Dense QCD and compact stars

Armen Sedrakian
FIAS (Frankfurt) and IFT (Wroclaw University)

Theoretical Physics Colloquium
Arizona State University
February 23, 2022

FIAS Frankfurt Institute

Uniwersytet Wrocławski

Plan of the talk:

1. Dense QCD: From NJL model EoS to synthetic parametrization
2. Mass-Radius diagram and astrophysical constraints
3. Tidal deformabilities and the GW170817 event
4. Universal relations and an example of application

In collaboration with:

Mark Alford (Washington University, St. Louis, USA)
Jia-Jie Li (Goethe-University \rightarrow South Western University, China)
also for universalities: V. Paschalidis, K. Yagi, D. Blaschke, Alvarez-Castillo, Largani, Fischer, Raduta, Oertel, Khadkikar

Dense QCD: From NJL model EoS to synthetic parametrization

Dense QCD and compact
stars
A Sedrakian

Dense QCD
Mass-Radius diagram

Tida
deformabilities and radii of compact stars

Universalities relations

Dense QCD
and compact
stars
A Sedrakian

Dense QCD
Mass-Radius diagram

Tidal deformabilities and radii of compact stars

Universalities relations

The QCD Lagrangian is written for $\psi_{q}=\left(\psi_{q R}, \psi_{q G}, \psi_{q B}\right)^{T}$ as

$$
\mathcal{L}_{Q C D}=\underbrace{\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}}_{\text {quarks }}-\underbrace{\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}}_{\text {gluons(Yang-Mills) }},
$$

where $\underbrace{\left(D_{\mu}\right)_{i j}=\delta_{i j} \partial_{\mu}-i g_{s} t_{i j}^{a} A_{\mu}^{a}}$, and $\underbrace{F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}-2 q\left(A^{\mu} \times A^{\nu}\right)}$
covarinat derivative
gluonic field (Yang-Mills) field tensor

NJL model description of quark matter

$$
\begin{aligned}
\mathcal{L}_{N J L} & =\underbrace{\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-\hat{m}\right) \psi}_{\text {quarks }}+\underbrace{G_{V}\left(\bar{\psi} i \gamma^{\mu} \psi\right)^{2}}_{\text {vector }}+\underbrace{G_{S} \sum_{a=0}^{8}\left[\left(\bar{\psi} \lambda_{a} \psi\right)^{2}+\left(\bar{\psi} i \gamma_{5} \lambda_{a} \psi\right)^{2}\right]}_{\text {scalar-pseudoscalar }} \\
& +\underbrace{G_{D} \sum_{\gamma, c}\left[\bar{\psi}_{\alpha}^{a} i \gamma_{5} \epsilon^{\alpha \beta \gamma} \epsilon_{a b c}\left(\psi_{C}\right)_{\beta}^{b}\right]\left[\left(\bar{\psi}_{C}\right)_{\rho}^{r} i \gamma_{5} \epsilon^{\rho \sigma \gamma} \epsilon_{r s c} \psi_{\sigma}^{s}\right]}_{\text {pairing }} \\
& -\underbrace{K\left\{\operatorname{det}_{f}\left[\bar{\psi}\left(1+\gamma_{5}\right) \psi\right]+\operatorname{det}_{f}\left[\bar{\psi}\left(1-\gamma_{5}\right) \psi\right]\right\}}_{\mathbf{t}^{\prime} \text { Hooft interaction }},
\end{aligned}
$$

- quarks: ψ_{α}^{a}, color $a=r, g, b$, flavor $(\alpha=u, d, s)$; mass matrix: $\hat{m}=\operatorname{diag}_{f}\left(m_{u}, m_{d}, m_{s}\right)$;
- other notations: $\lambda_{a}, a=1, \ldots, 8, \psi_{C}=C \bar{\psi}^{T}$ and $\bar{\psi}_{C}=\psi^{T} C, C=i \gamma^{2} \gamma^{0}$.

Parameters of the model:

- G_{S} the scalar coupling and cut-off Λ are fixed from vacuum physics
- G_{D} is the di-quark coupling $\simeq 0.75 G_{S}$ (via Fierz) but free to change
- G_{V} and ρ_{tr} are treated as free parameters

QCD interactions pairing interactions and gaps

- Symmetric in space wave function (isotropic interaction) $\langle 0| \psi_{\alpha \sigma}^{a} \psi_{\beta \tau}^{b}|0\rangle$
- Antisymmetry in colors a, b for attraction
- Antisymmetry in spins σ, τ (Cooper pairs as spin- 0 objects)
- Antisymmetry in flavors α, β

2SC phase:
Low densities, large m_{s} (strange quark decoupled)

$$
\Delta(2 S C s) \propto \Delta \epsilon^{a b 3} \epsilon_{\alpha \beta} \quad \delta \mu \ll \Delta,
$$

Crystalline or gapless phases:
Intermediate densities, large m_{s} (strange quark decoupled)

$$
\Delta(\text { cryst. }) \propto \epsilon_{\alpha \beta} \Delta_{0} e^{i \vec{Q} \cdot \vec{r}} \quad \delta \mu \geq \Delta,
$$

CFL phase:
High densities nearly massless u, d, s quarks

$$
\Delta(C F L) \propto\langle 0| \psi_{\alpha L}^{a} \psi_{\beta L}^{b}|0\rangle=-\langle 0| \psi_{\alpha R}^{a} \psi_{\beta R}^{b}|0\rangle=\Delta \epsilon^{a b C} \Delta \epsilon_{\alpha \beta C} .
$$

EOS hadronic matter + Q1 (2SC) and Q2 (CFL) phases of matter

- Maxwell: large surface tension \rightarrow sharp jump: $P_{N}\left(\mu_{B}\right)=P_{Q}\left(\mu_{B}\right)$
- Glendenning: low surface \rightarrow smooth transition

Synthetic equations of state with constant speed of sound

Parameters of the models:

$$
\left(\epsilon_{1}, P_{1}\right) \quad \Delta \varepsilon_{1}, \quad \Delta \varepsilon_{2 \mathrm{SC}} \quad\left(\varepsilon_{2}, P_{2}\right) \quad \Delta \varepsilon_{2}
$$

Note that there are five independent parameters.

Dense QCD and compact stars

A Sedrakian

Taylor expansion of nuclear energy

$$
\begin{equation*}
E(\chi, \delta) \simeq E_{0}+\frac{1}{2!} K_{0} \chi^{2}+\frac{1}{3!} Q_{\mathrm{sym}} \chi^{3}+E_{\mathrm{sym}} \delta^{2}+L \delta^{2} \chi+\mathcal{O}\left(\chi^{4}, \chi^{2} \delta^{2}\right) \tag{1}
\end{equation*}
$$

where $\delta=\left(n_{n}-n_{p}\right) /\left(n_{n}+n_{p}\right)$ and $\chi=\left(\rho-\rho_{0}\right) / 3 \rho_{0}$.

- saturation density $\rho_{0}=0.152 \mathrm{fm}^{-3}$
- binding energy per nucleon $E / A=-16.14 \mathrm{MeV}$,
- incompressibility $K_{\text {sat }}=251.15 \mathrm{MeV}$,
- skweness $Q_{\text {sat }}=479$
- symmetry energy $E_{\text {sym }}=32.30 \mathrm{MeV}$,
- symmetry energy slope $L_{\text {sym }}=51.27 \mathrm{MeV}$,
- symmetry incompressibility $K_{\text {sym }}=-87.19 \mathrm{MeV}$

Credit: Lattimer et al 2017

Dense QCD

Consistency between the density functional and experiment

- Uncertainties will be quantified in terms of variation of higher-order characteristics around the central fit values.
- Low density physics depends strongly on the value of $L_{\text {sym }}$ with strong correlation to the radius of the star and tidal deformability
- High-density physics strongly depends on the value of $Q_{\text {sym }}$ with strong correlations to the mass of the star.

Dense QCD

Mass-Radius diagram

Dense QCD and compact stars

A Sedrakian

Mass-Radius diagram

Tidal deformabilities and radii of compact stars

Stationary compact stars

- Einstein's field equations:

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=-8 \pi T_{\mu \nu}
$$

- Energy-momentum tensor:

$$
T_{\mu \nu}=-P(r) g_{\mu \nu}+[P(r)+\epsilon(r)] u_{\mu} u_{\nu}
$$

TOV equations, static spherically symmetrical stars:

$$
\begin{aligned}
\frac{d P(r)}{d r} & =-\frac{G \epsilon(r) M(r)}{c^{2} r^{2}}\left(1+\frac{P(r)}{\epsilon(r)}\right)\left(1+\frac{4 \pi r^{3} P(r)}{M(r) c^{2}}\right)\left(1-\frac{2 G M(r)}{c^{2} r}\right)^{-1} \\
M(r) & =4 \pi \int_{0}^{r} r^{2} \epsilon(r) d r .
\end{aligned}
$$

Dense QCD and compact stars

A Sedrakian

Dense QCD
Mass-Radius diagram

Tidal deformabilities and radii of compact stars

Universalities relations

Pulsar mass measurements from radio observations

Credits: P. Freire, V. V. Krishnan, (MPIFR, Bonn).

Dense QCD
and compact
stars
A Sedrakian

Dense QCD
Mass-Radius diagram

Tidal
deformabilities and radii of compact stars

Universalities relations

Quarks and new equilibria of compact objects

150
The Equilibrium and Stability of Fluid Configurations

Figure 6.2 Schematic diagram showing the narning points in the mass versus central density diagran lor equilibrium contigrations of cold matter.
S. Shapiro, S. Teukolsky, "Black holes, White dwarfs and Neutron Stars"
-White dwarfs -first family, $M \leq 1.5 M_{\odot}$, [S. Chandrasekhar, L. Landau (1930-32)]
-Neutron Stars - second family, $M \leq 2 M_{\odot}$, [Oppenhimer-Volkoff (1939)]
-Hybrid Stars - third family, $M \leq 2 M_{\odot}$, [Gerlach (1968), Glendenning-Kettner (2000)]

- Fourth Family - see Phys. Rev. Lett. 119, 161104 (2017).

Dense QCD
and compact
stars
A Sedrakian

Mass-Radius diagram

Tidal deformabilities and radii of compact stars

EoS with sequential phase transitions

Need to specify:
The scheme extends the EoS with constant speed of sound (CSS) of M. G. Alford, S. Han, M. Prakash, Phys. Rev. D 88, 083013 (2013) to double phase transitions: Phys. Rev. Lett. 119, 161104 (2017).

EoS in analytical form

$$
P(\varepsilon)= \begin{cases}P_{1}, & \varepsilon_{1}<\varepsilon<\varepsilon_{1}+\Delta \varepsilon_{1} \\ P_{1}+s_{1}\left[\varepsilon-\left(\varepsilon_{1}+\Delta \varepsilon_{1}\right)\right], & \varepsilon_{1}+\Delta \varepsilon_{1}<\varepsilon<\varepsilon_{2} \\ P_{2}, & \varepsilon_{2}<\varepsilon<\varepsilon_{2}+\Delta \varepsilon_{2} \\ P_{2}+s_{2}\left[\varepsilon-\left(\varepsilon_{2}+\Delta \varepsilon_{2}\right)\right], & \varepsilon>\varepsilon_{2}+\Delta \varepsilon_{2}\end{cases}
$$

Need to specify:

- the two speeds of sounds: s_{1} and s_{2}
- the point of transition from NM to $\mathrm{QM} \varepsilon_{1}, P_{1}$
- the magnitude of the first jump $\Delta \varepsilon_{1}$
- the size of the 2 SC phase, i.e, the second transition point ε_{2}, P_{2}
- the size of the second jump $\Delta \varepsilon_{2}$

Dense QCD
and compact
stars
A Sedrakian

Dense QCD
Mass-Radius
diagram
Tidal
deformabilities
and radii of
compact stars

Mass-central pressure relation

- Phase Q1: $P_{1}=1.7 \times 10^{35} \mathrm{dyncm}^{-2}, \Delta \varepsilon_{2 \mathrm{SC}} / \varepsilon_{1}=0.27, \Delta \varepsilon_{1} / \varepsilon_{1}=0.6$. Phase Q2: 4 different values of $\Delta \varepsilon_{2}$.
- Speeds of sound $s_{1}=0.7$ and $s_{2}=1$.
- Stable branches \rightarrow solid lines, unstable branches \rightarrow dashed lines.
- Triplets emerge for $\Delta \varepsilon_{2}=0.23$

Dense QCD
and compact
stars
A Sedrakian

Dense QCD
Mass-Radius
diagram
Tidal
deformabilities
and radii of
compact stars
Universalities relations

Mass-radius relation

Same as previous slide but the $M-R$ relation.
Emergence of twins and triplets \rightarrow strong first order phase transition in quark matter.

Dense QCD
and compact
stars
A Sedrakian

Dense QCD
Mass-Radius
diagram
Tidal deformabilities and radii of compact stars

Internal structure of triplet stars

- Internal profiles of triplets with $M=1.975 \mathrm{M}_{\odot}$ and $\Delta \varepsilon_{2} / \Delta \varepsilon_{1}=0.23$.
- " N " \rightarrow nuclear only, $2 \mathrm{SC} \longrightarrow$ single phase, CFL,2SC \rightarrow two phases.

Dense QCD and compact stars

A Sedrakian Dense QCD

Mass-Radius diagram

Stability "matrix" for different magnitudes of jumps

	$\Delta \varepsilon_{1} / \varepsilon_{1}$			
$\Delta \varepsilon_{2} / \Delta \varepsilon_{1}$	0.4	0.5	0.6	0.7
0.1	s, s	s, s	us, s	u,us
			$\underbrace{\text { (2) }}_{\mathrm{N}-2 \mathrm{SC}}$	$\underbrace{\text { U, }}_{\text {N-CFL }}$
0.2	s, s	s, s	us, us	u,us
			$\underbrace{}_{\text {triplet }}$	$\underbrace{}_{\mathrm{N}-\mathrm{CFL}}$
0.3	s, s	s, s	us, us	$u, u s$
			$\underbrace{\text { s, }}$	$\underbrace{\text {, } \sim^{\prime}}$
0.4			N-2SC;N-CFL	N-CFL
	s, s	$s, u s$	$u s, u$	u, u
		$\underbrace{s, u s}$	$\underbrace{u s}$	
0.5		2SC-CFL	N-2SC	
	s, s	$s, u s$	us, u	u, u
		$\underbrace{s, u}$	$\underbrace{\text { r }}$	
		2SC-CFL	$\mathrm{N}-2 \mathrm{SC}$	

- Stable/unstable branches are referred by s / u, the Q1 and Q2 phases.
- Increasing the jumps \rightarrow instability

Tidal deformabilities and radii of compact stars

Tidal deformabilities and radii of compact stars

Dense QCD and compact
stars

A Sedrakian

Dense QCD
Mass-Radius diagram

Tidal
deformabilities and radii of compact stars

Universalities relations

The GW170817 event

GW170817: First gravitational waves from a neutron star merger (Ligo-Virgo-Collaboration)

The associated EM events observed by over 70 observatories :
O +2 sec gamma ray burst is detected

- +10 h 52 min bright source in optical
- +11 h 36 min infrared emission; +15 h ultraviolet
- +9 days X-rays; +16 days radio

Dense QCD and compact
stars
A Sedrakian

Dense QCD
Mass-Radius diagram

Tidal
deformabilities
and radii of
compact stars
Universalities relations

Pre-merger signal

Post-merger not observed (yet)

The gravitational wave signal allows for extraction of the tidal deformability of the two neutron stars Λ_{1} and Λ_{2}.

$$
Q_{i j}=-\lambda \mathcal{E}_{i j}, \quad \Lambda=\frac{\lambda}{M^{5}},
$$

where $Q_{i j}$ is the induced quadrupole moment, $\mathcal{E}_{i j}$ is the tidal field of the partner.

Dense QCD
and compact
stars

A Sedrakian

Dense QCD
Mass-Radius diagram

Tidal

deformabilities
and radii of compact stars

Universalities relations

	Low-spin priors $(\|\chi\| \leq 0.05)$	High-spin priors $(\|\chi\| \leq 0.89)$
Primary mass m_{1}	$1.36-1.60 M_{\odot}$	$1.36-2.26 M_{\odot}$
Secondary mass m_{2}	$1.17-1.36 M_{\odot}$	$0.86-1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188_{-0.002}^{+0.004} M_{\odot}$	$1.188_{-0.002}^{+0.002} M_{\odot}$
Mass ratio m_{2} / m_{1}	$0.7-1.0$	$0.4-1.0$
Total mass $m_{\text {tot }}$	$2.74_{-0.01}^{+0.04} M_{\odot}$	$2.82_{-0.4}^{+0.47} M_{\odot}$
Radiated energy $E_{\text {rad }}$	$>0.025 M_{\odot} c^{2}$	$>0.025 M_{\odot} c^{2}$
Luminosity distance D_{L}	$40_{-14}^{+8} \mathrm{Mpc}$	$40_{-14}^{+8} \mathrm{Mpc}$
Viewing angle Θ	$\leq 55^{\circ}$	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda\left(1.4 M_{\odot}\right)$	≤ 800	≤ 1400

Dense QCD and compact stars

A Sedrakian

Dense QCD
Mass-Radius diagram

Tidal
deformabilities and radii of
compact stars

Front-side hotspot rotates through the line of sight

Pulse-profile modeling of PSR J0030+0451 and PSR J0740+6620 [Riley et al 2019,2021), Miller et al 2019,2021]

$$
\begin{array}{lll}
\bullet & 1.34_{-0.16}^{+0.15} M_{\odot} \rightarrow 12.71_{-1.19}^{+1.14} \mathrm{~km}, & 1.44_{-0.14}^{+0.15} M_{\odot} \rightarrow 13.02_{-1.06}^{+1.24} \mathrm{~km} \\
& 2.08_{-0.09}^{+0.09} M_{\odot} \rightarrow 12.39_{-0.98}^{+1.30} \mathrm{~km}, & 2.07_{-0.07}^{+0.07} M_{\odot} \rightarrow 13.71_{-1.50}^{+2.61} \mathrm{~km}
\end{array}
$$

Dense QCD
and compact
stars
A Sedrakian

Mass-radius relation for hadronic stars

- The range of $L_{\text {sym }}$ corresponds to the lower inference and mean value found from PREX-II analysis.
- The maximum mass increases monotonically with $Q_{\text {sat }}$.
- Low $L_{\text {sym }}$ values allow for GW170817 to be explained by hadronic stars for all the values of $Q_{\text {sat }}$, but are in tension with the PREX-II analysis of Indiana group.

Dense QCD and compact stars

A Sedrakian

Dense QCD
Mass-Radius diagram

Tidal
deformabilities and radii of compact stars

Universalities relations

$M-R$ and $M-\Lambda$ for twin stars

(a) Mass-radius relation for hybrid stars with a single QCD phase translation, with
different hadronic envelopes. (b) Mass-deformability relation for stars featuring nucleonic envelopes. The inset shows the results for the case $M_{\max }^{\mathrm{H}} / M_{\odot}=1.20$.

Dense QCD and compact stars

A Sedrakian

Dense QCD
Mass-Radius diagram

Tidal
deformabilities and radii of compact stars

Universalities relations

$M-R$ and $M-\Lambda$ for triplet stars

(a) Mass-radius relation for hybrid stars with a single QCD phase translation, with different hadronic envelopes. (b) Mass-deformability relation for stars featuring nucleonic envelopes. The inset shows the results for the case $M_{\max }^{\mathrm{H}} / M_{\odot}=1.20$.

Tidal deformabilities and radii of compact stars

Dense QCD and compact stars

A Sedrakian Dense QCD

Mass-Radius diagram

Tidal
deformabilities and radii of compact stars

Universalities relations

$\Lambda-\Lambda$ for twin stars

a) Tidal deformabilities of compact objects in the binary with chirp mass $\mathcal{M}=1.186 M_{\odot}$ (b) Prediction by an EoS with maximal hadronic mass $M_{\max }^{\mathrm{H}}=1.365 M_{\odot}$. The inset shows the mass-radius relation around the phase transition region. The circles M_{2} are two possible companions for circle M_{1}, generating two points in the $\Lambda_{1}-\Lambda_{2}$ curves while one point is located below the diagonal line.

Tidal

deformabilities and radii of compact stars

Universalities relations

$\Lambda-\Lambda$ for triplet stars

The case of double phase transition a) Tidal deformabilities of compact objects in the binary with chirp mass $\mathcal{M}=1.186 M_{\odot}$ (b) Prediction by an EoS with maximal hadronic mass $M_{\max }^{\mathrm{H}}=1.365 M_{\odot}$. The inset shows the mass-radius relation around the phase transition region. The circles M_{2} are two possible companions for circle M_{1}, generating two points in the $\Lambda_{1}-\Lambda_{2}$ curves while one point is located below the diagonal line.

Dense QCD
and compact
stars
A Sedrakian

Universal relations

Universalities of TOV solutions:

- Universal (independent of the underlying EoS) relations among the global properties of compact stars $-I-L-Q$ relations. (Yagi and Yunes 2013a; Maselli et al. 2013; Breu and Rezzolla 2016; Yagi and Yunes 2017)
Well established for:
(a) zero temperature slowly rotating stars
(b) rapidly rotating cold star
(c) magnetized cold star
- Finite temperature stars (proto-neutron stars, BNS remnants) - universalities, $I-L-Q$ relations and $I(C)$ are broken (Martinon et al. 2014; Marques et al. 2017; Lenka et al. 2019). Both $S=$ Const and S-gradients
- But if one considers fixed values of ($S / A, Y_{L, e}$) universal relations hold - accuracy comparable to cold compact stars (A. Raduta, M. Oertel, A. S., arXiv:2008.00213)
- Universalities also hold for rapidly rotating hot stars for fixed values of ($S / A, Y_{L, e}$) (S. Khadkikar, A. Raduta, M. Oertel, A. S. arXiv:2102.00988)
- Universalities also hold for cold (arXiv:1712.00451) and hot (arXiv:2112.10439) rapidly rotating hybrid stars (Paschalidis et al, Largani et al.)
- Universality can be used to extract the maximum mass of hot static compact stars from GW170817 arXiv:2102.00988

Dense QCD and compact stars

A Sedrakian Dense QCD

Mass-Radius diagram

Tidal
deformabilities and radii of compact stars

Universalities relations

Input EoS to test universalities

- Hybrid star EoS with single phase transition first used to test the universalities for such objects

Dense QCD and compact stars

A Sedrakian Dense QCD

Mass-Radius diagram

Tidal
deform and radii of compact stars

Universalities relations

Examples of universalities

- Moment of inertia vs tidal deformability and moment of inertia vs quadrupole moment

Dense QCD
and compact stars

A Sedrakian

Dense QCD
Mass-Radius diagram

Tidal
deformabilities and radii of compact stars

Universalities relations

Examples of universalities

- Maximum masses of Keplerian vs static hadronic (left) and hybrid (right) stars.

Maximum TOV mass from GW170817

- the merger leaves behind a hypermassive neutron star (HMNS)
- the internal dissipation leads to vanishing internal shears and uniform rotation.
- the star enters the region of stability of supramassive neutron stars close to the maximum mass
- the star crosses the stability line beyond which it is unstable to collapse

Maximum TOV mass from GW170817

- The extraction of the upper limit circumvents the full dynamical study and uses the baryon mass conservation at at merger $t=0$ and collapse $t=t_{c}$

$$
M_{B}\left(t_{c}, S / A, Y_{e}\right)=M_{B}(0)-M_{\mathrm{out}}-M_{\mathrm{ej}}
$$

- Transform from the baryonic to the gravitational mass

$$
M_{B}\left(t_{c}, S / A, Y_{e}\right)=\eta\left(S / A, Y_{e}\right) M\left(t_{c}, S / A, Y_{e}\right)=\eta\left(S / A, Y_{e}\right) M_{K}^{\star}\left(S / A, Y_{e}\right),
$$

The last step assumes that the star is Keplerian (Shibata et al 2019 relax this assumption).

- Solve the mass conservation for hot Keplerian mass

$$
M_{K}^{\star}\left(S / A, Y_{e}\right)=\frac{1}{\eta\left(S / A, Y_{e}\right)}\left[\eta(0) M(0)-M_{\mathrm{out}}-M_{\mathrm{ej}}\right]
$$

Dense QCD
and compact
stars
A Sedrakian

Dense QCD
Mass-Radius
diagram
Tidal
deformabilities
and radii of
compact stars
Universalities relations

The different normalizations (cold vs hot) show that the universality is broken when normalized to the cold TOV mass and is maintained if normalized by static hot star.

Universalities relations

Dense QCD
and compact
stars
A Sedrakian

Dense QCD
Mass-Radus diagram

Tidal

deform abilities and radii of compact stars

Universalities relations

Dependence of the η parameter on the gravitational mass.

The analysis of GW170817 gives us the values:

- $M(0)=2.73 M_{\odot}{ }_{-0.01}^{+0.04}$
- $M_{\mathrm{ej}}=0.04 \pm 0.01 M_{\odot} \rightarrow M_{\text {out }}+M_{\mathrm{ej}}=0.1 \pm 0.041$
- In GW170817 the primary/secondary masses lie in the range $1.35 \leq M / M_{\odot} \leq 1.6$
- for cold compact stars based on our collection of EoS we have $\eta(0) \simeq 1.120 \pm 0.002$ for $M=1.6 M_{\odot}$ and $\eta(0) \simeq 1.085 \pm 0.001$ for $M=1.2 M_{\odot}$
- For our estimates we adopt the value $\eta(0) \simeq 1.1004_{-0.0003}^{+0.0014}$ leading to $M_{B}(0)=3.00_{-0.01}^{+0.05} M_{\odot}$.
- Assuming that the star is rotating at the Keplerian frequency we then find that $\eta(2,0.1) \simeq 1.139 \pm 0.004$ and $\eta(3,0.1) \simeq 1.099 \pm 0.003$. For the quantity $\left(M_{\text {out }}+M_{\mathrm{ej}}\right) / \eta\left(S / A, Y_{e}\right)$ we obtain 0.087 ± 0.036 and 0.091 ± 0.037 for $S / A=2$ and 3 and $Y_{e}=0.1$,
- Substituting the numerical values in

$$
M_{K}^{\star}\left(S / A, Y_{e}\right)=\frac{1}{\eta\left(S / A, Y_{e}\right)}\left[\eta(0) M(0)-M_{\mathrm{out}}-M_{\mathrm{ej}}\right] .
$$

we find

$$
M_{K}^{\star}(2,0.1)=2.55_{-0.04}^{+0.06}, \quad M_{K}^{\star}(3,0.1)=2.64_{-0.04}^{+0.06}
$$

Next step gives us maximum mass of non-rotating hot compact stars, using universality

$$
M_{S}^{\star}(2,0.1)=2.19_{-0.03}^{+0.05}, \quad M_{S}^{\star}(3,0.1)=2.36_{-0.04}^{+0.05}
$$

The universality is broken, but we can deduce an upper limit on the maximum mass of cold compact stars. The average values $C_{M}^{\star}=1.19 \pm 0.04$ for $S=2$ and $C_{M}^{\star}=1.18 \pm 0.11$ for $S=3$ can now be used to obtain, respectively,

$$
M_{\text {Tov }}^{\star}=2.15_{-0.07-0.16}^{+0.09+0.16}, \quad M_{\text {TOV }}^{\star}=2.24_{-0.07-0.44}^{+0.10+0.44}
$$

(2σ standard deviation)

- Constant entropy per baryon and constant electron fraction star (?)
- $S / A=2$ and 3 - average values for the inner part of the merger remnant.
- more precise result would require a profile for S

Conclusion: Accounting for the finite temperature of the merger remnant relaxes the derived constraints on the maximum mass of the cold, static compact star, obtained in by Margalit-Metzger 2017, Rezzolla et al 2018, Ruiz et al (2018), Shibata et al (2019a).

Universality is lost and the final upper limit becomes EoS dependent due to the EoS dependence of C_{M}^{\star}.

