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Introduction: Magnetars

Class of neutron star for which
the magnetic field is the
dominant energy source

Energetic electromagnetic
outbursts (soft gamma
repeaters, giant flares),
persistent X-ray pulsations at
periods 1–12 s (AXPs)

Source of (at least some) fast
radio bursts (FRBs)
[CHIME/FRB Collaboration
2020]

Image Credit: ESA/ATG Medialab
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30 known magnetars to date [McGill Online Magnetar
Catalog], compared to ∼3,000 radio pulsars [ATNF Pulsar
Database]

Surface fields B ∼ 1014 − 1015 G

Stronger internal fields ≳ 10–100 times the surface field
strength. Such strong fields may also be required to power
magnetar-type emission from magnetars with weak surface
fields

Internal B cannot globally exceed ∼ 1018 G without
destroying the star
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The magnetar model

Paczyński (1992), Duncan and Thompson (1992), Thompson and
Duncan (1995, 1996):

1 Dynamo in the protoneutron star phase enhances B to 1015 G

2 MHD instability launches Alfvén waves into magnetosphere,
depositing energy which is transferred through turbulence into
a magnetically-trapped electron-positron pair plasma “fireball”

3 Part of fireball escapes as a giant flare. Repeated excitation of
Alfvén waves by further instabilities (crustquakes?) excites
gamma ray bursts from fireball (SGRs)

4 Soft thermal X-rays (E ∼ 10 keV) emitted from surface, some
of which are Compton scattering by pair plasma in
magnetosphere to ∼ 100 keV [Beloborodov 2013]
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[Thompson and Duncan,
MNRAS 275, 255 (1995)]

Confirmed by observation of
X-ray pulsations from an SGR
[Kouveliotou et al. 1998] and of
SGRs originating from known
AXPs [Gavriil et al. 2002]

Different set of emission
mechanisms for FRBs: antenna
curvature radiation, synchrotron
maser emission, flare-initiated
magnetic reconnection, ...

Specific emission mechanisms and
what triggers them still a very
active area of research
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Magnetohydrodynamic (MHD) stability in stars
Internal field structure of stars is difficult to probe, but since
fields are stable, this restricts allowed forms and strengths
E.g., Purely poloidal or toroidal fields are unstable to
sausage/kink instabilities where field vanishes
Toroidal field can be stabilized by a much weaker poloidal
field [Braithwaite 2009; Akgün et al. 2013]: for neutron stars,
this ratio can be Btor/Bpol ∼ 200

[Herbrik and Kokkotas, MNRAS 466, 1330 (2017)]
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Stable stratification i.e., a non-barotropic equation of state
(EOS) P = P (ρ, {X}), likely required for all long-term stable
fields [Mitchell et al. 2015]

A non-barotropic EOS allows for more complicated magnetic
field configurations: equation of magnetohydrostatic balance
is

∇P ×∇ρ

ρ2
= ∇×

(
Je ×B

ρc

)
,

with left-hand side vanishing in barotropic limit

Most calculations make the reasonable B = H assumption
(no magnetization)
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Effect of strong fields: Landau quantization

Magnetar fields exceed the electron quantum critical field
m2

e/e = 4.4× 1013 G: quantum mechanical effects relevant

Charged fermions undergo Landau quantization of their
orbital motion perpendicular to magnetic field; most
significant for electrons (quantum critical field much stronger
for muons, protons)

Landau quantization changes thermodynamic and transport
properties
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E.g., energy density of an ultrarelativistic Fermi gas of
electrons at T = 0

u(µe, B = 0) =
µ4
e

4π2
→ u(µe, B) =

eBµe

2π2

nmax∑
n=0

√
µ2
e − 2eBn

nmax = ⌊(µ2
e −m2

e)/2eB⌋
nmax = 0 → all electrons in a single Landau level (“strongly
quantized”)

nmax ≫ 0 → “weakly quantized”, Landau quantization
becomes less important

Increased temperature smears out Landau levels; when energy
difference between neighboring Landau levels ∆E =√
µ2
e +m2

e + 2eB(nmax + 1)−
√
µ2
e +m2

e + 2eBnmax ≈ T ,
quantum effects start to become unimportant

9/50



Equation of state is
modified only slightly by
these effects until
B ≳ 1018 G [Broderick,
Prakash and Lattimer
2000]

Thermal and electrical
conductivities undergo
Shubnikov–de Haas
(SdH) oscillations;
thermodynamic
properties undergo de
Haas–van Alphen
(dHvA) oscillations

[Potekhin, A&A 351, 787 (1999)]
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E.g., dHvA oscillations in η = ∂H
∂B

∣∣
ne

= 1− 4πχn(B,ne);
χn =differential magnetic susceptibility. Highlighted regions:
η < 0, thermodynamically unstable
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Main questions

B ̸= H now, but is this difference of macroscopic significance?

Do the quantum mechanical effects at magnetar-strength B
affect MHD stability? If there are associated instabilities,
could they have observable implications for magnetars?

How important are the Landau quantization effects on
thermodynamic and transport properties to magnetar
magnetic field and thermal evolution?
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Paper I

Magnetohydrodynamic stability of magnetars in the ultrastrong
field regime I: The core – PR and I. Wasserman, MNRAS 509,
1854 (2021). arXiv:2104.08563
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MHD stability analysis

Canonical energy approach [Bernstein et al. 1958]: write
down conserved energy Ec for a perturbed fluid configuration

Ec depends on background fluid configuration (EOS, B) and
the Lagrangian displacement field ξ = ξ(x, t) of the
perturbation

Conservation of Ec[ξ] → unstable modes must have Ec[ξ] = 0
[Friedman and Schutz 1978]. Hence unstable modes have
potential energy < 0

14/50



Local stability

Need ξ computed using linearized Euler equation for given
background fluid model to compute Ec

Instead, look at local stability: define local potential energy
density Ec[ξ]

Ec[ξ] =

∫
V
Ec[ξ]d3x+ kinetic energy

For Ec = 0, require Ec < 0 in at least some regions of star

Key Point: for B ̸= H MHD, Ec depends on second-order
partial derivatives of internal energy density u(B, ρ)
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Local stability case 1: k ⊥ B perturbations

Two criteria for Ec > 0: stable to magnetic buoyancy (true)
and magnetosonically stable

V 2 ≡ c2s +
B2

4πρ
η − 2BMρ > 0,

where η ≡ 4π ∂2u
∂B2

∣∣∣
ρ
= 1− 4πχρ, Mρ ≡ − ∂2u

∂ρ∂B .

Sound speed cs, Alfvén velocity
vA =

√
BH/(4πρ) ≈ B/

√
4πρ stabilize fluid → No instability

for k ⊥ B perturbations
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Local stability case 2: k ∥ B perturbations allowed

Four criteria for Ec > 0, two related to magnetic buoyancy
(subdominant)

Dominant term in stability criterion is

K1 ≡
B2

4πρ
η −

B2M2
ρ

c2s
> 0

C.f. V 2, no sound speed to stabilize → instability possible if
B2M2

ρ

c2s
> B2

4πρη (no) or η < 0 (yes, but thermodynamically

unstable)
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B = B0

(
ρ
ρc

)(
r sin θ
R⋆

)
, T = 5× 107 K
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Instability growth times

These modes have a dispersion relation ω2 = K1k
2
∥, hence

growth times

τ ∼ 2× 10−3

(
c√

1000|K1|

)(
R−1

⋆

k∥

)
s.

Kinematic viscosity required to dissipate these instabilities is
ν ∼ 1/(k2τ)

ν ∼ 2× 1015

(√
1000|K1|

c

)(
R−1

⋆

k

)(
k∥
k

)
cm2 s−1,

i.e., far larger than those typical in neutron star cores
ν ∼ 106–107 cm2 s−1
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Core stability summary

Ec is made positive by c2s|∇ · ξ|2 → only incompressible
perturbations could be unstable

Likely result of core instability: formation of magnetic
domains [Blandford and Hernquist 1982, Suh and Mathews
2010], could be destabilized later as field evolves.
Rearrangement of magnetic flux to stabilize fluid on small
scales- likely not relevant macroscopically
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Paper II

Magnetohydrodynamic stability of magnetars in the ultrastrong
field regime II: The crust – PR and I. Wasserman, MNRAS 520,
1173 (2023). arXiv:2210.05774
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In the crust

Je is due to electrons moving with respect to a (usually)
stationary nuclear lattice

Ohm’s Law becomes [Goldreich and Reisenegger 1992]

E = −1

c
v ×B︸ ︷︷ ︸

ideal MHD

+
1

σ
Je︸︷︷︸

Ohmic diss.

+
1

neec
Je ×B︸ ︷︷ ︸

Hall effect

where v = mean lattice velocity ∼ 0, Je =
c
4π∇×H.
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Hall MHD

Ideal MHD in the core → Hall MHD in the crust: MHD is
governed by induction equation. Dissipative timescale ≫ Hall
timescale for magnetar-strength B, hence

∂B

∂t
=

c

4πe
∇×

[
1

ne
B × (∇×H)

]
Magnetic equilibria are not determined by force balance
equation (i.e., the Euler equation) → no conserved canonical
energy [Lyutikov 2013]

Must use perturbative analysis or numerical simulations to
determine stability
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Hall MHD perturbative mode analysis

Hall (“whistler”) modes: circularly-polarized, low-frequency
MHD modes ωH ∝ k2B cos θB

Coupling of electron motion and nuclear lattice through
Lorentz force (v ̸= 0) [Cumming, Arras and Zweibel 2004]
introduces elastic shear modes into spectrum

With quantizing fields and elasticity, the Hall modes have
dispersion

ω2 ≈ ω2
H(1− 4πχn sin

2 θB)

(1 + ω2
A/ω

2
s)(1− ω2

n/ω
2
s)
.

ωA ∝ kB cos θB = Alfvén frequency, ωs = shear wave
frequency, ω2

n ∝ (∂2u/∂B∂ne) cos θB, θB = k∠B
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Strong-field Hall MHD instability

Unstable if 1− 4πχn sin
2 θB < 0, growth time of

τinst = 5× 103|secθB|
(
1015 G

B

)(
ne

10−4 fm−3

)
×
(

L

100 cm

)2( 1

|1− 4πχn sin
2 θB|

)1/2

s,

L = characteristic length scale

Can be viscously suppressed if crust undergoes plastic failure

Also obtain unstable Alfvén modes
ω ≈ ωA

√
1− 4πχn sin

2 θB →: analog to core instability
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Temperature also suppresses instability by reducing |χn|
Tcrit for χn < 1/(4π) (K)
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Magnetic domain formation
η = 1− 4πχn < 0 indicates thermodynamic instability →
formation of magnetic domains

Domains consists of alternating regions of two different values
of magnetization, with equilibrium properties determined
using Maxwell construction.
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Reduction in free energy associated with domain formation
∼ 10−6 of total energy density
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Domains observed in the laboratory at cryogenic temperatures:
Condon (1966), Pippard (1980), Shoenberg (1984), etc.

Implications of such domains studied in neutron stars by
Blandford and Hernquist (1982) and Suh and Mathews
(2010), but they focused on the effects of magnetostrictive
forces to “crack” the crust
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Magnetar heating problem

Magnetar surface luminosities are systematically higher than
theoretically predicted without an additional heat source

Strong magnetic field likely responsible for this heating
(ambipolar diffusion in core, mechanical dissipation in
magnetically-stressed crust, crustal Ohmic dissipation,
bombardment of surface by charged particles) [Beloborodov
and Li 2016]

Reasons to disfavor these mechanisms outside of very specific
conditions (e.g., B ≳ 1016 G or B varying over short length
scales)
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E.g., Potekhin and
Chabrier (2018)
included Landau
quantization in crust
transport (plus proton
SC) → increased
magnetar surface
luminosity (i.e.,
surface temperature)
at t ∼ 103–104 years.

But only sufficient to
explain luminosity of
∼ half of known
magnetars [Potekhin and Chabrier, A&A 609, A74 (2018);

red crosses are magnetars]
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Domain formation-associated heating?

Consider a scenario in which thermal evolution or field
evolution causes a region of the crust to become unstable

Timescale for domain formation ∼ τO = 4πσL2/c2 [Blandford
and Hernquist 1982]: longer than timescale of strong-field
Hall MHD, unstable crust Alfvén mode instabilities

Unstable field growth over short length scales ∼ size of
domain
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Generates field inhomogeneities that are fractionally small, but
also of limited spatial extent ∼ size of domain ∼ spacing
between domains ∆z ∼ 100 cm

Maximum energy density released per domain is ∆u ∼ 1024

erg/cm3

For uniform B = 1015 G, will have Ninst ∼ 100 potentially
unstable regions in crust
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Estimate heating rate per unit area due to Ohmic dissipation
of unstable-grown fields

FO ≈ Nin
∆u∆z

τO

≈ 1021
(
Nin

100

)(
1024 s

σ

)(
∆u

1023 erg
cm3

)(
100 cm

∆z

)
erg

cm2 s
,

For magnetars to sustain their hot surface temperature, the
crustal heating mechanism must provide a heat flux F ∼ 1024

erg cm−2 s−1 [Beloborodov and Li 2016], so this effect is too
small

Very optimistic if standard field evolution and cooling are only
mechanisms responsible for destabilization
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Enhanced Ohmic dissipation?

Joule heating rate is roughly

q̇O =
1

σ
J2
e =

c2

16π2σ
(∇×H)2 ∼ c2

16π2σ
η2(∇×B)2.

dHvA oscillations of η could help amplify Joule heating if
sufficiently large

Since conductivities are lower in the crust, effect should be
most significant here

Could enhanced Ohmic dissipation help explain higher
magnetar temperatures compared to other neutron stars?
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Questions:

1 Are magnetization effects (more specifically, the differential
magnetic susceptibility) significant enough to modify the
global magneto-thermal evolution of magnetars?

2 When Landau quantization effects are included in both
transport and thermodynamics, do their effects on
magneto-thermal evolution enhance or cancel each other?

3 Interplay between effects of dHvA oscillations of η and
thermal evolution?
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In progress: Numerical simulations of magneto-thermal
evolution with Landau quantization effects

Solve:

1 Magnetic induction equation with the Hall effect and Ohmic
dissipation; current includes Landau quantized-derived
differential magnetic susceptibility

2 Heat equation with heat diffusion, Joule heating and neutrino
emissivity (cooling)

Can turn on/off Landau quantization effects in thermal and
electrical conductivities, specific heat capacity, differential
magnetic susceptibility. Include anisotropic conductivities.
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Simulation details

Uses Dedalus v.3 [Burns, Vasil, Oishi, Lecoanet and Brown
2020], a PDE solver library for Python using spectral methods
and symbolic equation entry

Realistic neutron star crust density and composition profile
from BSk24 EOS [Pearson et al. 2018]

Assume core temperature follows Potekhin and Chabrier
(2018) thermal evolution simulation, and B is expelled from
core: want to avoid simulating core, concentrate resolution to
resolve more SdH/dHvA oscillations
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Magnetic field evolution at fixed T

Changes to field topology: more small-scale structure
generated by Hall term with Landau quantization included

40/50


ContourMagEvoP3.mp4
Media File (video/mp4)


ContourMagEvoP3HC.mp4
Media File (video/mp4)



Landau quantization in
σ, η = 1− 4πχn can
both increase field energy
dissipation, but latter
more important. Effects
not necessarily additive
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Landau quantization in
σ, η = 1− 4πχn can
both increase field energy
dissipation, but latter
more important. Effects
not necessarily additive

More pronounced effects
with decreasing T
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Magneto-thermal evolution
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ContourMagThermEvoP2C.mp4
Media File (video/mp4)


ContourMagThermEvoP3HC.mp4
Media File (video/mp4)



Conclusions

We find MHD instabilities in the core and crust associated
with Landau quantization of electrons at high densities and
magnetic fields relevant to magnetars

Instabilities are suppressed in equilibrium by formation of
magnetic domains; system could be locally destabilized by B,
T evolution

Enhanced Ohmic dissipation due to dHvA oscillations of
differential magnetic susceptibility occurs in crust for
T ≲ 3× 108 K (t ≳ 103 years) for B ∼ 1014–1015 G

44/50



Extra slides
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Magnetic buoyancy

k ∥ B perturbations have associated magnetic buoyancy
instability

Simpler case: for k ⊥ B case, the magnetic buoyancy stability
criterion is

c2sÑ
2(B)

g
+

B2

4πρ
η
d

dr
ln

(
B

ρ

)
+BMρ

d ln ρ

dr
> 0

where Ñ(B) = Brunt–Väisälä (buoyant) frequency including
magnetic field-dependent terms.
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In k ⊥ B case, Ñ(B) is
too large to allow
magnetic buoyancy
instability

In k ∥ B case,

d ln
(
B
ρ

)
/dr →

d lnB/dr, which permits
instability (instability
criterion shown at right):
these contributions are
much smaller than other
destabilizing terms
except for longest
wavelength perturbations
λ ∼ R⋆
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Magneto-thermal evolution simulation equations

∂A

∂t
= − c∇Φ− 1

nee
Je ×B − c

(
Je,∥
σ∥

+
Je,⊥
σ⊥

)
Je =

c

4π
∇×B − c (χn∇B +Mn∇ne)× B̂

cV,B
∂T

∂t
= −∇ · q +

1

σ∥
J2
e,∥ +

1

σ⊥
J2
e,⊥

− q̇ν − T

(
se
ne

− ∂se
∂ne

∣∣∣∣
T,B

)
(ve ·∇)ne

q = − κ∥B̂(B̂ ·∇T ) + κ⊥
(
B̂B̂ − I

)
·∇T,
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