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Once upon a time . ..

... the model of particles and interactions was simple

atoms could transform into each other

@ Proton .. )

... physicists built quantum theory of
@ Electron Atom radioactivity
© Photon

the theory described experiments
© Neutron really well but predicted existence of
additional heavy particles

@ these particles were eventually discovered
@ but the structure of the theory dictated existence of yet other particles
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Once upon a time ...

... the Standard Model was deemed complicated

Nobel prize 1979

8. Weinberg (1967)

... Of course our model has too many =

arbitrary features for these predictions to

be taken very seriously. . .

S. Weinberg (1967) “A model of leptons”
12'400 citations at the time of writing

Tiwss cited

Most cited paper of
Discovery of the

Jneutral currents particle physics
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Once upon a time ...

... all major predictions of the Standard Model were confirmed
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BSM problem I: Neutrino oscillations

What makes neutrinos disappear and then re-appear in a different form? Why they have mass?

INSPIRE
_HEF‘ i HepNames i INstruTions :: CONFERENCES : @ - ) @
-
*neutinn necilaticrs” Brist farmat :| EI==N Essy Search
lind j "Phys Aev.lat., 105 = more & Search on INSPIRE bata Advanged Search \\ ‘%;f
2 =
Sort by: Display results: q% 95*
latest first %/ desc.s -orrankby-% | 25results § | single list s @

HEP 15,932 records found 1 - 25 jump to record: 1 it tamas S B

@ Predicted by Pontekorvko 1957 soon after the kaon oscillation story (why -
because neutrinos are neutral)

@ Observed in the 1960s as solar neutrino deficit
@ Verified by many experiments both in appearance and disappearance

[ What mediates neutrino oscillations? }
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BSM problem Il: Baryon asymmetry of the Universe

INSPIRE

Sort by: Display resubs:

latest firs $ desc ¥ -ormankby -3 results 3 single list

HEP 4,055 records found 1 - 258 % jump to record
Space around us consists of matter with no evidence of primordial antimatter
Standard cosmological scenario predicts symmetrical initial conditions

Physics is (mostly) symmetric w.r.t. particles <> antiparticles

Matter-antimatter symmetric universe would be filled predominantly with
photons and neutrinos

@ Observed CP-violations would lead to many billion times smaller asymmetry

What particles/processes created tiny matter-antimatter disbalance in the
early Universe?
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BSM problem Ill: Dark matter

What is the most prevalent kind of matter in our Universe?

150 )
14

Observed

depae

[ 2B This is what we observe in
cMB

Density contrast

R(kpe) M33 rotation curve

@ Gives mass to galaxies

@ Does not emit or absorb light

INSPIRE

@ Drives cosmological expansion

@ Drives formation of structures

What particles is dark matter made

et s < Emm
T — T of?
Sort by Display resuts:
latnst fewt 8 demc. b -orrankty-8) Bhresubs 8| wngle s []

HEP 43,428 reconds found 1 - 256 W ump b record: |
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|
Once upon a time . ..

@ We ambitiously wanted to discover new
physics alongside the Higgs boson

@ Some even thought we have a compeling
reason for that

INSPIRE

*supersymmetry* ar SUSY Brief farmat ¥ Easy Search
iy Advanced Search
find | "Phys.RevLeit, 105" :: more [ Search on INSPIRE beta

Sort by: Display results:

latestfirst  ¢|| desc, ¥|| -orrankby-%| | 2Bresults #|| single list :

HEP 65,375 records found 1 -25#® jump to record: -
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Yet our expectations were proven to be wrong

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary
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So, although we know that new particles exist . ..

...we do not know what they are

Pre-LHC expectations Post-LHC expectations

@ There are no definitive predictions what kind of new physics we are looking
for (although there is no shortage of ideas)

@ The absence of definite theoretical guidance is our “new normal”

@ It is the experimental community that guides our forward development
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How many particles are needed to solve all
BSM problems?
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Scale of new particles?

Rough range of theoretical predictions

@ Neutrino masses and oscillations

Scale of new physics: from 10=° GeV to 10'®> GeV
@ Dark matter

Scale of new physics: from 105 GeV to 10%* GeV
@ Baryon asymmetry of the Universe

Scale of new physics: from 10=2 GeV to 10 GeV
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Neutrino oscillations and new particles

Neutrino oscillations imply new particles

AN M Ly, M H el
N 7 N\ 7
N\ singlet fermion 2 N\ triplet fermion #

L, Ls

Type | see-saw Type Il see-saw Type Il see-saw
extra singlet fermion extra SU(2) triplet scalar extra SU(2) triplet fermion

@ Operator of dimension > 4 implies new particles

@ Naively the masses of these new particles are

v2

Mnew states 5 A=
Matm

where v = (H) — Higgs VEV
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Neutrino oscillations and Heavy Neutral Leptons

@ Assume one extra fermion N

H H

@ It couples to the “neutrino” combination v = (H-L) NN —

This combination is SU(3) x SU(2) x U(1) gauge singlet L//_._\L,

N carries no Standard Model gauge charges!

v(fSeesaw Type | = ZSM + "/\_IJN"‘ F/\_l(":/ L) + u(fMajorana(N) (1)

@ Majorana mass term Ziajorana(N) = %l\_/MNC +h.c is possible for N

@ In terms of v and N we get (mpj;ac = Fv — Dirac mass)
iy 1 \% 0 MDirac ve
c-g)Seesaw Type ! = QZ)SM * INJN * 5 </\7C> (mDirac R/’ ) ( N> (2)
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Neutrino oscillations and Heavy Neutral Leptons

Particle content

@ If M > mp;sc this theory describes two particles:
MDirac

M

— Light neutrino with mass | m, >~ mpjac — seesaw formula

— Heavier particle with mass ~ M
@ Neutrinos are light because mpj;.c < M

@ Mixture between states v and /V (difference between weak eigenstate v and massive
state V) is parametrized by active-sterile mixing angle

Mpirac

sinU~ U= <1 (3)
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Neutrino oscillations and Heavy Neutral Leptons

We call this new particle

“Sterile neutrino” or "heavy neutral lepton” or HNLJ

also “Majorana fermion”, “heavy Majorana neutrino”, “right-handed neutrino”, etc.
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Interactions of HNLs

Interactions

¢ N ve
VV+WV\A< 7 MWV\< L <
Ny W NT
L= g Wi N U P (=)l 5o ZuN U P (1= )yt (4)

@ In every process where neutrino appears and where kinematics allows we
expect an HNL with probability o |U|?>. For example,

T(WH = ut+N)= |Up)? T(WT = ut +v,) (5)
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Feebly interacting HNLs

@ HNLs are thus interacting “weaker-than-neutrinos” (by a factor | Uy |?).
However, these particles can be detected via other means, thanks to their
larger mass [1805.08567]

@ Naive seesaw formula tells us eV keV MeV GeV TeV PeV EeV ZeV YeV
s 10° I — I B E—

) B 3

U2 Matm 10=12 100GeV <\7; 107° x Yukawa > 1

M ? 10710 ; lfo'I/ é

(9] E |

(6) 5 10715 £ Y1 l~//v =

=} £ L 3

S 10720 | E

=4 E B

) Fortunately, we need more .E 10725 £ Neutrino masses are too small E
E\ Coo b b e b 1

than 1 HNL to explain both £ 1073

2 2
Amg, and Amg,

@ All neutrino experiments would
allow to determine

1075 10° 10° 100 10%
Maximal HNL Mass [GeV]

Seesaw formula (6) provides a bottom line

7 out of 11 parameters (2HNL) for values of the coupling

9 out of 18 parameters (3HNL)
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https://arxiv.org/abs/1805.08567

Within a model with 2 HNLs any pattern
of neutrino oscillations can be snuggly
accomodated
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How many light particles are needed to solve all BSM
problems?

24 ey
“u
»
o e
“d El"“‘i"“f HNL can explain ...
fokn . . a
] @ ...neutrino oscillations
:’; Nl Right chirality Bilenky & Pontecorvo'76; Minkowski'77; Yanagida'79; Gell-Mann et al.’79;
Mm’ — Mohapatra & Senjanovic'80; Schechter & Valle’80
] P L e
- jL
Is =l A o ...Baryon asymmetry
Fukugita & Yanagida'86; Akhmedov, Smirnov & '98; Pilaftsis &
Underwood'04-05; Shaposhnikov-+'05—
b i ¢ N2 ) BV 11010
S 2 N3)ose D k tt
L VNS@ 108 o ...Dark matter
e
N DM Dodelson & Widrow'93; Shi & Fuller'99; Dolgov & Hansen’00; Abazajian+
2 107
V3 Asaka, Shaposhnikov, Laine’'06 —
VN; - 102 ’
106[ Qquarks leptons Vi 1106
Dirac masses Majorana masses
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How many light particles are needed to solve all BSM
problems?

20 ey LI [

- Il ol
3 charm oo

anme 4 vy e

d " S -v:b 'fl""‘ﬂ’ HNL can explain ...

@ ...neutrino oscillations

Bilenky & Pontecorvo’76; Minkowski'77; Yanagida’79; Gell-Mann et al.’79;

e Neutrino Minimal Standard Model (vMSM)
Asaka & Shaposhnikov’05 + ... hundreds of subsequent works

@ Masses of HNL are of the order of masses of other leptons

o Reviews: Boyarsky, Ruchayskiy, Shaposhnikov Ann. Rev. Nucl. Part.
Sci. (2009), [0901.0011]

10 ! VN, v, 10~ J
106 quaks | leptons Vi 1106
Dirac ‘maeﬁes Majorana masses
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Baryogenesis in the vVMSM

@ Two HNLs with GeV masses i
(0(100MeV) up to (80GeV))

o Degeneracy in mass AM/M < 1

@ Lepton asymmetry is generated in
CP-violating oscillations of two HNLs

@ Recent results and comparison with

previous works Eijima, Shaposhnikov, i
Timiryasov [1808.10833] a

M, G
m + m B ¥ WH
|U‘22 2 3(X3)+X032) 10 i \'II
2MN ../\\)(.\\\ ;/ .I|||I " II |
w i .'II ¥ Y ./ iz A
— Initial idea: Akhmedov+'98 it o L '.I \
— Kinetic theory including back-reaction: Asaka, - ,_F/ ot | i
Shaposhnikov’'05 £ o | A
— Analysis: Asaka, Shaposhnikov, Canetti, Drewes, - \\'\\ % el L
Frossard; Abada, Arcadi, Domcke, Lucente; Hernndez, o1 N e ./-/
Kekic, Lpez-Pavn, Racker, Salvado; Drewes, Garbrech, - YT \_\,\ e
Guetera, Klari; Hambye, Teresi; Eijima, Timiryasov; 10+ 1 Gey W N."
Ghiglieri, Laine = 10 Gev o
— Recent refs: [1208.4607], [1606.06690] , oW e WA g ¥
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https://arxiv.org/abs/1808.10833
https://arxiv.org/abs/1208.4607
https://arxiv.org/abs/1606.06690
https://arxiv.org/abs/1606.06719
https://arxiv.org/abs/1609.09069
https://arxiv.org/abs/1710.03744

Can these particles be discovered? ]
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What do we have and what do we need ?

Theoretical predictions

@ Two heavy neutral lepton of ¢/(GeV) scale
@ Nearly degenerate in mass

© Possibly CP violation in the active-steirle mixing

| A

Experimental program

@ Discover new particle

@ Measure its properties (Mass, spin, branching fractions, flavour structures)

@ Confront with theoretical predictions (from seesaw, BAU, etc)

A\
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What experiments can discover HNLs?

107
10°°
T 1078
10710
10-12% -

Baryogenesis

5 10

HNL mass [GeV]
LHC searches (Boiarska+ [1902.04535]) Beyond LHC (PBC report [1901.09966])

10—14 L

mylGeVif

@ HNLs are part of the search program of all major particle physics experiments
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https://arxiv.org/abs/1902.04535
https://arxiv.org/abs/1901.09966

What did we discover?

@ Boson or fermion?

o If invariant mass my;, or even M); has a peak — boson — or is broadly

distributed (HNL)

Y =t 0=vs. N— utu=vor N— T +7=, etc

1

0.100;

BR(S - XX)
o
=3
3

0.001

hark Tisan Mo [Ma¥]

Oleg Ruchayskiy (NBI)
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0.50

£ 0.10
0.05

Scalar mass [GeV] mun[GeV]

Plots from [1608.08632; 1805.08567; 1908.04635]
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How many of them?

o We discovered HNLs “DHow many of them?
o If you discovered an HNL signal — you actually discovered two or more

particles @

@ Naive seesaw formula eV keV MeV GeV TeV PeV EeV ZeV YeV
o 10° \ \ \ I I I e

=) B 3

UQ Matm 10;11 10GeV N\; 107% x Yukawa > 1 é
bottom M M " 10-10 2 IfO,;/ E

2 015 E Y1 N E

e :

@ In order to have HNLs with o0 F E
.. C 10-25 F f E
mlxmgs U2 > Ugonom yOU need ] 10 E Neutrino masses are too small -
S1030 bl 1T

several HNLs that “conspire”

to cancel each other's

contribution to neutrino masses
Shaposhnikov’06; Kersten & Smirnov’'07

107° 10° 10° 1010 10%%
Maximal HNL Mass [GeV]
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Do they fit predictions?

@ Once HNL parameters are determined, you
can check whether they fall into the theory
predictions

@ And whether different measurements agree
with each other
Boiarska+ [1902.04535]
BAU contours: Eijima+ [1808.10833];
Short DV: Cottin+ [1806.05191];
Long DV: Bondarenko+ [1903.11918]

Oleg Ruchayskiy (NBI) HNLs

1075 —

High luminosity

_ _SHiP

5 10 20
HNL mass [GeV]
High luminosity

5 10 20
HNL mass [GeV]
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Probing other decay channels

Displaced vertices with the muon tracker

10—10.

-2
¥ 1 2 5 10 20

HNL mass [GeV]

Boiarksa+ [1902.04535]; Bondarenko+ [1903.11918]
Dashed line: Drewes & Hajer [1903.06100]
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Lepton number violation in HNL decays?

HNLs are Majorana particles and therefore can violate lepton number )

Lepton number conserving (LNC)
decay, mediated by HNL
W+ = utu=etve

Lepton number violating (LNV) decay,
mediated by HNL W' — u*ute=v,

Many works, see e.g. [1502.05915], [1505.01934], [1509.05981], [1805.11400], [1907.13034]

Oleg Ruchayskiy (NBI) HNLs May 27, 2020 29/ 56


https://arxiv.org/abs/1502.05915
https://arxiv.org/abs/1505.01934
https://arxiv.org/abs/1509.05981
https://arxiv.org/abs/1805.11400
https://arxiv.org/abs/1907.13034

|
Can we measure HNL mass splitting at LHC?

@ Two HNLs with couplings well above seesaw line? suppress LNV effects

@ However, two HNLs if sufficiently long-lived can oscillate and undo the
suppression

20nly those we can probe

@ If we measure both LNV and LNC
events as well as the total lifetime —
we can hope to determine the mass

splitting Y
2
Ryr — AM e
o 2 2 °
2y +AMG .
R;; — ratio of same-sign to opposite-sign Micev]
leptons Anamiati+ [1607.05641] Drewes+ [1907.13034]

@ AM can also be measured in SHiP [1912.05520]
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https://arxiv.org/abs/1607.05641
https://arxiv.org/abs/1912.05520

Majorana nature of HNLs and sterile neutrino oscillations
Jean-Loup Tastet & Inar Timiryasov [1912.05520]

SHIP (LNV)

+ees SHIP (det.)
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Seesaw (NH)

10-?

Seesaw (IH)
BBN

E949

P5191

NUTEWV
CHARM

Belle

10-3 4&

10+ |
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Sterile neutrino oscillations!

4 ] ] i 12 14
Proper time T [m]

@ In some region of parameter space it

is even possible to measure AM

@ Binning events in proper time 7 we

can determine AM via AM7 =21
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https://arxiv.org/abs/1912.05520

Holistic view

Accelerator measurements can be
confronted with results of other
experiments
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What about dark matter?

24 My | 1IT GV 1712 Gy
H * Eo)
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£ | charm o
S 104 by [aaen
7d (s (5D
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EaneTge, ~vev [EORRY ~Gev

Ve N]_“VJ-F' N2 v

senie

L_el""‘ﬂ‘f HNL can explain ...

@ ...neutrino oscillations

Bilenky & Pontecorvo’76; Minkowski'77; Yanagida'79; Gell-Mann et al.’79;
Mohapatra & Senjanovic'80; Schechter & Valle’80

... Baryon asymmetry

Fukugita & Yanagida’86; Akt ds

, Smirnov & '98; Pilaftsis &

Underwood’04-05; Shaposhnikov+'05—
... Dark matter
Dodelson & Widrow'93; Shi & Fuller'99; Dolgov & Hansen’00; Abazajian+;

Asaka, Shaposhnikov, Laine’06 —
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1 e #:
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o U 5 KN, 6
10 d € @DM 10
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Neutrino dark matter

Neutrino seems to be a perfect dark matter candidate: neutral, long-lived, massive, abundantly

produced in the early Universe

Cosmic neutrinos

@ We know how neutrinos interact and we can compute their primordial
number density n, = 112cm=> (per flavour)

@ To give correct dark matter abundance the sum of neutrino masses, } my,
should be Y} m, ~11eV

A\

Tremaine-Gunn bound (1979)

@ Such light neutrinos cannot form small galaxies — one would have to put too
many of them and violated Pauli exclusion principle

@ Minimal mass for fermion dark matter ~ 300=400eV

o If particles with such mass were weakly interacting (like neutrino) — they
would overclose the Universe
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Two generalizations of neutrino dark matter

@ Dark matter cannot be both light and weakly interacting at the same time

o To satisfy Tremaine-Gunn bound the number density of any dark matter
made of fermions should be less than that of neutrinos

@ Neutrinos are light, therefore they decouple relativistic and their equilibrium number

density is o< T2 at freeze-out

First alternative: WIMP

Heavy but weakly-interacting dark matter — its number density is
Boltzmann-suppressed (1 o< e="/T) at freeze-out

| \

| \

Second alternative: sterile neutrino

Light but super-weakly-interacting dark matter so that their number density
never reaches equilibrium value

A\
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In particle physics one usually speaks of heavy
neutral lepton but in cosmology the same particle is
known as sterile neutrino
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Properties of sterile neutrino dark matter

@ Can be light (down to Tremaine-Gunn bound of 0.5 keV or so)
o Can be decaying (With lifetime exceeding the age of the Universe)

"
o

T — Non-observation of decay line

N—vy+v

Tremaine-Gunn bound

(range of astronomical uncertainties)

LI L L L L

Interaction strength Sin®(20)
-
s

W+

T Y R T R
P ark matter mase thevl * ~ Lifetime > Age of the Universe
(dotted line)
— Contribution to neutrino masses below

Mg, [Asaka+'05; Boyarsky+'06]

"

o

)

o

n 8
o
|
-
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Searching for keV-scale sterile neutrinos
See our review “Sterile neutrino dark matter” [1807.07938]
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We can search for monochromatic
X-ray line originating from sterile
neutrinos dark matter decays
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https://arxiv.org/abs/1807.07938

Challenges: X-ray sky is never “empty”
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|
Detection of An Unidentified Emission Line

DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY
CLUSTERS
Esra Buroon'®, Maxia Markeviren®, Apad Foster'. Ranpacn K. Ssutn' Micnain LOEWENSTEIN, AND
ScorT W. RanpaLr
! Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138,
! NASA Goddard Space Flight Center, Greesbelt, MD, 154,
Subniitbed to Apd, 8004 Febvnary 10

Bulbul et al. ApJ (2014) [1402.2301]

An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster

A. Boyarsky!, O. Ruchayskiy?®, D. lakubovskyi®! and J. Franse!s®
Mnstituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands
2Ecole Polytechnique Fédérale de Lausanne, FSB/ATF/LPPC, BSP, CH-1015, Lausanne, Switzerland

Boyarsky, Ruchayskiy et al. Phys. Rev. Lett. (2014) [1402.4119]

o Energy: 3.5 keV. Statistical error for line position ~ 30=50 eV.
o Lifetime: ~ 10°" =10%® sec

Can this be...

@ ... (sterile neutrino) decaying dark matter?
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|
Subsequent works

@ Subsequent works confirmed the
presence of the 3.5 keV line in some
of the objects 107
Boyarsky O.R.+, lakubovskyi+; Franse+; T15 Perseus (90%
Bulbul+; Urban+; Cappelluti+

Hitomi (30)

1070

lusters
M14 Dwarfs (90%
HI4 M3T (90%)

sin®26

@ challenged it existence in other
objects
Malyshev+; Anderson+; Tamura+; 1011
Sekiya+

@ argued astrophysical origin of the oc s =0 3 23
line my [keV]
Gu+; Carlson+; Jeltema & Profumo; [1705.01837]
Riemer-Sgrensen; Phillips+

for reviews see

— “Sterile neutrinos in cosmology” [1705.01837]
— “Sterile Neutrino Dark Matter” [1807.07938]
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What can this be?

Statistical fluctuation? — Detections in many objects

Milky way & Andromeda galaxies, Perseus cluster, Draco dSph, distant clusters.

COSMOS & Chandra deep fields

Systematics? — Detection with 4 different telescopes

o Different mirror coating (Au vs. Ir)
o Different detector technologies (CCD vs. Cadmium-Zinc-Telluride)

Astronomical line?
Hitomi observation of the Perseus galaxy

cluster ruled out the interpretation as

Potassium or any other narrow atomic line.
Sulphur ion charge exchange? (Gu+ 2015 &

2017)

Oleg Ruchayskiy (NBI)
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Dark matter is universal. .. but uncertain

@ The line is few percents of background - P
wl N\
@ Challenging to rule out all systematics at this level Yl | s
| Y
o But! Dark matter hypothesis means that signal should I\ /
be present in all galaxies and clusters N vVooU
@ ...and scale accordingly -
B e - q
i All
i Minor Axis
o : : Aq-B2 & Ag-C2
“"E 6 Ag-B2 & Ag-D2
s 10 -
8 ] - ;
2 ]
¢ 1 & 4
5 ]
5 .
p} E 2
0.01 0.1 3
Projected mass density, MSun/pc2 0 T
0.0 0.2 0.4 08 08

FWI'JFGC
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Signal from the Milky Way outskirts

@ We are surrounded by the Milky Way halo on all sides

@ Expect signal from any direction. Intensity drops with off-center angle
@ Surface brightness profile of the Milky Way would be a “smoking gun”

1029

We are here

Spy [keV/cm?]

10% TN

Dark matter is everywhere

¢[degrees]
Oleg Ruchayskiy (NBI) HNLs
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As usual two independent groups got the idea:

o The dark matter interpretation of the 3.5-keV line is inconsistent with
blank-sky observations C. Dessert, N. Rodd, B. Safdi
[1812.06976]
Submitted on 17 Dec 2018

@ Surface brightness profile of the 3.5 keV line in the Milky Way halo
A. Boyarsky, D. lakubovskyi, O. Ruchayskiy, D. Savchenko
Submitted [1812.10488]
Submitted on 26 Dec 2018
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https://arxiv.org/abs/1812.10488

|
Dessert et al. Science (March 2020) [1812.06976]

@ Quantity sin®(26) — sterile neutrino DM mixing angle — is proportional to dark matter decay width

@ This mixes physical limit (flux) with their assumptions about DM distribution in the Galaxy @

@ Ignoring all this, dark matter interpretation has sin?(20) > 2 x 10-'! give or take a factor of few

@ Deep exposure dataset (30 Msec) of ~ 10*
Milky Way regions 5° =45°
@ Self-invented complicated statistical .10 8

O

analysis instead of a standard fitting %

approach, used by the X-ray @ o

community 1

o At face value this rules out dark 1072} o ase, limit (this wark)
. . — mean expecied
matter interpretation by a factor ¥ 1o/20 containment ,
~ 10 67 68 68 70 71 72 73 74

ms [keV]
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|
Strong line in the Milky Way

Boyarsky, Ruchayskiy, et al. [1812.10488] + update

49 Msec of quiescent Milky Way regions (10’ to 45°)
The data split into 6 radial bin
Line is detected in 4 bins with > 30 and in 2 bins with > 20 significance

Good background model in the interval 2.8=6 keV plus 10=11 keV

Region 10— 14 [ 14 — 3 | 3°—10° | 10° —20° | 20° —35° | 35° — 45°
| (Regl) | (Reg2) | (Regd) | (Regd) | (Reg5) | (Reg6)
MOS/PN exp. LULL | 3.008 | 2207 6.2/2.3 17.0/4.1 55125
MOS/PN FoV | 205/197 | 398/421 | 461/518 | 493/533 | 481/542 | 468/561
xYd.of. 179/161 | 184/174 | 193/184 | 171/145 | 139/131 | 131/128
p-values 0.14 0.29 0.32 0.07 0.31 0.41
3.5keV position | 3.527007 [ 3487002 | 351700 | 3567000 | 3467007 | 348700
3.5keV flux 037700 | 0051503 | 0.06705 | 002240507 | 0.0287000: | 0.01677 568
3SkeVAx* | 194 | 45 | 124 | 156 | 251 | 81
Oleg Ruchayskiy (NBI) HNLs May 27, 2020
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Dark matter profile of the line
Boyarsky, Ruchayskiy, et al. [1812.10488] + update

(MOS: blue, PN: red, MOS+PN: black) (MOS: blue, PN: red, MOS+PN: black)
1 80 1
100 . .
Stacked residuals Stacked residuals
80 of 6 regions 60 assuming NFW profile
w &0 n 40
< a0 <
20
20
[EN SN 0 e L
o0 e d = g =uy
3.0 35 4.0 4.5 5.0 3.0 3.5 4.0 4.5 5.0
Energy [keV]
Profile Signifi Line positl Decay widih
100 | XMM-Newton, in eVl I [107"sec” "]
GC (B15) NFW [19] Te | 24047057 030+ 004
= + r. = 20kpe
@ Burker Gde | 2amtliE | g gpinie
E ro = Dkpe
990-1 3 P + 40,04
= Einasto 6.9a 3494 00 0407058
g XMM-Newton), r. =148 kpe
2 e a=02
- 10-2 TABLE IL Combined spectral modeling of spatial regions Regl—
Regs with the same position of the line and relative normalizations
in different regions fixed in accordance with a DM density profile.
101 100 100 107 Twao parameters of the line fit are: the energy and the intnnsic decay

width, I". As intrinsic line width and the normalization of DM den-

Angular distance from Galactic Centre [deq] = 2 a . .
Oleg Ruchayskiy (NBI) HNLs May 27, 2020 48 / 56


https://arxiv.org/abs/1812.10488

The signal is not astrophysical
Boyarsky, Ruchayskiy, et al. [1812.10488] + update

1L — 35keV -04
— 31keV — 3.5keV
< 0.500f D ke 9 — 31keV
= : 0 -0.6 — 39keV
2 2
% 0.100F[] s
% 0.050f = i 5
2 o -0.8
E e
2 —— =
& 0.010} = S
o = 7 © —
& 0.005f ¢ 10
0.001 L L 1 1 1 1 _1.2
0 500 1000 1500 2000 2500 06081.01.21.41.61.820
Off-GC angle [arcmin] Normalizaiton A/Apestfit
The radial profile of the 3.5 keV line is significantly more shallow than radial
profiles of nearby astrophysical lines
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N
Dark matter content

[1911.04557]

DM density at the Sun, gow, o [GeV /7 cm]
025 0.3 0.3s

[1411.0311]

1 T T
e — _":-'1' S U S = = Contracted halo
] Al 08 m e NFW halo 7
I ] Minor Axis 7
- : Ag-B2 & Ag-C2
] Ag-B2 & Ag-D2
RN o -
[ il [
! e
& 4 & pal -
ok 0.2~ % -
s !
‘/
L 0.0 P I [ el
0 7 ] g 10
0.0 0.2 0.4 08 08 DM density at the Sun, pow o [¥107% My / pct]

FWI'IFGC
Dessert et al. assumes p, = 0.4GeV/cm®

@ To rule out “mixing angle” as inferred in our work from the center of M31 you
should marginalize over uncertainties in DM densities of M31 vs. Milky Way
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Proper modeling at narrow interval
Boyarsky et al. [2004.06601]; also Abazajian [2004.06170]

@ The background is

| +HH ++H+++ non-monotonic at the

H
2
&

interval of energies
3.3-3.8 keV where they
perform search

@ There are other lines in this
interval

Line Flux, ph/cm?/s

-
=)
d
L

L
()

Not including them into the

— PowerLaw __ 3Lines3338keV) model artificially raises
3 Lines (3.3-3.8 keV);

— Norms frozen — § Uins(3.4. keV) the continuum = reduce
. . . . . . any line
3.3 3.4 3.5 3.6 3.7 3.8

E, keV

Blue data points: lines with > 30 significance

Magenta data points: lines with > 30 significance (40 for E = 3.48 keV)
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Bounds are consistent with previous detections
Abazajian [2004.06170]

Hitomi (3}

10 @ Does not include
proper modeling of

T13 Perseiy (%)
— &
effective area

~ 1010 ] T—RNE

26

@ Does not account

= |
@ for wider interval of
h-_-__-__-_-'-'——_ .
energies
et @ Should be correct
within a factor of
few
6.6 6.8 7.0 79 7.4
m, [keV]
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|
Future: X-ray spectrometers

@ Short flight of Hitomi demonstrated that
the origin of the line can be quickly checked
with spectrometers

o Hitomi replacement — XRISM is scheduled to be launched in 2021-2022

4

With X-ray spectrometer one can

@ Check the width of the line (for Perseus cluster the difference in line broadening
between atomic lines (v ~ 180 km/sec) and DM line (v ~ 1000 km/sec) is visible)

@ See the structure (doublets/triplets) of lines (if atomic)

o Check exact position of the line (Redshift of the line is Perseus was detected at
20 with XMM — easily seen by XRISM)

@ Confirm the presence of the line with known intensity from all the previous
detection targets: Milky Way, M31, Perseus, etc.
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Structure formation and sterile neutrino dark matter

@ Sterile neutrinos are born relativistic in the early Universe

@ While they cool down with expansion — they homogenize primordial density
perturbations

@ This translates into the small-scale lack of power that can be observed in the
correlation of the Lyman-o absorption lines

z=25.0
0.5 Hll k |'/ I'\ _fll fi | n
f [ [ | \ / | -1I | il

I\ 1) \

1 PN TIUA 4 [
ool ¥ U o, Y WU \ J UV LA i\ ﬁ N
0 1000 2000 2732
v [km/s]

Garzilli, Magalich, Theuns, Frenk, Weniger, Ruchayskiy, Boyarsky [1809.06585]
Blue: CDM,
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High-resolution Lyman-o forest and HNL dark matter
Garzilli, Boyarsky, Ruchayskiy et al. [1510.07006], and then [1809.06585] [1912.09397]

103

102
10'}
100,
21071}
% 1072 ..
10—3 L
1074
10—5 L

CDM

= MWwWDM — 2.1 keV

mwpm = 3.3 keV
mgl\lfp =TkeV,L6 =8
mgﬁp =TkeV,L6 =9
miFF = TkeV L6 =11

Ll

—6
10 100

10"
k[h/Mpc]

102

— Best fit thermal relic mass
=2.1 keV

— Corresponds to resonantly
produced sterile neutrino with
Mpy =7 keV and lepton
asymmetry [ =11 x 10=°

— 3.5 keV line, interpreted as
sterile neutrino DM, gives
range of lepton asymmetries
L=8=12

By accident (or maybe not) the HNL dark matter interpretation of 3.5 keV
line predicts exactly the amount of suppression of power spectrum observed in
HIRES/MIKE (and fully consistent with all other structure formation bounds)
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N
Conclusions

Heatng escilatios budasen T genarasens
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Outline

o Baryogenesis with HNLs
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Baryogenesis with HNLs

Heavy neutral leptons provide

o Additional sources of CP-violation

o Out-of-equilibrium conditions (decays or oscillations)
@ Violation of the lepton number (and B=L)

Wide class of scenarios known as leptogenesis

Thermal leptogenesis: My ~ 10° ==10% GeV
Fukugita & Yanagida’'86
Resonant leptogenesis: My, ~ My, > My and [My, = My, | < My
Pilaftsis, Underwood’04-'05
Leptogenesis via oscillations: 2 or 3 HNLs, My < My, and [My, = My, | < Mp, n,
Akhmedov, Smirnov & Rubakov’98
Asaka & Shaposhnikov’'05
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Leptogenesis via oscillations

Akhmedov+'98; Asaka & Shaposhnikov'05; Canetti & Shaposhnikov'11;Asaka+'08-'16;
Canetti+'12; Abada’l5; Herndndez+'15-'16; Drewes+'12,'15,'16; Hambye & Teresi'16

Rates: Laine+'08,'14,'15,'16

time

coherent
L. N oscillations N, L,
_— e —_—
Y 4
@ 1 & H
Yap, =0 Yag, >0
Yar,, Yar, =0 Yar,, Yar, <0

$Yar, =0 Yo, =0

L, N;
[—

\
G
AL, >0
Yar,.Yar, <0

SVar, £0

Shuve & Yavin'l4

@ Out-of-equilibrium CP-violating oscillations of HNLs allow to generate
effective lepton number in the active neutrino sector
@ Generation of lepton asymmetry continues down to T ~ &/(10)GeV, reaching

levels > Nparyon

Oleg Ruchayskiy (NBI) HNLs
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Baryogenesis with HNLs

Comparison between works
From Eijima, Shaposhnikov, Timiryasov [1808.10833]

104

10°°

10°

107

o)

10®

10°°

1070k

10.]1 L

new bounds

Canett| et al., arXiv:1208.4607
Drewes et al., arXiv:1609.09069

107
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M, GeV
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Lyman- forest and sterile neutrino dark matter

@ Lyman-a forest and sterile neutrino dark matter
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Lyman- forest and sterile neutrino dark matter

Lyman-o forest and power spectrum

emission
of light

quasar spactrum
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Lyman-

forest and sterile neutrino dark matter

Lyman-o forest data

Viel+'13
1.0
WDM 2 keV
0.8 WDM 1 keV

K*P(k)

|

MM

1000 2000

1000F

7000 A

Oleg Ruchayskiy (NBI)

vel (km/s)

3000 4000

Warm dark matter predicts
suppression (cut-off) in the
flux power spectrum derived
from the Lyman-« forest data

HNLs

May 27, 2020
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Lyman- forest and sterile neutrino dark matter

Suppression in the flux power spectrum

o ‘l.‘OSmiL" :ca;e::‘l],S‘/h‘-SWh com. Mpn“ { 7‘7 —
100 £+£ +
3

,
Allk) = Pk) x kfm

s s SN -
E/ - %m'é__‘g \\\\% |
K fiz ' best fit ACDM|
P ] BOSS Ly-« [1512.01981]
n .
%;’;x@w s 1 In Lyman-o spectra higher spectral
3;/" wmzske|  resolution means smaller scales
‘ ]
0.010 0.100
k (s/km)

No suppression of flux power spectrum in SDSS/BOSS datasets = only lower
bound on WDM mass have been put Seljak+'06;Viel+'06;Boyarsky+'08
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Lyman- . forest and sterile neutrino dark matter

Suppression in the flux power spectrum

. I . . P - . | THRA i 1
cosmic scates: i 5/h-50%h can '3
~=
s T >y
& ;ﬂ!lf&ﬂ?\ﬁ'}ﬁ ’:— s " _‘0:;
X = sias, |0
e pite
| sl
i
54
= T —GAT i TITLAY
1 ke /e k!
it ACIN
: _ i BOSS Ly-o [1512.01981]
?ﬁ-;ﬂ; s i In Lym.an—oc spectra higher spectral
g muzsry  resolution means smaller scales
o.010 a.100

k (s/km)

The suppression of the flux power spectrum is visible in high-resolution
HIRES/MIKE dataset
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Lyman- forest and sterile neutrino dark matter

Warm dark matter or warm hydrogen?
Garzilli, Boyarsky, Ruchayskiy [1510.07006]

Suppression in the flux power spectrum may be due to

e Temperature at redshift z (Doppler broadening) — increases hydrogen
absorption line width

@ Pressure at earlier epOChS (gas expands and then needs time to recollapse even if it

cools)

@ Warm dark matter

Data prefers cold intergalactic medium around
redshift z =5 = Observed Lyman-a power
spectrum suppression is due to something
else?

2500 5000 7500
Ty[K](z = 5.0)
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Lyman- forest and sterile neutrino dark matter

Warm dark matter or warm intergalactic medium?
Garzilli et al. (2015, 2018)

= = 5.0, C0OM L2INI024 ==Hha, T = 26K
Ty = K

— Th= 070K
Ty = IGO0 E
I MIKE
I HIRES
e

Alik)

—L0 =30 ~L.5 -1 =3

skl ) towa el enl]
@ HIRES flux power spectrum exhibits suppression at small scales

@ This suppression can be explained equally well by thermal history of the
Universe (unconstrained at these redshifts) or by 'warm dark matter
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Lyman- forest and sterile neutrino dark matter

What is known about the IGM thermal history?

Current measurements of IGM temperature

Conservative bounds
1'6 [ “\ ‘ ‘ ‘ ] ™ Samples from 2¢ i
t . A Becker+1l (y=1.0) ] 1 B on
L4 — ® Becker+1l (y=1.3) -
L N o Becker+1l (v~1.5) 1 s
N S~ ¥ Bolton+12 1 ? .
12\ . 1 = s
L \ S~ 1 2
F S~ R noa
'Q 1.0+ el b
é r ==~ 035 0oy
k. 7 006
~ 0 8 o -

~ 7oL f ]

&~ EoT % s o "
0.6 AT a1 ! 1708.04913
P 1 @ There are many measurements

T z-binned ev. 1 at z< 5
[ power-law ev. ]
0.2 8 @ There is a single measurement
| ol ey P L v v b v vy

‘ above z=16
40 45 50 55 60 65 . - .
z @ History of reionization at higher

1306.2314 . . .
redshifts is poorly constrained
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Lyman- forest and sterile neutrino dark matter

What is known about the IGM thermal history?

Current measurements of IGM temperature

Conservative bounds
L B - -
™ Sumples from 20

A Becker+11 (y=1.0) | 1 1

e Becker+11 (y=1.3) | -

o Becker+1l (v~1.5) L

¥V Bolton+12 ] Ho.?s " 4

i s T o -

~ 1 5 ons L

S~ B noa
f ~~~~~ T=~=1 025 = 107

o We need to know when the Universe was
reionized

o We need to know to what temperature the

gas was heated

4

@ History of reionization at higher
redshifts is poorly constrained
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Lyman- forest and sterile neutrino dark matter

Warm dark matter may have been discovered
Garzilli 2015, 2018, 2019 with O.R. and A. Boyarsky

10712 4 - Tra1/4] 0.6
- dm[10"erg /5] )
1019 4 ; s
@
1014 4 £ .4
=
203
1015 g
= 0.2 COMm
10716 4 —
i 0.1
107 = T - — - -
I =, z
W AR 80 B3 AL HRE I 5000 10000 15000 20000 25000
To(z = 5.0)[K]
Onorbe et al. 2016 Garzilli et al. [1912.09397]

@ Universe reionizes late
o CDM is ruled out for such reionization scenario (even if instantaneous
temperature is varied)
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Outline

© 35 keV line
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3.5 keV line

Line in NuStar
Milky Way halo. [1607.07328]

@ The 3.5 keV is present in the
spectrum with 110 significance
@ The spectrum of NuStar ends at

3 keV, so this is a lower edge of
sensitivity band

@ The 3.5 keV line has been previously

attributed to reflection of the
sunlight on the telescope structure

@ However, in the dataset when Earth

shields satellite from the Sun the
line is present with the same flux

See also discussions in Roach+ [1908.09037], Perez+ [1609.00667]

Oleg Ruchayskiy (NBI)

HNLs

102

10-10 |

10-1 £

Interaction strength [sin®(26)
g

104

10710

Athena /XIFU
reach

My [keV]
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3.5 keV line

Line in Chandra

Cappelluti+'17 [1701.07932]

@ Most recently: 10 Msec of Chandra
observation of Chandra Deep Fields

@ 30 detection of a line at ~ 3.5 keV

o If interpreted as dark matter decay
— this is a signal from Galactic halo

outskirts (~ 115° off center)
@ Chandra has mirrors made of

Iridium (rather than Gold as XMM
or Suzaku) — absorption edge origin

becomes unlikely

1.00

@ MUSTAR, rt "
@ MUSTAR, Sun illuminated
# Chandra, this work

o

ANG

ILAR DISTANC

100 150

FROM GC (deq)

By now the 3.5 keV line has been observed with 4 existing X-ray telescopes,‘
making the systematic (calibration uncertainty) origin of the line highly unlikely

J
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Next step for 3.5 keV line: resolve the line

Perseus center spectrum [1607.07420]

@ Astro-H/Hitomi — new
generation X-ray r
spectrometer with a superb 1ol s
spectral resolution Lt

@ Launched February 17, 2016 i

2 0.6
© L

[ o
08

© Lost few weeks later 5
@ Before its failure observed
the center of Perseus galaxy
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What did we learn with existing Hitomi data?

@ Due to its super energy resolution, Hitomi can distinguish between atomic
line broadening (thermal velocities ~ 10°km/sec) and decaying dark matter
line broadening (virial velocity ~ 10°km/sec)

@ Even the short observation of Hitomi showed that Potassium, Clorium, etc.
do not have super-solar abundance in Perseus cluster = 3.5 keV line is not
astrophysical

@ Bounds much weaker for a broad (dark matter) line = not at tension with
previous detections

@ This does not seem to be astrophysics (Hitomi spectrum)

@ This does not seem to be systematics (4 different instruments)
° 777
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Outline

@ SHiP and other Intensity Frontier experiments
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SHiP and other Intensity Frontier experiments

What we are discussing today

See PBC report [1901.09966] or “ Physics Briefing Book : Input for the European Strategy for
Particle Physics Update 2020” [1910.11775]

leptonic decay Ieiranic docay
Wult-lnyer = =
tracikar in root i
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changod particlas (F<7 Tev) et gl 1 TIpTOVG. - Air 32
- Wi ; Surlace deisalof 0 =ik ST |
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[ i | LHC beam pipe
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FASER: ATLAS

MATHUSLA: CMS
or ATLAS

Codex-b: LHCb
SHiP: SPS
NA62++-: SPS

... (actually, many

more)
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Outline

© SHiP experiment
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Super Proton Synchrotron (SPS)

Np=mesons =2 X Xcz X Npot

oms

@ High energy proton beam — 400 GeV o North
19 ALICE area LHCb
@ 4 x 10" PoT (protons on target per year). P
2% 10%° PoT over 5 years \ ( S R

@ Beam intensity: 4 x 10'3 protons/sec —f=

@ Produces a lot of c-quarks: X.z ~ 10=3 \<
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SHiP (Search for Hidden Particles) experiment

Step by step overview

Hidden Sector
decay volume

Spectrometer
Particle ID

Target/

v Aotantnr
hadron absorbe ¥

ctive muon shield
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SHiP (Search for Hidden Particles) experiment

Step by step overview

Target/
hadron absorbe

Active muon shield
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SHiP (Search for Hidden Particles) experiment

Step by step overview
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Challenges

@ Background — many intensity frontier experiments are background free.
Many but not all and knowing the background is crucial

@ PID — can you identify particles that were produced? Are they only “charged
particles”, “hadrons” or something more specific

@ Mass reconstruction — if you have a signal, what was the mass particle that
decayed? If you have NV signal candidate events - do they all reconstruct to

the same mass?
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Take home messages

@ All major predictions of the Standard Model have been spectacularly
confirmed

@ Yet, there are “beyond-the-Standard-model” puzzles of observational nature
that lack their explanation

o Particles that are responsible for it are either too heavy (beyond the LHC
reach) or too feebly interacting

@ There are no theoretical predictions and therefore we need to explore all
possible options

o Feebly Interacting Particles can be searched during next LHC runs (or
alongside LHC) — results within next decade

Oleg Ruchayskiy (NBI) HNLs May 27, 2020 25 /26
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© Theend
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