@5 J.S. DEPARTMENT OF ‘ ;‘ . \
€N\ Office of \

O ENERGY | science

Testing darK
matter mteraetmr\“s

1»15

through eosmld
history

Tracy Slatyer «1‘ 3 1

i

.| Theoretical Physics Colﬁoq ‘ |'
* 7 September 2022

'»‘r ".

| Based on work with
Hongwan Liu, Wenzer an,. YR o
Greg Rldgway and Yitian SUn {



Outline

The puzzle of dark matter

Windows on cosmic history: the cosmic microwave background
(CMB), Lyman-alpha forest, primordial 2| cm radiation

How energy injection originating from (non-gravitational) dark
matter interactions could change the early universe

Some recent/upcoming developments:

— Using neural networks as efficient function approximators to
improve the signal calculation

— Treating low-energy photons/electrons in detail

— Full prediction of the space of post-recombination CMB
spectral distortions from exotic energy injections






What is dark matter?

We know it;

— Doesn’t scatter/emit/absorb light
(really““transparent matter™!) but
does have mass (and hence gravity).
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What is dark matter?

We know it;

— Doesn’t scatter/emit/absorb light
(really*““transparent matter™!) but
does have mass (and hence gravity).

— |s ~84% of the matter in the universe.

— Forms the prlmordlal scaffolellng for
the visible universe.” . - . .

~ Férms large clouds or“halos around .
galaxies. | | A ; »-
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What is dark matter?

We know it: Open questions:

— Consequently, cannot be
explamed by.any physics 3
‘we currently understand. .
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What is dark matter?

We know it: Open questions:

— What is it made from!?
e.g.a new particle! Many
new particles? Ancient
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What is dark matter?

We know it: Open questions:

— What is it made from!?
e.g.a new particle! Many
new particles! Ancient

black holes!?
— Consequently, cannot be

explamed by.any physics =~ = ~ Wh‘e"e did it come from!
we currently understand, " Does it interact with
_ | ; - ordinary partlcles7 If so
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violating

Supersymmetry
Sector DM
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Light Extra Dimensions

Force Carriers

\ Theories of
Sterile Neutrinos . D ark M atte r

Warped Extra

' Dimensions

Little Higgs

QCD Axions
Taken from talk by Tim Tait,

=1 Snowmass |uly 2013 Axion-like Particles N—




Searches for DM interactions

— There is a large multi-faceted search program for signatures of dark matter, beyond the
signals | will talk about today

— One “standard” classification:

SM

Indirect detection Direct detection Accelerators

Time

— Not an exhaustive list - in recent years also a great deal of attention to oscillation (e.g. photon-
axion conversion), absorption (in direct detection experiments for light particles), etc

— Many of these possible interaction structures can be tested with cosmological/astrophysical
observables
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The Cosmic Frontier in

the next |0 years

Taken from talk by Aaron Chou, Snowmass July 2022
Dark Matter Mass
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The Cosmic Frontier in
the next |0 years

Taken from talk by Aaron Chou, Snowmass July 2022
Dark Matter Mass
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ldentifying dark matter

There is an enormous range of possible DM scenarios, spanning tens of orders
of magnitude in mass.

Many of these scenarios are ~equivalent from the perspective of gravitational
effects

— exceptions: DM is very light (fuzzy DM, ~10-2! eV), very heavy (PBHs), warm/
fast-moving, or strongly self-interacting (cross section/mass > 0.1 cm?/g)

Non-gravitational interactions in principle provide much greater discriminating
power (if they exist)

Large ongoing experimental program to search for such interactions in
accelerators, direct-detection searches, precision experiments, astrophysical
observations

Can regard such interactions as providing an energy transfer channel between
dark and visible sectors - could have observable effects on cosmology

Interactions can be either elastic (competes with Earth-based direct-detection
experiments) or inelastic (focus of this talk)



Annihilation

/ SM
quarks? leptons!?

¥

! gauge bosons!
new Cascading decays according
DM physics SM 4 to known SM processes
dark matter known particles long-lived known particles

— Tightly linked to DM abundance in scenarios where (1) DM was in thermal
equilibrium with SM in early universe, (2) annihilation depleted the initial abundance.

— Such scenarios favor a benchmark “thermal relic”’ cross section:

1 1
(V) v ———————— ~ —————— ~ 2 x 107 *%cm? /s

mPlanckTeq (1OOT€V)2



Decay

also applicable to Hawking

radiation from primordial black

SM holes, decays from a metastable
state to a lighter state, etc

quarks? leptons!?
gauge bosons!?
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The cosmic microwave
background radiation

— Redshift z > 1000 - universe is filled Image credit: European Space Agency / Planck Collaboration
with a tightly-coupled plasma of spatial information: describes pattern of
electrons, protons and photons, + oscillations in density and temperature
dark matter and neutrinos. Almost

O/ i il spectral information: near-perfect blackbod
|00% ionized. P P y
Wavelength [mm]

— Redshift z ~ 1000 - ionization level ’ 1 0.67

drops abruptly, cosmic microwave s, FIRAS data it 4000 srobar
) . ackbody
background (CMB) photons begin to

stream free of the electrons/protons.

Intensity [MJy/sr]

— The cosmic microwave background
provides a snapshot of the z~1000
universe - oldest light we measure,
earliest direct observations of our
COSMOS.

deviations from'®
blackbody <10->




Signatures in the CMB (I)

— WVe can change the observed CMB either by:

— z > 1000: Modifying the target of the “snapshot” - change the plasma to which the
photons couple before emission

— z < 1000: Changing the photons on their way to us - modifying the “picture” after it is
taken

Hu & Dodelson ’02
—  Classic example of first case: temperature/

density oscillations in plasma are driven by
competition between gravity and radiation
pressure.

(d) Matter

—  Presence of matter that feels gravity but not
radiation (“dark’) changes properties of

T | \ || ——
oscillations - used to measure DM 002 504 0
abundance.

—  Scattering between DM and ordinary matter —  Heating of the ordinary matter by DM
would make DM not-quite-dark, and likewise annihilation/decay can also modify the
modify the oscillation pattern photon/baryon plasma, changing the

energy spectrum of the CMB.



Signatures in the CMB (ll)

— Second case (modification after emission):“cosmic dark ages” span
redshift z ~ 30-1000, ionization level expected to be very low.

— Increasing ionization would provide a screen between CMB
photons and our telescopes - can be sensitively measured.

— Annihilation/decay could also produce extra low-energy photons,
again modifying CMB energy spectrum.
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Signatures in the CMB (ll)

— Second case (modification after emission):“cosmic dark ages” span
redshift z ~ 30-1000, ionization level expected to be very low.

— Increasing ionization would provide a screen between CMB
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redshift z ~ 30-1000, ionization level expected to be very low.
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— Second case (modification after emission):“cosmic dark ages” span
redshift z ~ 30-1000, ionization level expected to be very low.

— Increasing ionization would provide a screen between CMB
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21cm and the cosmic
thermal history

— To measure the gas temperature at late times, we can search for atomic transition
lines, in particular the 21cm spin-flip transition of neutral hydrogen.

— “Spin temperature” Ts characterizes relative abundance of ground (electron/proton
spins antiparallel) and excited (electron/proton spins parallel) states - Ts gives the
temperature at which the equilibrium abundances would match the observed ratio.

— |f Ts exceeds the ambient radiation temperature T, there is net emission;
otherwise, net absorption.

Continuous Spectrum
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2 lcm and the cosmic
thermal history

— To measure the gas temperature at late times, we can search for atomic transition
lines, in particular the 21cm spin-flip transition of neutral hydrogen.

— “Spin temperature” Ts characterizes relative abundance of ground (electron/proton
spins antiparallel) and excited (electron/proton spins parallel) states - Ts gives the
temperature at which the equilibrium abundances would match the observed ratio.

— |f Ts exceeds the ambient radiation temperature T, there is net emission;
otherwise, net absorption.

Continuous Spectrum

Absorption Lines




Expectations for a 21cm signal

9.55 10.75 12.18 13.89 5.95 30.62 37.30
z

— First stars turn on = flux of Lyman-alpha photons - couples Ts
to the hydrogen gas temperature T gs.

— We expect Tgs < Tr initially - gas cools faster than the CMB
after they decouple - leading to absorption signature.

— Exotic heating could lead to an early emission signal [e.g. Poulin
et al 'l 7].

— Later, stars heat Tgs > Tr, expect an emission signal.

— There are a number of current (e.g. , : :

’ ’ ) and fUture (e-g- ’ ’ ’ _ — Standard

, ) telescopes designed to search for a 21cm signal, | —-- UMb

: . : | _ . .
potentially probing the cosmic dark ages & epoch of Redshift (14 =)

reionization.

— Any measurement of global T2 will set a bound on Tgs.



The Lyman-alpha forest

— After the universe mostly reionizes,
there are still clouds of neutral
hydrogen in the universe - light passing
through these clouds produces the
“Lyman-alpha forest” of absorption
features in the spectrum.

-
L

Intensity of light

— Tgs affects the width of the absorption . . 1 X
i . 800 1000 1200 1400 1600
featu res via DOPPIer broadenlng. Colour (wavelength) of light/A Andrew Pontzen

— Temperature also affects the
distribution of the hydrogen gas -
smoothed out by the gas pressure on
small scales.

— Several recent studies [VValther et al
'18, Gaikwad et al "20] have compared
measurements of the Ly-& forest with
simulations, to extract the gas
temperature for z~2-6.

Gaikwad et al ‘20
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lonization vs heating vs
spectral distortions

— Consider the power from DM annihilation/decay - how many hydrogen ionizations?

— 1 GeV/13.6 eV~ 108

— If 10-8 of baryonic matter were converted to energy, would be sufficient to ionize entire universe.
There is ~5x as much DM mass as baryonic mass.

— If one in a billion DM particles annihilates (or decays), enough power to ionize half the hydrogen in
the universe...
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— If 10-8 of baryonic matter were converted to energy, would be sufficient to ionize entire universe.
There is ~5x as much DM mass as baryonic mass.

— If one in a billion DM particles annihilates (or decays), enough power to ionize half the hydrogen in
the universe...

— How much spectral distortion to the CMB!?

— Radiation and matter energy densities were equal at z~3000, ratio scales as (1+z)

— One-in-a-billion fraction of mass energy liberated = distortion of energy spectrum of CMB at level
of one in 106 or less. Much less sensitive than ionization for z < 1000.

— How much change to the gas temperature?

— Down to z~200, CMB and ordinary matter are coupled in temperature - need to heat whole CMB,
not just matter. Same estimate as for spectral distortion.

— Baryon number density is ~9 orders of magnitude smaller than CMB number density - heating
divided between a much smaller number of particles for z < 200. One-in-a-billion fraction of mass
energy liberated => increase baryon temperature by ~5 eV per particle ~ 50,000 K - two orders
of magnitude higher than baseline temperature at decoupling.
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lonization vs heating vs
spectral distortions

— Consider the power from DM annihilation/decay - how many hydrogen ionizations!?

— 1 GeV/13.6 eV~ 108

— If 10-8 of baryonic m ‘ant to ionize entire universe.

There is ~5x as m_ Powerful probe of annihilation/

decay for z < 1000

— If one in a billion DM <r to ionize half the hydrogen in

the universe...

— How much spectral distortion to the CMB!?

— Radiation and matter energy densities v PrQbe of ph)’SiCS at z > 1000, or

— One-in-a-billion fraction of mass ene. non-ionizing processes (e.g. B at level
of one in 106 or less. Much less sensitive Scattering)

— How much change to the gas temperature?

— Down to z~200,CMB an - ~ ~lad in temperature - need to heat whole CMB,
not just matter. ¢

' <
— Baryon numt potentlally d Iarge effect for z MB number density - heating

divided betwee. 200 - could be visible in 21cm .. One-in-a-billion fraction of mass
energy liberated => ... -v per particle ~ 50,000 K - two orders
of magnitude higher than baseline temperatwure at decoupling.



Example: estimating
limits on decaying DM

— Fraction of DM decaying per e-fold in a given epoch ~
ifetime of cosmos / lifetime of DM

— Thus constraining a 10-? fraction of DM decaying when the
universe was |10% of its present age (O(100 million years)
leads to limits on lifetimes of 108 x age of the universe ~
few x 102> s

— Similar constraints for 10-!! decaying fraction when the
universe was O(10¢ years) old, i.e. the CMB epoch

— Can also probe tiny metastable components decaying with
lifetimes > 106 years but < 1010 years



computing modified
ionization/thermal
histories

DarkHist

— To study any of these effects in detail, we need to know how particles

injected by annihilation/decay transfer their energy into heating,
ionization, and/or photons.

— My collaborators (Hongwan Liu, Greg Ridgway) and | have written a
Python package to:

— model energy-loss processes and production of secondary particles,
— accounting for cosmic expansion / redshifting,

— with self-consistent treatment of exotic and conventional sources
of energy injection.

— Publicly available at https://github.com/hongwanliu/DarkHistory



https://github.com/hongwanliu/DarkHistory

Predicting a signal

Annihilation/decay/etc injects high-energy particles
‘l' If unstable, decay with Pythia or

similar program
Time-dependent injection of high-energy photons + e*e-
(others largely escape or are subdominant; neglect)
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Predicting a signal

Annihilation/decay/etc injects high-energy particles

If unstable, decay with Pythia or
similar program

Time-dependent injection of high-energy photons + e*e-
(others largely escape or are subdominant; neglect)
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The photon-electron cascade

Based on code developed in TRS, Padmanabhan & Finkbeiner 2009; TRS 2016

ELECTRONS

Inverse Compton
scattering (ICS) on the
CMB.

Excitation, ionization,
heating of electron/H/
He gas.

Positronium capture
and annihilation.

All processes fast
relative to Hubble time:
bulk of energy goes
into photons via ICS.

Injected y ray

Schematic of a typical cascade:
initial y-ray
-> pair production
-> ICS producing a new vy
-> inelastic Compton scattering
-> photoionization

PHOTONS

-

Pair production on the
CMB.

Photon-photon
scattering.

Pair production on the
H/He gas.

Compton scattering.
Photoionization.

Redshifting is important,
energy can be deposited
long after it was injected.

Note: rates depend on gas ionization level



From energy deposition
to modified histories

Coupled equations govern
evolution of the temperature
and ionization history
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From energy deposition
to modified histories

Coupled equations govern
evolution of the temperature
and ionization history

baseline exotic reionization/astro

Energy deposition to
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bbbar_noBR = main.evolve(

L
R' I n n I n DM_process=’swave’, mDM=50e9,
sigmav=2e-26,
primary=’b’, start_rs=3000.,

— DARKHISTORY is provided with extensive it = 55, = O G
(ov) =2x 1072 cm3 51
example notebooks. X

coarsen_factor=32, backreaction=False,
struct_boost=phys.struct_boost_func()

Ionization History

— |t contains built-in functions for:

~— No Backreaction
~— With Backreaction
=== Baseline

Hydrogen Ionization Fraction xyy

— redshift dependence corresponding to DM
decay or s-wave annihilation

Redshift (1 + z)

— injection spectra of electrons/positrons/ rr——
photons corresponding to all SM final states 4 0, = PO G

’F (ov) =2x 1076 cm®s7!

— Example: ionization/temperature histories for a
50 GeV thermal relic annihilating to b quarks.

Matter Temperature T, [K]

- No Backreaction
—— With Backreaction
=== Baseline

— Easy to turn on/off “backreaction” effects
(changes to ionization level from earlier energy
injection modifies particle production cascade). Redsii 1+




Annihilation limits from
ionization + the CMB

— The effect of DM annihilation on the CMB is universal in the keV-TeV+ range [TRS '16]:
for every model where DM annihilates with ~constant cross section during dark
ages, effect on CMB can be captured by a universal shape with a model-dependent
normalization factor (which can be computed using DARKHISTORY or TRS ’16).

— One analysis simultaneously tests all annihilation channels, huge mass range.

— Thermal relics with unsuppressed annihilation to non-neutrino SM final states (or
intermediate states that decay to SM particles) can be ruled out for masses below
~10 GeV. Light DM needs a different origin mechanism, or suppressed annihilation.

Excluded by CMB ._.._’j;.,.-.‘.':... , e r‘ r Plancl(
' ; Collaboration
AMS/PAMELA positron fraction % ’ I 8 I 807.06209
Thermal cross-section — D)
w\AMS anti-proton excess _ based on reSUItS

Fermi Galactic center excess OfTRS PRD 4 I 6




Decay limits from CMB
and Lyman-alpha

— For decaying dark matter, comparable bounds from ionization/CMB and
heating/Lyman-alpha constraints.

— Sets some of the strongest limits on relatively light (MeV-GeV) DM decaying
to produce electrons and positrons.

— For short-lifetime decays, can rule out even 10-! of the DM decaying! (for
ifetimes ~10!4 s)

Decay Constraint, y = e7e” p-wave Constraint, xx — e’e”

Vovager |
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Eventual goal: a comprehensive map of the full space of
possible early-universe signatures of exotic energy
injections, allowing us to easily translate arbitrary

energy injection models into observables and
constraints

’3' ‘ .'- ;;_,,.'

We alread have somethln 3 very close to th|s fo
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DARKHISTORY with g
neural networks %

[Yitian Sun & TRS, 2207.06425]

— Goal: store the transfer functions in a more efficient/
compact way

— improve usability

— facilitate adding extra parameter dependences
(e.g. on gas density, for future inhomogeneity

studies + factorizing out (), dependence)

— (Observation:

— neural networks can serve as general function
approximators

— the transfer functions have features and
structure, but have significant regions where

they are quite smooth - much less information Example slice through a transfer
than # of pixels function at 1+z=300, xH=0.6




Results

— Network is ~400x smaller than tables (may be possible to do even better)

— Speed of code with NN evaluation is comparable to that with table lookup

— Accuracy in temperature/ionization histories is <27% (often much lower)

— DARKHISTORY also predicts a component of the CMB spectral distortion -
also well reproduced, although with larger errors (up to 10%)




Comparison of histories +
spectral distortion
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Detailed treatment of
the low-energy cascade

[Hongwan Liu,Wenzer Qin, Greg Ridgway, TRS, to appear]

— Present status: once particles cool below 3 keV,

— for electrons/positrons, we interpolate the published results of the
MEDEA code over energy - but only 7 energies for interpolation +
only evaluates integrated energy in spectral distortion, not
spectrum

— we track photons until they ionize or fall below |3.6 eV; we assign
photons in the 10.2-13.6 eV range to hydrogen excitation and
assume they free-stream below 10.2 eV

— We also use the three-level atom approximation (with fudge factors) to
study the evolution of the ionization history, and assume a blackbody
radiation field - may not be accurate in the presence of energy injection



Goals of upcoming work

Carefully track the joint evolution of the H/He atoms and the
radiation field after recombination, taking into account a large
number of atomic levels

Take into account high-frequency distortions to the blackbody
spectrum that can affect ionization/recombination/excitation
rates

Extend our code for electron/positron energy losses down to
energies where the electrons thermalize with the CMB (cross-
checked against existing MEDEA code at sample points)

Predict the final distortion to the CMB blackbody spectrum
produced by energy injection



Preliminary spectral
distortion results

— Previous studies have examined the spectral distortion from the high-
redshift, fully ionized universe (e.g. Chluba et al '19,Acharya & Khatri ’|9)

— WVe have checked we agree with their results when we match assumptions

— We have also
confirmed we
accurately reproduce
the Standard Model
spectral distortion
from recombination
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— We can now predict
the full distortion
including energy
Injection
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Preliminary constraints
on low-mass DM
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Summary

— Cosmological datasets can provide powerful probes of the non-gravitational

properties of dark matter, and other exotic physics

— WVe already have stringent and broadly applicable limits on annihilating and
decaying DM, especially at sub-GeV mass scales, from the cosmic microwave

background, and complementary+competitive bounds from Lyman-alpha for
leptonically decaying light DM

— We have developed a new public numerical toolbox, DARKHISTORY, to self-
consistently compute the effects of exotic energy injections on the cosmic
thermal and ionization histories

~— DARKHISTORY now includes a compact version relying on neural networks, which
should also facilitate further upgrades (including additional parameter

dependence, inhomogeneity, etc)

— Work is in progress to fully treat the low-energy particle cascade and predict the
full space of possible CMB spectral distortions from energy injection



