <(\delta NQ)^3 > \chi_4 = <(\delta NQ)^4 > -3 <(\delta NQ)^2 > 2$$

The cumulants are related to the central moments of the distribution by:

variance: $\sigma^2 = \chi_2$

Skewness: $S=\chi_3/(\chi_2)^{3/2}$

Kurtosis: $\kappa = \chi_4/(\chi_2)^2$

Fluctuations and hadrochemistry

$$\chi_1^B(T, \mu_B) = \frac{\rho_B(T, \mu_B)}{T^3} = \sum_{k=1}^{\infty} b_k(T) \sinh(k \mu_B/T)$$

$$P(\hat{\mu}_B, \hat{\mu}_S) = P_{00}^{BS} + P_{10}^{BS} \cosh(\hat{\mu}_B) + P_{01}^{BS} \cosh(\hat{\mu}_S) + P_{11}^{BS} \cosh(\hat{\mu}_B - \hat{\mu}_S) + P_{12}^{BS} \cosh(\hat{\mu}_B - 2\hat{\mu}_S) + P_{13}^{BS} \cosh(\hat{\mu}_B - 3\hat{\mu}_S)$$

V. Vovchenko et al., PLB (2017)

- Consistent with HRG at low temperatures
- Consistent with approach to ideal gas limit
- b₂ departs from zero at T~160 MeV
- Deviation from ideal HRG

P. Alba et al., PRD (2017)

- Need of additional strange hadrons, predicted by the Quark Model but not yet detected
- First pointed out in Bazavov et al., PRL(2014)

(see talk by J. Glesaaen on Friday)

Canonical suppression

above 11.5 GeV CE suppression accounts for measured deviations from GCE

Analytical continuation – illustration of systematics

Analytical continuation – illustration of systematics

Condition:
$$\chi_8 \lesssim \chi_4 \longrightarrow f(\hat{\mu}_B) = a + b\hat{\mu}_B^2 + c\hat{\mu}_B^4 + \frac{b\epsilon}{840}\hat{\mu}_B^6$$

Analytical continuation on $N_t = 12$ raw data

Consistency between freeze-out of B and Q

Independent fit of of R_{12}^Q and R_{12}^B : consistency between freeze-out

chemical potentials

WB: PRL (2014) STAR collaboration, PRL (2014)

$\sqrt{s}[GeV]$	μ_B^f [MeV] (from B)	$\mu_B^f \text{ [MeV] (from } Q)$
200	$25.8 {\pm} 2.7$	$22.8{\pm}2.6$
62.4	69.7 ± 6.4	66.6 ± 7.9
39	105 ± 11	101 ± 10
27	-	136 ± 13.8

