

Dam Thanh Son (University of Chicago) Igor Shovkovy's Theoretical Physics Colloquium November 3, 2021

References

- H. Hammer and D.T. Son, arXiv:2103.12610 (PNAS 2021)
- T. Schäfer and G. Baym, arXiv:2109.06924 (PNAS 2021)

Summary

- Conformal invariance
- Nonrelativistic conformal invariance
- Fermion at unitarity
- Unnuclear physics
- Nuclear reaction with final-state neutrons

Role of symmetry in physics

- Symmetries play a very important role in physics
- In particular, spacetime symmetry is key to understanding of elementary particles

Poincaré symmetry

- 1 time and 3 spatial translations: 4 P^{μ} $x^{\mu} \rightarrow x^{\mu} + a^{\mu}$
- 3 rotations + 3 boosts $M^{\mu\nu}$
- Elementary particles: irreducible representations of the Poincaré group, characterized by Casimirs
 - mass and spin when $m \neq 0$
 - when m = 0: helicity instead of spin

Conformal symmetry

- An extension of Poincaré group: conformal symmetry
- All transformations that preserve angle
- include: dilatation $x^{\mu} \rightarrow \lambda x^{\mu}$
- and 4 "proper conformal transformations"
- Field theory with this symmetry: conformal field theory
- applications in theoretical physics including phase transitions

CFT in particle physics?

- The Standard Model is not a conformal field theory
- CFT cannot have massive particles

•
$$E = \sqrt{p^2 + m^2}$$
 not invariant under $E \to \lambda E$,
 $p \to \lambda p$

 can only have massless particles or some fuzzy "stuff"

Georgi's unparticle H. Georgi, 2007

• In CFT:
$$\langle \mathscr{U}(x)\mathscr{U}(0)\rangle = \frac{c}{|x|^{2\Delta_{\mathscr{U}}}}$$

• In momentum space $G_{\mathcal{U}}(p) \sim p^{2\Delta_{\mathcal{U}}-4}$

• Particle:
$$\Delta_{\phi} = 1$$
, $G_{\phi}(p) \sim p^{-2}$

- but otherwise the propagator has cuts, not poles
- Energy is not fixed when momentum is fixed: E > pc
- Georgi: unparticle, hypothesize that it can be a hidden sector coupled to the SM

Signal of unparticles

- Energy spectrum of B is continuous
- near end point depends on the dimension of \mathscr{U} :

•
$$\frac{d\sigma}{dP_{\mathcal{U}}^2} \sim (P_{\mathcal{U}}^2)^{\Delta-2}$$

Search for unparticles

CMS collaboration: no unparticle found so far at LHC

- Nonrelativistic conformal field theory is fruitful
 - Realized in nature
 - has experimentally verifiable consequences

Schrödinger symmetry

- Nonrelativistic version of conformal symmetry: "Schrödinger symmetry"
- Symmetry of the free time-dependent Schrödinger equation

$$i\partial_t \psi = -\frac{\nabla^2}{2m}\psi$$

Galilean boost: $\tilde{\psi}(t, \mathbf{x}) = e^{im\mathbf{v}\cdot\mathbf{x} - \frac{i}{2}mv^2t}\psi(t, \mathbf{x} - \mathbf{v}t)$

Dilatation: $\tilde{\psi}(t, \mathbf{x}) = \psi(\lambda^2 t, \lambda \mathbf{x})$

Special conformal transformation:

$$\tilde{\psi}(t, \mathbf{x}) = \frac{1}{(1 + \alpha t)^{3/2}} \exp\left(\frac{i}{2} \frac{m\alpha x^2}{1 + \alpha t}\right) \psi\left(\frac{t}{1 + \alpha t}, \frac{\mathbf{x}}{1 + \alpha t}\right)$$

Schrödinger algebra

 \mathbf{O}

• Free particles $(\mathbf{x}_a, \mathbf{p}_a), a = 1, 2, ... N$

•
$$\mathbf{P} = \sum_{a} \mathbf{p}_{a}$$
 $H = \sum_{a} \frac{p_{a}^{2}}{2m}$

p x

- $\mathbf{K} = \sum m \mathbf{x}_a$ Galilean boosts
- $D = \sum \frac{1}{2} (\mathbf{x}_a \cdot \mathbf{p}_a + \mathbf{p}_a \cdot \mathbf{x}_a)$ dilatation
- $C = \frac{1}{2}m\sum x_a^2$ proper conformal transformation
- Angular momentum
- Mass M = Nm

Schrödinger algebra

$X \setminus Y$	P_j	K_{j}	D	С	Н
P_i	0	$-i\delta_{ij}M$	$-iP_i$	$-iK_i$	0
K _i	$i\delta_{ij}M$	0	<i>iK</i> _i	0	iP_i
D	iP_j	$-iK_j$	0	-2iC	2iH
С	iK_j	0	2iC	0	iD
Н	0	$-iP_j$	-2iH	-iD	0

$$[J_{ij}, N] = [J_{ij}, D] = [J_{ij}, C] = [J_{ij}, H] = 0,$$

$$[J_{ij}, P_k] = i(\delta_{ik}P_j - \delta_{jk}P_i), \qquad [J_{ij}, K_k] = i(\delta_{ik}K_j - \delta_{jk}K_i),$$

$$[J_{ij}, J_{kl}] = i(\delta_{ik}J_{jl} + \delta_{jl}J_{ik} - \delta_{il}J_{jk} - \delta_{jk}J_{il}).$$

Special role of dilatation

$$D = \sum \frac{1}{2} (\mathbf{x}_a \cdot \mathbf{p}_a + \mathbf{p}_a \cdot \mathbf{x}_a)$$

Dilatation operator rescales coordinates and momenta:

•
$$p \to \lambda p, x \to \lambda^{-1} x$$
 $[D, P_i] = iP_i$

• $H = p^2/2m \rightarrow \lambda^2 H$ [D, H] = 2iH

Beyond free theory

- Is the Schrödinger symmetry good only for noninteracting theory?
- Most general Hamiltonian: not scale-invariant $[D, H] \neq 2iH$
- There exists a way to have the symmetry in interacting theory: unitarity regime

Unitarity regime $V(r) \uparrow r$ $V(r) \uparrow r$

- Take a potential of a certain shape (e.g., square well)
- shrink the range, adjusting the depth so that there is one bound state at threshold
- In the language of scattering theory: infinite scattering length, zero range
- Interaction has no energy/length scale: Hamiltonian is scale invariant [D, H] = 2iH

Properties of unitary gas

- A gas of spin-1/2 particles with fine-tuned to unitarity
- Can be realized with trapped cold atoms Feshbach resonance
- Scale invariance: physical quantities can be figured out by scaling arguments
- Example: Bertsch parameter ξ (T = 0)

•
$$\frac{E}{N} = \xi \frac{3}{5} \varepsilon_F$$
, $\varepsilon_F = \frac{1}{2m} (3\pi^2 n)^{2/3}$

Shear and bulk viscosities

• Scaling:
$$\eta, \zeta = \hbar n f_{\eta,\zeta} \left(\frac{T}{\varepsilon_F}\right)$$

• Conformal invariance: $\zeta = 0$

Nonrelativistic CFT

Y. Nishida, DTS, 2007

- One can build up the formalism of nonrelativistic conformal field theory in analogy with the relativistic theory
- Many notions can be extended
 - primary operators
 - operator-state correspondence

Fermions at unitarity as a NRCFT

•
$$L = i\psi^{\dagger} \left(\partial_t + \frac{\nabla^2}{2m}\right)\psi - c_0\psi^{\dagger}\psi^{\dagger}\psi_{\downarrow}\psi_{\downarrow}\psi_{\uparrow} \quad \Delta[\psi] = \frac{3}{2}$$

- Introducing auxiliary field ϕ

•
$$L = i\psi^{\dagger} \left(\partial_t + \frac{\nabla^2}{2m}\right)\psi - \psi^{\dagger}_{\uparrow}\psi^{\dagger}_{\downarrow}\phi - \phi^{\dagger}\psi_{\downarrow}\psi_{\uparrow} + \frac{\phi^{\dagger}\phi}{c_0}$$

• Propagator of ϕ

$$G_{\phi}(\omega, \mathbf{p}) = \frac{1}{\sqrt{\frac{p^2}{4m} - \omega}}$$

 $\Delta[\phi] = 2 \neq 2 \times \frac{3}{2}$

Renormalization

•
$$G_{\phi}^{-1}(\omega, \mathbf{p}) = c_0^{-1} \mathcal{A} \underline{o}_{\mathbf{p}}$$
e-loop integral

•
$$= c_0^{-1} + \Lambda + \left(\frac{p^2}{4m} - \omega\right)^{1/2}$$

• Unitarity: fine-tuni \mathbf{Ag} so that $c_0 + \Lambda = 0$

• (scattering length:
$$c_0 + \Lambda = \frac{1}{a}$$
)

 Physically: fine-tune the attractive short-range potential to have a bound state at threshold

$$G_{\phi}(\omega, \mathbf{p}) = \frac{1}{\sqrt{\frac{p^2}{4m} - \omega}}$$

Local operators

- Local operators are classified by mass and dimension
 - $[M, O(x)] = -M_O O(x)$
 - $[D, O(0)] = i\Delta_O O(0)$
- Commuting with P and H increases the dimension by
 1 and 2, commuting with K and C by -1 and -2
- Representation theory for operators with $M \neq 0$ is simple

Raising and lowering dimensions

- Operators with $M \neq 0$ are organized in towers
- Dimension raised by P and H, lowered by K and C
- Primary operators: lowest in a ladder [K, O(0)] = [C, O(0)] = 0

Operator-state correspondence

 Dimension of a primary operator = energy of a state in a harmonic potential

• Example: in free theory $[\psi] = \frac{d}{2}$, ground state of 1 particle in harmonic potential: $E = \frac{d}{2}\hbar\omega$

Two-point function of a primary operator

•
$$G_{\mathcal{U}}(t, \mathbf{x}) = -i\langle T\mathcal{U}(t, \mathbf{x})\mathcal{U}^{\dagger}(0, \mathbf{0})\rangle = C\frac{\theta(t)}{(it)^{\Delta}}\exp\left(\frac{iMx^2}{2t}\right)$$

• $G_{\mathcal{U}}(\omega, \mathbf{p}) \sim \left(\frac{p^2}{2M} - \omega\right)^{\Delta - \frac{5}{2}}$

$$\omega - \frac{p^2}{2M}$$
 is the energy in the CM frame

Operator dimensions for fermions at unitarity

- Dimensions of operators: either by field theory or quantum mechanical calculation in a harmonic trap
- Lowest-dimension operators

$N\left(l ight)$	$\mathcal{O}_N^{(l)}$	$\Delta_{\mathcal{O}}$	$E/\hbar\omega$ in $d=3$
2 $(l=0)$	$\psi_\uparrow\psi_\downarrow$	2	2 [30]
3 (l=0)	$\psi_{\uparrow}\psi_{\downarrow}(\partial_t\psi_{\uparrow})$	$5 + O(\bar{\epsilon}^2)$	4.66622 ^[26]
$3 \ (l=1)$	$\psi_{\uparrow}\psi_{\downarrow}(oldsymbol{\partial}\psi_{\uparrow})$	$4 + O(\bar{\epsilon}^2)$	4.27272 ^[26]
4 $(l = 0)$	$\psi_{\uparrow}\psi_{\downarrow}(oldsymbol{\partial}\psi_{\uparrow}{\cdot}oldsymbol{\partial}\psi_{\downarrow})$	$6 - \bar{\epsilon} + (\bar{\epsilon}^2)$	pprox 5.028 ^[33]
5 $(l=0)$	(*)	$9 - \frac{11 \pm \sqrt{105}}{16} \bar{\epsilon} + O(\bar{\epsilon}^2)$	pprox 8.03 ^[33]
5 $(l = 1)$	$\psi_{\uparrow}\psi_{\downarrow}(oldsymbol{\partial}\psi_{\uparrow}{\cdot}oldsymbol{\partial}\psi_{\downarrow})oldsymbol{\partial}\psi_{\uparrow}$	$8-ar\epsilon+O(ar\epsilon^2)$	pprox 7.53 ^[33]
$6 \ (l=0)$	$\psi_{\uparrow}\psi_{\downarrow}(oldsymbol{\partial}\psi_{\uparrow}{\cdot}oldsymbol{\partial}\psi_{\downarrow})^2$	$10-2\bar\epsilon+(\bar\epsilon^2)$	$pprox 8.48~^{[33]}$

 $(*) = a\psi_{\uparrow}\psi_{\downarrow}(\partial\psi_{\uparrow}\cdot\partial\psi_{\downarrow})\partial^{2}\psi_{\uparrow} + b\psi_{\uparrow}\partial_{i}\psi_{\downarrow}(\partial\psi_{\uparrow}\cdot\partial\psi_{\downarrow})\partial_{i}\psi_{\uparrow} + c\psi_{\uparrow}\psi_{\downarrow}((\partial_{i}\partial\psi_{\uparrow})\cdot\partial\psi_{\downarrow})\partial_{i}\psi_{\uparrow} - d\psi_{\uparrow}\psi_{\downarrow}(\partial\psi_{\uparrow}\cdot\partial\psi_{\downarrow})i\partial_{t}\psi_{\uparrow} \text{ with } (a,b,c,d) = (\pm 19\sqrt{3} - 5\sqrt{35}, \pm 16\sqrt{3}, -6\sqrt{35} \pm 6\sqrt{3}, 16\sqrt{35}).$

Y. Nishida, DTS, arXiv:1004.3597

"UnNuclear physics"

A nonrelativistic version of unparticle physics field in NRCFT: "unnucleus"

H.-W. Hammer and DTS, 2103.12610

Few-neutron systems as unnuclei

- Neutrons have anomalously large scattering length: $a_{nn} \approx -19$ fm
- vs effective range $r_0 \approx 2.8$ fm
- In a wide range of energy is neutrons are fermions at unitarity

Nuclear reactions

- Many nuclear reactions with emissions of neutrons:
 - ${}^{3}H + {}^{3}H \rightarrow {}^{4}He + 2n$
 - $^{7}Li + ^{7}Li \rightarrow ^{11}C + 3n$
 - ${}^{4}\text{He} + {}^{8}\text{He} \rightarrow {}^{8}\text{Be} + 4n$
- Final-state neutrons can be considered as forming an "unnucleus" - a field in NRCFT
 - Regime of validity: kinetic energy of neutrons in their c.o.m. frame between $\hbar^2/ma^2 \sim 0.1$ MeV $\hbar^2/mr_0^2 \sim 5$ MeV

Few-neutron systems as unnuclei

Factorization:

$$\frac{d\sigma}{dE} \sim |\mathscr{M}|^2 \sqrt{E_B} \times \operatorname{Im} G_{\mathscr{U}}(E_{\mathscr{U}}, \mathbf{p})$$

primary reaction has larger energy than final-state interaction

Rates of processes involving an unnucleus

 $E_{\rm kin} = E + E_{\mathcal{U}}$

• $\frac{d\sigma}{dE} \sim |\mathcal{M}|^2 \sqrt{E} \times \operatorname{Im} G_{\mathcal{U}}(E_{\operatorname{kin}} - E, \mathbf{p})$ $\left(E_{\operatorname{kin}} - E - \frac{p^2}{2M_{\mathcal{U}}} \right)^{\Delta - \frac{5}{2}}$

• Near end point: $\frac{d\sigma}{dE} \sim (E_0 - E)^{\Delta - \frac{5}{2}}$

Nuclear reactions

- ${}^{3}H + {}^{3}H \rightarrow {}^{4}He + 2n$
- $^7\text{Li} + ^7\text{Li} \rightarrow ^{11}\text{C} + 3\text{n}$
- ${}^{4}\text{He} + {}^{8}\text{He} \rightarrow {}^{8}\text{Be} + 4n$

•
$$\frac{d\sigma}{dE} \sim (E_0 - E)^{\alpha}$$

• Regime of validity: kinetic energy of neutrons in their c.o.m. frame between $\hbar^2/ma^2 \sim 0.1$ MeV $\hbar^2/mr_0^2 \sim 5$ MeV

$$\alpha = -0.5$$
$$\alpha = 1.77$$
$$\alpha = 2.5 - 2.6$$

Comparison with microscopic models

 $\pi^- + {}^3H \rightarrow \gamma + 3n$

 $\mu^- + {}^3\mathrm{H} \rightarrow \nu_{\mu} + 3n$

Conclusion

- There is a nonrelativistic version of conformal field theory
- Example: fermions at unitarity
- Approximately realized by neutrons; leads to "unnuclear behavior"
- Possible extension to other systems X(3872) Braaten and Hammer

Thank you