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Method

Result 1: Small-size clusters at low T

References

Result 4: Effect on kurtosis

Result 2: Four-nucleon clustering and He-4 production

We propose new effects in heavy-ion collisions at the Beam Energy Scan (BES) of the Relativistic
Heavy-Ion Collider which can signal the presence of a possible QCD critical point at a particular collision energy.

We focus on nucleon-nucleon (NN) interaction: at distances ~1 fm is mediated by the σ critical mode.

Beyond mean field, the ω strength is increased to 
reduce the potential depth and make it closer to the 

phenomenological NN Bonn potential.

The shallow potential classically bounds few-nucleons 
close to T=0 (see Results 1). It can also reproduce 

binding energies of bulk nuclear matter in a 
semiclassical approach (see Ref. [1]).  

Walecka-Serot potential between nucleons: 

Close to the critical point T
c
~100 MeV, this potential is 

unable to bind nucleons. However, modifications due to 
the σ mode strongly affects the NN interaction

(see Method).

Nuclear forces appear as a partial cancellation of repulsion and attraction in the mean potential energy,
and Fermi energy, producing binding energies of few MeV in infinite nuclear matter.

We consider several NN potentials with increasing degree of criticality (due to decrease of σ mass close to T
c
):

Result 3: Big clusters close to critical transition

Molecular dynamics + Langevin with V
A’
 potential at T=10-3 MeV with N=4, 6, 8 and 13 nucleons

T is fixed by fast particles (pions, kaons), while nucleon dynamics is dominated by the pairwise potential.
Baryon diffusion constant λ is taken from URASiMA simulations.

We stress the importance of correlations between nucleons for binding and eventual clustering
(Boltzmann’s Stosszahlansatz is not enough to describe this phenomenon).

1) With freeze-out conditions as in experiment, we run N
ev

=105 simulations with N=32 particles in a 

non-expanding frame during Δt=5 fm/c. A final boost matches y and p
T
 distributions. 

A system with noncritical V
A’
 is calibrated to s1/2

NN
=19.6 GeV (close to Poisson expectations). 

We cannot simulate larger energies due to the absence of antiprotons. 

For freeze-out conditions at BES the potential V
A’
 cannot produce clustering of nucleons

However, V
C
 is able to form clusters (e.g. He-4) at temperatures T~100 MeV within a few Fermi/c. 

PDF of distances between nucleons at T=120 MeV for N=4.
At T=0, a Dirac delta sits at the minimum of the potential

These potentials are implemented into a classical molecular dynamics with thermal noise.
We extract physical properties from phase space distribution.

Quantum effects are ignored at T~100 MeV, but needed for infinite matter (see [1]).

Molecular Dynamics + Langevin Equation

 

Conclusions
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Spatial configurations and binding energies checked against direct minimization of the potential.

Resulting geometries coincide with Platonic solids except for N=8 (as known for Lennard-Jones potential) 

PDF is used to define an 
identification procedure of 
N=4 clusters in simulations 

with more nucleons

N=128
T=120 MeV
n=0.16 fm-3

At long times all 
particles eventually fall 

into a big cluster
(except for outliers 

with high momentum)

Medium at BES only has a 
few Fermi/c to interact.

We can expect few-nucleon 
partially bound systems 

e.g. proto He-4 nuclei
(see Result 2) 

also...
signatures on cumulants of 
(net-)proton distribution at 

freeze-out?
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1) Attractive part of NN potential is very sensitive to the QCD critical mode σ.

2) Phenomenological potentials for infinite nuclear matter are not able to produce binding around T~100 MeV.

3) NN potential reflecting σ-mass suppression close to T
c 
allows for substantial nuclear clustering.

4) In HICs, finite duration and radial expansion prevent big agglomeration, but small clusters can be formed.

ENHANCED HE-4 PRODUCTION IN BES CLOSE TO CRITICAL POINT

5) Clustering induces NN correlations producing an enhancement of kurtosis close to T
c

INCREASE OF KURTOSIS SIGNALS CRITICAL REGION DUE TO CLUSTERING   

2) We rescale our numbers 
to fix average number of 
protons in one cut.

Other proton cumulants 
match well with experiment 
for both cuts.

3) Larger criticality of NN potential we observe an increase of kurtosis.

Clustering → non Gaussian correlations!
STAR data. Two cuts:

0.4 GeV < p
T
 < 0.8 GeV

|y| < 0.5

(from Ref. [3])

0.4 GeV < p
T
 < 2 GeV

|y| < 0.5

(from Ref. [4],
STAR preliminary)

Simulation with N=32, T=120 MeV, Δt=5 fm/c
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outline

• map of gauge topology
• VEV of Polyakov line and the instanton-dyons
• Dirac zero and quasizero fermionic states on the lattice
• Deconfinement transition, 
• QCD deformation via Polyakov line operators 
• Chiral symmetry breaking 
• QCD deformation via quark periodicity phases
• Poisson duality  Instanton-dyons <=> Monopoles 
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energy

Chern-Simons number is integer at the “valleys”0 1 2

Instanton is 
Tunneling at 
Zero energy

Sphaleron

Sphaleron path

Terminology of the topological landscape

Sphaleron is static purely magnetic object 
The name in Greek means 

“ready to fall” (Klinkhamer and Manton) 

Sphaleron path consists of configurations  
Which are minima in all directions in Hilbert space 

except one 
Like streams going from mountain tops 

to the bottom of the valley

Sphaleron 
Explosion

instanton-sphaleron process
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The name in Greek means 

“ready to fall” (Klinkhamer and Manton) 

Sphaleron path consists of configurations  
Which are minima in all directions in Hilbert space 

except one 
Like streams going from mountain tops 

to the bottom of the valley

We do have analytic results for  
All of them 

In pure gauge theory 
Which is not widely known

Sphaleron 
Explosion
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NJL model: 
 NJL introduced the chiral symmetry and 

G large enough to break it spontaneously 
“constituent quark mass” like a gap 

in superconductors

G[~⇡2 + �2]

~⇡ = (q̄~⌧�5q)

� = (q̄q)

G(|p| > ⇤) = 0

gauge topology, tunneling 
Instantons: BPST and  t’ Hooft, 1975-76 

new effective Lagrangian 
it violates U(1) chiral symmetry 

Turning left-handed to right handed

2

but not least (iii) the 4-quark local interaction of Nambu-
Jona-Lasino (NJL) type. One simplification we use is
to consider only the longitudinal degrees of freedom, ig-
noring the transverse motion. Another is to reduce the
complicated NJL operator to a single topology-induced
’t Hooft vertex [8] . This latter step is explained in the
next subsection.

B. Topology-induced multiquark interactions

Nambu and Jona-Lasinio 1961 paper [9] was an amaz-
ing breakthrough. Before the word “quark” was invented,
and one learned anything about quark masses, it postu-
lated the notion of chiral symmetry and its spontaneously
breaking. They postulated existence of 4-fermion inter-
action, with some coupling G, strong enough to make a
superconductor-like gap even in fermionic vacuum. The
second important parameter of the model was the cut-
o↵ ⇤ ⇠ 1GeV , below which their hypothetical attractive
4-fermion interaction operates.

After discovery of QCD, gauge field monopoles and in-
stantons, a very curious relations was found [8], between
the Dirac operator and background gauge topology: they
have certain zero modes related to the topological charge.
This mathematical phenomenon has direct physical con-
sequences, multi-quark interaction vertex described by
the so called ’t Hooft e↵ective Lagrangian. Since in QCD
it includes all three flavors of light quarks, u, d, s, it is a 6-
quark e↵ective vertex, schematically shown in Fig. 1(a).
Note its key feature, opposite chiralities L,R of the in-
coming and outgoing quarks: it is so because in order to
have zero modes of the Dirac equation, quarks and anti-
quarks should have the same magnetic moments. Unlike
vectorial interaction with non-topological glue, this La-
grangian directly connect left and right components of
quark fields, explicitly breaking U(1)a chiral symmetry.

With the advent of the instanton liquid model (ILM)
[10] it became clear that it provides an explanation to the
origins of hypothetical NJL interaction. The NJL cou-
pling GNJL and cuto↵ ⇤NJL were substituted by other
two parameters, the instanton 4d density n and the typ-
ical size ⇢. Like the NJL action, t’ Hooft e↵ective ac-
tion also preserves the SU(Nf ) chiral symmetry, but is
also strong enough to break it spontaneously, creating
nonzero quark condensates hs̄si, hūui 6= 0 appearing in
diagrams (c,d) of Fig.1. The residual 4-quark (ūu)(d̄d)
interaction, induced by the diagrams (b,c), is the one
to be used below. Note, that unlike the NJL action, it
explicitly breaks the chiral Uc(1) symmetry.

In 1990’s the so called “interacting instanton liquid
model”, which numerically solved the vacuum properties
using ’t Hooft Lagrangian to all orders, providing hadron
spectroscopy and Euclidean correlation functions, for re-
view see [11]. Recent advances to finite temperatures and
QCD phase transitions at finite temperature is based on
instanton constituents, the “instanton dyons: we do not
go into that here and only comment that the structiure

(a)

(d)(c)

(b)
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FIG. 1: Schematic form of the 6-quark ’t Hooft e↵ective La-
grangian is shown in fig (a). If quarks are massive, one can
make a loop shown in (b), reducing it to 4-fermion opera-
tor. Note a black rhomb indicating the mass insertion into
a propagator. We only show it for s quark, hinting that for
u, d their masses are too small to make such diagram really
relevant. In (c,d) we show other types of e↵ective 4-fermion
vertices, appearing because some quark pairs can be absorbed
by a nonzero quark condensates (red lines).

of the ’t Hooft Lagrangian remains the same.
In this pilot study we would simplify this residual 4-

fermion interaction, as much as possible, assuming that
’t Hooft e↵ective action is local. This implies that the
instanton radius (or 1/⇤NJL) is much smaller than typ-
ical hadronic sizes, ⇢ ⌧ Rhadrons and therefore can be
neglected. With this assumption, the residual 4-fermion
interaction has only one parameter, the coupling.
It needs to be stated that such simplification goes with

a certain price: the wave functions get singular at x ! 1
causing bad convergence of their expansion in basis func-
tions: we will terminate series by hand. Let us add, that
small size of QCD topological objects also produce tech-
nical di�culties for lattice simulations: many quantities
(and PDF moments are among them, see e.g. [12]) show
significant dependence on the value of lattice spacing a

down to very fine lattices, with a ⇠ 1/(2 � 3GeV ), so
coninuum extrapolation a ! 0 is a nontrivial step.
Small sizes of instanton and instanton-dyons explain

few other puzzles, known in hadronic physics and by lat-
tice practitioners. We will not discuss phenomena related
to strange quark mass in this work, but notice in pass-
ing, the “puzzle of strong breaking of the SU(3) flavor
symmetry”. Naively, in NJL-like models

ms ⇠ 0.1GeV ⌧ ⇤NJL ⇠ 1GeV

is a small parameter, and expansion in it should be well
behaved. However, it is far from being seen in the real
and numerical data. One particular manifestation of it,
observed e.g. in recent lattice work already mentioned
[12], is that PDF moments for various octet baryons

G[~⇡2 + �2 � ~�2 � ⌘02]

Instanton liquid model (ES 1982) 
instead of G and Lambda of NJL 

another two parameters 
their values are such that  

chiral symmetry gets broken

ninst ⇡ 1 fm�4

⇢ ⇡ 1/3 fm

Interacting instanton liquid model 1990s 
summed all orders of ’t Hooft vertex 

calculated correlation functions 
good description of chiral symmetry breaking 

no confinement

c
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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c
decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡,KK, ⌘⌘,KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.

The calculation proceeds along the same lines as the glue-
ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is
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""ū ta,-.+5u$"d̄ ta,-.+5d$"s̄+5s$)$
9
20d
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The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.
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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).
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Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.

The calculation proceeds along the same lines as the glue-
ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is
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The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

But no pi,pi,pi or other 3-body decays

…
A snapshot of lattice G-dual G
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c
decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡,KK, ⌘⌘,KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.

The calculation proceeds along the same lines as the glue-
ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is
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The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

Bjorken, J. D hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

But no pi,pi,pi or other 3-body decays

…
A snapshot of lattice G-dual G
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c
decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡,KK, ⌘⌘,KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.

The calculation proceeds along the same lines as the glue-
ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is
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The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

Bjorken, J. D hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

Not seen in the control group 
The J/psi decaysBut no pi,pi,pi or other 3-body decays

…
A snapshot of lattice G-dual G
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c
decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡,KK, ⌘⌘,KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.
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3mc
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.

The calculation proceeds along the same lines as the glue-
ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is

LI"A!% dz% d0"*$
d*
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3
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3
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9
20d
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%"s̄ tc,+-+5s$""ū ta,-.+5u$"d̄ tb,.++5d$"s̄ tc,+-+5s$)) . "26$

The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

Bjorken, J. D hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

Not seen in the control group 
The J/psi decaysBut no pi,pi,pi or other 3-body decays

Zetocha, V. and Schafer, T. (2003). Instanton contribution to scalar charmonium and  
glueball decays. Phys. Rev., D67:114003. hep-ph/0212125.

…
A snapshot of lattice G-dual G
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c
decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡,KK, ⌘⌘,KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.

The calculation proceeds along the same lines as the glue-
ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is

LI"A!% dz% d0"*$
d*

*5

1

Nc
2$1

" %3*4

&S
#GG̃" 1

4 # " 4
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The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

Bjorken, J. D hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

Not seen in the control group 
The J/psi decaysBut no pi,pi,pi or other 3-body decays

Zetocha, V. and Schafer, T. (2003). Instanton contribution to scalar charmonium and  
glueball decays. Phys. Rev., D67:114003. hep-ph/0212125.

…
Light-front wave functions of mesons, baryons, and pentaquarks with topology-induced local four-quark interaction 
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.

December 4, 2020 11:58 WSPC/Book Trim Size for 9.75in x 6.5in all˙in˙one

170 Gauge field topology and instantons

Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c
decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡,KK, ⌘⌘,KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.

!"#!2g$!
8%&s

2!'"0$!2

3mc
2 " 1"4.4

&s

% # . "25$

Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.

The calculation proceeds along the same lines as the glue-
ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is

LI"A!% dz% d0"*$
d*

*5

1

Nc
2$1

" %3*4

&S
#GG̃" 1

4 # " 4
3 %2*3# 3&("ū+5u$"d̄d$"s̄s$""ūu$"d̄+5d$"s̄s$""ūu$"d̄d$"s̄+5s$

""ū+5u$"d̄+5d$"s̄+5s$)"
3
8 '"ū ta+5u$"d̄ tad$"s̄s$""ū tau$"d̄ ta+5d$"s̄s$""ū tau$"d̄ tad$"s̄+5s$""ū ta+5u$
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3
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9
20d

abc("ū ta,-.+5u$"d̄ tb,-.d$"s̄ tcs$""ū ta,-.u$"d̄ tb,-.+5d$"s̄ tcs$
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9
40d
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9
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abc("ū ta,-.+5u$"d̄ tb,.+d$"s̄ tc,+-s$""ū ta,-.u$"d̄ tb,.++5d$"s̄ tc,+-s$""ū ta,-.u$"d̄ tb,.+d$

%"s̄ tc,+-+5s$""ū ta,-.+5u$"d̄ tb,.++5d$"s̄ tc,+-+5s$)) . "26$

The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)

INSTANTON CONTRIBUTION TO SCALAR CHARMONIUM . . . PHYSICAL REVIEW D 67, 114003 "2003$

114003-7

Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

Bjorken, J. D hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

Not seen in the control group 
The J/psi decaysBut no pi,pi,pi or other 3-body decays

Zetocha, V. and Schafer, T. (2003). Instanton contribution to scalar charmonium and  
glueball decays. Phys. Rev., D67:114003. hep-ph/0212125.

…

Nonperturbative quark-antiquark interactions in mesonic form factors ES, Ismail Zahed , 2008.06169

Light-front wave functions of mesons, baryons, and pentaquarks with topology-induced local four-quark interaction 
ES,Phys.Rev.D 100 (2019) 11, 114018 • e-Print: 1908.10270
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FIG. 1: The renormalized Polyakov loop calculated with the HISQ and stout action. The HISQ results for Nτ = 6, 8 and 12 are
from Ref. [8]. The continuum stout data are from Ref. [14]. The filled diamonds correspond to the continuum extrapolation
for the HISQ action. The right panel shows the closeup of the Polyakov loop in the low temperature region.

β ms T [MeV] #TU

Nτ = 10

6.285 0.0790 117 2423

6.341 0.0740 123 7679

6.390 0.0694 129 4990

6.423 0.0670 133 3640

6.460 0.0642 138 4200

6.488 0.0620 142 3370

6.515 0.0604 146 4988

6.550 0.0582 151 4990

6.575 0.0564 155 4990

6.608 0.0542 160 4990

6.664 0.0514 168 5000

6.700 0.0496 174 4990

6.740 0.0476 181 4990

6.770 0.0460 186 4990

6.800 0.0448 192 5310

6.840 0.0430 199 4990

6.880 0.0412 207 4990

Nτ = 8

6.050 0.1064 116 3977

6.125 0.0966 125 3180

6.175 0.0906 131 3732

TABLE I: Simulation parameters for 403 × 10 and 323 × 8
lattices. The last column shows the accumulated statistics in
terms of molecular dynamics trajectories.

Polyakov loop changes very smoothly in the temperature
interval where the chiral condensates drops rapidly and it
is difficult to tell whether the transition in the renormal-
ized Polyakov loop and chiral condensates are connected.
Comparison with the hadron gas model described in the

-0.2
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FIG. 2: The temperature dependence of the renormalized
Polyakov loop compared to the temperature dependence of
the renormalized chiral condensates ∆R

l and ∆ls as well as
the strange quark condensate ∆R

s . The values of ∆R
l and ∆R

s

have been normalized by the corresponding zero temperature
values. ∆ls goes to one in the zero temperature limit by con-
struction. All results are continuum extrapolated.

next section, however, can provide further insight into
this issue. Finally, the strange quark condensate shows
a smooth behavior similar to that of Lren.

III. THE HADRON GAS MODEL

As discussed in section I, at very low temperature the
free energy of a static quark is largely determined by the
binding energy of the lowest static-light meson. In addi-
tion, there are contributions from static-strange mesons
and baryons with one static quark. Thus, following Ref.

P
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Figure 4: The renormalized Polyakov loop expectation value defined in Eq. 9 deter-
mined from the asymptotic behaviour of colour singlet free energies on lattices of
size 323 × Nτ .

5 Outlook

In this paper we have defined the renormalized Polyakov loop by matching the free
energy of a static quark anti-quark pair at short distances to the zero temperature
heavy quark potential. We have shown that the renormalized Polyakov loop can be
determined from the large distance behaviour of the colour averaged as well as the
colour singlet free energy of the q̄q-pair. The approach has been used here to study
the heavy quark free energy of the SU(3) gauge theory. It, however, generalizes
without any difficulties to the case of QCD.

In the temperature regime analyzed by us, T/Tc ≤ 6, the renormalized Polyakov
loop is a monotonically rising function. It becomes larger than unity for T/Tc ≃
2.5. In the future it will be interesting to analyze the asymptotic behaviour of the
Polyakov loop at even larger temperatures and determine its infinite temperature
limit. In this limit Lren is expected to approach a constant. Figure 4 suggests that
this constant is close to unity. A more detailed analysis of the large temperature
behaviour of Lren would also allow to make contact with perturbative calculations,
which suggest that the asymptotic value may be approached from above [13].

Finally we note that our normalization of the heavy quark anti-quark free ener-
gies at short distances also opens the possibility for a new look at the heavy quark
potential at finite temperature. Using the thermodynamic relations between en-
tropy, energy and free energy, S = −∂F/∂T , U = −T 2∂(F/T )/∂T , it is evident

11

P = Pexp(i

I
Aa

µT
adxµ)

QCD

pure gauge  
SU(3)

L jumps to zero
the first order transition

The Polyakov line is used as order parameter for deconfinement

⇠ e�Fq/T

L = diag(eiµ1 , eiµ2 , ...eiµNc)

Kaczmarek et al 2002
Bazavov et al 2016

Tr(L)

L =

2 [0, ~/T ]

Pisarski  ``semi-QGP"  paradigm, 
PNJL model 

1

Nc



Non-zero Polyakov line splits instantons 
 into Nc instanton-dyons 

(Kraan,van Baal, Lee,Lu 1998)

Explained mismatch of quark condensate in SUSY QCD

Explained confinement by back reaction to free energy

Explain chiral symmetry breaking in QCD
and in setting with modified fermion periodicities

BPST

V.Khoze (jr) et al 2001

D.Diakonov 2012, Larsen+ES,Liu,Zahed+ES 2016

R.Larsen+ES 2017, Unsal et al 2017

Pierre van Baal



“action cooling” is known to eliminate 
gluons and lead to instantons 

perhaps dyons were first observed in “constrained cooling” preserving local L
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Instantons emerging  from vacuum 
quantum noise by ``cooling� 
(MIT group, 1993), S and Q 

theory and phenomenology of the 
instanton ensemble in  the QCD 

vacuum

• (1982) ES: the instanton liquid 
model: n=1 fm-4, rho=.3 fm, 
small diluteness n rho^4

• <G^2>,<Q^2> and <psibar 
psi> as 3 inputs => 2 params
+check

•  1990’s IILM

•  QCD vacuum and 
instantons
(T.Schaefer, ES, RMP 1996)

ESQGP 10-2-08      J. W. Negele 19

Gluon fields calculated on the lattice

Visualization by Derek Leinweber

topology on the lattice
 Adelaide group, 2000Fig. 1.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four

upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section ??
where we will discuss theory of the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
tension �, so that the suppression factor should be

dn

d⇢
=

dn

d⇢
|semiclassical · e

�2⇡�⇢2

(1.7)

Negele et al, 97
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promising.
48 K. Langfeld, E.-M. Ilgenfritz / Nuclear Physics B 848 (2011) 33–61

Fig. 5. Left: the field strength defined as the clover average over plaquettes touching in the point x: Cµν (x) = (P1 +P2 +
P3 + P4)/4. Right: the topological susceptibility χtop as a function of the cooling sweep for constrained and standard
cooling. The configurations have been prepared on a 164 lattice at β = 2.4.

For later convenience, we change the normalisation of the action to

A = 1
16π2

∑

ia

∫
d 4x

(
Ea

i (x)Ea
i (x) + Ba

i (x)Ba
i (x)

)
, (49)

with the density

s(x) = 1
16π2

(
Ea

i (x)Ea
i (x) + Ba

i (x)Ba
i (x)

)
(50)

which gives rise to the global inequality

S � |Q| (51)

and a local version of it:

−s(x) � q(x) � s(x). (52)

Since this paper presents a first exploration of a new cooling procedure, we decided to use
the most unambitious (unimproved) lattice observables representing the above quantities. This is
possible since our cooled configurations are quite smooth. For example, there is no need for an
improved definition of the field strength which uses other Wilson loops rather than the plaquette.
In order to associate the field strength tensor with each lattice site, we use the clover-leaf average
of the plaquettes attached to this site as indicated in the left panel of Fig. 5. Each of the quanti-
ties P1...4 represents an untraced plaquette as defined in (17) with the specification that tadpole
improved links

Uµ(x)/u0, u0 =
(〈

1
Nc

trPµν

〉)1/4

Fig. 1.7 The left plot shows the topological susceptibility �top as a function of the number
of cooling sweep Ncool, for standard (red points decreasing with Ncool) and constrained (black
points). The right plot shows the distribution of the topological charge in configurations obtained
by the constrained cooling .

Langfeld and Ilgenfritz, 2011 

while the total top.charge 
of the box is always integer,

local bumps are not!
They are all (anti)selfdual

But top charge and actions
Were not integers!

a lot of work on finding instanton-dyons 
 was done by C.Gatringer et al, Ilgenfritz et al 
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FIG. 6: ⇢(x, y) of the zero mode of conf. 2960 at � = ⇡ (left

top), ⇡/3 (right top) and �⇡/3 (bottom). T = 1.08Tc.

All of the ⇢(x, t) plots also look very similar due to all
3 peaks being very close to each other (around 1 lattice
spacing). We therefore just show one of them. See fig. 7.

FIG. 7: ⇢(x, t) of the zero mode of conf. 2960 at � = ⇡ /3.

T = 1.08Tc. y and z at peak location.

If we make a integration around the dominating peak
we find a contribution of the overall normalization of size
0.74. Thus, even though it is dominating, other small
contributions also exist, which end up contributing a sub-
stantial part.

The peak is also not symmetric around the maximum.
This indicates that the other dyons are sitting on one side
of the dyon. How much we can get the two sides to be-
have di↵erently depends on the Polyakov loop, through
the angles µi. This is a good way to exclude a stan-
dard(deconfining) instanton as shown in fig 8.

log(⇢(x))

x

FIG. 8: log(⇢(x)) of the zero mode of conf. 2960 at � = ⇡
(black) and the log of the analytic formula for P = 0.4 and

P = 1 though the maximum. T = 1.08Tc. Red peak only has

been scaled to fit in height, while blue peak uses the found

normalization.

The picture is consistent in all the configurations ex-
plored. Below we show another configuration for the an-
gle � = ⇡/3. This is for a configuration di↵erent from all
the previous ones. This is mostly to show that the picture
is consistent through many di↵erent configurations.

We show the ⇢(x, y) and ⇢(x, t) plot for the lattice re-
sults in fig. 9 and 11 which we compare to the analytic
solution in fig. 10 and 12.

FIG. 9: ⇢(x, y) of the zero mode of conf. 3620 at � = ⇡/3.
T = 1.08Tc.

excellent agreement of the shape
with analytic formulae

extracting the shape of 
the fermonic zero mode

and modyfying the phase
one can find all 3 dyons

4

FIG. 3: ⇢(x, t) of the zero mode of conf. 2000 at � = ⇡/3.
T = Tc.

FIG. 4: Analytic zero mode density ⇢(x, t) at � = ⇡/3. Main

dyon centered at the origin. Two other dyons at (0.2, 0.0, 0.0)
and (�0.2, 0.0, 0.0).

Focusing now on another configuration at the same
temperature, we can at the angle � = ⇡ see a strong
indication that the value of the holonomy µi should be
confining (o↵ course the values can fluctuate from con-
figuration to configuration). We see that in fig. 5, where
the fastest fallo↵ can be reproduced by both the confin-
ing and deconfining holonomy, but only for the confining
holonomy is it possible to get a strong enough tilt to one
side.

log(⇢(x))

x

FIG. 5: log(⇢(x)) of the zero mode of conf. 2660 at � = ⇡
(blue) and the log of the peak in fig. 4(green) and the peak

of a fit with µ1 = µ2 = µ3 = 0(red) though the maximum.

T = Tc. Peaks has been scaled to fit in height.

B. T = 1.08Tc

When we use the overlap operator using anti periodic
boundary conditions at T = 1.08Tc, we find a single
strong peak for configurations with Qtop = ±1. This
does not mean that there is only one topological object
in the system. It shows that there is one which is not
strongly a↵ected by opposite type of topological objects,
such that it dominates the contribution to the zero mode.
This is not the case when we start to turn the bound-
ary condition to other values. We look at the angles
� = ⇡,⇡/3,�⇡/3. In the confined phase, these values
correspond to one sector each, and has the largest dis-
tance to the angles of the Polyakov loop µi. We show an
example of ⇢(x, y) at these 3 angles in fig. 6.

We found that their fields 
interfere with each other

 the interaction between them
Is in excellent agreement with 

van Baal analytic formulae
⌧
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FIG. 14: ⇢(x, y) of the zero mode of conf. 2540 at T = 1.08Tc.

� = ⇡(red), � = ⇡/3(blue), � = �⇡/3(green). Peak height

has been normalized to that of � = ⇡.

Other cases overlap much stronger like in fig. 15.
When one do the fits though, this case fits very well with
dyons at a distance around 0.14 (around one lattice spac-
ing), which is close but not overlapping completely. Also
when dyons are close in analytic solutions, the peak of the
density can, dependent on the dyons position, be shifted
slightly to the side.

At T = Tc in fig. 16 and 17 we observe more peaks
which overlap with each other (atleast after summing
over t), and we still observe that the dyons don’t always
sit on top of each other. Also it appears that the typical
distance is larger, though this need more statistics.

FIG. 15: ⇢(x, y) of the zero mode of conf. 2960 at T = 1.08Tc.

� = ⇡(red), � = ⇡/3(blue), � = �⇡/3(green). Peak height

has been normalized to that of � = ⇡.

FIG. 16: ⇢(x, y) of the zero mode of conf. 2000 at T = Tc.

� = ⇡(red), � = ⇡/3(blue), � = �⇡/3(green). Peak height

has been scaled to be similar to that of � = ⇡.

FIG. 17: ⇢(x, y) of the zero mode of conf. 2660 at T = Tc.

� = ⇡(red), � = ⇡/3(blue), � = �⇡/3(green). Peak height

has been scaled to be similar to that of � = ⇡.

VII. STRONG OVERLAP

In some cases we observe several peaks to be overlap-
ping with each other strongly. In these cases one would
most likely need a Qtop = N solution to fit the behavior
completely. Still if we do our 2d slices such that the slice
is dominated by 1 of the several peaks, we can still ob-
tain a behavior similar to that of the Qtop = 1. We show
an example of this where we in fig. 18 show the density
⇢(x, y) and the density ⇢(x, t) in fig. 19 and 20. While we
can see the other peaks in the ⇢(x, t) plots, they are not
too large. We compare the ⇢(x, t) plots to the analytic
formula in fig. 21 and 22, which has been chosen such
that they resemble the lattice results.
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all one needs to do is to study their ensemble
interactions are Coulomb + one loop corrections



⌫ = 0 is the trivial case

⌫ = 1/2 confining
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where we have normalized such that Zchanged = 1 for no
interaction. Combining with the unchanged part and the
purturbative potential we get in the limit V ! 1

Z =
X

NM ,NL

exp

✓
� Ṽ3


4⇡2

3
⌫
2
⌫̄
2 � 2nM ln


d⌫e

nM

�

+2nL ln


d⌫̄e

nL

�
+�f

�◆
(23)

For Ṽ3 ! 1 the partition function is completely domi-
nated by the maximum of the exponent. Finding the free
energy corresponds to finding the minimum of

f =
4⇡2

3
⌫
2
⌫̄
2 � 2nM ln


d⌫e

nM

�

�2nL ln


d⌫̄e

nL

�
+�f (24)

Note that as the dyon density increases, it changes
its shape, producing a non-trivial minimum at ⌫ 6= 0.
Furthermore, at high density this minimum moves to ⌫ =
1/2, the confining value.

The densities of both kinds of dyons nL, nM are not
in general equal: the model should be able to do this by
adding compensating charge to the whole sphere. In our
model this is done by including the Debye mass.

VI. SELF CONSISTENCY

The partition function we simulate depends on several
parameters, changed from one simulation set to another.
Those include (i) the number of the dyons NM , NL; (ii)
the radius of the S

3 sphere r; (iii) the action parameter
S; (iv) the value of the holonomy ⌫, (v) the value of the
Debye massMD; (vi) the auxiliary factor �, which is then
integrated over as explained in section IV.

In principle, the aim of our study is to obtain the de-
pendence of the free energy on all of those parameters (i-
v). While the practical cost of the simulations restricts
the number of points one can study, we still had gen-
erated more than hundred thousand runs and multiple
plots. However, most of it neither can nor should be
included in the paper. Since our physics goal is to un-
derstand the back reaction of the dyon ensemble on the
holonomy, we study the whole range of holonomies, from
⌫ = 0 to ⌫ = 1/2, and only then locate its minimum. As
for the Debye mass, we will find it from the potential and
then show only the “selfconsistent” input set.

What we actually need to describe at the end is not
the free energy in the whole multi-dimensional space of
all parameters, but the location of the free energy min-
ima. The resulting set should be of co-dimension 1, since
the original physical setting of the problem – the gauge
theory at finite temperature – has only one input param-
eter, T .

Using the definition of the Debye mass g2

2V
@2F
@2v = M

2
D

for fixed density we get the configurations response to
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FIG. 5: (Color online). Free Energy density f as a function of

⌫ at S = 6, MD = 2 and NM = NL = 16. The di↵erent curves

corresponds to di↵erent densities. • n = 0.53, ⌅ n = 0.37,
⌥ n = 0.27, N n = 0.20, H n = 0.15, � n = 0.12. Not all

densities are shown.

changing the holonomy which is the Debye mass. We
require that the used value for the Debye mass is the
same as the one found from the derivative of F , or atleast
not more than 0.4 below the used value.
The results shows that as the Debye mass goes to zero

around the phase transition the only configuration that
is consistent with this is that of equal M and L dyons.

VII. THE PHYSICAL RESULTS

We now show only the result which fulfill the self-
consistency requirement. Without fermions the results
are symmetric in ⌫ ! 1� ⌫ and the results are therefore
only for ⌫  1/2. We have included the Diakonov deter-
minant, though its impact is not too great due to the not
so small Debye mass which has been calculated using 3
points. The results here are shown for a wall of 2/(2⇡⌫)
which was chosen in order to have a large enough density
of dyons to overcome the purturbative potential, without
completely making the perturbative potential irrelevant.
We used ⇤ = 1.5 to obtain a phase shift around S = 6.
Action is related to temperature as explained in appendix
A. This should of course be fitted to numerical data, but
the present data on dyons does not have a high enough
e�ciency of detection to do this. The action goes up to
S = 13, beyond this value the number of L dyons become
too close to 1, and we would need a higher total of dyons
to proceed.
The first thing to note about the results is that due

to the repulsive Coulomb term between dyons and an-
tidyons of di↵erent type, the free energy preferred to have
a large Debye mass due to cutting o↵ this repulsion. This
meant that when the free energy spectrum as a function
of holonomy for a fixed density becomes flat, the small
Debye mass created a rise in energy. This resulted in a
small jump in holonomy, since the configurations with a

So, as a function of the dyon density
the potential changes its shape 

and confinement takes place 

3

as e.g. strongly coupled Coulomb plasmas many-body
physics re-summations [23, 24] (and references therein).
As we will show, in this case the free energy has a mini-
mum at the “confining” holonomy value v = ⇡T .

In this paper we will detail the strongly coupled nature
of the dyonic plasma. Our original results consist of (i)
introducing the strong correlations between dyons and
anti-dyons as described by the streamline [22]; (ii) show-
ing that the determinantal interactions induced by the
moduli space for dyons or anti-dyons are mostly repul-
sive causing the moduli volume to vanish for randomly
distributed dyons; (iii) showing that suitably organized
dyons to account for screening correlations yield finite
moduli volumes; (iv) deriving an explicit 3 dimensional
e↵ective action that account exactly for the screening of
dyons and anti-dyons on the moduli space with strong
inter-dyon-anti-dyon streamline interactions; (v) show-
ing explicitly that the strongly coupled dyonic plasma
is center symmetric and thus confining; (vi) deriving the
Debye-Huckel corrections induced by the dyons and anti-
dyons to the leading Pressure for the dyonic plasma and
using it to asses the critical temperature for the SU(2)
plasma; (vi) providing the explicit results for the gluon
topological susceptibility and compressibility near the
critical temperature in the center symmetric phase; (vii)
deriving the scalar and charged structure factors of the
dyonic plasma showing explicit screening of both elec-
tric and magnetic charges at large distances with explicit
predictions for the electric and magnetic masses; (viii)
showing that the strongly coupled dyonic plasma sup-
ports both electric and magnetic confinement.

This paper is organized as follows: In section 2 we re-
view the key elements of the dyon and anti-dyon measure
derived in [4, 5] using the KvBLL instanton. The dyon-
anti-dyon measure is then composed of the product of
two measures with streamline interactions between the
dyons and anti-dyons. We briefly detail the exact re-
writing of the 3-dimensional grand-partition function in
terms of a 3-dimensional e↵ective theory in the SU(2)
case. We also show that the ground state of this ef-
fective theory is center symmetric. In sections 3-6 we
show that in the linearized screening approximation the
dyon-anti-dyon liquid still screens both electric and mag-
netic charges, generates a linearly rising potential be-
tween heavy charges and confines the large spatial Wilson
loops. The t0 Hooft loop in the dyon-anti-dyon ensemble
is shown to be 1 modulo O(↵s) self-energy corrections
which are perimeter-like in section 7. Our conclusions
are in section 8.

II. INTERACTING DYON-ANTI-DYON
ENSEMBLE

A. The setting

The first step is the introduction of the nonzero ex-
pectation value of the 4-th component of the gauge field,

which is gauge invariant since at finite temperature it en-
ters the holonomy integral over the time period, known
also as the Polyakov line. Working in a gauge in which
hA4i belongs to the diagonal and traceless sub-algebra
of Nc � 1 elements, one observes the standard Higgsing
via the adjoint field. All gluons except the diagonal ones
become massive. We will work with the simplest case of
two color gauge theory Nc = 2, in which there is only one
diagonal matrix and the VEV of the gauge field (holon-
omy) is normalized as follows

⌦
A

3
4

↵
= v

⌧
3

2
= 2⇡T⌫

⌧
3

2
(1)

where ⌧3/2 is the only diagonal color generator of SU(2).
At high T it is trivial with ⌫ ! 0, and at low T < Tc it
takes the confining value ⌫ = 1/2. With this definition,
the only dimensional quantity in the classical approxima-
tion is the temperature T , while the quantum e↵ects add
to the running coupling and its ⇤ parameter. Since we
are working near and below Tc, we will follow the lattice
practice and we use the latter as our main unit.
In the semi-classical approximation, the Yang-Mills

partition function is assumed to be dominated by an in-
teracting ensemble of dyons (anti-dyons) [4, 5]. For large
separations or a very dilute ensemble, the semi-classical
interactions are mostly Coulombic, and are encoded in
the collective or moduli space of the ensemble. For multi-
dyons a plausible moduli space was argued starting from
the KvBLL caloron [3] that has a number of pertinent
symmetries, among which permutation symmetry, over-
all charge neutrality, and clustering to KvBLL at high
temperature. Since the underlying calorons are self-dual,
the induced metric on the moduli space was shown to be
hyper-Kahler.
The SU(2) KvBLL instanton (anti-instanton) is com-

posed of a pair of dyons labeled by L,M (anti-dyons
by L,M) in the notations of [4]. Specifically M car-
ries (+,+) and L carries (�,�) for (electric-magnetic)
charges, with fractional topological charges vm = ⌫ and
vl = 1 � ⌫ respectively. Their corresponding actions are
SL = 2⇡vm/↵s and SM = 2⇡vl/↵s.
The statistical measure for a correlated ensemble of

dyons and anti-dyons is

dµ
DD

[K] ⌘ e
�VDD(x�y) (2)

⇥

NY

m=1

KmY

i=1

f d
3
xmi

Km!
det(Gmi[x])

⇥

NY

n=1

KnY

j=1

f d
3
ynj

Kn!
det(Gnj [y])

The streamline interactions induced by the potential
VDD̄ correlate the two otherwise statistically independent
dyon and anti-dyon sectors. (Note that by the potential
we mean the extra action and not the energy, thus no
extra 1/T ). Asymptotically,

holonomy

< P >= cos(⇡⌫) ! 0

if ⌫ = 1/2

confined free energy vs holonomy
(with Rasmus Larsen)
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Deconfinement Phase Transition in the SU(3) Instanton-dyon Ensemble

Dallas DeMartini and Edward Shuryak
Center for Nuclear Theory, Department of Physics and Astronomy,

Stony Brook University, Stony Brook NY 11794-3800, USA

Confinement remains one the most interesting and challenging nonperturbative phenomenon in
non-Abelian gauge theories. Recent semiclassical (for SU(2)) and lattice (for QCD) studies have
suggested that confinement arises from interactions of statistical ensembles of instanton-dyons with
the Polyakov loop. In this work, we extend studies of semiclassical ensemble of dyons to the SU(3)
Yang-Mills theory. We find that such interactions do generate the expected first-order deconfinement
phase transition. The properties of the ensemble, including correlations and topological susceptibil-
ity, are studied over a range of temperatures above and below Tc. Additionally, the dyon ensemble is
studied in the Yang-Mills theory containing an extra trace-deformation term. It is shown that such
a term can cause the theory to remain confined and even retain the same topological observables at
high temperatures.

I. INTRODUCTION

Quantum Chromodynamics (QCD) is the quantum
field theory describing the fundamental particles and
forces that make up nuclear physics. While QCD is re-
markably successful in describing nuclear physics, many
phenomena remain beyond the scope of what can be stud-
ied analytically. Notably, nonperturbative phenomena
such as confinement – the disappearance of quarks and
gluons from the physical spectrum – is not completely un-
derstood. Confinement occurs not just in QCD, but in
various Yang-Mills theories with or without quarks, mak-
ing it clear that it emerges from the non-perturbative be-
havior of the gluons, rather than the quarks. Above cer-
tain critical temperature Tc deconfinement takes place,
and the QCD-like theories turn into a new form of mat-
ter, the Quark-Gluon Plasma (QGP).

Historically the first mechanism of the deconfinement
transition was a ’dual superconductor’ model [1–3]. At
T < Tc the chromoelectrically-charged quarks and glu-
ons are connected by QCD flux tubes, dual to magnetic
flux tubes in superconductor. With the advent of lat-
tice gauge theories many aspects of this scenario were
put to the test. In particular, the profile of the QCD
flux tubes [4] was found to agree well with dual super-
conductor model. Monopoles were observed and found
to rotate around these flux tubes, as expected. Bose-
Einstein condensation of monopoles was detected and its
critical temperature was shown to coincide with Tc [5].
A high density of monopoles was found to be responsible
for unusual kinetic properties of QGP [6].

Euclidean formulation of the gauge theory lead to dis-
covery of 4D topological solitons known as BPST instan-
tons [7]. A model of their ensemble, the Instanton Liquid
Model (ILM) [8], has explained how instantons generate
chiral symmetry breaking. As certain extrema of the
path integral over gauge configurations, they form a ba-
sis for semiclassical theory, consistently including fluctua-
tions around classical fields. Furthermore, one can study
the interaction between instantons in their statistical en-
semble: those studies explained behavior of correlation

functions of various mesonic and baryonic currents, for
review see e.g. Ref. [9]. Yet the instanton theory has not
reproduced confinement.
Euclidean formulation of finite temperature QCD nat-

urally led to a nonzero value of the Polyakov loop hP i 6= 0
as a signature of deconfinement. Note that through-
out this paper we use hP i as shorthand for 1

3 hTr[P (~x)]i.
It can be interpreted as the nonzero vacuum expecta-
tion value (VEV) of the time component of the gauge
field A0, also known as nonzero holonomy. The natu-
ral question was then how to deform the instanton con-
figurations in a way consistent with nonzero holonomy
in the bulk. It was answered in Refs. [10, 11], who
discovered that instantons dissolve into Nc (number of
colors) constituent solitons, called instanton-dyons (or
instanton-monopoles). Like original instantons, they are
(anti)selfdual, so their actions and topological charges are
equal. But, unlike instantons, their actions and topologi-
cal charges are not quantized to integers; standard index
theorems are avoided because instanton-dyons have mag-
netic charges and therefore are still connected by Dirac
strings.
It was then realized that instanton-dyons provide a

very valuable bridge between the theory of monopoles
and instantons, providing a way to explain both confine-
ment and chiral symmetry breaking in a single setting.
Unlike monopoles, the instanton-dyons are semiclassical
objects, allowing for the construction of a consistent the-
ory of an interacting ensemble. Last but not least, the
statistical sum in terms of instanton-dyons is ”Poisson
dual” to that based on monopoles, see Refs. [12, 13].
Semiclassical approaches to finite-T gauge theories,

with and without quarks, have lately been subject of
multiple studies. Confinement in this theory is due to
the back reaction of the dyon ensemble on the Polyakov
loop, forcing it to take zero value at T < Tc, see e.g. Ref.
[14] for a simple model, Ref. [15] for mean-field analysis,
and Refs. [16, 17] for numerical simulations of the SU(2)
gauge theory. It is important that they are semiclas-
sical objects, unlike the QCD monopoles [13], with the
actions Sdyons ⇠ 1/g2 ⇠ log(T/⇤) growing with temper-
ature. Therefore their densities are suppressed at high T
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the Polyakov loop. In this work, we extend studies of semiclassical ensemble of dyons to the SU(3)
Yang-Mills theory. We find that such interactions do generate the expected first-order deconfinement
phase transition. The properties of the ensemble, including correlations and topological susceptibil-
ity, are studied over a range of temperatures above and below Tc. Additionally, the dyon ensemble is
studied in the Yang-Mills theory containing an extra trace-deformation term. It is shown that such
a term can cause the theory to remain confined and even retain the same topological observables at
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I. INTRODUCTION

Quantum Chromodynamics (QCD) is the quantum
field theory describing the fundamental particles and
forces that make up nuclear physics. While QCD is re-
markably successful in describing nuclear physics, many
phenomena remain beyond the scope of what can be stud-
ied analytically. Notably, nonperturbative phenomena
such as confinement – the disappearance of quarks and
gluons from the physical spectrum – is not completely un-
derstood. Confinement occurs not just in QCD, but in
various Yang-Mills theories with or without quarks, mak-
ing it clear that it emerges from the non-perturbative be-
havior of the gluons, rather than the quarks. Above cer-
tain critical temperature Tc deconfinement takes place,
and the QCD-like theories turn into a new form of mat-
ter, the Quark-Gluon Plasma (QGP).

Historically the first mechanism of the deconfinement
transition was a ’dual superconductor’ model [1–3]. At
T < Tc the chromoelectrically-charged quarks and glu-
ons are connected by QCD flux tubes, dual to magnetic
flux tubes in superconductor. With the advent of lat-
tice gauge theories many aspects of this scenario were
put to the test. In particular, the profile of the QCD
flux tubes [4] was found to agree well with dual super-
conductor model. Monopoles were observed and found
to rotate around these flux tubes, as expected. Bose-
Einstein condensation of monopoles was detected and its
critical temperature was shown to coincide with Tc [5].
A high density of monopoles was found to be responsible
for unusual kinetic properties of QGP [6].

Euclidean formulation of the gauge theory lead to dis-
covery of 4D topological solitons known as BPST instan-
tons [7]. A model of their ensemble, the Instanton Liquid
Model (ILM) [8], has explained how instantons generate
chiral symmetry breaking. As certain extrema of the
path integral over gauge configurations, they form a ba-
sis for semiclassical theory, consistently including fluctua-
tions around classical fields. Furthermore, one can study
the interaction between instantons in their statistical en-
semble: those studies explained behavior of correlation

functions of various mesonic and baryonic currents, for
review see e.g. Ref. [9]. Yet the instanton theory has not
reproduced confinement.
Euclidean formulation of finite temperature QCD nat-

urally led to a nonzero value of the Polyakov loop hP i 6= 0
as a signature of deconfinement. Note that through-
out this paper we use hP i as shorthand for 1

3 hTr[P (~x)]i.
It can be interpreted as the nonzero vacuum expecta-
tion value (VEV) of the time component of the gauge
field A0, also known as nonzero holonomy. The natu-
ral question was then how to deform the instanton con-
figurations in a way consistent with nonzero holonomy
in the bulk. It was answered in Refs. [10, 11], who
discovered that instantons dissolve into Nc (number of
colors) constituent solitons, called instanton-dyons (or
instanton-monopoles). Like original instantons, they are
(anti)selfdual, so their actions and topological charges are
equal. But, unlike instantons, their actions and topologi-
cal charges are not quantized to integers; standard index
theorems are avoided because instanton-dyons have mag-
netic charges and therefore are still connected by Dirac
strings.
It was then realized that instanton-dyons provide a

very valuable bridge between the theory of monopoles
and instantons, providing a way to explain both confine-
ment and chiral symmetry breaking in a single setting.
Unlike monopoles, the instanton-dyons are semiclassical
objects, allowing for the construction of a consistent the-
ory of an interacting ensemble. Last but not least, the
statistical sum in terms of instanton-dyons is ”Poisson
dual” to that based on monopoles, see Refs. [12, 13].
Semiclassical approaches to finite-T gauge theories,

with and without quarks, have lately been subject of
multiple studies. Confinement in this theory is due to
the back reaction of the dyon ensemble on the Polyakov
loop, forcing it to take zero value at T < Tc, see e.g. Ref.
[14] for a simple model, Ref. [15] for mean-field analysis,
and Refs. [16, 17] for numerical simulations of the SU(2)
gauge theory. It is important that they are semiclas-
sical objects, unlike the QCD monopoles [13], with the
actions Sdyons ⇠ 1/g2 ⇠ log(T/⇤) growing with temper-
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FIG. 1. (Color online) Structure of the holonomies and dyon types in SU(3). Circle has circumference of 1.

there is a perturbative interaction between thermal gluons and the holonomy. This generates the Gross-Pisarski-Ya↵e
potential VGPY [22], which appears in the an exponent in the partition function. For SU(3), this is given by

VGPY

T Ṽ3

=
4⇡2

3
(2(⌫(1� ⌫))2 + (2⌫(1� 2⌫))2). (5)

Here the potential is shown with factors divided out so that it has units of free energy density. This potential disfavors
confinement, having minimum at trivial holonomy ⌫ = 0, and a maximum at the confining holonomy ⌫ = 1

3 .
The dyon contribution to the partition function consists of two parts, the contributions of the dyons in the absence
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(Ṽ3d1�2⌫)

NL

◆2

⇥

✓
1

NM2!
(Ṽ3d⌫)

NM2

◆2

,

(7)

where d⌫ is the weight of an individual dyon with holonomy ⌫,

d⌫ =
⇤

4⇡
S2
0e

�S0⌫⌫
8⌫
3 �1. (8)

Now we may take the limit V ! 1 and assume equal densities of M1- and M2-type dyons. The free energy

FIG. 1. (Color online) Structure of the holonomies and dyon
types in SU(3). Circle has circumference of 1.
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dyons’ non-perturbative interactions. In the absence of
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performed by Monte-Carlo algorithms in this work. The
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A factor of 4⇡⌫i is divided out for each dyon type. This
is to remove a constant term that appears remains when
taking the dilute limit in Znp. Knowing this, it is easy
to construct the instanton weight in SU(3) and extend
it to an arbitrary number of dyons by summation. The
partition function, assuming an equal number of dyons
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where d⌫ is the weight of an individual dyon with holon-
omy ⌫,
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Now we may take the limit V ! 1 and assume equal
densities of M1- and M2-type dyons. Additionally we
resolve the factorial terms with Stirling’s approxima-
tion carried out to three terms lnN ! ⇡ N lnN � N +
ln(

p
2⇡N). The free energy F = � ln(Z) is given by the

following expression
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where �f is the free energy density stemming from the
interactions of the dyons. If the dyons have classical bi-
nary interactions �Sclass and a volume metric G, their
contributions to the partition function and the free en-
ergy density are

Znp =
1

Ṽ (4NM1+2NL)
3

Z
Dx det (G)e��Sclass (10)

�f = � ln(Znp) (11)

The set of parameters that minimizes the free energy
density corresponds to the physical dyon ensemble in the
infinite volume limit. This elucidates the main procedure
of this work: to first compute the free energy density of
the ensemble for a wide range of parameters, and then
locate their values which minimize it.
The classical interactions between dyons and antidyons

are, at distances exceeding the dyon cores, asymptot-
ically Coulomb-like. For generic SU(Nc) theories, the
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Confinement remains one the most interesting and challenging nonperturbative phenomenon in
non-Abelian gauge theories. Recent semiclassical (for SU(2)) and lattice (for QCD) studies have
suggested that confinement arises from interactions of statistical ensembles of instanton-dyons with
the Polyakov loop. In this work, we extend studies of semiclassical ensemble of dyons to the SU(3)
Yang-Mills theory. We find that such interactions do generate the expected first-order deconfinement
phase transition. The properties of the ensemble, including correlations and topological susceptibil-
ity, are studied over a range of temperatures above and below Tc. Additionally, the dyon ensemble is
studied in the Yang-Mills theory containing an extra trace-deformation term. It is shown that such
a term can cause the theory to remain confined and even retain the same topological observables at
high temperatures.

I. INTRODUCTION

Quantum Chromodynamics (QCD) is the quantum
field theory describing the fundamental particles and
forces that make up nuclear physics. While QCD is re-
markably successful in describing nuclear physics, many
phenomena remain beyond the scope of what can be stud-
ied analytically. Notably, nonperturbative phenomena
such as confinement – the disappearance of quarks and
gluons from the physical spectrum – is not completely un-
derstood. Confinement occurs not just in QCD, but in
various Yang-Mills theories with or without quarks, mak-
ing it clear that it emerges from the non-perturbative be-
havior of the gluons, rather than the quarks. Above cer-
tain critical temperature Tc deconfinement takes place,
and the QCD-like theories turn into a new form of mat-
ter, the Quark-Gluon Plasma (QGP).

Historically the first mechanism of the deconfinement
transition was a ’dual superconductor’ model [1–3]. At
T < Tc the chromoelectrically-charged quarks and glu-
ons are connected by QCD flux tubes, dual to magnetic
flux tubes in superconductor. With the advent of lat-
tice gauge theories many aspects of this scenario were
put to the test. In particular, the profile of the QCD
flux tubes [4] was found to agree well with dual super-
conductor model. Monopoles were observed and found
to rotate around these flux tubes, as expected. Bose-
Einstein condensation of monopoles was detected and its
critical temperature was shown to coincide with Tc [5].
A high density of monopoles was found to be responsible
for unusual kinetic properties of QGP [6].

Euclidean formulation of the gauge theory lead to dis-
covery of 4D topological solitons known as BPST instan-
tons [7]. A model of their ensemble, the Instanton Liquid
Model (ILM) [8], has explained how instantons generate
chiral symmetry breaking. As certain extrema of the
path integral over gauge configurations, they form a ba-
sis for semiclassical theory, consistently including fluctua-
tions around classical fields. Furthermore, one can study
the interaction between instantons in their statistical en-
semble: those studies explained behavior of correlation

functions of various mesonic and baryonic currents, for
review see e.g. Ref. [9]. Yet the instanton theory has not
reproduced confinement.
Euclidean formulation of finite temperature QCD nat-

urally led to a nonzero value of the Polyakov loop hP i 6= 0
as a signature of deconfinement. Note that through-
out this paper we use hP i as shorthand for 1

3 hTr[P (~x)]i.
It can be interpreted as the nonzero vacuum expecta-
tion value (VEV) of the time component of the gauge
field A0, also known as nonzero holonomy. The natu-
ral question was then how to deform the instanton con-
figurations in a way consistent with nonzero holonomy
in the bulk. It was answered in Refs. [10, 11], who
discovered that instantons dissolve into Nc (number of
colors) constituent solitons, called instanton-dyons (or
instanton-monopoles). Like original instantons, they are
(anti)selfdual, so their actions and topological charges are
equal. But, unlike instantons, their actions and topologi-
cal charges are not quantized to integers; standard index
theorems are avoided because instanton-dyons have mag-
netic charges and therefore are still connected by Dirac
strings.
It was then realized that instanton-dyons provide a

very valuable bridge between the theory of monopoles
and instantons, providing a way to explain both confine-
ment and chiral symmetry breaking in a single setting.
Unlike monopoles, the instanton-dyons are semiclassical
objects, allowing for the construction of a consistent the-
ory of an interacting ensemble. Last but not least, the
statistical sum in terms of instanton-dyons is ”Poisson
dual” to that based on monopoles, see Refs. [12, 13].
Semiclassical approaches to finite-T gauge theories,

with and without quarks, have lately been subject of
multiple studies. Confinement in this theory is due to
the back reaction of the dyon ensemble on the Polyakov
loop, forcing it to take zero value at T < Tc, see e.g. Ref.
[14] for a simple model, Ref. [15] for mean-field analysis,
and Refs. [16, 17] for numerical simulations of the SU(2)
gauge theory. It is important that they are semiclas-
sical objects, unlike the QCD monopoles [13], with the
actions Sdyons ⇠ 1/g2 ⇠ log(T/⇤) growing with temper-
ature. Therefore their densities are suppressed at high T
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studied in the Yang-Mills theory containing an extra trace-deformation term. It is shown that such
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field theory describing the fundamental particles and
forces that make up nuclear physics. While QCD is re-
markably successful in describing nuclear physics, many
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ied analytically. Notably, nonperturbative phenomena
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ing it clear that it emerges from the non-perturbative be-
havior of the gluons, rather than the quarks. Above cer-
tain critical temperature Tc deconfinement takes place,
and the QCD-like theories turn into a new form of mat-
ter, the Quark-Gluon Plasma (QGP).

Historically the first mechanism of the deconfinement
transition was a ’dual superconductor’ model [1–3]. At
T < Tc the chromoelectrically-charged quarks and glu-
ons are connected by QCD flux tubes, dual to magnetic
flux tubes in superconductor. With the advent of lat-
tice gauge theories many aspects of this scenario were
put to the test. In particular, the profile of the QCD
flux tubes [4] was found to agree well with dual super-
conductor model. Monopoles were observed and found
to rotate around these flux tubes, as expected. Bose-
Einstein condensation of monopoles was detected and its
critical temperature was shown to coincide with Tc [5].
A high density of monopoles was found to be responsible
for unusual kinetic properties of QGP [6].

Euclidean formulation of the gauge theory lead to dis-
covery of 4D topological solitons known as BPST instan-
tons [7]. A model of their ensemble, the Instanton Liquid
Model (ILM) [8], has explained how instantons generate
chiral symmetry breaking. As certain extrema of the
path integral over gauge configurations, they form a ba-
sis for semiclassical theory, consistently including fluctua-
tions around classical fields. Furthermore, one can study
the interaction between instantons in their statistical en-
semble: those studies explained behavior of correlation

functions of various mesonic and baryonic currents, for
review see e.g. Ref. [9]. Yet the instanton theory has not
reproduced confinement.
Euclidean formulation of finite temperature QCD nat-

urally led to a nonzero value of the Polyakov loop hP i 6= 0
as a signature of deconfinement. Note that through-
out this paper we use hP i as shorthand for 1

3 hTr[P (~x)]i.
It can be interpreted as the nonzero vacuum expecta-
tion value (VEV) of the time component of the gauge
field A0, also known as nonzero holonomy. The natu-
ral question was then how to deform the instanton con-
figurations in a way consistent with nonzero holonomy
in the bulk. It was answered in Refs. [10, 11], who
discovered that instantons dissolve into Nc (number of
colors) constituent solitons, called instanton-dyons (or
instanton-monopoles). Like original instantons, they are
(anti)selfdual, so their actions and topological charges are
equal. But, unlike instantons, their actions and topologi-
cal charges are not quantized to integers; standard index
theorems are avoided because instanton-dyons have mag-
netic charges and therefore are still connected by Dirac
strings.
It was then realized that instanton-dyons provide a

very valuable bridge between the theory of monopoles
and instantons, providing a way to explain both confine-
ment and chiral symmetry breaking in a single setting.
Unlike monopoles, the instanton-dyons are semiclassical
objects, allowing for the construction of a consistent the-
ory of an interacting ensemble. Last but not least, the
statistical sum in terms of instanton-dyons is ”Poisson
dual” to that based on monopoles, see Refs. [12, 13].
Semiclassical approaches to finite-T gauge theories,

with and without quarks, have lately been subject of
multiple studies. Confinement in this theory is due to
the back reaction of the dyon ensemble on the Polyakov
loop, forcing it to take zero value at T < Tc, see e.g. Ref.
[14] for a simple model, Ref. [15] for mean-field analysis,
and Refs. [16, 17] for numerical simulations of the SU(2)
gauge theory. It is important that they are semiclas-
sical objects, unlike the QCD monopoles [13], with the
actions Sdyons ⇠ 1/g2 ⇠ log(T/⇤) growing with temper-
ature. Therefore their densities are suppressed at high T

ar
X

iv
:2

10
2.

11
32

1v
1 

 [h
ep

-p
h]

  2
2 

Fe
b 

20
21

3
4

µ1

µ2

µ3

1 � 2⌫

⌫

⌫

L

M1

M2

FIG. 1. (Color online) Structure of the holonomies and dyon types in SU(3). Circle has circumference of 1.

there is a perturbative interaction between thermal gluons and the holonomy. This generates the Gross-Pisarski-Ya↵e
potential VGPY [22], which appears in the an exponent in the partition function. For SU(3), this is given by

VGPY

T Ṽ3

=
4⇡2

3
(2(⌫(1� ⌫))2 + (2⌫(1� 2⌫))2). (5)

Here the potential is shown with factors divided out so that it has units of free energy density. This potential disfavors
confinement, having minimum at trivial holonomy ⌫ = 0, and a maximum at the confining holonomy ⌫ = 1

3 .
The dyon contribution to the partition function consists of two parts, the contributions of the dyons in the absence

of interactions Z0, which can be expressed analytically directly from the input parameters, and Znp the contributions
of the dyon interaction, whose calculation is the subject of the simulation of the partition function, performed by
Monte-Carlo algorithms in this work. The total partition function is their product Z = ZGPY Z0Znp.

The statistical weight for a single instanton was explicitly calculated in Ref. [23] for SU(2). Taking the dilute limit,
which removes interaction between the dyons, this gives
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It is easy to see how this factors into the weight for each individual dyon: Each dyon species contributes a factor of
p
⇤S0e�

p
So⌫ and the two holonomy terms stem from the holonomies of the individual M- and L-type dyons. A factor

of 4⇡⌫i is divided out for each dyon type. This is to remove a constant term that appears remains when taking the
dilute limit in Znp. Knowing this, it is easy to construct the instanton weight in SU(3) and extend it to an arbitrary
number of dyons by summation. The partition function, assuming an equal number of dyons and antidyons, is
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where d⌫ is the weight of an individual dyon with holonomy ⌫,

d⌫ =
⇤

4⇡
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�S0⌫⌫
8⌫
3 �1. (8)

Now we may take the limit V ! 1 and assume equal densities of M1- and M2-type dyons. The free energy
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B. The partition function and dyon interactions

A complete calculation of the dyons’ free energy re-
quires the construction of the dyonic partition function.
We start first with e↵ects that are not induced by the
dyons’ non-perturbative interactions. In the absence of
all dyonic e↵ects, there is a perturbative interaction be-
tween thermal gluons and the holonomy. This generates
the Gross-Pisarski-Ya↵e potential VGPY [22], which ap-
pears in the an exponent in the partition function. For
SU(3), this is given by
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4⇡2

3
(2(⌫(1� ⌫))2 + (2⌫(1� 2⌫))2). (5)

Here the potential is shown with factors divided out so
that it has units of free energy density. This potential
disfavors confinement, having a minimum at the trivial
holonomy ⌫ = 0, and a maximum at the confining holon-
omy ⌫ = 1

3 .
The dyon contribution to the partition function con-

sists of two parts, the contributions of the dyons in the
absence of interactions Z0, which can be expressed ana-
lytically directly from the input parameters, and Znp the
contributions of the dyon interaction, whose calculation
is the subject of the simulation of the partition function,
performed by Monte-Carlo algorithms in this work. The
total partition function is their product Z = Z0Znp.

The statistical weight for a single instanton was explic-
itly calculated in Ref. [23] for SU(2). Taking the dilute
limit, which removes interaction between the dyons, this
gives
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It is easy to see how this factors into the weight for each
individual dyon: Each dyon species contributes a factor

of
p
⇤S0e�

p
So⌫ and the two holonomy terms stem from

the holonomies of the individual M- and L-type dyons.
A factor of 4⇡⌫i is divided out for each dyon type. This
is to remove a constant term that appears remains when
taking the dilute limit in Znp. Knowing this, it is easy
to construct the instanton weight in SU(3) and extend
it to an arbitrary number of dyons by summation. The
partition function, assuming an equal number of dyons
and antidyons, is
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where d⌫ is the weight of an individual dyon with holon-
omy ⌫,

d⌫ =
⇤

4⇡
S2
0e

�S0⌫⌫
8⌫
3 �1. (8)

Now we may take the limit V ! 1 and assume equal
densities of M1- and M2-type dyons. Additionally we
resolve the factorial terms with Stirling’s approxima-
tion carried out to three terms lnN ! ⇡ N lnN � N +
ln(

p
2⇡N). The free energy F = � ln(Z) is given by the

following expression
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where �f is the free energy density stemming from the
interactions of the dyons. If the dyons have classical bi-
nary interactions �Sclass and a volume metric G, their
contributions to the partition function and the free en-
ergy density are

Znp =
1

Ṽ (4NM1+2NL)
3

Z
Dx det (G)e��Sclass (10)

�f = � ln(Znp) (11)

The set of parameters that minimizes the free energy
density corresponds to the physical dyon ensemble in the
infinite volume limit. This elucidates the main procedure
of this work: to first compute the free energy density of
the ensemble for a wide range of parameters, and then
locate their values which minimize it.
The classical interactions between dyons and antidyons

are, at distances exceeding the dyon cores, asymptot-
ically Coulomb-like. For generic SU(Nc) theories, the

7

TABLE II. Values of the parameters of the ensemble above
and below the critical temperature Tc from linear fits to the
nearest data points on either side of the phase transition at
S0 = 13.18.

T ! T�
c T ! T+

c

⌫ 1/3 0.236

hP i 0 0.392

nM 0.550 0.529

nL 0.550 0.068

At temperatures below Tc the ensemble is in the con-
fined phase with ⌫ = 1/3 and nM = nL, as can be seen
in Fig. 3 (left). At densities below the physical one,
the minimum shifts to the left as the nonperturbative
interactions become weak compared to the perturbative
contribution to the free energy. At higher densities the
ensemble prefers to remain in the confined phase, but
with a larger free energy minimum and curvature of the
potential.

The deconfined phase has a similar structure, but with
the global minimum occurring at ⌫ < 1/3 and nM > nL.
However at densities above that of the global minimum,
the minima continue to move towards larger ⌫. At these
densities, the repulsive core dominates and it becomes en-
ergetically favorable to make the many Mi dyons smaller
at the cost of making the few L dyons larger. It is possi-
ble that at densities higher than what were studied here,
the ensemble may have a minimum at ⌫ > 1/3.

These plots only show a slice of the full space of pa-
rameters explored for each value of S0 for specific values
of nM/nL. The structure of the first-order phase transi-
tion can be seen more clearly in Fig. 4. By considering
the minimum free energy density selected from all com-
binations of nM and nL as a function of the holonomy,
the two local minima – one in the confined phase and
the other in the deconfined – are clearly visible. At the
value of S0 nearest to the critical value, the free energy
at the two minima are nearly degenerate and the global
minimum switches between the two as the temperature
changes.

This structure is di↵erent from the that of SU(2). In
SU(2), where the phase transition is second order, rather
than having two degenerate minima, the holonomy po-
tential flattens near Tc (see e.g. Fig. 5 of Ref. [16]). This
allows the minimum to quickly, but smoothly, shift from
the confining holonomy to smaller values. Additionally,
there is a ⌫ $ 1� ⌫ symmetry not present in SU(3).

B. Temperature dependence of the parameters

The free energy density f , unlike other physical quan-
tities, remains continuous across even a first-order phase
transition, as we see in Fig. 5. Its derivative, however,
may not. The free energy varies with temperature much
more rapidly in the confined phase than the deconfined.

FIG. 4. (Color online) Holonomy dependence of the minimum
free energy density near the phase transition. Error bars not
shown for readability.

FIG. 5. Temperature dependence of the free energy density
of the dyon ensemble.

The most important feature of the dyon ensemble
for describing the deconfinement transition is the av-
erage Polyakov loop as a function of the temperature
hP (T )i. Below Tc, the holonomy takes the confining
value ⌫ = 1/3, hP i = 0. At Tc the value jumps to ⇠ 0.4
and then continues to increase as T increases. The value
of the average Polyakov loop above the phase transition
shows qualitative agreement with the lattice data [21],
but does not increase with temperature as quickly. A
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Confinement remains one the most interesting and challenging nonperturbative phenomenon in
non-Abelian gauge theories. Recent semiclassical (for SU(2)) and lattice (for QCD) studies have
suggested that confinement arises from interactions of statistical ensembles of instanton-dyons with
the Polyakov loop. In this work, we extend studies of semiclassical ensemble of dyons to the SU(3)
Yang-Mills theory. We find that such interactions do generate the expected first-order deconfinement
phase transition. The properties of the ensemble, including correlations and topological susceptibil-
ity, are studied over a range of temperatures above and below Tc. Additionally, the dyon ensemble is
studied in the Yang-Mills theory containing an extra trace-deformation term. It is shown that such
a term can cause the theory to remain confined and even retain the same topological observables at
high temperatures.

I. INTRODUCTION

Quantum Chromodynamics (QCD) is the quantum
field theory describing the fundamental particles and
forces that make up nuclear physics. While QCD is re-
markably successful in describing nuclear physics, many
phenomena remain beyond the scope of what can be stud-
ied analytically. Notably, nonperturbative phenomena
such as confinement – the disappearance of quarks and
gluons from the physical spectrum – is not completely un-
derstood. Confinement occurs not just in QCD, but in
various Yang-Mills theories with or without quarks, mak-
ing it clear that it emerges from the non-perturbative be-
havior of the gluons, rather than the quarks. Above cer-
tain critical temperature Tc deconfinement takes place,
and the QCD-like theories turn into a new form of mat-
ter, the Quark-Gluon Plasma (QGP).

Historically the first mechanism of the deconfinement
transition was a ’dual superconductor’ model [1–3]. At
T < Tc the chromoelectrically-charged quarks and glu-
ons are connected by QCD flux tubes, dual to magnetic
flux tubes in superconductor. With the advent of lat-
tice gauge theories many aspects of this scenario were
put to the test. In particular, the profile of the QCD
flux tubes [4] was found to agree well with dual super-
conductor model. Monopoles were observed and found
to rotate around these flux tubes, as expected. Bose-
Einstein condensation of monopoles was detected and its
critical temperature was shown to coincide with Tc [5].
A high density of monopoles was found to be responsible
for unusual kinetic properties of QGP [6].

Euclidean formulation of the gauge theory lead to dis-
covery of 4D topological solitons known as BPST instan-
tons [7]. A model of their ensemble, the Instanton Liquid
Model (ILM) [8], has explained how instantons generate
chiral symmetry breaking. As certain extrema of the
path integral over gauge configurations, they form a ba-
sis for semiclassical theory, consistently including fluctua-
tions around classical fields. Furthermore, one can study
the interaction between instantons in their statistical en-
semble: those studies explained behavior of correlation

functions of various mesonic and baryonic currents, for
review see e.g. Ref. [9]. Yet the instanton theory has not
reproduced confinement.
Euclidean formulation of finite temperature QCD nat-

urally led to a nonzero value of the Polyakov loop hP i 6= 0
as a signature of deconfinement. Note that through-
out this paper we use hP i as shorthand for 1

3 hTr[P (~x)]i.
It can be interpreted as the nonzero vacuum expecta-
tion value (VEV) of the time component of the gauge
field A0, also known as nonzero holonomy. The natu-
ral question was then how to deform the instanton con-
figurations in a way consistent with nonzero holonomy
in the bulk. It was answered in Refs. [10, 11], who
discovered that instantons dissolve into Nc (number of
colors) constituent solitons, called instanton-dyons (or
instanton-monopoles). Like original instantons, they are
(anti)selfdual, so their actions and topological charges are
equal. But, unlike instantons, their actions and topologi-
cal charges are not quantized to integers; standard index
theorems are avoided because instanton-dyons have mag-
netic charges and therefore are still connected by Dirac
strings.
It was then realized that instanton-dyons provide a

very valuable bridge between the theory of monopoles
and instantons, providing a way to explain both confine-
ment and chiral symmetry breaking in a single setting.
Unlike monopoles, the instanton-dyons are semiclassical
objects, allowing for the construction of a consistent the-
ory of an interacting ensemble. Last but not least, the
statistical sum in terms of instanton-dyons is ”Poisson
dual” to that based on monopoles, see Refs. [12, 13].
Semiclassical approaches to finite-T gauge theories,

with and without quarks, have lately been subject of
multiple studies. Confinement in this theory is due to
the back reaction of the dyon ensemble on the Polyakov
loop, forcing it to take zero value at T < Tc, see e.g. Ref.
[14] for a simple model, Ref. [15] for mean-field analysis,
and Refs. [16, 17] for numerical simulations of the SU(2)
gauge theory. It is important that they are semiclas-
sical objects, unlike the QCD monopoles [13], with the
actions Sdyons ⇠ 1/g2 ⇠ log(T/⇤) growing with temper-
ature. Therefore their densities are suppressed at high T
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FIG. 1. (Color online) Structure of the holonomies and dyon types in SU(3). Circle has circumference of 1.

there is a perturbative interaction between thermal gluons and the holonomy. This generates the Gross-Pisarski-Ya↵e
potential VGPY [22], which appears in the an exponent in the partition function. For SU(3), this is given by

VGPY

T Ṽ3

=
4⇡2

3
(2(⌫(1� ⌫))2 + (2⌫(1� 2⌫))2). (5)

Here the potential is shown with factors divided out so that it has units of free energy density. This potential disfavors
confinement, having minimum at trivial holonomy ⌫ = 0, and a maximum at the confining holonomy ⌫ = 1

3 .
The dyon contribution to the partition function consists of two parts, the contributions of the dyons in the absence

of interactions Z0, which can be expressed analytically directly from the input parameters, and Znp the contributions
of the dyon interaction, whose calculation is the subject of the simulation of the partition function, performed by
Monte-Carlo algorithms in this work. The total partition function is their product Z = ZGPY Z0Znp.

The statistical weight for a single instanton was explicitly calculated in Ref. [23] for SU(2). Taking the dilute limit,
which removes interaction between the dyons, this gives

ZSU(2)
0 =

⇤

(4⇡)2
S4
0e

�S2
0⌫

8⌫
3 �1(1� ⌫)

8(1�⌫)
3 �1 (6)

It is easy to see how this factors into the weight for each individual dyon: Each dyon species contributes a factor of
p
⇤S0e�

p
So⌫ and the two holonomy terms stem from the holonomies of the individual M- and L-type dyons. A factor

of 4⇡⌫i is divided out for each dyon type. This is to remove a constant term that appears remains when taking the
dilute limit in Znp. Knowing this, it is easy to construct the instanton weight in SU(3) and extend it to an arbitrary
number of dyons by summation. The partition function, assuming an equal number of dyons and antidyons, is

Z0 =
X

NM1,NL,NM2

✓
1

NM1!
(Ṽ3d⌫)

NM1

◆2

⇥

✓
1

NL!
(Ṽ3d1�2⌫)

NL

◆2

⇥

✓
1

NM2!
(Ṽ3d⌫)

NM2

◆2

,

(7)

where d⌫ is the weight of an individual dyon with holonomy ⌫,

d⌫ =
⇤

4⇡
S2
0e

�S0⌫⌫
8⌫
3 �1. (8)

Now we may take the limit V ! 1 and assume equal densities of M1- and M2-type dyons. The free energy

FIG. 1. (Color online) Structure of the holonomies and dyon
types in SU(3). Circle has circumference of 1.

B. The partition function and dyon interactions

A complete calculation of the dyons’ free energy re-
quires the construction of the dyonic partition function.
We start first with e↵ects that are not induced by the
dyons’ non-perturbative interactions. In the absence of
all dyonic e↵ects, there is a perturbative interaction be-
tween thermal gluons and the holonomy. This generates
the Gross-Pisarski-Ya↵e potential VGPY [22], which ap-
pears in the an exponent in the partition function. For
SU(3), this is given by

VGPY

T Ṽ3

=
4⇡2

3
(2(⌫(1� ⌫))2 + (2⌫(1� 2⌫))2). (5)

Here the potential is shown with factors divided out so
that it has units of free energy density. This potential
disfavors confinement, having a minimum at the trivial
holonomy ⌫ = 0, and a maximum at the confining holon-
omy ⌫ = 1

3 .
The dyon contribution to the partition function con-

sists of two parts, the contributions of the dyons in the
absence of interactions Z0, which can be expressed ana-
lytically directly from the input parameters, and Znp the
contributions of the dyon interaction, whose calculation
is the subject of the simulation of the partition function,
performed by Monte-Carlo algorithms in this work. The
total partition function is their product Z = Z0Znp.

The statistical weight for a single instanton was explic-
itly calculated in Ref. [23] for SU(2). Taking the dilute
limit, which removes interaction between the dyons, this
gives
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It is easy to see how this factors into the weight for each
individual dyon: Each dyon species contributes a factor

of
p
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So⌫ and the two holonomy terms stem from

the holonomies of the individual M- and L-type dyons.
A factor of 4⇡⌫i is divided out for each dyon type. This
is to remove a constant term that appears remains when
taking the dilute limit in Znp. Knowing this, it is easy
to construct the instanton weight in SU(3) and extend
it to an arbitrary number of dyons by summation. The
partition function, assuming an equal number of dyons
and antidyons, is

Z0 =
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where d⌫ is the weight of an individual dyon with holon-
omy ⌫,

d⌫ =
⇤

4⇡
S2
0e

�S0⌫⌫
8⌫
3 �1. (8)

Now we may take the limit V ! 1 and assume equal
densities of M1- and M2-type dyons. Additionally we
resolve the factorial terms with Stirling’s approxima-
tion carried out to three terms lnN ! ⇡ N lnN � N +
ln(

p
2⇡N). The free energy F = � ln(Z) is given by the

following expression

f =
4⇡2

3
(2(⌫(1� ⌫))2 + (2⌫(1� 2⌫))2)

� 4nM ln


d⌫e

nM

�
� 2nL ln


d1�2⌫e

nL

�

+
ln(8⇡3N2

MNL)

Ṽ3

+�f

(9)

where �f is the free energy density stemming from the
interactions of the dyons. If the dyons have classical bi-
nary interactions �Sclass and a volume metric G, their
contributions to the partition function and the free en-
ergy density are

Znp =
1

Ṽ (4NM1+2NL)
3

Z
Dx det (G)e��Sclass (10)

�f = � ln(Znp) (11)

The set of parameters that minimizes the free energy
density corresponds to the physical dyon ensemble in the
infinite volume limit. This elucidates the main procedure
of this work: to first compute the free energy density of
the ensemble for a wide range of parameters, and then
locate their values which minimize it.
The classical interactions between dyons and antidyons

are, at distances exceeding the dyon cores, asymptot-
ically Coulomb-like. For generic SU(Nc) theories, the

7

TABLE II. Values of the parameters of the ensemble above
and below the critical temperature Tc from linear fits to the
nearest data points on either side of the phase transition at
S0 = 13.18.

T ! T�
c T ! T+

c

⌫ 1/3 0.236

hP i 0 0.392

nM 0.550 0.529

nL 0.550 0.068

At temperatures below Tc the ensemble is in the con-
fined phase with ⌫ = 1/3 and nM = nL, as can be seen
in Fig. 3 (left). At densities below the physical one,
the minimum shifts to the left as the nonperturbative
interactions become weak compared to the perturbative
contribution to the free energy. At higher densities the
ensemble prefers to remain in the confined phase, but
with a larger free energy minimum and curvature of the
potential.

The deconfined phase has a similar structure, but with
the global minimum occurring at ⌫ < 1/3 and nM > nL.
However at densities above that of the global minimum,
the minima continue to move towards larger ⌫. At these
densities, the repulsive core dominates and it becomes en-
ergetically favorable to make the many Mi dyons smaller
at the cost of making the few L dyons larger. It is possi-
ble that at densities higher than what were studied here,
the ensemble may have a minimum at ⌫ > 1/3.

These plots only show a slice of the full space of pa-
rameters explored for each value of S0 for specific values
of nM/nL. The structure of the first-order phase transi-
tion can be seen more clearly in Fig. 4. By considering
the minimum free energy density selected from all com-
binations of nM and nL as a function of the holonomy,
the two local minima – one in the confined phase and
the other in the deconfined – are clearly visible. At the
value of S0 nearest to the critical value, the free energy
at the two minima are nearly degenerate and the global
minimum switches between the two as the temperature
changes.

This structure is di↵erent from the that of SU(2). In
SU(2), where the phase transition is second order, rather
than having two degenerate minima, the holonomy po-
tential flattens near Tc (see e.g. Fig. 5 of Ref. [16]). This
allows the minimum to quickly, but smoothly, shift from
the confining holonomy to smaller values. Additionally,
there is a ⌫ $ 1� ⌫ symmetry not present in SU(3).

B. Temperature dependence of the parameters

The free energy density f , unlike other physical quan-
tities, remains continuous across even a first-order phase
transition, as we see in Fig. 5. Its derivative, however,
may not. The free energy varies with temperature much
more rapidly in the confined phase than the deconfined.

FIG. 4. (Color online) Holonomy dependence of the minimum
free energy density near the phase transition. Error bars not
shown for readability.

FIG. 5. Temperature dependence of the free energy density
of the dyon ensemble.

The most important feature of the dyon ensemble
for describing the deconfinement transition is the av-
erage Polyakov loop as a function of the temperature
hP (T )i. Below Tc, the holonomy takes the confining
value ⌫ = 1/3, hP i = 0. At Tc the value jumps to ⇠ 0.4
and then continues to increase as T increases. The value
of the average Polyakov loop above the phase transition
shows qualitative agreement with the lattice data [21],
but does not increase with temperature as quickly. A
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FIG. 6. (Color online) Temperature dependence of the aver-
age Polyakov loop of the dyon ensemble. Lattice data taken
from Ref. [21] and shown without error bars. Error on lattice
data has magnitudes comparable to dyon data.

change to the parameters of the dyon interactions could
improve the agreement with the lattice data.

Another set of properties of the ensemble are the den-
sities of each dyon type, shown in Fig. 7. At T < Tc,
all densities are equal reflecting the fact that, in the con-
fined phase, all dyons have equal statistical weights, core
sizes, and masses and have symmetric interactions be-
tween them. At T > Tc, the holonomy decreases discon-
tinuously, causing a similar change in both dyon densi-
ties. In the case of the M -dyon density nM , the decrease
in ⌫ increases the statistical weight of the Mi-type dyons,
while simultaneously increasing the size of their repulsive
cores. These competing e↵ects result in what is seen in
the ensemble: a small, O(5%), decrease in nM at the
phase transition. The L-dyon density sees a more sig-
nificant decrease due to the large decrease in statistical
weight of the L dyons from the increase in 1� 2⌫.

Overall, the dyon densities decrease with temperature,
consistent with the expected behavior of instantons. It
is the dyon densities that set the upper limit on the tem-
perature that can be studied in our ensemble. As tem-
perature increases, the ratio nM/nL becomes larger and
larger, and, at the largest values, the number of L dyons
in the simulations is just 1 or 2. The small number of L
dyons makes fitting near the free energy minimum in nL

di�cult as their contribution to f is vanishingly small.
Thus, our upper limit (S0 = 21) is a technical constraint,
rather than a physical one; accurately probing higher S0

would require a larger ensemble with better statistics.

FIG. 7. (Color online) Temperature dependence of the densi-
ties of each type of dyon in the ensemble.

C. Spatial correlations between dyons

It is useful to study the e↵ects of the dyons’ interac-
tions by studying the spatial correlations between them.
Such correlations will be useful for comparison to stud-
ies of the dyons in lattice configurations. The most
straightforward characteristic of the spatial correlations
are the correlation functions Cij(rT ) between two dyons
of species i and j. In SU(3), because the instanton is
comprised of three constituent dyons, it is useful to also
define the ’instanton correlation function’ CI(yT ), where
y is the hyperdistance in the 6-dimensional space of Ja-
cobi coordinates of the three dyons

y2 =
1

3

�
r2M1,L + r2M1,M2 + r2L,M2

�
. (19)

In both cases, the functions are normalized such that
Cij , CI ! 1 at large (hyper)distance and have had the
angular factors divided out ((rT )2 for the two-dyon cor-
relation functions and (yT )5 for the instanton correlation
function).
Many of the correlation functions are redundant so we

need to only observe a subset of the correlation func-
tions to understand the behavior of the ensemble. Fig.
8 shows these functions in both phases. The strongest
correlation between the dyons is seen in the instanton
channel where the three constituent dyons have positive
short-range correlation due to the attractive terms in the
Diakonov determinant.

red dots move to the right at higher T
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FIG. 11. Expansion coe�cient b2 as a function of tempera-
ture.

V. DYONS IN THE TRACE-DEFORMED
GAUGE THEORY

A. Polyakov loop and the phase transition

Trace-deformed gauge theories (TDGT) were intro-
duced in Refs. [24, 41], adding certain terms containing
powers of the Polyakov line to the theory action, such as

�Sdef = h

Z
d3x|P (~x)|2 (24)

with a new parameter h. At T > Tc, when in the un-
deformed theory the Polyakov loop is nonzero, the new
term obtains an additional contribution and suppresses
its value, shifting the theory back toward the confining
holonomy. For large enough h the system returns to the
hP i = 0 phase, which we will call the “reconfined phase”.

These theories have been studied in numerous lattice
simulations, of which we will mention those of the Pisa
group [42–44]. Their main findings are that for a specific
temperature above Tc at large enough h > h⇤ ⇠ 1/3, at
which hP i returns to zero, there is no more dependence
on h, and the reconfined phase is remarkably similar to
the original (low temperature) confined phase. It was
shown to possess the same spectrum, topological observ-
ables, and even spectrum of periodic strings (torelons).

From the perspective of the instanton-dyon theory that
we are developing, it is clear that the reconfined phase,
like the confined one, corresponds to symmetric value
of the holonomy ⌫ = 1/3 and the same densities of all
species L,M1,M2 of the dyons. Yet the temperature
scale, and thus the periodicity interval of the Euclidean

time ⌧ , is di↵erent. Therefore, the absolute scale of the
dyon action parameter S0 = 8⇡2/g2(T ) must increase,
making the system more dilute. And yet, the topolog-
ical susceptibility � is the same as at T = 0 despite a
significantly reduced dyon density!
It is possible to study the instanton-dyon ensemble in a

theory with arbitrary h by the addition of a deformation
term to the free energy density �fdef = hhP i

2. Because
this new term depends only on the value of the holonomy,
one does not need to perform new MC simulations to
study the e↵ect of changing h; one needs only to add the
new term to the un-deformed results and perform new
fits to find the minima.
The first questions to ask are how does changing h

a↵ect the value of the Polyakov loop and at what value
of h does the system become reconfined? Fig. 12 shows
the temperature-dependence of the Polyakov loop for a
few di↵erent values of h. As expected, the larger the
trace deformation, the more suppressed the values of hP i

become at T > Tc. Additionally, we see that increasing
h increases the critical temperature of the theory as well,
as the Polyakov loop is suppressed back to the confining
value.

FIG. 12. (Color online) The value of the Polyakov loop as
a function of temperature hP (T )i for di↵erent values of the
trace-deformation parameter h.

The critical temperature of the trace-deformed theories
are determined via the same method as the original the-
ory: the intersection of linear fits to f on both sides pf the
transition. At this point we are limited to determining Tc

for h  40, as above this value the the Polyakov loop re-
mains very close to the confining value and the minimum
value of the holonomy fit become closer to ⌫ = 1

3 than
the holonomy step size used for the simulations, meaning
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which hP i returns to zero, there is no more dependence
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the original (low temperature) confined phase. It was
shown to possess the same spectrum, topological observ-
ables, and even spectrum of periodic strings (torelons).

From the perspective of the instanton-dyon theory that
we are developing, it is clear that the reconfined phase,
like the confined one, corresponds to symmetric value
of the holonomy ⌫ = 1/3 and the same densities of all
species L,M1,M2 of the dyons. Yet the temperature
scale, and thus the periodicity interval of the Euclidean

time ⌧ , is di↵erent. Therefore, the absolute scale of the
dyon action parameter S0 = 8⇡2/g2(T ) must increase,
making the system more dilute. And yet, the topolog-
ical susceptibility � is the same as at T = 0 despite a
significantly reduced dyon density!
It is possible to study the instanton-dyon ensemble in a

theory with arbitrary h by the addition of a deformation
term to the free energy density �fdef = hhP i

2. Because
this new term depends only on the value of the holonomy,
one does not need to perform new MC simulations to
study the e↵ect of changing h; one needs only to add the
new term to the un-deformed results and perform new
fits to find the minima.
The first questions to ask are how does changing h

a↵ect the value of the Polyakov loop and at what value
of h does the system become reconfined? Fig. 12 shows
the temperature-dependence of the Polyakov loop for a
few di↵erent values of h. As expected, the larger the
trace deformation, the more suppressed the values of hP i

become at T > Tc. Additionally, we see that increasing
h increases the critical temperature of the theory as well,
as the Polyakov loop is suppressed back to the confining
value.

FIG. 12. (Color online) The value of the Polyakov loop as
a function of temperature hP (T )i for di↵erent values of the
trace-deformation parameter h.

The critical temperature of the trace-deformed theories
are determined via the same method as the original the-
ory: the intersection of linear fits to f on both sides pf the
transition. At this point we are limited to determining Tc

for h  40, as above this value the the Polyakov loop re-
mains very close to the confining value and the minimum
value of the holonomy fit become closer to ⌫ = 1

3 than
the holonomy step size used for the simulations, meaning
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FIG. 15. Topological susceptibility of the maximally-
deformed theory as a function of temperature. Error bars
are smaller than the point size.

theory the abrupt jump in � disappears and it displays
the same temperature dependence above Tc(0) as below.
Comparing the dyon density (Fig. 14) and the topologi-
cal susceptibility (Fig. 15), one can see that the decrease
in � is mostly driven by the decreasing dyon density. Al-
though ni decreases by a factor of ⇠ 4 while � decreases
by a factor of ⇠ 7 over the temperature range we study,
meaning the value of hQ2

i decreases by a factor of ⇠ 2
as we indeed observe.

The behavior of b2 is more inconclusive. It remains
constant up to about 1.1Tc(0) and then decreases quickly
and is compatible with zero at all temperatures above
that point. Again, it remains positive at all tempera-
tures. It should be noted that the error bars on the b2
measurements are still quite large and the trend could
look quite di↵erent with improved statistics.

In order to determine what drives this behavior, it is
useful to look at some correlation functions in this de-
formed theory. It is clear that the ensemble has some
non-trivial temperature dependence even though it re-
mains in the confined phase. The two main channels with
positive correlation are, just like the un-deformed the-
ory, the DD̄ channels and the instanton (M1M2L) chan-
nel. As the temperature is increased, the ensemble more
strongly prefers DD̄ pairs rather than (anti)instanton as
can be seen in Fig. 17. This is due to the increase in
the strength of the DD̄ classical attraction. Eventually,
these pair correlations grow strong enough to completely
kill correlation in the instanton channel.

In the original theory, the system prefers binding into
instantons in the confined phase and then transitions into

FIG. 16. Expansion parameter b2 in the maximally-deformed
theory as a function of temperature.

preferring M1M̄1- and M2M̄2 pairs at high temperatures;
the density of LL̄ is becoming small at this point. How-
ever, because the core sizes of the Mi dyons grow large,
the binding in these channels does not become too large.
The maximally-deformed theory then displays behav-

ior not seen in the original theory. At high temperature
the system becomes a three-component gas of DD̄ pairs,
with all types having equal densities and core sizes. Be-
cause the theory remains confined, the core sizes never
become large and the correlation between dyons in DD̄
pairs becomes very large. The topological observables are
very sensitive to this binding , as the (anti)instantons and
DD̄ pairs have topological charges Q = ±1 and Q = 0,
respectively. The shift towards the latter leads to a neu-
tralization of the topological charge and is responsible for
driving the values of � and b2 down at higher tempera-
tures.
Looking to the future, one can see that this behavior

has interesting implications when quarks are added to
the theory. It is known that chiral symmetry restoration
is directly related to the quark zero modes on the in-
stantons. In particular, the quark interactions drive the
system to form instanton-antiinstanton ’molecules’. This
neutralizes the fluctuations of the topological charge and
shifts the Dirac eigenvalues away from zero at high tem-
peratures, restoring chiral symmetry [45]. In fact in this
work we already observe DD̄ pairing at higher temper-
atures. We see here that such correlations continue to
grow, even when the theory remains confined due to the
deformation term in the action. This suggests that in
the trace-deformed theory with quarks one may see chiral
symmetry restoration occur inside the confined phase.

10

FIG. 9. Distribution of values of the total topological charge
Q in the half-boxes at S0 = 12 (T/Tc = 0.898).

obvious from the lattice data points (although they of
course do not contradict existence of a jump). The topo-
logical observables have been analyzed on the lattice in
many works, we compare our dyon results to those in
Refs. [29, 32], which cover a similar temperature range
as we have studied.

FIG. 10. (Color online) Topological susceptibility as function
of temperature relative to the topological susceptibility just
below Tc. Lattice data taken from Refs. [29, 32]. Lattice
values are normalized relative to their stated T = 0 values.
Data from Ref. [29] (green triangles) is so-called ’2-smear’
data. Error bars on dyon data are smaller than the point
size.

The (Euclidean) Lagrangians of generic SU(N) gauge
theories can be appended by an additional topological
term

L =
1

4
F a
µ⌫(x)F

a
µ⌫(x)� i✓q(x), (21)

where ✓ is the so-called vacuum angle and q(x) is the
topological charge density as previously defined in Eq.
(20). A non-zero ✓ explicitly breaks CP symmetry. In
QCD it is known that |✓QCD| / 10�10, as it is con-
strained by the upper bound on measurements of the
neutron’s electric dipole moment [33, 34].

By expanding the free energy density f(✓) around ✓ =
0, its dependence on ✓ can be studied at small, but non-
zero ✓. It can be expanded as [35]

f(✓) = f(0) +
1

2
�✓2(1 + b2✓

2 + b4✓
4 + ...), (22)

where the coe�cients bn are related to cumulants of the
topological charge computed at ✓ = 0. We compute the
first two terms, which are given explicitly by

b2 = �
hQ4

i � 3hQ2
i
2

12hQ2i

b4 =
hQ6

i � 15hQ2
ihQ4

i+ 30hQ2
i
3

360hQ2i
.

(23)

In the confined phase, we find that all b2 values are
consistent with b2 being constant below Tc. These seven
values vary around 0.02 � 0.03 and have an average
b2(T < Tc) = 0.026. Above Tc, b2 quickly drops and
then remains approximately constant just above 0.01.

This behavior is in disagreement with available lattice
data. The T = 0 value of b2 has been particularly well
studied on the lattice [36–38] with values around b2(0) =
�0.025. On the high-temperature end, lattice data [32,
39] finds that b2 approaches the value predicted by the
Dilute Instanton Gas Approximation (DIGA), b2(T ) !

�1/12.

Below Tc, our values of b2 are consistent with the mag-
nitude of the T = 0 value predicted on the lattice, but
with opposite sign. In the high temperature limit, we
again see that our dyon model predicts positive values
rather than negative, as well as being an order of magni-
tude smaller than the lattice results. Clearly, these small
non-Gaussianities in the topological charge distribution
are quite sensitive to the dyon interactions. Changes to
the dyon interactions could improve the agreement with
lattice data.

Finally, our values for b4 are compatible with zero for
all temperatures as is also observed on the lattice [36, 40].
Upper limits from these lattice results constrain its value
to be |b4(T = 0)| < 10�3.

h=0

large h

topological 
susceptibility



Instanton-dyon Ensemble with two Dynamical Quarks: the Chiral Symmetry Breaking
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This is the second paper of the series aimed at understanding of the ensemble of the instanton-
dyons, now with two flavors of light dynamical quarks. The partition function is appended by
the fermionic factor, (detT )Nf and Dirac eigenvalue spectra at small values are derived from the
numerical simulation of 64 dyons. Those spectra show clear chiral symmetry breaking pattern at
high dyon density. Within current accuracy, the confinement and chiral transitions occur at very
similar densities.

I. INTRODUCTION

A. Instanton-dyons and confinement

At high temperatures QCD matter is in form of quark-
gluon plasma (QGP) state, which is weakly coupled be-
cause of the asymptotic freedom phenomenon. The topo-
logical solitons to be discussed below have large action
S = O(1/↵s) � 1 and are therefore strongly suppressed,
⇠ exp(�S). However, as T decreases toward the decon-
finement transition, the coupling grows and such objects
become important.

The non-trivial configurations of interest are Instan-
tons [1], which in the Euclidean finite temperature for-
mulation are known as Calorons. Such solutions has been
generalized to the case of non-zero expectation value of
the Polyakov loop by Lee-Li-Kraan-van Baal in refs [2, 3]
and are known as LLKvB calorons. Important novel fea-
ture of these solution was realization of instanton sub-
structure: each LLKvB caloron consist of Nc objects,
known as instanton-dyons (or instanton-monopoles).

Color confinement phenomenon has many manifesta-
tions, and thus many definitions. In this series of papers
we focus on one particular aspect of it, namely on the
shift of the vacuum expectation value of the Polyakov
loop from its “trivial value” < P >⇡ 1 at high T to small
< P >⇡ 0 at T < Tc. Multiple numerical simulations in
the framework of lattice gauge theory has documented
such shift, as well as modification of the e↵ective poten-
tial V (P, T ) with T leading to it. Since contribution of
the quarks (and non-diagonal gluons) to thermodynam-
ical quantities are proportional to (powers) of < P >,
vanishing of it e↵ectively switches o↵ quark-gluon plasma
contributions. So, in papers of this series we focus on the
calculation of this e↵ective potential and on the decon-
finement phase transition phenomenon.

Another manifestation of confinement is a disordering
of large Wilson loops. It has been argued in [4] ensem-
ble of instanton- dyons can generate the expected area
law. However, this issue is rather subtle and depends on
the infrared tails of the soliton fields, which are modi-
fied by screening e↵ects and thus are not robust enough
to be conclusive. One more approach to confinement is-
sue is reached via the static quark potentials, which do
exist at any T and were extensively studied on the lat-
tice. We intend to calculate those in our approach later.

Finally, a classic formulation of confinement include ab-
sence of color degrees of freedom from vacuum spectra, at
T = 0. Addressing it directly is not possible for the type
of models we discuss, since the calorons and instanton-
dyons themselves become di�cult to use at su�ciently
low T .
The idea that e↵ective potential of the Polyakov loop

P is due to back reaction of the instanton-dyons goes
back to Diakonov and collaborators [5], who provided
the first estimates indicated how this may happen, but
were unable to prove it. Using the so called “double-
trace deformation of Yang-Mills theory”, at large N on
S1⇥R3, Unsal and Ya↵e [6] argued that there can be con-
fining behavior, with unbroken center symmetry, even in
weak coupling. This construction was extended by Unsal
and collaborators [7–9] to a class of deformed supersym-
metric theories with soft supersymmetry breaking. In
such setting , with weak coupling and an exponentially
small density of the dyons, the minimum of the poten-
tial is at the confining value of P induced by the repulsive
interaction in the dyon-anti-dyon pairs (called bions by
the authors). (The supersymmetry was needed to can-
cel the perturbative Gross-Pisarski-Ya↵e-Weiss (GPYW)
holonomy potential , which otherwise favors trivial value
< P >= 1. Sulejmanpasic and one of us [10] have pro-
posed a simple model, with “repulsive cores” in dyon-
antidyon channel, which can generate confining V (P ) at
certain temperature Tc in pure gauge theory.
To evaluate the free energy of the instanton-dyon

ensemble we performed numerical simulations for pure
gauge SU(2) theory, in the first paper of this series [11],
to be below referred as I. The essential element was in-
clusion of dyon-antidyon interactions, determined in the
previous work [12] using a gradient flow method. Similar
conclusion has been recently reached by Liu, Shuryak and
Zahed [13] using analytic mean field theory. It however
uses the mean field approximation which is only applica-
ble for high enough dyon density, or T < Tc.

B. Quarks in the instanton-dyon ensemble

In this paper we include quarks, fermions in the fun-
damental color representation, to the instanton-dyon en-
semble. Those will be referred to as “dynamical quarks”,
since the so called fermionic determinant will be included
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we focus on one particular aspect of it, namely on the
shift of the vacuum expectation value of the Polyakov
loop from its “trivial value” < P >⇡ 1 at high T to small
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contributions. So, in papers of this series we focus on the
calculation of this e↵ective potential and on the decon-
finement phase transition phenomenon.

Another manifestation of confinement is a disordering
of large Wilson loops. It has been argued in [4] ensem-
ble of instanton- dyons can generate the expected area
law. However, this issue is rather subtle and depends on
the infrared tails of the soliton fields, which are modi-
fied by screening e↵ects and thus are not robust enough
to be conclusive. One more approach to confinement is-
sue is reached via the static quark potentials, which do
exist at any T and were extensively studied on the lat-
tice. We intend to calculate those in our approach later.

Finally, a classic formulation of confinement include ab-
sence of color degrees of freedom from vacuum spectra, at
T = 0. Addressing it directly is not possible for the type
of models we discuss, since the calorons and instanton-
dyons themselves become di�cult to use at su�ciently
low T .
The idea that e↵ective potential of the Polyakov loop

P is due to back reaction of the instanton-dyons goes
back to Diakonov and collaborators [5], who provided
the first estimates indicated how this may happen, but
were unable to prove it. Using the so called “double-
trace deformation of Yang-Mills theory”, at large N on
S1⇥R3, Unsal and Ya↵e [6] argued that there can be con-
fining behavior, with unbroken center symmetry, even in
weak coupling. This construction was extended by Unsal
and collaborators [7–9] to a class of deformed supersym-
metric theories with soft supersymmetry breaking. In
such setting , with weak coupling and an exponentially
small density of the dyons, the minimum of the poten-
tial is at the confining value of P induced by the repulsive
interaction in the dyon-anti-dyon pairs (called bions by
the authors). (The supersymmetry was needed to can-
cel the perturbative Gross-Pisarski-Ya↵e-Weiss (GPYW)
holonomy potential , which otherwise favors trivial value
< P >= 1. Sulejmanpasic and one of us [10] have pro-
posed a simple model, with “repulsive cores” in dyon-
antidyon channel, which can generate confining V (P ) at
certain temperature Tc in pure gauge theory.
To evaluate the free energy of the instanton-dyon

ensemble we performed numerical simulations for pure
gauge SU(2) theory, in the first paper of this series [11],
to be below referred as I. The essential element was in-
clusion of dyon-antidyon interactions, determined in the
previous work [12] using a gradient flow method. Similar
conclusion has been recently reached by Liu, Shuryak and
Zahed [13] using analytic mean field theory. It however
uses the mean field approximation which is only applica-
ble for high enough dyon density, or T < Tc.

B. Quarks in the instanton-dyon ensemble

In this paper we include quarks, fermions in the fun-
damental color representation, to the instanton-dyon en-
semble. Those will be referred to as “dynamical quarks”,
since the so called fermionic determinant will be included
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III. THE GENERAL SETTING

The setup is almost the same as in our paper I [11],
with the di↵erence being the inclusion of the fermionic
determinant in the zero-modes approximation. This fac-
tor creates an additional fermion-induced interaction be-
tween the L dyons.

The dimensionless holonomy ⌫ = v/(2⇡T ) is related to
the expectation value of the Polyakov loop through the
(SU(2)) relation

P = cos(⇡⌫) (4)

We seek to minimize the free energy

f =
4⇡2

3
⌫2⌫̄2 � 2nM ln


d⌫e

nM

�
� 2nL ln


d⌫̄e

nL

�

+�f (5)

where the first term is the perturbative Gross-Pisarski-
Ya↵e-Weiss holonomy potential, the next terms contain
semiclassical independent dyon contributions, with

d⌫ = ⇤

✓
8⇡2

g2

◆2

e
� ⌫8⇡2

g2 ⌫
8⌫
3 �1/(4⇡) (6)

and �f ⌘ � log(Zchanged)/Ṽ3 is defined via the partition
function studied numerically

Zchanged =
1

Ṽ 2(NL+NM )
3

Z
D3x det(G) exp(��DDD̄(x))

⇥
Y

i

�
Nf

i (7)

The last factor is the fermionic determinant, now writ-
ten as the product of all eigenvalues of the hopping Tij

matrix.
Both G and �DDD̄ are the same as in [11], and we

therefore just present their expressions here without com-
ments.

G = �mn�ij(4⇡⌫m � 2
X

k 6=i

e�MDT |xi,m�xk,m|

T |xi,m � xk,m| (8)

+2
X

k

e�MDT |xi,m�xk,p 6=m|

T |xi,m � xk,p 6=m| )

+2�mn
e�MDT |xi,m�xj,n|

T |xi,m � xj,n|
� 2�m 6=n

e�MDT |xi,m�xj,n|

T |xi,m � xj,n|

For dyon antidyon interactions we have for distances
larger than x0

�SDD̄ = �2
8⇡2⌫

g2
(
1

x
� 1.632e�0.704x)e�MDrT

x = 2⇡⌫rT (9)

For the rest of the combinations we have

�SDD̄ =
8⇡2⌫

g2

✓
�e1e2

1

x
+m1m2

1

x

◆
e�MDrT

x = 2⇡⌫rT (10)

For distances smaller than x0 we have a core between
dyons of same type ie. LL, MM̄ and so on

�SDD̄ =
⌫V0

1 + exp [�T (x� x0)]
(11)

x = 2⇡⌫rT (12)

Where x0 is size of the dyons core. In this paper we work
with x0 = 2, just as in our earlier paper I.

IV. EIGENVALUE DISTRIBUTIONS AND THE
CHIRAL CONDENSATE

The Banks-Casher relation for the chiral condensate
tells us, that in the infinite volume limit, the chiral con-
densate for massless fermions is proportional to the den-
sity of eigenvalues at zero value

| <  ̄ > | = ⇡⇢(�)�!0,m!0,V!1 (13)

For any system with a finite volume, there are no eigen-
values smaller than 1/V and the density will always be
0 at � = 0. To understand finite volume e↵ects on the
distribution one may study those using chiral random
matrix theory, for review see [18] . In principle, using
expressions obtained in this framework one can recover
the value of the chiral condensate in the infinite volume
case.

�

NBin

FIG. 1: Eigenvalue distribution for nM = nL = 0.47, NF = 2
massless fermions.

We will be determining the chiral condensate by two
di↵erent methods:
(i) The first one is based on the part of the eigen-

value distributions with the smallest �. It requires an
understanding of both the finite volume and quark mass
e↵ects on the distribution. This understanding we ob-
tain from analytic random matrix results. We explain
this approach in section IVA.
Vanishing of the condensate is used to define the

ensemble parameters corresponding to chiral symmetry
breaking transition, T ̄ .
The second strategy (ii) we will use, is based on the

determination of the so called gap width in the distribu-
tion, near � = 0: we will refer to it as Tgap. Ideally, both
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understanding of both the finite volume and quark mass
e↵ects on the distribution. This understanding we ob-
tain from analytic random matrix results. We explain
this approach in section IVA.
Vanishing of the condensate is used to define the

ensemble parameters corresponding to chiral symmetry
breaking transition, T ̄ .
The second strategy (ii) we will use, is based on the

determination of the so called gap width in the distribu-
tion, near � = 0: we will refer to it as Tgap. Ideally, both
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FIG. 2: Eigenvalue distribution for nM = nL = 0.08, NF = 2
massless fermions.
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FIG. 3: Eigenvalue distribution for nM = nL = 0.47, NF = 2
m = 0.01 fermions.

critical temperatures should coincide, defining the loca-
tion of the chiral symmetry breaking T�. This approach
is explained in section IVC.

A. The finite size e↵ects

To understand the scaling of the finite volume e↵ects
we performed simulations for 64 and 128 dyons, at the
same density. (The volume of the sphere with 128 dyons
being 2 times larger than the sphere of the 64 ones.) The
quark mass in both simulations were set to zero. The
resulting eigenvalue distributions are shown in Fig. 5.

We fit the distribution of the eigenvalues with the form
taken from random-matrix theory [18] for SU(2) gauge
group for massless fermions given by

⇢(x) = V ⌃2[
x

2
(J2(x)

2 � J1(x)J3(x))

+
1

2
J2(x)(1�

Z x

0
dtJ2(t))] (14)

where x = �V ⌃1 and Jn is the Bessel function. Both the
scaling factor V ⌃1 and the overall factor V ⌃2 should be
proportional to the value of the chiral condensate ⌃. In
the limit V ! 1 the formula gives ⇢(0) / b as required.

Ideally, the parameter values for two di↵erent volumes
should agree. After the fits are done, we found that two

�

NBin

FIG. 4: Eigenvalue distribution for nM = nL = 0.08, NF = 2
m = 0.01 fermions.

�

NBin

FIG. 5: (Color Online) The points are the eigenvalue distribu-
tion for 64 (blue circles) and 128 (red squares) dyons at S = 8
and density of dyons nM = 0.33, nL = 0.20, NF = 2. The
curves are the fit with eq. (14) with ⌃2,64 = 1.30± 0.06 and
⌃2,128 = 1.28 ± 0.06 and the scaling as ⌃1,64 = 0.79 ± 0.05
and ⌃1,128 = 0.51 ± 0.04 for these two cases, respectively.
The lower purple line is the di↵erence between the two fits.
Eq. (15) gives ⌃ = 0.38 ± 0.13, while the maximum of the
di↵erence between the two curves give ⌃ = 0.3.

values for parameter ⌃2 agree very well indeed. (This is
related to the fact that the height of the distributions at
the r.h.s. of Fig. 5 do agree.)
Note that the main di↵erence between two distribu-

tions is a shift to the left for bigger volume. This is ex-
pected: in larger volume clusters of a condensate inside
which quarks propagate gets larger, and the eigenvalues
smaller. The formula, from random matrix theory, pre-
scribes a particular “mesoscopic” scaling with the vol-
ume. However, the fit by this formula produces values of
⌃1 which are not the same. This indicates that, at least
our smaller volume, is not yet in the range in which the
expected large volume scaling applies.
The physics behind this behavior is as follows: there

are basically two components of the ensemble, gener-
ating two di↵erent dependencies on the volume. As
we already mentioned in the introduction, there is col-
lectivized dyons, producing the condensate, and dyon-
antidyon pairs. The former component produces eigen-

high density
broken chiral sym

low density
unbroken chiral sum

collectivized
zero mode zone

dip near zero is
a finite size effect

extracting condensate 
is far from trivial…



Chiral Symmetry Breaking and Confinement from an Interacting Ensemble of
Instanton-dyons in Two-flavor Massless QCD

Dallas DeMartini and Edward Shuryak
Center for Nuclear Theory, Department of Physics and Astronomy,

Stony Brook University, Stony Brook NY 11794-3800, USA

In this work we present the results from numerical simulations of an interacting ensemble of
instanton-dyons in the SU(3) gauge group with Nf = 2 flavors of massless, dynamical quarks.
Dynamical quarks are included via the e↵ective interactions induced by the fermionic determinant of
the topological zero modes in the partition function. The eigenvalue spectrum of the Dirac operator
is studied at di↵erent volumes to extract the chiral condensate. We find that a su�cient density of
dyons is responsible for generating the confining potential and breaking the chiral symmetry.

I. INTRODUCTION

A. Instantons-dyons at Finite Temperature

B. Instanton-dyons and Fermions

The interactions between instantons and quarks
have been studied since the 1980’s, starting with the
instanton-induced ’t Hooft Lagrangian. This interaction
explicitly breaks the UA(1) symmetry via the topological
quark zero modes. Later, the Instanton Liquid Model
(ILM) [1] showed that the breaking of chiral symmetry
is related to the collectivization of said zero modes into
the so-called zero-mode zone (ZMZ). For a review see e.g.
Ref. [2].

Following the discovery of the instanton dyons, it was
clearly seen that the quark zero mode of the instanton
localizes to a single constituent dyon, dependent on the
quark periodicity condition [3]. These zero modes, like
the dyons themselves, have explicit dependence on the
holonomy. In the case of (physical) antiperiodic quarks,
all zero modes are localized to the L dyons as will be
discussed in the next sections.

Previous studies of ensembles of dyons have analyzed
the Dirac eigenvalue spectrum in this zero-mode zone
and confirmed their role in chiral symmetry breaking in
the SU(2) gauge group via mean-field methods [4] and
numerical studies [5, 6]. Both techniques have also been
employed to study the phase transitions in theories with
modified quark periodicities [7, 8]. The goal of this work
is then to extend such numerical studies, in an e↵ort to
approach physical QCD, to the SU(3) gauge group with
Nf = 2 flavors of massless, dynamical quarks, looking at
both the confinement and chiral symmetry transitions.

More recently dyons have been identified on the lattice
via their quark zero modes [9]. It has been shown that
the form of the quark zero modes are remarkably insen-
sitive to the many perturbative gluons in which they are
submerged. From studies such as this, dyon densities and
correlation functions can be calculated, serving as useful
constraints on models of the dyon interactions such as
ours.

The structure of this paper is as follows: In Section
II the physics of the dyon ensemble, their interactions,

and the holonomy is described. Section III focuses on
the quark zero modes and the interactions induced by
them. Technical details of the simulations are discussed
in Section IV. Finally, Sections V and VI lay out the
results relevant to the deconfinement and chiral phase
transitions, respectively.

II. INTERACTING DYON ENSEMBLE

A. Holonomy and the Dyon Partition Function

The instanton-dyons are obtained by generalizing
the instanton solution to nonzero holonomy (nontrivial
Polyakov loop) [10, 11]. In SU(3), the instanton is de-
composed into three dyon species, the M1 and M2 dyons
corresponding to the maximally diagonal subgroup and
the 4-time dependent L dyon, as well as corresponding
antidyons. The holonomies are the di↵erences in the
phases µ1, µ2, µ3 of the eigenvalues of the gauge field
component A4 at spatial infinity. The holonomies are
defined as ⌫i = µi+1 � µi with

P
⌫i = 1. Demanding

that hP i be real reduces the individual dyon holonomies
to depend on a single parameter ⌫.
The dyon actions and core sizes are directly related to

their individual holonomies. The actions of each dyon,
in terms of the instanton action S0, are

SM1 = SM2 = S0⌫ SL = S0(1� 2⌫) = S0⌫̄. (1)

The sizes of the dyon cores scale as 1/⌫i.
We work in dimensionless units with all lengths in units

of 1/T , and define the following dimensionless quantities:
the volume Ṽ3 = (rT )3, free energy F̃ = F/T , and free
energy density f = F̃ /Ṽ3. The single holonomy param-
eter is defined on the interval ⌫ 2 [0, 1/2] and is related
to the Polyakov loop via

hP i = 1

3
+

2

3
cos(2⇡⌫). (2)

The main scale of interest, the instanton action S0, is
related to the temperature by

S0 =
8⇡2

g2
=

�11
3
Nc �

2

3
Nf

�
ln(T/⇤), (3)
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FIG. 7. (Color online) Eigenvalue distributions at S0 = 8.5
for three di↵erent ensemble sizes. Dashed lines represent fits
to the approximately-linear portion of the distribution near
zero. The eigenvalue gaps are given by the x-intercepts of the
fits. Note that the relative normalization of the distributions
does not a↵ect results.

FIG. 8. (Color online) [Preliminary] The chiral quark con-
densate ⌃(T ) and the eigenvalue gap �(T ) as functions of
the temperature.

transition in particular are sensitive to the masses of the
lightest quark flavors. A full treatment of a theory with
nonzero quark masses would require the following modi-
fications to our dyon partition function:
(i) A generalization of the perturbative quark potential
(7) to arbitrary quark mass, the form of which is given
in Ref. [16].
(ii) A generalization of the hopping matrix elements Tij

to arbitrary quark mass, which is not yet known.
(iii) The inclusion of quark mass terms on the diagonal
elements of the hopping matrix as shown in Eq. (16).

We do not do such a full treatment in this work. In-
stead we include only the quark mass term on the di-
agonals of the hopping matrix to demonstrate the qual-
itative impact it has on the eigenvalue spectrum. The
nonzero quark mass e↵ectively adds new diagrams to the
fermionic determinant in which single dyons are allowed
to have closed loops with a mass insertion that flips the
chirality of the quark. The mass mediates the behavior
of the quark-induced potential, driving it to a constant
value at large distances, rather than remaining linear as
in the massless case.

D. Is the Vacuum Chaotic?

Eigenvectors

VII. SUMMARY AND DISCUSSION
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Appendix A: Quark Zero Mode Density

Here we present a discussion of the general form for the
quark zero mode density following the work in Ref. [32].
A detailed derivation of the gauge field and zero mode
solutions are quite involved, requiring a combination of
the Nahm transformation [33] and ADHM construction
[34]. We will simply present here the results that are most
relevant to this work; we will give the explicit forms for
the SU(3) gauge group and antiperiodic quarks.

We remind again that the gauge field at infinity has
the holonomy phases

µ1  µ2  µ3  µ4 = µ1 + 1, (A1)

and the dyon holonomies are defined as ⌫i = µi+1 � µi.
In terms of the single holonomy parameter in this work,
the phases are µ1 = �⌫, µ2 = 0, µ3 = ⌫.

The action density of the gauge field can be written
in the simple form in terms of the positions of the con-
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for three di↵erent ensemble sizes. Dashed lines represent fits
to the approximately-linear portion of the distribution near
zero. The eigenvalue gaps are given by the x-intercepts of the
fits. Note that the relative normalization of the distributions
does not a↵ect results.
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We do not do such a full treatment in this work. In-
stead we include only the quark mass term on the di-
agonals of the hopping matrix to demonstrate the qual-
itative impact it has on the eigenvalue spectrum. The
nonzero quark mass e↵ectively adds new diagrams to the
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Appendix A: Quark Zero Mode Density

Here we present a discussion of the general form for the
quark zero mode density following the work in Ref. [32].
A detailed derivation of the gauge field and zero mode
solutions are quite involved, requiring a combination of
the Nahm transformation [33] and ADHM construction
[34]. We will simply present here the results that are most
relevant to this work; we will give the explicit forms for
the SU(3) gauge group and antiperiodic quarks.

We remind again that the gauge field at infinity has
the holonomy phases
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and the dyon holonomies are defined as ⌫i = µi+1 � µi.
In terms of the single holonomy parameter in this work,
the phases are µ1 = �⌫, µ2 = 0, µ3 = ⌫.
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as a consequence, 
out of 5 types of instanton-dyons

only one L has normalizable zero modes



P without a trace 
is a diagonal unitary matrix

=> Nc phases (red dots)

quark periodicity 
phases => Nf blue dots
are in this case all =pi
quarks are fermions

Ordinary Nc=Nf=5 QCD

as a consequence, 
out of 5 types of instanton-dyons

only one L has normalizable zero modes
But one can deform QCD moving fermion phases (blue dots) as we like!



H. Kouno, Y. Sakai, T. Makiyama, K. Tokunaga, T. 

Sasaki and M. Yahiro, J. Phys. G 39, 085010 (2012). 

quark periodicity 
phases => Nf blue dots

are in this case 
flavor-dependent

still Nc=Nf=5 but with 
“most democratic” arrangement

ZN-symmetric QCD

In this case each dyon type has 
one zero mode 

with some quark (flavor)
=>Nc independent topological ZMZ’s!
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d=>L
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Second deformation: QCD2 and Z2QCD are dramatically different!
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FIG. 4: Debye Mass Md as a function of action parameter

S, for the Z2-symmetric model (red squares) and the usual

QCD-like model with Nc = Nf = 2 (blue circles).

FIG. 5: The Dirac eigenvalue distribution ⇢(�) for ensemble

of 64 (Blue triangle) and 128 (Red square) dyons, for Z2-

symmetric model at S = 6. The upper plot shows the region

of smaller eigenvalues, in which one can see the finite volume

“dip”, of a width which scales approximately as 1/V4 as ex-

pected. The lower plot shows the same data sets, but in wider

range of eigenvalues: it displays the “inverse cusp” shape of

the distribution discussed in the text.

⇢(�) to � ! 0 and to extract the value of the quark con-
densate.) In the other model, the Nc = Nf = 2 QCD,
such “inverse cusp” is absent, see II.

So far our discussion assumed an infinite volume limit,
in which case the Dirac eigenvalue spectrum extends till
� = 0. However, it is well known that any finite-size sys-
tems, with 4-volume V4, have the smallest eigenvalues of
the order O(1/V4). This creates the so called “finite size
dip”, in the eigenvalue distribution, also clearly visible in
Fig. 5(upper). One can see that doubling of the volume,
from 64 to 128 dyons at the same density, reduces the
width of this dip roughly by factor two, as expected.

As the holonomy jumps away from its confining value
0.5, the dyon densities become di↵erent. Unlike the fun-
damental quarks, where the holonomy goes down, the
densities of L dyons become larger than that of M dyons.
The total density goes down, but the reduction in M

dyons, leaves space for a few more L dyons. This means
that on one hand the density is larger for L dyons, and
the zero-mode density is therefore higher. On the other
hand, the factor in the exponential in Tij (Eq. 4) is ⌫̄

for L dyons, and ⌫ for M dyons. This means that as ⌫

becomes smaller, the e↵ective density of the zero-modes
associated with L dyons become smaller, while the zero-
modes associated with M dyons gets an increased e↵ec-
tive density. It is therefore the interplay between these
two e↵ects, that control which of the condensates are
largest. This results in what we show in Fig. 6, where
the M dyon condensate appears to be slightly larger than
the L dyon condensate, and both condensates decreases
slightly in accordance with the total density of dyons. It
is also observed that since each gas of zero-modes e↵ec-
tively works as a Nf = 1 ensemble, with non-vanishing
condensates even at the lowest densities we studied[30]
(the r.h.s. of the plot). The other model – Nc = Nf = 2
QCD –has condensate shown by black triangles: it clearly
has chiral symmetry restoration,at S > 8 we detected no
presence of a condensate.
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V. CHIRAL SYMMETRY BREAKING

As we already explained above, the main feature of the
ZNc -symmetric model with Nf = Nc distribute all types
of quarks evenly, so that each type of dyons would have
one quark flavor possessing zero modes with it. This is
in contrast to the usual QCD, in which all quarks are an-
tiperiodic and thus all have zero modes only with twisted
L-type dyons.

The simplest examples considered in this work are two
Nc = Nf = 2 theories, the Z2-symmetric model and the
two color QCD. In the former case the partition function
includes two independent fermionic determinants, one for
M and one for L dyons, with a single quark species each.
In the latter, one has a square (two-species) of the deter-
minant of hopping matrix over the L-dyons only.

Here we remind well known facts about chiral sym-
metry breaking in such cases, and the consequences for
such determinants. Theories with a single quark flavor
have only a single Ua(1) symmetry, broken explicitly by
the fermionic e↵ective action. Indeed, it includes terms
 ̄L R or  ̄R L directly coupling components with op-
posite chiralities. So, there are no chiral symmetries to
break, and condensates are always nonzero, proportional
to density of the topological objects.

The case with two or more flavors is di↵erent: there is
the SU(Nf ) flavor symmetry, which can be either bro-
ken or not, depending on the strength of the 2Nf -quark
e↵ective interaction.

A. Dirac eigenvalue distribution

Di↵erences in chiral breaking mechanisms in these two
models indicated above also manifest themselves in the
Dirac eigenvalue distribution.

For a proper persepctive, let us remind that for the

SU(Nf ) flavors with Nf > 2 a general Stern-Smilga the-
orem [29] states that the eigenvalue distribution at small
� has the so called “cusp” singularity

⇢(�) ⇠ |�|(N2
f � 4) (7)

For Nf > 2 the coe�cient is positive – this is known
as “direct cusp”, and was also observed, both on the
lattice and in the instanton models. In the particular case
Nf = 2 this cusp is absent: this fact can be traced to the
absence of symmetric d

abc structure constant in the case
of SU(2) group. Indeed, both the calculations done in the
instanton liquid framework (for examples and references
see [8]) and our previous studies II of the Nf = 2 theory
had produced “flat” eigenvalue distribution

⇢Nf=2(�) ⇠ const (8)

In the Nf = 1 case the Smilga-Stern derivation does
not apply, but empirically it has been observed that the
distribution does have a singularity at � = 0 of the
form of the “inverse cusp”, ⇠ �|�|, with negative co-
e�cient. Our results for the Z(Nc)-QCD under consid-
eration shown in Fig. 5 also show the “inverse cusp” with
linear behavior of ⇢(�). (We use this fact to extrapolate

FIG. 3: (upper) Densities of L dyons (red squares) and

M dyons (blue circles), as a function of action parameter S,
for the Z2-symmetric model. (lower) the same for the usual

QCD-like model with Nc = Nf = 2 and anti-periodic quarks.

confining phase
 gets much more

robust: strong first order
mixed phase (flat F)

is observed at medium densities

<P>

QCD
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We investigate QCD-like theory with exact center symmetry, with emphasis on the

finite-temperature phase transition concerning center and chiral symmetries. On the

lattice, we formulate center symmetric SU(3) gauge theory with three fundamental

Wilson quarks by twisting quark boundary conditions in a compact direction (Z3-

QCD model). We calculate the expectation value of Polyakov loop and the chiral

condensate as a function of temperature on 163 × 4 and 203 × 4 lattices along the

line of constant physics realizing mPS/mV = 0.70. We find out the first-order cen-

ter phase transition, where the hysteresis of the magnitude of Polyakov loop exists

depending on thermalization processes. We show that chiral condensate decreases

around the critical temperature in a similar way to that of the standard three-flavor

QCD, as it has the hysteresis in the same range as that of Polyakov loop. We also

show that the flavor symmetry breaking due to the twisted boundary condition gets

qualitatively manifest in the high-temperature phase. These results are consistent

with the predictions based on the chiral effective model in the literature. Our ap-

proach could provide novel insights to the nonperturbative connection between the

center and chiral properties.
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FIG. 1: Polyakov loop distribution plot in Z3-QCD (left) and the standard three-flavor QCD

(right). Based on 163 × 4 lattice for β = 1.70, 2.00, 2.20 with the same values of κ in both panels.

IV. SIMULATION RESULTS

A. Polyakov loops and center symmetry

We first show the existence of Z3 center symmetry in the present model based on the

distribution plot of Polyakov loop (L),

L =
1

V

∑

x⃗

1

3
tr

[

Nτ
∏

i=1

Uτ (x⃗, i)

]

. (11)

Here V denotes the spacial volume in a lattice unit. As shown in the left panel of Fig. 1,

the Polyakov loops are distributed around the origin in the low β regime while three vacua

exist in the high β regime for Z3-QCD. On the other hand, those in the standard three-

flavor SU(3) gauge theory in the right panel of Fig. 1 indicate explicit breaking of Z3

center symmetry. These results obviously show that the Z3-QCD model possesses exact Z3

center symmetry at the action level while it seems to undergo spontaneous breaking of the

symmetry in the high-temperature phase.

Next, we investigate temperature dependence of the Polyakov loop by varying β along

with the line of constant-physics, namely mPS/mV = 0.70, shown in Table I. We generate

10

FIG. 2: β dependence of the magnitude of Polyakov loop (⟨|L|⟩) for the Z3-QCD and standard

three-flavor QCD on 163 × 4 (left) and 203 × 4 (right) lattices. For the Z3-QCD model, the data of

⟨|L|⟩ started with the cold start (triangle (blue) symbols) have a clear jump from zero to non-zero

values around the region 1.55 ≤ β ≤ 1.60 in both panels, while the jump occurs in 1.80 ≤ β ≤ 1.90

(left) and 1.90 ≤ β ≤ 1.95 (right) for the data generated by the hot start (circle (red) symbols). In

the regions between these two jumps, the hysteresis exists in Z3-QCD model. On the other hand,

the data of the standard three-flavor (Nf = 3) QCD (square (black) symbols) do not show such a

jump from zero to nonzero nor hysteresis.

configurations with two types of initial condition; cold start and hot start. In both panels

of Fig. 2, the triangle (blue) symbol denotes the data started with cold start. The corre-

sponding initial configuration lives in the ordered phase, and we set all initial link variables

to unity. On the other hand, the circle (red) symbol denotes the ones started with hot start.

The corresponding configuration is in the disordered phase, and the initial link variable

is a random number. The square (black) symbol shows the result of the standard three-

flavor QCD with the periodic boundary condition for spacial directions and the anti-periodic

condition for temporal direction with the same values of β and κ as Z3-QCD simulations.

Now, let us look into the results in details.

Firstly, for the Z3-QCD model, we find hysteresis in the range of 1.55 < β < 1.90

depending on the initial conditions (cold or hot). On the other hand, we find that there are

no hysteresis in the data for the standard three-flavor QCD. We note that the hysteresis is

a signal of the first order phase transition.

Secondly, in the low-temperature phase, the magnitude of Polyakov loop is exactly zero for

15

FIG. 5: β and flavor dependences of the expectation values of subtracted chiral condensates ⟨q̄q⟩

for each flavor in Z3-QCD model. The lattice size is 203 × 4. Circle (red), square (orange) and

triangle (violet) symbols denote u-, d- and s-flavor generated with hot start, respectively.

higher than that in the three-flavor QCD. We do not yet have sufficient ingredients to con-

clude on this question. Higher statistics and investigation of its susceptibility are necessary

to determine the critical temperature in the massless limit. It is of well-known difficulty to

determine the critical temperature of the chiral phase transition [39].

We also note that the absolute values of the chiral condensates in Z3- and three-flavor

QCD are different in the low-temperature phase, which may indicate the qualitative differ-

ence of the chiral property between the two theories.

Next, we focus on the flavor symmetry breaking in the high-temperature phase. Figure 5

shows the expectation values of chiral condensates for each flavor. Here, circle (red), square

(orange) and triangle (violet) symbols denote u-, d- and s-flavor generated with hot start,

respectively. Three components of chiral condensate are degenerate in the low-temperature

phase. On the other hand, in the high-temperature phase, there appears clear flavor symme-

try breaking. Two of them, whose total complex phase (φ+θ) are nontrivial, are degenerated

because of the momentum shift of the twisted boundary condition. It indicates that at least

the Z3 center of SU(3) flavor symmetry, which commutes with the Cartan subgroup, is ef-

fectively preserved in the low-temperature phase, while the breaking of this symmetry gets
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Here V denotes the spacial volume in a lattice unit. As shown in the left panel of Fig. 1,

the Polyakov loops are distributed around the origin in the low β regime while three vacua

exist in the high β regime for Z3-QCD. On the other hand, those in the standard three-
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three-flavor QCD on 163 × 4 (left) and 203 × 4 (right) lattices. For the Z3-QCD model, the data of
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values around the region 1.55 ≤ β ≤ 1.60 in both panels, while the jump occurs in 1.80 ≤ β ≤ 1.90

(left) and 1.90 ≤ β ≤ 1.95 (right) for the data generated by the hot start (circle (red) symbols). In

the regions between these two jumps, the hysteresis exists in Z3-QCD model. On the other hand,

the data of the standard three-flavor (Nf = 3) QCD (square (black) symbols) do not show such a

jump from zero to nonzero nor hysteresis.
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of Fig. 2, the triangle (blue) symbol denotes the data started with cold start. The corre-

sponding initial configuration lives in the ordered phase, and we set all initial link variables

to unity. On the other hand, the circle (red) symbol denotes the ones started with hot start.

The corresponding configuration is in the disordered phase, and the initial link variable

is a random number. The square (black) symbol shows the result of the standard three-

flavor QCD with the periodic boundary condition for spacial directions and the anti-periodic

condition for temporal direction with the same values of β and κ as Z3-QCD simulations.

Now, let us look into the results in details.

Firstly, for the Z3-QCD model, we find hysteresis in the range of 1.55 < β < 1.90

depending on the initial conditions (cold or hot). On the other hand, we find that there are

no hysteresis in the data for the standard three-flavor QCD. We note that the hysteresis is

a signal of the first order phase transition.

Secondly, in the low-temperature phase, the magnitude of Polyakov loop is exactly zero for
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for each flavor in Z3-QCD model. The lattice size is 203 × 4. Circle (red), square (orange) and

triangle (violet) symbols denote u-, d- and s-flavor generated with hot start, respectively.
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clude on this question. Higher statistics and investigation of its susceptibility are necessary

to determine the critical temperature in the massless limit. It is of well-known difficulty to

determine the critical temperature of the chiral phase transition [39].

We also note that the absolute values of the chiral condensates in Z3- and three-flavor

QCD are different in the low-temperature phase, which may indicate the qualitative differ-

ence of the chiral property between the two theories.

Next, we focus on the flavor symmetry breaking in the high-temperature phase. Figure 5

shows the expectation values of chiral condensates for each flavor. Here, circle (red), square

(orange) and triangle (violet) symbols denote u-, d- and s-flavor generated with hot start,

respectively. Three components of chiral condensate are degenerate in the low-temperature

phase. On the other hand, in the high-temperature phase, there appears clear flavor symme-

try breaking. Two of them, whose total complex phase (φ+θ) are nontrivial, are degenerated

because of the momentum shift of the twisted boundary condition. It indicates that at least

the Z3 center of SU(3) flavor symmetry, which commutes with the Cartan subgroup, is ef-

fectively preserved in the low-temperature phase, while the breaking of this symmetry gets
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  Tc

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
Tc does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! Tc, the monopole density has a peak
near Tc. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > Tc [21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  Tc,
but also as non-condensed quasiparticles at T > Tc.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! Tc.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A0 acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A0 is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇
2 + Stop(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR
2 is the corresponding

moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)
The topological part Stop ⇠

R
dt↵̇(t) does not lead

to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z1 =
1X

l=�1
exp

✓
� l

2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z1 is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z1 is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.
In the dual approach, finite temperature is introduced

via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0,� ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.
Classes of paths which make a di↵erent number n of

rotations around the original circle can be defined as
“straight” classical periodic paths

↵n(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase Matsubara  time

winding number

3

tion function,

Z2 =
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n� !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z1 and n for Z2, are very di↵erent in nature. In Z1,
each term of the sum is periodic in !, while in Z2, this
property is recovered only after summation over n. The
temperature T in Z2 happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z1. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z1 = Z2 = ✓3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.
Even if one is not able to identify the sums as the

same elliptic function, the equality can be seen from the
observation that the sum Z1 is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z2. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X

n=�1
f(! + nP ) =

1X

l=�1

1

P
f̃

✓
l

P

◆
e
i2⇡l!/P

, (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R

3 ⇥ S
1. In this section, unlike in the

following one, all of the fields, including the fermions,
have periodic boundary conditions on S

1, and therefore
supersymmetry is not broken.
We study the weak coupling g ⌧ 1 scenario, which

makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.
Compactification of one coordinate to the circle is

needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dxµA

µ
,
H
dxµC

µ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !

and �, respectively.
Finally, in order to make the discussion simpler, one

assumes the minimal non-Abelian color group SU(Nc)

based on classical paths

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A0 acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A0 is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇
2 + Stop(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR
2 is the corresponding

moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)
The topological part Stop ⇠

R
dt↵̇(t) does not lead

to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z1 =
1X

l=�1
exp

✓
� l

2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z1 is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z1 is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.
In the dual approach, finite temperature is introduced

via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.
Classes of paths which make a di↵erent number n of

rotations around the original circle can be defined as
“straight” classical periodic paths

↵n(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

↵(⌧) ↵ 2 [0, 2⇡]

⌧ 2 [0, ~/T ]
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  Tc

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
Tc does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! Tc, the monopole density has a peak
near Tc. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > Tc [21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  Tc,
but also as non-condensed quasiparticles at T > Tc.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! Tc.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
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leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  Tc

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
Tc does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! Tc, the monopole density has a peak
near Tc. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > Tc [21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  Tc,
but also as non-condensed quasiparticles at T > Tc.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! Tc.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A0 acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A0 is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇
2 + Stop(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR
2 is the corresponding

moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)
The topological part Stop ⇠

R
dt↵̇(t) does not lead

to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z1 =
1X

l=�1
exp

✓
� l

2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z1 is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z1 is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.
In the dual approach, finite temperature is introduced

via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0,� ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.
Classes of paths which make a di↵erent number n of

rotations around the original circle can be defined as
“straight” classical periodic paths

↵n(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase Matsubara  time

winding number

3

tion function,

Z2 =
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n� !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z1 and n for Z2, are very di↵erent in nature. In Z1,
each term of the sum is periodic in !, while in Z2, this
property is recovered only after summation over n. The
temperature T in Z2 happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z1. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z1 = Z2 = ✓3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.
Even if one is not able to identify the sums as the

same elliptic function, the equality can be seen from the
observation that the sum Z1 is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z2. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X

n=�1
f(! + nP ) =

1X

l=�1

1

P
f̃

✓
l

P

◆
e
i2⇡l!/P

, (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R

3 ⇥ S
1. In this section, unlike in the

following one, all of the fields, including the fermions,
have periodic boundary conditions on S

1, and therefore
supersymmetry is not broken.
We study the weak coupling g ⌧ 1 scenario, which

makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.
Compactification of one coordinate to the circle is

needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dxµA

µ
,
H
dxµC

µ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !

and �, respectively.
Finally, in order to make the discussion simpler, one

assumes the minimal non-Abelian color group SU(Nc)

based on classical paths
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not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A0 acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A0 is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇
2 + Stop(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR
2 is the corresponding

moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)
The topological part Stop ⇠

R
dt↵̇(t) does not lead

to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z1 =
1X

l=�1
exp

✓
� l

2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z1 is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z1 is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.
In the dual approach, finite temperature is introduced

via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.
Classes of paths which make a di↵erent number n of

rotations around the original circle can be defined as
“straight” classical periodic paths

↵n(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

Note completely different dependence 
on T and holonomy omega

↵(⌧) ↵ 2 [0, 2⇡]

⌧ 2 [0, ~/T ]
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  Tc

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
Tc does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! Tc, the monopole density has a peak
near Tc. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > Tc [21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  Tc,
but also as non-condensed quasiparticles at T > Tc.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! Tc.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
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(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  Tc

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
Tc does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! Tc, the monopole density has a peak
near Tc. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > Tc [21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  Tc,
but also as non-condensed quasiparticles at T > Tc.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! Tc.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A0 acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A0 is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇
2 + Stop(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR
2 is the corresponding

moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)
The topological part Stop ⇠

R
dt↵̇(t) does not lead

to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z1 =
1X

l=�1
exp

✓
� l

2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z1 is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z1 is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.
In the dual approach, finite temperature is introduced

via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0,� ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.
Classes of paths which make a di↵erent number n of

rotations around the original circle can be defined as
“straight” classical periodic paths

↵n(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase Matsubara  time

winding number

3

tion function,

Z2 =
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n� !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z1 and n for Z2, are very di↵erent in nature. In Z1,
each term of the sum is periodic in !, while in Z2, this
property is recovered only after summation over n. The
temperature T in Z2 happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z1. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z1 = Z2 = ✓3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.
Even if one is not able to identify the sums as the

same elliptic function, the equality can be seen from the
observation that the sum Z1 is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z2. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X

n=�1
f(! + nP ) =

1X

l=�1

1

P
f̃

✓
l

P

◆
e
i2⇡l!/P

, (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R

3 ⇥ S
1. In this section, unlike in the

following one, all of the fields, including the fermions,
have periodic boundary conditions on S

1, and therefore
supersymmetry is not broken.
We study the weak coupling g ⌧ 1 scenario, which

makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.
Compactification of one coordinate to the circle is

needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dxµA

µ
,
H
dxµC

µ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !

and �, respectively.
Finally, in order to make the discussion simpler, one

assumes the minimal non-Abelian color group SU(Nc)

based on classical paths
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not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A0 acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A0 is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇
2 + Stop(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR
2 is the corresponding

moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)
The topological part Stop ⇠

R
dt↵̇(t) does not lead

to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z1 =
1X

l=�1
exp

✓
� l

2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z1 is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z1 is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.
In the dual approach, finite temperature is introduced

via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.
Classes of paths which make a di↵erent number n of

rotations around the original circle can be defined as
“straight” classical periodic paths

↵n(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

Note completely different dependence 
on T and holonomy omega

3

tion function,

Z2 =
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n� !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z1 and n for Z2, are very di↵erent in nature. In Z1,
each term of the sum is periodic in !, while in Z2, this
property is recovered only after summation over n. The
temperature T in Z2 happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z1. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z1 = Z2 = ✓3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.
Even if one is not able to identify the sums as the

same elliptic function, the equality can be seen from the
observation that the sum Z1 is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z2. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X

n=�1
f(! + nP ) =

1X

l=�1

1

P
f̃

✓
l

P

◆
e
i2⇡l!/P

, (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R

3 ⇥ S
1. In this section, unlike in the

following one, all of the fields, including the fermions,
have periodic boundary conditions on S

1, and therefore
supersymmetry is not broken.
We study the weak coupling g ⌧ 1 scenario, which

makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.
Compactification of one coordinate to the circle is

needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dxµA

µ
,
H
dxµC

µ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !

and �, respectively.
Finally, in order to make the discussion simpler, one

assumes the minimal non-Abelian color group SU(Nc)

And yet, they are the same!
(elliptic theta function of the 3 type)

↵(⌧) ↵ 2 [0, 2⇡]

⌧ 2 [0, ~/T ]
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  Tc

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
Tc does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! Tc, the monopole density has a peak
near Tc. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > Tc [21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  Tc,
but also as non-condensed quasiparticles at T > Tc.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! Tc.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
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the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  Tc

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
Tc does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! Tc, the monopole density has a peak
near Tc. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > Tc [21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  Tc,
but also as non-condensed quasiparticles at T > Tc.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! Tc.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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The same phenomenon in much simpler setting:
quantum particle on a circle at finite T

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A0 acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A0 is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇
2 + Stop(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR
2 is the corresponding

moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)
The topological part Stop ⇠

R
dt↵̇(t) does not lead

to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z1 =
1X

l=�1
exp

✓
� l

2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z1 is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z1 is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.
In the dual approach, finite temperature is introduced

via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0,� ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.
Classes of paths which make a di↵erent number n of

rotations around the original circle can be defined as
“straight” classical periodic paths

↵n(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

moment
of inertia

Aharonov-Bohm
 phase Matsubara  time

winding number

3

tion function,

Z2 =
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n� !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z1 and n for Z2, are very di↵erent in nature. In Z1,
each term of the sum is periodic in !, while in Z2, this
property is recovered only after summation over n. The
temperature T in Z2 happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z1. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z1 = Z2 = ✓3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.
Even if one is not able to identify the sums as the

same elliptic function, the equality can be seen from the
observation that the sum Z1 is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z2. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],
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f(! + nP ) =

1X

l=�1

1
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✓
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e
i2⇡l!/P

, (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R

3 ⇥ S
1. In this section, unlike in the

following one, all of the fields, including the fermions,
have periodic boundary conditions on S

1, and therefore
supersymmetry is not broken.
We study the weak coupling g ⌧ 1 scenario, which

makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.
Compactification of one coordinate to the circle is

needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dxµA

µ
,
H
dxµC

µ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !

and �, respectively.
Finally, in order to make the discussion simpler, one

assumes the minimal non-Abelian color group SU(Nc)

based on classical paths

2

not have a microscopic description of these monopoles
in terms of the gauge fields. We do, however, derive the
corresponding partition function, based on a transformed
semiclassical partition function.

The semiclassical description of the vacuum of gauge
theories is based on the instanton solution [28]. At fi-
nite temperatures, however, the 4d instanton solution
has been shown to dissolve into instanton constituents,
known as instanton-dyons (or instanton-monopoles) [29–
31]. Studies of the ensembles of instanton-dyons have ex-
plained the deconfinement and chiral symmetry restora-
tion transitions both numerically [32, 33] and using a
mean-field analysis [34, 35]. For a recent short review,
see Ref. [36].

The construction of the instanton-dyons starts from
the same ’t Hooft-Polyakov monopole, but with the ze-
roth component of the gauge field A0 acting as the scalar
adjoint “Higgs” field. However, these objects are pseudo-
particles and not particles, existing only in the Euclidean
formulation of the theory for which A0 is real. Therefore,
while instanton-dyons do lead to successful semiclassical
applications, their usage for phenomenological applica-
tions is severely limited. Another obstacle to their devel-
opment, perhaps even more important for many, is that
their physical meaning remains rather obscure. In this
paper, we argue that it should not be so, and that the
instanton-dyon gauge field configurations are nothing else
but quantum paths of moving and rotating monopoles.

A gradual understanding of this statement began some
time ago, but remained rather unnoticed by the larger
community. One reason for that was the setting in which
it was shown, which was based on extended supersym-
metry. Only in these cases was one able to derive reli-
ably both partition functions – in terms of monopoles and
instanton-dyons – and show them to be equal [37–39].
Furthermore, they were not summed up to an analytic
answer, but shown instead to be related by the so-called
“Poisson duality.”

Since this concept it also not widely known, Sec. II
contains a pedagogical section, which discusses a much
simpler toy model of a rotator – a particle on a circle
– at finite temperature. We also obtain two expressions
for its partition function, one based on its excited states
and one based on “winding paths” in Euclidean time. In
this model, one can derive the analytic solution for both
sums and directly see that they are the same.

In Sec. III, we turn to theories with extended super-
symmetry. This section is a brief pedagogical review of
the works of Dorey and collaborators, and shows how the
Poisson duality works in this case – almost identically to
the rotator model.

In Sec. IV, we turn to pure gauge theories at finite tem-
perature, using as above its simplest version with SU(2)
color. We will explicitly derive the n-winding gauge con-
figurations, periodic on the Matsubara circle, and the
corresponding semi-classical partition function. We then
Poisson-transform it into another form, the one we ar-
gue is counting occupations of the excited states of mov-

ing/rotating monopoles.

II. QUANTUM ROTATOR AT FINITE T AND
ITS DUAL DESCRIPTIONS

A quantum rotator is a particle moving on a circle. Its
location is defined by the angle ↵ 2 [0, 2⇡] and its action
is defined by kinetic and topological parts

S =

I
dt

⇤

2
↵̇
2 + Stop(!) , (1)

where ↵̇ = d↵/dt, and ⇤ = mR
2 is the corresponding

moment of inertia for rotation. (It can be set to unity
by appropriately selecting units, but for the purposes of
this paper, we keep it.)
The topological part Stop ⇠

R
dt↵̇(t) does not lead

to any “force” – there is no contribution to the classical
equation of motion – but it provides an extra phase factor
in the quantum partition function. The phenomenon was
introduced by Aharonov and Bohm in a celebrated paper
[40] and is well known. We remind the reader that this
phase is an external parameter which can be induced
by a solenoid in extra dimensions, provided the rotating
particle is charged and the time derivative is generalized
to the long gauge-invariant derivative including the A0

field.
The quantum mechanical spectrum of states is imme-

diately obtained via quantization of the angular momen-
tum l and the partition function at temperature T is

Z1 =
1X

l=�1
exp

✓
� l

2

2⇤T
+ il!

◆
, (2)

where, for convenience, we normalized the Aharonov-
Bohm contribution to a phase !. Since the angular mo-
mentum l is integer-valued, each term in Z1 is a periodic
function of this phase, with a natural 2⇡ period. Note
also that positive and negative l cancel the imaginary
part, so Z1 is real. Finally, this sum is best convergent
at small temperature T , where only a few states close to
the ground state with l = 0 need to be included.
In the dual approach, finite temperature is introduced

via the standard Euclidean Matsubara time defined on
another circle ⌧ 2 [0, � ⌘ 1/T ]. The path integral which
leads to the partition function needs to be done over the
periodic paths, ↵(0) = ↵(�), so one may say that the
Euclidean theory is a particle on a double torus.
Classes of paths which make a di↵erent number n of

rotations around the original circle can be defined as
“straight” classical periodic paths

↵n(⌧) = 2⇡n
⌧

�
, (3)

plus small fluctuations around them. Carrying out a
Gaussian integral over them leads to the following parti-

Note completely different dependence 
on T and holonomy omega

3

tion function,

Z2 =
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n� !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z1 and n for Z2, are very di↵erent in nature. In Z1,
each term of the sum is periodic in !, while in Z2, this
property is recovered only after summation over n. The
temperature T in Z2 happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z1. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind

Z1 = Z2 = ✓3

✓
� !

2
, exp

✓
� 1

2⇤T

◆◆
, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.
Even if one is not able to identify the sums as the

same elliptic function, the equality can be seen from the
observation that the sum Z1 is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z2. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],

1X

n=�1
f(! + nP ) =

1X

l=�1

1

P
f̃

✓
l

P

◆
e
i2⇡l!/P

, (6)

where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R

3 ⇥ S
1. In this section, unlike in the

following one, all of the fields, including the fermions,
have periodic boundary conditions on S

1, and therefore
supersymmetry is not broken.
We study the weak coupling g ⌧ 1 scenario, which

makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.
Compactification of one coordinate to the circle is

needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dxµA

µ
,
H
dxµC

µ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !

and �, respectively.
Finally, in order to make the discussion simpler, one

assumes the minimal non-Abelian color group SU(Nc)

And yet, they are the same!
(elliptic theta function of the 3 type)
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traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.
Even if one is not able to identify the sums as the

same elliptic function, the equality can be seen from the
observation that the sum Z1 is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z2. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
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sian but for arbitrary functions. For reference, let us
mention here one particular version [41],
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where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
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theory defined on R
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1. In this section, unlike in the

following one, all of the fields, including the fermions,
have periodic boundary conditions on S

1, and therefore
supersymmetry is not broken.
We study the weak coupling g ⌧ 1 scenario, which

makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
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µ of the electric
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have nonzero expectation values, which can be viewed
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through the circle induced by fields in extra dimensions.
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Monopole-like objects have been identified in multiple lattice studies, and there is now a significant
amount of literature on their importance in phenomenology. Some analytic indications of their role,
however, are still missing. The ’t Hooft-Polyakov monopoles, originally derived in the Georgi-
Glashow model, are an important dynamical ingredient in theories with extended supersymmetry
N = 2, 4, and help explain the issues related with electric-magnetic duality. There is no such
solution in QCD-like theories without scalar fields. However, all of these theories have instantons
and their finite-T constituents known as instanton-dyons (or instanton-monopoles). The latter
leads to semiclassical partition functions, which for N = 2, 4 theories were shown to be identical
(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  Tc

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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‡ ismail.zahed@stonybrook.edu

related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
Tc does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! Tc, the monopole density has a peak
near Tc. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > Tc [21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  Tc,
but also as non-condensed quasiparticles at T > Tc.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! Tc.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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(“Poisson dual”) to the partition function for monopoles. We show how, in a pure gauge theory,
the semiclassical instanton-based partition function can also be Poisson-transformed into a partition
function, interpreted as the one of moving and rotating monopoles.

I. INTRODUCTION

The possible existence of magnetic monopoles in elec-
trodynamics fascinated leading physicists in the 19th
century. With the development of quantum mechanics,
Dirac [1] related the existence of monopoles with the elec-
tric charge quantization. However, QED monopoles were
never found.

Classical solitons with magnetic charge were found
by ’t Hooft [2] and Polyakov [3] in the Georgi-Glashow
model. Such monopoles exist and play an important role
in other theories with an adjoint scalar field, notably in
theories with extended supersymmetry N = 2, 4. Their
presence and properties have significantly advanced our
understanding of the electric-magnetic duality and its re-
lation to the renormalization group (RG) flow. In the
N = 2 case, there is a gradual transition from an electric
theory at weak coupling to a magnetic theory at strong
coupling [4]. In the N = 4 case, monopoles dressed by
bound fermions were shown to create an N = 4 multi-
plet of fields, making the electric and magnetic theories
the same, up to a coupling. This implies that the beta
function of g and 1/g must be the same, therefore just
zero, explaining why this theory must be conformal.

In QCD-like theories without scalars, e.g. pure gauge
theories or N = 1 SYM, there are no such monopole so-
lutions. Despite this, Nambu [5], ’t Hooft [6], and Man-
delstam [7] proposed the “dual superconductor” model of
the electric color confinement. In this model, the Bose-
Einstein condensation (BEC) of monopoles at T  Tc

expels electric fields from the vacuum into confining flux
tubes.

In lattice studies of gauge theories, monopoles have
been identified, and their locations and paths were cor-
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related with gauge-invariant observables, such as the ac-
tion and square of the magnetic field [8]. The monopoles
were found to create a magnetic current around the elec-
tric flux tube [9, 10]. In Landau gauge, while monopole-
type singularities themselves are not present, the phys-
ical properties that they source are still present and
gauge-invariant [11]. The motion and correlations of the
monopoles were shown to be as expected for a Coulomb
plasma [12–14], the deconfinement critical temperature
Tc does coincide accurately with that of monopole BEC
transition [13, 15, 16], and the BEC transition has been
shown to be gauge independent [17–19].

The “magnetic scenario” for quark-gluon plasma
(QGP) [14, 20, 21] assumes the presence of non-
condensed monopoles as another kind of quasiparticles.
Unlike quarks and gluons, which have vanishing den-
sities at T ! Tc, the monopole density has a peak
near Tc. Monopole-gluon and monopole-quark scatter-
ing were shown to play a significant role in kinetic prop-
erties of the QGP, such as the shear viscosity ⌘ [22]
and the jet quenching parameter q̂ [23–25]. The non-
condensed monopoles should also lead to electric flux
tubes at T > Tc [21], which were recently observed on
the lattice [26]. Thus, there is a growing amount of phe-
nomenological evidence suggesting magnetic monopoles
do exist, not only as a confining condensate at T  Tc,
but also as non-condensed quasiparticles at T > Tc.
While the central role of monopoles in the confinement-
deconfinement transition was recognized long ago, their
relation to another important non-perturbative aspect
of QCD-like theories, chiral symmetry breaking, has at-
tracted much less attention prior to our recent paper [27],
in which we have demonstrated how the quark conden-
sate is formed as T ! Tc.

Nevertheless, this phenomenological evidence does not
convince many theorists, who would rather have an ana-
lytic argument not relying on lattice numerics or heavy-
ion phenomenology. One such argument will be provided
by this paper. It is still indirect, in the sense that we do
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tion function,

Z2 =
1X

n=�1

p
2⇡⇤T exp

✓
� T⇤

2
(2⇡n� !)2

◆
. (4)

The key point here is that these quantum numbers, l used
for Z1 and n for Z2, are very di↵erent in nature. In Z1,
each term of the sum is periodic in !, while in Z2, this
property is recovered only after summation over n. The
temperature T in Z2 happens to be in an unusual place,
in the numerator of the exponent, so this sum converges
best at high temperature, unlike the sum in Z1. Indeed,
at high T the Matsubara circle becomes small and the
path integral is dominated by paths with small number
of windings.

In spite of such di↵erences, both expressions are in fact
the same! In this toy model, it is not di�cult to do the
sums numerically and plot the results. Furthermore, one
can also derive the analytic expressions, expressible in
terms of the elliptic theta function of the third kind
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✓
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, (5)

which is plotted in Fig. 1 for few values of the tempera-
ture T .

FIG. 1. The partition function Z of the rotator as a func-
tion of the external Aharonov-Bohm phase ! (two periods
are shown to emphasize its periodicity). The (blue) solid,
(red) dashed and (green) dash-dotted curves are for ⇤T =
0.3, 0.5, 1.

Mathematically, the identity of the two sums can be
traced to the fact that our path integral is defined on
two circles, or, equivalently, a 2d torus, and the circles

can be interchanged. In string theory, such relations
are known as T-duality. In practice, these are the low-
temperature and the high-temperature approximations,
often used without noticing the exact summation and
duality.
Even if one is not able to identify the sums as the

same elliptic function, the equality can be seen from the
observation that the sum Z1 is the discrete Fourier trans-
form of the Gaussian, which is known to be the “periodic
Gaussian” appearing in Z2. One can further recognize
that the identity of the two sums is just a particular case
of a more general relation known in mathematics as the
Poisson summation formula, valid not only for a Gaus-
sian but for arbitrary functions. For reference, let us
mention here one particular version [41],
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where f(x) is some function, f̃ is its Fourier transform,
and P is the period of both sums as a function of the
“phase” !.

III. SEMICLASSICAL THEORY AND
MONOPOLES IN THEORIES WITH EXTENDED

SUPERSYMMETRY

A. The setting

All of the following discussion concerns a Euclidean
theory defined on R

3 ⇥ S
1. In this section, unlike in the

following one, all of the fields, including the fermions,
have periodic boundary conditions on S

1, and therefore
supersymmetry is not broken.
We study the weak coupling g ⌧ 1 scenario, which

makes the instantons and their constituents – as well
as the monopoles with actions/masses O(1/g2) – heavy
enough to trust the dilute gas approximation. This lets
us focus on a single object and avoid finite-density (many-
body) complications. In the N = 4 theory, the charge
does not run and g is simply an input parameter. In
the N = 2 theory, however, the coupling does run, and
one needs to select the circumference of the circle � to
be small enough such that the corresponding frequencies
⇠ 2⇡/� are large enough to ensure weak coupling.
Compactification of one coordinate to the circle is

needed to introduce “holonomies,” gauge invariant in-
tegrals over the circle

H
dxµA

µ
,
H
dxµC

µ of the electric
and magnetic potentials, respectively. Their values can
have nonzero expectation values, which can be viewed
as external parameters given by Aharonov-Bohm fluxes
through the circle induced by fields in extra dimensions.
These holonomies will play important role in what fol-
lows. Dorey et al. [42] call these external parameters !

and �, respectively.
Finally, in order to make the discussion simpler, one

assumes the minimal non-Abelian color group SU(Nc)

Poisson summation formula
can be used to derive

the monopole Z

instanton-dyons with 
winding number n

5

to remind the reader that the two circles (or the double
torus) at play are the angle ↵ 2 [0, 2⇡] related with the
rotation of the monopole in ordinary/color space and the
compactified coordinate ⌧ 2 [0,�].

IV. SEMICLASSICAL THEORY AND
MONOPOLES IN PURE GAUGE THEORIES

Now consider theories without adjoint scalars, which
do not have an obvious ’t Hooft-Polyakov monopole so-
lution. One example of such a theory discussed in Ref.
[42] is the N=1⇤ theory obtained from the N=4 theory
by giving a mass to the three chiral multiplets, which, in
the IR, eliminates 3 out of 4 fermions and all 6 scalars.
We will not discuss this particular case, but proceed di-
rectly to pure gauge theory, starting from the instantons.

A. Finite temperature instanton-dyons with an
arbitrary time winding

At zero temperature, the Euclidean space R
4 is sym-

metric in all four coordinates, and thus the corresponding
saddle points of the integral over fields – the instantons
– are 4d spherically symmetric. At finite temperatures,
Euclidean time is defined on the circle ⌧ 2 [0,�]. The
corresponding solitons – the calorons – are deformed pe-
riodic instantons.

In order to keep the weak coupling and the small den-
sity approximation valid, we need to consider su�ciently
high T . What this means practically will be discussed at
the end of the paper. For simplicity, for now we will also
ignore the issue of a dynamically generated potential and
mean value of the electric holonomy on the time circle,
and continue to consider it to be an external parameter;
we are therefore considering a “deformed” gauge theory.

The presence of the holonomy is known to split the
calorons intoNc constituents [29–31] known as instanton-
dyons (or instanton-monopoles). The holonomy eigenval-
ues µi, i = 1 . . . Nc enter the gluon and instanton-dyon
masses via their di↵erences ⌫i = µi+1 � µi. We will
consider only the simplest case of the number of colors
Nc = 2, in which case there is a single holonomy parame-
ter. The caloron is composed of two types of the self-dual
dyons, known as the time-independent M dyon and the
time-twisted L dyon [44].

Following the discussion above, we need to consider a
larger set of saddle-point configurations with all possible
periodic paths. To be explicit, let us derive the corre-
sponding semiclassical configurations. One starts with
the static BPS monopole, with the A0 component of the
gauge field now as the adjoint scalar. In the simplest

“hedgehog” gauge, the gauge fields are
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where na = xa/r is the spatial unit vector and v is the
VEV of A4 at large distances r ! 1.
The twisted solution is obtained in two steps. The first

is the substitution

v ! n(2⇡/�)� v , (13)

and the second is the gauge transformation with the
gauge matrix

⌦̂ = exp
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where we recall that ⌧ = x
4 2 [0,�] is the Matsubara

time. The derivative term in the gauge transformation
adds a constant to A4 which cancels out the unwanted
n(2⇡/�) term, leaving v, the same as for the original
static monopole. After “gauge combing” of v into the
same direction, this configuration – we will call Ln – can
be combined with any other one. The solutions are all
self-dual, but the magnetic and (the Euclidean) electric
charges are negative for positive n, opposite to the orig-
inal BPS monopole M for which both are positive.
The action corresponding to this solution is

Sn = (4⇡/g2)|2⇡n/� � v| . (15)

The contribution to the partition function requires the
calculation of the pre-exponent, due to quantum fluctu-
ations around the Ln solution. Following Appendix C of
Ref. [32], this can be extracted from the contribution of
the L dyon, which in turn was derived from the explicit
calculation of the moduli for the finite temperature in-
stanton (M+L system) in Ref. [44]. For the color SU(2)
group, taking the limit of large separation the L dyon,
the density has the form
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with ⌫̄ = 1 � ⌫ and ⌫ = vT/2⇡. Unlike the theo-
ries with extended supersymmetry, there are no cancel-
lations in the determinant of the nonzero modes between
bosons and fermions, and for Ln classical configurations
those have not yet been calculated explicitly. On general
grounds, it is expected that it should append the part
from the moduli such that the correct running coupling
at the relevant scale ⇠ 2⇡T ⌫̄ is reproduced. This means
that one expects the exponent to read
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to remind the reader that the two circles (or the double
torus) at play are the angle ↵ 2 [0, 2⇡] related with the
rotation of the monopole in ordinary/color space and the
compactified coordinate ⌧ 2 [0, �].
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The action corresponding to this solution is
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ations around the Ln solution. Following Appendix C of
Ref. [32], this can be extracted from the contribution of
the L dyon, which in turn was derived from the explicit
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where the coupling g0 is the defined at the normalization
scale p0. Similarly, the power of the action in numerator
must be appended by the two-loop corrections to the two-
loop beta function, and so on.

For our subsequent discussion, we will ignore the run-
ning and only keep the first term, taking the mean cou-
pling to be just a constant at a characteristic p0 =
2⇡T h⌫̄i, say

S0 ⌘ SL + SM =
8⇡2

g20

= 10 . (18)

The simulation of instanton-dyon ensembles [32] were
done for S0 ranging from 5 to 13, and thus defining a
rather large range of dyon densities. Higher-twist instan-
tons Ln for n > 1 or n < 0 are all strongly suppressed
and in practice can be ignored; the instanton-dyon en-
semble calculations performed in Ref. [32] only included
the n = 0 time independent dyon M and the first twisted
dyons L1 because, in this range of temperatures, the
holonomy phase ! changes from a small value to ⇡ at
the confining phase transition, where ! and 2⇡ � ! are
comparable.

In the present calculation, we will keep all of them,
preserving exact periodicity, and write the semiclassical
partition function as

Zinst =
X
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4⇡
g20
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|2⇡n�!|

(19)

It is periodic in the holonomy, as it should be. Note that,
unlike in Eq. (11), it has a modulus rather than a square
of the corresponding expression in the exponent. This
is due to the fact that the sizes of Ln and their masses
are all defined by the same combination |2⇡n� !|T and
therefore the moment of inertia ⇤ ⇠ 1/|2⇡n� � v|.

B. The Poisson transformation

A key point of this paper is that the existence of the
semiclassical instanton partition function implies the ex-
istence of monopoles moving and rotating in their collec-
tive coordinates. According to the general Poisson rela-
tion, Eq. (6), the Fourier transform of the corresponding
function appearing in the sum in Eq. (19) reads

F

⇣
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⌘
⌘
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⌫=�1
dx ei2⇡⌫�A|x|

=
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and therefore the monopole partition function is
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where
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where the last equality is for q ⌧ 4⇡/g20 .

V. WHAT HAVE WE LEARNED ABOUT QCD
MONOPOLES?

Before summarizing our answer to this question, let
us first recall the setting and conclusions of the pre-
ceding section. The coupling is presumed small, so
4⇡/g20 � 1 and the semiclassical calculation is well con-
trolled. This implies that the corresponding temperature
is “high enough.” The holonomies !, �, treated as ex-
ternal Aharonov-Bohm phases imposed on the system,
create a certain “Higgsing” of the gluons, with only the
diagonal ones remaining massless. Calorons are split into
the instanton-dyons, and the semiclassical partition func-
tion, appended by all Ln contributions, can be calculated.
What we would actually like to study is QCD with

quarks at temperatures around the deconfinement tran-
sition T ⇠ Tc. Indeed, heavy-ion collisions create mat-
ter with T between roughly 2Tc ⇡ 300 MeV and 0.5Tc.
Most finite-T lattice studies are devoted to this tempera-
ture range as well. While the coupling seems to be small
enough to keep the semiclassical approach reasonable,
S0 = 8⇡2

/g
2 ⇠ 10, when including the pre-exponent, one

finds that the ensemble is not really dilute, and in order
to perform the integration over the collective variables,
one needs to solve a nontrivial many-body problem of
a dense instanton-dyon plasma. The instanton-dyon en-
semble in this scenario does shift the potential for the
electric holonomy dynamically to its “confining” value,
for T < Tc. Semiclassical ensembles of instanton-dyons
also explain chiral symmetry breaking, and their changes
with flavor-dependent quark periodicity phases. Further
development of the semiclassical theory is, therefore, well
justified.
The main point of this paper, however, is di↵erent:

any semiclassical partition function, once derived, can be
Poisson-rewritten into an identical form, with the sum
over certain physical states. We have shown how one
can do so for pure gauge theory, without scalars, using
a relatively simple, or even schematic, form of its semi-
classical partition function, for which we calculated its
Poisson dual. We further argued that the resulting par-
tition function can be interpreted as being generated by
moving and rotating monopoles.
The results are a bit surprising. First, the action of a

monopole, although still formally large in weak coupling,
is only a logarithm of the semiclassical parameter; these
monopoles are therefore quite light. Second is the issue
of monopole rotation. The very presence of an object

q is angular momentum 
of rotating monopole,
so it is electric charge

(Zee)
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simple toy examplein this paper



Therefore we now understand why 
The density of  monopoles depends on T  

as an inverse power of log(T) , not power of T => 
It is because they are not really semiclassical objects!
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FIG. 3. ⇢(T )/T 3 as a function of T/Tc. Data have been obtained on a 483 ⇥ Lt lattice, with
variable Lt and at � = 2.75 (first 9 points), and variable � at Lt = 4 (last 10 points).
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p
(⇢(T )/T 3 versus log(T/Tc). The data are the same reported in Fig. 3. The linear
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Fig. 2.6 The normalized monopole density ⇢/T 3
for the SU(2) pure gauge theory as a function

of the temperature, in units of the critical temperature T/Tc, above the deconfinement transition.

and D’Elia [D’Alessandro and D’Elia, 2008]. Positive correlation for monopole-
antimonopole correspond to attraction, and negative ones for monopole-monopole
pair to repulsion. The shape of the correlator is exactly what one expects in a
Coulomb plasma of charges. The dashed lines are fits to the part of the correlators
where the e↵ect is small and can be treated by a linearized Debye theory: such fits
produce values of the e↵ective magnetic coupling g2/4⇡ = ↵m.

In Fig.2.7(right) from [Liao and Shuryak, 2008b] the fitted couplings are plotted
versus the temperature. As one can see, they indeed run opposite to the asymptotic
freedom, becoming stronger at high T . Furthermore, its reflection (the bottom of the
plot) is in qualitative agreement with the perturbative asymptotic freedom formula.

As one can also realize from these plots, by T = Tc magnetic coupling decreases
only to become ↵m ⇡ 1, not yet small. This means that the magnetic component
of sQGP is also a liquid – the title of [Liao and Shuryak, 2008b]. If it would be
otherwise, monopoles would have large mean free paths, in contradiction to heavy
ion data!

D’Alessandro, A. and D’Elia, M. (2008).  
Magnetic monopoles in the high temperature  

phase of Yang-Mills theories. 
 Nucl. Phys., B799:241–254. 0711.1266.  
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Summary

• Semiclassical objects at finite T are instanton-dyons, fractions
of instantons. Their interactions and ensembles for SU(2) and SU(3) gauge 
theories, with and without quarks studied
• Very cleanly they are seen in lattice configurations via Dirac zero  (and 

quasizero) eigenmodes. Even when overlapping, the lattice shapes follow 
semiclassical formulae very accurately (?)

• in QCD deconfinement and chiral transitions are close, but 
• can be moved by two different deformations: (1) Polyakov line suppression; 
• (2) changes of fermion periodicity phases  
• Poisson duality for monopoles to instanton-dyons explains the monopole 

density(T) and why monopoles of pure gauge theories or QCD are not 
semiclassical


