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- map of gauge topology

- VEV of Polyakov line and the instanton-dyons

- Dirac zero and quasizero fermionic states on the lattice
- Deconfinement transition,

- QCD deformation via Polyakov line operators

- Chiral symmetry breaking

- QCD deformation via quark periodicity phases

- Poisson duality Instanton-dyons <=> Monopoles



Poisson duality

Solutions of Yang-Mills egn in Euclidean time,

M les 3d
onopoles The basis of semiclassical theory

Instanton, 4d
Center vortex,2d

Flux angle pi Dirac string

Angle 2pi d_R

Wilson U_L d_L
Loo
e Nc constituents : :
instanton-dvons Chiral symmetry breaking =>
: y massless pions and a lot more
3d+twist
exp(Im) = —1

Confinement
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Instantons



Terminology of the topological landscape
energy Sphaleron

Sphaleron path

Instanton-sphaleron process

Chern-Simons number is integer at the “valleys”
Instanton is

Tunneling at Sphaleron is static purely magnetic object
Zero energy The name in Greek means
“ready to fall” (Klinkhamer and Manton)

Sphaleron path consists of configurations
Which are minima in all directions in Hilbert space
except one
Like streams going from mountain tops
to the bottom of the valley




Terminology of the topological landscape
energy Sphaleron

Sphaleron path

Instanton-sphaleron process

Chern-Simons number is integer at the “valleys”

Instanton is _ _ . .
Tunneling at Sphaleron is static purely magnetic object

Zero energy The name Iin Greek means
“ready to fall” (Klinkhamer and Manton)

Sphaleron path consists of configurations We do have analytic results for

Which are minima in all directions in Hilbert space
except one All of them

Like streams going from mountain tops In pure gauge theory
to the bottom of the valley Which is not widely known




historic introduction

Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345
1961). doi:10.1103/PhysRev.122.345

NJL introduced the chiral symmetry and
G large enough to break it spontaneously
“constituent quark mass” like a gap
In superconductors

gauge topology, tunneling
Instantons: BPST and t’ Hooft, 1975-76

new effective Lagrangian
it violates U(1) chiral symmetry
Turning left-handed to right handed

Instanton liquid model (ES 1982)

instead of G and Lambda of NJL
another two parameters Interacting instanton liquid model 1990s
their values are such that summed all orders of 't Hooft vertex

hiral svmmet ts broken calculated corre_lation functions _
chiral Sy ey gets good description of chiral symmetry breaking

no confinement




Instantons in the QCD VACUUM and HADRONS

“Instanton liguid model” , Shuryak, 1981

n=1/fm*4, rho=1/3 fm => chiral symmetry breaking

hep-ph/0008048.
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Instanton-dyons



Lren(-l-)

The Polyakov line is used as order parameter for deconfinement

L =P = Pe:vp(ZjIéAZTada?M)

L = diag(e'™*, e, .. e'F'Ne)
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Kaczmarek et al 2002
Bazavov et al 2016

Pisarski semi-QGP" paradigm,

PNJL model



Non-zero Polyakov line splits instantons
into Nc instanton-dyons
(Kraan,van Baal, Lee,Lu 1998)

Explained mismatch of quark condensate in SUSY QCD

V.Khoze (jr) et al 2001

Explained confinement by back reaction to free energy

D.Diakonov 2012, Larsen+ES,Liu,Zahed+ES 2016

Explain chiral symmetry breaking in QCD

and in setting with modified fermion periodicities

R.Larsen+ES 2017, Unsal et al 2017
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“action cooling” is known to eliminate
gluons and lead to instantons

while the total top.charge
of the box is always integer,
local bumps are not!
- - - They are all (anti)selfdual
© s | . 8 But top charge and actions

i Were not integers!

a lot of work on finding instanton-dyons
was done by C.Gatringer et al, llgentfritz et al



QCD with near-real quark masses,
at T slightly above Tc

the cleanness case:
domain wall fermions
Q=1 configurations
Nt=8,Nx=32, T/Tc=1,1.08

excellent agreement of the shape
with analytic formulae

210 —05 00 05 10

FIG. 8: log(p(x)) of the zero mode of conf. 2960 at ¢ = =
(black) and the log of the analytic formula for P = 0.4 and
P =1 though the maximum. T = 1.087.. Red peak only has
been scaled to fit in height, while blue peak uses the found
normalization.

* Phys.Lett.B 794 (2019) 14-18 + e-Print: 1811.07914 [hep-lat]

° Phys.Rev.D 102 (2020) 3, 034501 ¢ e-Print: 1912.09141

* correlations with local Polyakov loop, in progress

Rasmus N. Larsen, Sayantan Sharma, Edward Shuryak

FIG. 17: p(x,y) of the zero mode of conf. 2660, a

has been scaled to be similar to that of ¢ = .

We found that their fields
interfere with each other
the interaction between them
Is In excellent agreement with

van Baal analytic formulae

¢ = 7w(red), ¢ = w/3(blue), p = —7m/3(green). Peak

extracting the shape of

the fermonic zero mode
and modyfying the phase

one can find all 3 dyons

= T..
ight

S

1.5
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Ensemble of instanton-dyons




general SU(N,)
Ay = 2nTdiag(p1, fa, ...in.) ARG ERIE S|mplest

Vm — Um+1 — Um
Sy, = v=1-v
z Q772 11V, 2Nf

Sz':Vz 5 —V,,;( 2 2 )109 T/A
I Al =F navq)(m“)
together they make one instanton PR 1 — R(vr)
instanton-dyons i — Caiglly ,
=selfdual BPS mono
E=B

In SU(2) there are 4 types of dyons,
Electric and magnetic charges = +1,-1

all one needs to do is to study their ensemble
interactions are Coulomb + one loop corrections




without dyons,
there is GPY

(with Rasmus Larsen)

confineo free energy vs holonomy

effective action A | B (NN aRARAE

which disfavors : :
] -0.2 3 3
confinement ; (A3) = o — 9T,
its minimum is s 4 2 2

at nu=0

06} < P >= cos(mv) — 0

[0.8:— _ ifv=1/2

:

~1.2 1 ///////JE@EMIHI

—1.4 L L

v =0 1s the trivial case So, as a function of the dyon density

. the potential changes its shape
v =1/2 confining

and confinement takes place

In SU(2) pure gauge theory

the deconfinement transition
In the dyon ensemble is second order




red dots move to the right at higher T

Deconfinement Phase Transition in the SU(3) Instanton-dyon Ensemble

Dallas DeMartini and Edward Shuryak

Center for Nuclear Theory, Department of Physics and Astronomy,
Stony Brook Unaversity, Stony Brook NY 11794-3800, USA

critical:

jump in
holonomy

arX1v:2102.11321v1 [hep-ph] 22 Feb 2021
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Deconfinement Phase Transition in the SU(3) Instanton-dyon Ensemble
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Center for Nuclear Theory, Department of Physics and Astronomy,
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FIG. 4. (Color online) Holonomy dependence of the minimum
free energy density near the phase transition. Error bars not
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GAUGE THEORY deformation

by powers of P in the action A S L dB 7 | P( 3—5) |2
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Instanton-dyon Ensemble with two Dynamical Quarks: the Chiral Symmetry Breaking

Rasmus Larsen and Edward Shuryak
Department of Physics and Astronomy, Stony Brook University, Stony Brook NY 11794-3800, USA

This is the second paper of the series aimed at understanding of the ensemble of the instanton-
dyons, now with two flavors of light dynamical quarks. The partition function is appended by
the fermionic factor, (detT)"™# and Dirac eigenvalue spectra at small values are derived from the
numerical simulation of 64 dyons. Those spectra show clear chiral symmetry breaking pattern at
high dyon density. Within current accuracy, the confinement and chiral transitions occur at very
similar densities.

high density

<Y > | = TP(AN)A50.m—0.V 00 broken chiral sym

=5

NBinA'O:_ T —

collectivized
Zero mode zone

dip near zero is :
a finite size effect - 0z 08

FIG. 1: Eigenvalue distribution for ny; = ny = 0.47, Np = 2
massless fermions.

low density
unbroken chiral sum
NBm30;— B

extracting condensate |
s far from trivial... ol

0 I 1
0.0 0.1 0.2 0.3 0.4

A

arX1v:1511.02237v1 [hep-ph] 6 Nov 2015

FIG. 2: Eigenvalue distribution for ny; = nr = 0.08, Np = 2
massless fermions.



Chiral Symmetry Breaking and Confinement from an Interacting Ensemble of
Instanton-dyons in Two-flavor Massless QCD

Dallas DeMartini and Edward Shuryak
Center for Nuclear Theory, Department of Physics and Astronomy,

Stony Brook University, Stony Brook NY 11794-3800, USA
o0 Casher-Banks

0.04 ° 10 12 14 quark condensate
| | Is obtained by linear
| | _ 0.03, extrapolation to 0
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:,:: ol | the gap scales
N | 0.01 as 1/V and
Is therefore
0.00 a purely finite
| %0 002 004 006 008 0.1 volume effect
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FIG. 7. (Color online) Eigenvalue distributions at Sp = 8.5
for three different ensemble sizes. Dashed lines represent fits
to the approximately-linear portion of the distribution near
. o _ zero. The eigenvalue gaps are given by the x-intercepts of the
FIG. 8. (Color online) [Preliminary] The chiral quark con- fits. Note that the relative normalization of the distributions
densate X (7T') and the eigenvalue gap A(T') as functions of does not affect results.

the temperature.



quarks with variable periodicity condition
(over the Matsubara time)



Ordinary Nc=Nf=5 QCD

P without a trace
IS a diagonal unitary matrix
=> Nc phases (red dots)

quark periodicity

phases => Nf blue dots
are in this case all =pi
quarks are fermions

as a consequence,
out of 5 types of instanton-dyons
only one L has normalizable zero modes



Ordinary Nc=Nf=5 QCD

P without a trace
IS a diagonal unitary matrix
=> Nc phases (red dots)

quark periodicity

phases => Nf blue dots
are in this case all =pi
quarks are fermions

as a consequence,
out of 5 types of instanton-dyons
only one L has normalizable zero modes

But one can deform QCD moving fermion phases (blue dots) as we like!



still Nc=Nf=5 but with

“most democratic” arrangement H. Kouno, Y. Sakai, T. Makiyama, K. Tokunaga, T.
ZN-symmetric QCD Sasaki and M. Yahiro, J. Phys. G 39, 085010 (2012).

quark periodicity
phases => Nf blue dots

are in this case
flavor-dependent

In this case each dyon type has
one zero mode
with some quark (flavor)
=>Nc independent topological ZMZ’s!



Second deformation: QCD2 and Z2QCD are dramatically different!
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FIG. 6: Chiral condensate generated by v quarks and L dyons confining phase
(red squares) and d quarks interacting with M dyons (blue gets much more

circles) as a function of action S, for the Zs-symmetric model. robust: strong first order
For comparison we also show the results from II for the usual
QCD-like model with N. = Ny = 2 by black triangles.

mixed phase (flat F)
IS observed at medium densities

nhote the condensate

is much larger for Z2?
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lattice study of Z3 QCD

Lattice study on QCD-like theory with exact center symmetry

Yukawa Institute for Theoretical Physics, Kyoto 606-8502, Japan

High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
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lattice study of Z3 QCD

Lattice study on QCD-like theory with exact center symmetry
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interact with three different liquids” | | |
of M1,M2,L instanton-dyons! 3



relation between monopole and instanton-dyon descriptions,
the “Poisson duality”

in N=4 SYM on R3*S1, monopoles and inst-dyons give the same Z

N. Dorey and A. Parnachev, JHEP 0108, 059 (2001)
doi:10.1088/1126-6708/2001/08/059 [hep-th/0011202].



|s there any relation between
the semiclassical instanton-dyons
(T o € |0, 27
and QCD monopoles? () | |

Adith Ramamurti,* Edward Shuryak,” and Ismail Zahed?

The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

A Hamiltonian vs Lagrangian approaches

. = TA
A Z exp( AT 1w Ty = Z VorAT exp( 5 (27Tn—w)2>.

< :

Matsubara time an (T) = 277” ;
winding number

Aharonov-Bohm
phase

of inertia

based on classical paths

arX1v:1802.10509v1 [hep-ph] 28 Feb 2018
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Adith Ramamurti,* Edward Shuryak,” and Ismail Zahed?

and QCD monopoles?

The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

A Hamiltonian vs Lagrangian approaches

. = TA
A Z exp( AT 1w Ty = Z VorAT exp( 5 (27Tn—w)2>.

%

Matsubara time
winding number

a, (T) = 27Tn ,

Aharonov-Bohm
phase

of inertia

based on classical paths

Note completely different dependence

on T and holonomy omega
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based on classical paths

Note completely different dependence
on T and holonomy omega

And yet, they are the same!
(elliptic theta function of the 3 type)
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Found first in N=4 SYM theory,

|s there any relation between
the semiclassical instanton-dyons
and QCD monopoles?

by Dorey Parnachev
simple toy examplein this paper
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instanton-dyons with

winding number n

The twisted solution is obtained in two steps. The first
is the substitution

v —>n27/B) — v, (13)

and the second is the gauge transformation with the
gauge matrix

Q= exp( — %nm—&g) , (14)

where we recall that 7 = z* € [0, 3] is the Matsubara
time. The derivative term in the gauge transformation
adds a constant to A, which cancels out the unwanted
n(2m/B) term, leaving v, the same as for the original
static monopole. After “gauge combing” of v into the
same direction, this configuration — we will call L,, — can
be combined with anv other one. The solutions are all

Sy = (4m/g”)|2mn/B — v

P
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Poisson summation formula
can be used to derive
the monopole Z

q is angular momentum
of rotating monopole,

so it is electric charge
(Zee)




Therefore we now understand why
The density of monopoles dependson T
as an inverse power of log(T) , not power of T =>
It is because they are not really semiclassical objects!

Srono ~ lOQ(COﬂSt/QQ) — log (l()g(T/Tc))

03— —

- —2
025 1 [l Oo(Jg (T/ TC)] - D’Alessandro, A. and D’Elia, M. (2008).
i “’m ¢ e : Magnetic monopoles in the high temperature
o ] s . phase of Yang-Mills theories.
>o1sp- ) cidald S st i Nucl. Phys., B799:241-254. 0711.1266.
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dyons it is different

exp(—S) ~ emp(—canst/gQ) — exp(—const’ xlog(T)) = 1/TP°"e"




Summary

- Semiclassical objects at finite T are instanton-dyons, fractions

of instantons. Their interactions and ensembles for SU(2) and SU(3) gauge

theories, with and without quarks studied

* Very cleanly they are seen in lattice configurations via Dirac zero (and
quasizero) eigenmodes. Even when overlapping, the lattice shapes follow
semiclassical formulae very accurately (?)

 in QCD deconfinement and chiral transitions are close, but

 can be moved by two different deformations: (1) Polyakov line suppression

* (2) changes of fermion periodicity phases

- Poisson duality for monopoles to instanton-dyons explains the monopole
density(T) and why monopoles of pure gauge theories or QCD are not
semiclassical



