Does the spin "flow" in relativistic heavy-ion collisions?

Radoslaw Ryblewski

The H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Kraków, Poland

NATIONAL SCIENCE CENTRE SONATA BIS 8 Grant No. 2018/30/E/ST2/00432

Arizona State University **Online Theoretical Physics Colloquium**

THE HENRYK NIEWODNICZAŃSKI **INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES**

Early Universe

figure: NASA

Cores of neutron stars

figure: D.E. A. Castillo, talk @RagTime 22

Relativistic heavy-ion collisions - a tool to study QGP

The study of QGP possible only indirectly through the energy and momenta of emitted particles

figure: Nature Physics 16, 615–619(2020)

How do we probe the properties of QGP?

figure: K. Fukushima, D. E. Kharzeev, H. J. Warringa, Phys. Rev. Lett. 104, 212001

Anisotropies in momentum distributions suggest strongly coupled QGP

figure: T. Hirano, N. van der Kolk, A.Bilandzic, Lect.Notes Phys. 785 (2010) 139-178

 $\frac{dN}{d\phi} = \frac{N}{2\pi} \left[1 + 2\mathbf{v_1}\cos(\phi) + 2\mathbf{v_2}\cos(2\phi) + \dots \right]$

4

QGP is a <u>nearly</u> perfect fluid

Extremely small viscosity is observed

QGP precision studies era - new observables are welcome!

J. Bernhard, J. Moreland, S. Bass, *Nat. Phys.* **15**, 1113–1117 (2019)

With the development of Bayesian analyses we are entering the precision studies era

Can we find new observables?

Magnetization — rotation coupling - possible new insights for HIC?

classical ↔ quantum angular momentum transition

Einstein-de-Haas effect, 1915 magnetization induces rotation

Einstein A, de Haas WJ. K. Ned. Akad.Wet. Proc. Ser. B Phys. Sci. 18:696 (1915)

figure: Matsuo M, leda J and Maekawa S (2015) Front. Phys. 3:54.

Barnett effect, 1915: rotation induces magnetization

Barnett SJ. Phys. Rev. 6:239 (1915)

Spin polarization in heavy-ion collisions - new sensitive probe!

$$oldsymbol{L}_{
m init}~\sim 10^5 oldsymbol{\hbar}$$

Part of the angular momentum can be

$$oldsymbol{J}_{ ext{init}} = oldsymbol{L}_{ ext{init}} = oldsymbol{L}_{ ext{final}} + oldsymbol{S}_{ ext{final}}$$

polarized along the system's angular momentum

Spin current generation from a fluid rotation

Takahashi, R., Matsuo, M., Ono, M. et al. Nature Phys 12, 52–56 (2016)

$$abla^2oldsymbol{\mu}^{\mathrm{s}} = rac{1}{\lambda^2}oldsymbol{\mu}^{\mathrm{s}} - rac{4e^2}{\sigma_0oldsymbol{\hbar}}oldsymbol{\xi}oldsymbol{\omega}$$

Measurement of the inverse spin Hall effect (ISHE) reveals the polarization in a flowing **Ihyquid Mercury**

 $\mathbf{E}_{ ext{ISHE}} = -rac{2|e|}{2|e|}$, $rac{1}{\sigma_0 \hbar} heta_{ ext{SHE.}}$ $\mathbf{\sigma} \times \boldsymbol{\sigma}$

Measurement of Λ and Λ spin polarization in heavy-ion collisions

L. Adamczyk et al. (STAR) (2017), Nature 548 (2017) 62-65 $\overline{\mathcal{P}}_{\mathrm{H}} \left(\% \right)$ Au+Au 20-50% \bigstar Λ this study • $\overline{\Lambda}$ this study Λ PRC76 024915 (2007) 6 O A PRC76 024915 (2007) 4 S U B A T D W I C S W I R L S 2 PARIS AGREEMENT SUMMER SELECTION 10^{2} 10 √s_{NN} (GeV)

... the hottest, least viscous – and now, most vortical – fluid produced in the laboratory . . . $\omega = (P_\Lambda + P_{ar{\Lambda}}) k_B T / \hbar \sim 0.6 - 2.7 imes 10^{22} ext{ s}^{-1}$ $P_{\Lambda} \approx \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda}B}{T} \qquad P_{\overline{\Lambda}} \approx \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda}B}{T}$

figure: T.Niida

10

How the spin is polarized in a rotating system?

polarization via spin-orbit coupling (perturbative QCD-inspired model)

Liang ZT, Wang XN. Phys. Rev. Lett. 94:102301 (2005). Gao JH, et al. Phys. Rev. C 77:044902 (2008)

Betz B, Gyulassy M, Torrieri G. Phys. Rev. C 76:044901 (2007) Becattini F, Piccinini F, et al. J. Phys. G 35:054001 (2008)

 $H = H_0 - \boldsymbol{\omega} \cdot \boldsymbol{S}$

Spin polarization in equilibrated QGP - spin-thermal approach

In local thermodynamic equilibrium at $\mathcal{O}((\varpi^{\mu\nu})^2)$ one can establish a link between spin and thermal vorticity

Becattini F, Piccinini F. Ann. Phys. 323:2452 (2008) Becattini F, Chandra V, Del Zanna L, Grossi E. Ann. Phys. 338:32 (2013) Fang R, Pang L, Wang Q, Wang X. Phys. Rev. C 94:024904 (2016)

$$S^{\mu}(p) = -\frac{1}{8m} e^{\mu\rho\sigma\tau} p_{\tau} \frac{\int d\Sigma_{\lambda} p^{\lambda} n_F \left(1 - n_F\right) (\overline{\varpi}_{\rho\sigma})}{\int d\Sigma_{\lambda} p^{\lambda} n_F}$$
$$\overline{\varpi}_{\mu\nu} = -\frac{1}{2} \left(\partial_{\mu} \beta_{\nu} - \partial_{\nu} \beta_{\mu}\right) \qquad \beta^{\mu} = \frac{u^{\mu}}{T}$$

 $n_F = (1 + \exp[\beta \cdot p - \mu Q/T])^{-1}$

Allows to extract polarisation at the freeze-out hypersurface in <u>any</u> model which provides u^{μ} , T and μ

Global polarization data supports the spin-thermal approach

Signal is pretty robust and agrees for both multiphase transport model (AMPT) and viscous hydrodynamics (UrQMD+vHLLE)

Azimuthal modulation is not captured

Global polarization

J. Adam, et al., Phys. Rev. C 98, 014910 (2018)

Local (momentum-differential) polarization

Flow structure in the transverse plane (jet, ebe fluctuations etc.) may generate **longitudinal polarization**

F. Becattini and I. Karpenko, PRL120.012302 (2018) S. Voloshin, EPJ Web Conf.171, 07002 (2018)

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_{\rm H} \mathbf{P}_{\mathbf{H}} \cdot \mathbf{p}_p^*)$$

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_{\rm H} \mathbf{P}_{\mathbf{H}} \cdot \mathbf{p}_p^*)$$

$$\langle \cos \theta_p^* \rangle = \int \frac{dN}{d\Omega^*} \cos \theta_p^* d\Omega^*$$

$$= \alpha_{\rm H} P_z \langle (\cos \theta_p^*)^2 \rangle$$

$$\therefore P_z = \frac{\langle \cos \theta_p^* \rangle}{\alpha_{\rm H} \langle (\cos \theta_p^*)^2 \rangle}$$

$$= \frac{3 \langle \cos \theta_p^* \rangle}{\alpha_{\rm H}} \quad \text{(if perfect detector)}$$

 θ_{p}^{*} : θ of daughter proton in Λ rest frame

14

Local (momentum-differential) polarization

T. Niida, NPA 982 (2019) 511514

thermal model with projected vorticity $\omega_{\mu\nu} = \overline{\varpi}_{\alpha\beta} \overline{\Delta}^{\alpha}_{\mu} \overline{\Delta}^{\beta}_{\nu}$

W.Florkowski, A. Kumar, A. Mazeliauskas, R.R., [1904.00002]

3D VH + AMPT IC with *T*-vorticity $\omega_{\mu\nu}^{(T)} = -\frac{1}{2} \left[\partial_{\mu} (Tu_{\nu}) - \partial_{\nu} (Tu_{\mu}) \right]$ H-Z Wu, L-G Pang, X-G Huang, Q. Wang [1906.09385]

Local (momentum-differential) polarization

T. Niida, NPA 982 (2019) 511514

Global polarization at low beam energies

Credit: F. Kornas, International Workshop XLVII on Gross Properties of Nuclei and Nuclear Excitations, 2019

0.12

there seems to be a threshold effect at very low energies

Au+Au → b=5.0 fm 0.1 ← b=8.0 fm $\left< - \omega_y \right> (\text{fm}^{-1})$ 0.08 -**▼**- b=10.0 fm 0.06 0.04 0.02 20 30 40 3 4 5 6 7 10 2 ∖s_{NN} (GeV)

How to describe dynamics of spin?

Spin-thermal approach does not capture differential observables

Is spin polarization always enslaved to thermal vorticity?

Non-trivial space-time dynamics of spin?

Relativistic fluid dynamics forms the basis of HIC models

Fluid dynamics with spin?

Most of the time close to equilibrium but the dissipation is also important

Spinless relativistic fluid dynamics - basics

Ideal fluid dynamics = local equilibrium + conservation laws

Caution: Eckart-Landau theory is acausal!

- For particles with spin the conservation of angular momentum implies introduction of new hydrodynamic (polarization) variables
- Fluid dynamics with spin should tell how the polarisation variables evolve but not their origin!

Conservation of angular momentum and spin chemical potential

Noether's theorem: for each continuous symmetry of the action there is a corresponding conserved (canonical) current **Conservation of charge (baryon number, electric charge, ...)**

Conservation of energy and momentum

 $\widehat{J}_{C}^{\mu,\alpha\beta}(x) = x^{\alpha} \widehat{T}_{C}^{\mu\beta}(x) - x^{\beta} \widehat{T}_{C}^{\mu\alpha}(x) + \widehat{S}_{C}^{\mu,\alpha\beta}(x)$

 $\widehat{L}_{C}^{\mu,\alpha\beta}(x)$

 $\partial_{\mu}\widehat{T}_{C}^{\mu\alpha}(x)=0$

Conservation of total angular momentum

 $\partial_{\mu} \widehat{N}^{\mu}(x) = 0$ (1 equation/charge)

(4 equations)

 T, u^{ν}

W. Florkowski, B. Friman, A. Jaiswal, E. Speranza, Phys. Rev. C97 (4) (2018) 041901 W. Florkowski, B. Friman, A. Jaiswal, R. R., E. Speranza, PRD 97 (2018) 116017 F.Becattini, W. Florkowski, E. Speranza, PLB 789 (2019) 419-425

$$\partial_{\mu}\widehat{S}_{C}^{\mu,\alpha\beta}(x) = \widehat{T}_{C}^{\beta\alpha}(x) - \widehat{T}_{C}^{\alpha\beta}(x)$$

Pseudogauges and the problem of energy and spin localization

Pseudo-gauge transformation

W. Hehl, Rept. Math. Phys. 9 (1976) 55-82; F. Becattini, L. Tinti, PRD 84 (2011) 025013; PRD 87(2) (2013) 025029

$$\widehat{T}'^{\mu\nu} = \widehat{T}^{\mu\nu} + \frac{1}{2}\partial_{\lambda}\left(\widehat{\Phi}^{\lambda,\mu\nu} - \widehat{\Phi}^{\mu,\lambda\nu} - \widehat{\Phi}^{\nu,\lambda\mu}\right)$$

$$\widehat{S}'^{\lambda,\mu\nu} = \widehat{S}^{\lambda,\mu\nu} - \widehat{\Phi}^{\lambda,\mu\nu}$$

$$\sim \text{ preserve } \widehat{P}^{\mu} = \int d^{3}\Sigma_{\lambda} \widehat{T}^{\lambda\mu}(x) \qquad \widehat{J}^{\mu\nu} = \int d^{3}\Sigma_{\lambda} \widehat{J}^{\lambda,\mu\nu}(x)$$

$$\sim \text{ conservation laws unchanged}$$

Belinfante-Rosenfeld pseudo-gauge (choosing superpotential $\widehat{\Phi} = \widehat{S}_{C}^{\lambda,\mu\nu}$) Belinfante, F. J. (1939): Physica 6. 887-898, (1940); Rosenfeld, L. (1940): Mem. Acad. Roy. Belgique, cl. SC., tome 18, fasc. 6

$$\widehat{T}_{B}^{\mu\nu} = \widehat{T}_{C}^{\mu\nu} + \frac{1}{2} \partial_{\lambda} \left(\widehat{S}_{C}^{\lambda,\mu\nu} + \widehat{S}_{C}^{\mu,\nu\lambda} - \widehat{S}_{C}^{\nu,\lambda\mu} \right) \qquad \widehat{S}_{B}^{\lambda,\mu\nu} = 0$$

- \rightarrow gives exactly symmetric Hilbert $T^{\mu\nu}$ acting as the source of gravity in GR
- \rightarrow long-standing problem of physical significance of the spin tensor
- \rightarrow spin tensor is used by the community that studies the spin of proton X.S. Chen, X.F. Lu, W.M. Sun, F. Wang, T. Goldman, PRL 100 (2008) 232002; E. Leader, C. Lorce, Phys. Rep. 541 (2014) 163.

Ideal fluid dynamics with spin

Prog. Part. Nucl. Phys. 108 (2019) 103709

$$\partial_{\mu}T^{\mu\nu} = 0, \quad \partial_{\lambda}S^{\lambda,\mu\nu} = 0, \quad \partial_{\mu}N^{\mu} = 0$$

$$T^{\mu\nu} = T^{\mu\nu}[\beta, \omega, \xi], \quad S^{\mu, \lambda\nu} =$$

If the <u>energy-momentum tensor is symmetric</u> the hydrodynamics with spin is given by

What are the constitutive relations which enter equations of motion?

 $= S^{\mu,\lambda\nu}[\beta,\omega,\xi], \quad N^{\mu} = N^{\mu}[\beta,\omega,\xi]$

Relativistic kinetic theory formulation of ideal fluid equations

For dilute systems, the derivation of fluid dynamics can be done starting from the underlying kinetic theory

classical **RKT**

 $p^{\mu}\partial_{\mu}f(x,p) = C[f(x,p)]$

quantum RKT

semi-classical expansion

$$\left(\gamma_{\mu} K^{\mu} - m \right) \mathscr{W}(x,k) = C[\mathscr{W}(x,k)]$$

$$K^{\mu} = k^{\mu} + \frac{i}{2} \left(\hbar \partial^{\mu} \right)$$

 $k^{\mu}\partial_{\mu}\mathscr{A}^{\nu}_{\mathrm{eq}}(x,k) = 0$

 $\partial_{\mu}T^{\mu\nu} = 0$ $\partial_{\lambda}S^{\lambda,\mu\nu} = 0$

Local equilibrium distributions

System without spin

$$f^{\pm} = \exp\left[\pm\xi(x) - \beta_{\mu}(x)p^{\mu}\right]$$

De Groot, van Leeuwen, van Weert: Relativistic Kinetic Theory. Principles an W. Florkowski, A. Kumar, R. R., PRC 98 (2018) 044906

$$egin{aligned} \mathcal{W}^+_{ ext{eq}}(x,k) &= rac{1}{2} \sum_{r,s=1}^2 \int dP \delta^{(4)}(k-p) u^r(p) ar{u}^s(p) f^+_{rs}(x,p) \ \mathcal{W}^-_{ ext{eq}}(x,k) &= -rac{1}{2} \sum_{r,s=1}^2 \int dP \delta^{(4)}(k+p) v^s(p) ar{v}^r(p) f^-_{rs}(x,p) \ \mathcal{W}_{ ext{eq}}(x,k) &= \mathcal{W}^+_{ ext{eq}}(x,k) + \mathcal{W}^-_{ ext{eq}}(x,k) \end{aligned}$$

System with spin

F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Annals Phys. 338 (2013) 32 W. Florkowski, B. Friman, A. Jaiswal, E. Speranza, PRC 97 (4) (2018) 041901 W. Florkowski, B. Friman, A. Jaiswal, R. R., E. Speranza, PRD 97 (11) (2018) 116017

$$f_{rs}^{+}(x,p) = \frac{1}{2m} \bar{u}_{r}(p) X^{+} u_{s}(p) \qquad \text{This is}$$

$$f_{rs}^{-}(x,p) = -\frac{1}{2m} \bar{v}_{r}(p) X^{-} v_{r}(p) \qquad \text{vortion}$$

$$X^{\pm} = \exp\left[\pm \xi(x) - \beta_{\mu}(x) p^{\mu} \pm \frac{1}{2} \omega_{\mu\nu}(x) \Sigma^{\mu\nu}\right]$$

$$\hat{\Sigma}^{\mu\nu} = (i/4)$$

 $T_{\rm eq}^{\beta\alpha}(x) = T_{\rm eq}^{\alpha\beta}(x)$

Spin is conserved separately!

Classical approach to spin hydrodynamics

In the classical treatments of particles with spin-1/2 one introduces internal angular momentum tensor of particles [M. Mathisson, APPB 6 (1937) 163-2900]

$$s^{lphaeta} = rac{1}{m} \epsilon^{lphaeta\gamma\delta} p_{\gamma} s_{\delta}.$$

 $s^{\alpha\beta}$ is antisymmetric *i.e.* $s^{\alpha\beta} = -s^{\beta\alpha}$ and satisfies Frenkel (or Weyssenhoff) $\mathcal{D}_{\alpha} s^{\alpha\beta} = 0.$

The spin four vector can be obtained by above equation,

$$s^{lpha} = rac{1}{2m} \epsilon^{lphaeta\gamma\delta} p_{eta} s_{\gamma\delta}$$

In particle rest frame (PRF) where $p^{\mu} = (m, 0, 0, 0)$, $s^{\alpha} = (0, \mathbf{s}_*)$ with the length of spin vector given by $-s^2 = -s^{\alpha}s_{\alpha} = |\mathbf{s}_*|^2 = \hat{\mathbf{s}}^2 = \frac{1}{2}(1 + \frac{1}{2}) = \frac{3}{4}$.

Classical approach to spin hydrodynamics - perfect fluid

W. Florkowski, R. R., A. Kumar, Prog. Part. Nucl. Phys. 108 (2019) 103709 ; J.-W. Chen, J.-y. Pang, S. Pu, Q. Wang, PRD 89 (9) (2014) 094003

$$f_{\rm eq}^{\pm}(x,p,s) = \exp\left(-p \cdot \beta(x) \pm \xi(x) + \frac{1}{2}\omega_{\alpha}\right)$$

$$\int dS \dots = \frac{m}{\pi \mathfrak{B}} \int d^4s \, \delta(s \cdot s + \mathfrak{B}^2) \, \delta(p \cdot s) \dots$$

$$N_{\rm eq}^{\mu} = \int dP \int dS \ p^{\mu} \left[f_{\rm eq}^{+}(x,p,s) - f_{\rm eq}^{-}(x,p,s) \right]$$
$$T_{\rm eq}^{\mu\nu} = \int dP \int dS \ p^{\mu}p^{\nu} \left[f_{\rm eq}^{+}(x,p,s) + f_{\rm eq}^{-}(x,p,s) \right]$$
$$S_{\rm eq}^{\lambda\mu\nu} = \int dP \int dS \ p^{\lambda} s^{\mu\nu} \left[f_{\rm eq}^{+}(x,p,s) + f_{\rm eq}^{-}(x,p,s) \right]$$

For $|\omega_{\mu\nu}| < 1$ one obtains the formalism that agrees with that based on the quantum description of spin (in the GLW version).

Classical approach to spin hydrodynamics - dissipation

Use the relaxation time approximation for the collision terms in the classical kinetic equations

[S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, R. R., Phys.Lett.B 814 (2021) 136096. Phys.Rev.D 103 (2021) 1. 014030

$$p^{\mu}\partial_{\mu}f^{\pm}_{s}(x,p,s) = C[f^{\pm}_{s}(x,p,s)]$$

Simple Chapman-Enskog expansion of the single particle distribution function around its equilibrium value in powers of space-time gradients

$$\left| \delta f_{s}^{\pm} = -\frac{\tau_{\mathrm{eq}}}{(u \cdot p)} e^{\pm \xi - p \cdot \beta} \left[\left(\pm p^{\mu} \partial_{\mu} \xi - p^{\lambda} p^{\mu} \partial_{\mu} \beta_{\lambda} \right) \left(1 + \frac{1}{2} s^{\alpha \beta} \omega_{\alpha \beta} \right) + \frac{1}{2} p^{\mu} s^{\alpha \beta} (\partial_{\mu} \omega_{\alpha \beta}) \right] \right]$$

Dissipative corrections

$$\delta N^{\mu} = \int dP \, dS \, p^{\mu} (\delta f_{s}^{+} - \delta f_{s}^{-}),$$

$$\delta T^{\mu\nu} = \int dP \, dS \, p^{\mu} p^{\nu} (\delta f_{s}^{+} + \delta f_{s}^{-}),$$

$$\delta S^{\lambda,\mu\nu} = \int dP \, dS \, p^{\lambda} s^{\mu\nu} (\delta f_{s}^{+} + \delta f_{s}^{-}).$$

$$\delta N^{\mu} = \nu^{\mu} = \tau_{eq} \beta_{n} (\nabla^{\mu} \xi),$$

$$\delta T^{\mu\nu} = \pi^{\mu\nu} - \Delta^{\mu\nu} \Pi, \quad \pi^{\mu\nu} = 2\tau_{eq} \beta_{\pi} \sigma^{\mu\nu}, \quad \Pi = -\tau_{eq} \beta_{\Pi} \theta$$

$$\delta S^{\lambda,\mu\nu} = \tau_{eq} \Big[B^{\lambda,\mu\nu}_{\Pi} \theta + B^{\kappa\lambda,\mu\nu}_{n} (\nabla_{\kappa} \xi) + B^{\alpha\kappa\lambda,\mu\nu}_{\pi} \sigma_{\alpha\kappa} + B^{\kappa\lambda\beta\alpha,\mu\nu}_{\Sigma} (\nabla_{\kappa} \xi) + B^{\alpha\kappa\lambda,\mu\nu}_{\pi} \sigma_{\alpha\kappa} + B^{\kappa\lambda\beta\alpha,\mu\nu}_{\Sigma} (\nabla_{\kappa} \xi) \Big]$$
There are non-equilibrium corrections to spin tensor

$$C[f_s^{\pm}(x,p,s)] = p \cdot u \frac{f_{s,eq}^{\pm}(x,p,s) - f_s^{\pm}(x,p,s)}{\tau_{eq}}$$

Other developments towards hydrodynamics with spin

Lagrangian effective field theory approach

D. Montenegro, G. Torrieri, Phys.Rev. D94 (2016) no.6, 065042 D. Montenegro, L. Tinti, G. Torrieri, Phys. Rev. D 96(5) (2017) 056012; Phys. Rev. D 96(7) (2017) 076016 D. Montenegro, G. Torrieri, Phys. Rev. D 100, 056011 (2019)

Hydrodynamics with spin based on entropy-current analysis

K. Hattori, M. Hongo, X-G Huang, M. Matsuo, H. Taya, PLB 795 (2019) 100-106

Hydrodynamics of spin currents using presence of torsion

D. Gallegos, U. Gursoy, A. Yarom arXiv:2101.04759

Relativistic viscous hydrodynamics with spin using Navier-Stokes type gradient expansion analysis

D. She, A. Huang, D. Hou, J. Liao, arXiv:2105.04060

Relativistic viscous spin hydrodynamics from chiral kinetic theory

S. Shi, C. Gale, and S. Jeon, Phys. Rev. C 103, 044906 (2021)

Spin polarization generation from vorticity through nonlocal collisions

N. Weickgenannt, E. Speranza, X.-I. Sheng, Q. Wang, and D. H. Rischke, arXiv:2005.01506, arXiv:2103.04896

Spin polarisation due to thermal shear

F. Becattini, M. Buzzegoli, and A. Palermo, arXiv:2103.10917 S. Y. F. Liu and Y. Yin, arXiv:2103.09200 28

- The spin polarization provides a new probe of the QGP properties
 - The disagreements between spin-thermal approach and data motivates developments of dynamical models
- The fluid dynamics with spin is a natural framework one should seek for QGP
 - **Presented ideal spin hydro formulation is readily applicable**
 - The theory is developing fast future looks interesting!

Thank you for your attention!