UnNuclear Physics: Conformal Symmetry in Nuclear Reactions

Dam Thanh Son (University of Chicago)
Igor Shovkovy's Theoretical Physics Colloquium
November 3, 2021

References

- H. Hammer and D.T. Son, arXiv:2103.126I0 (PNAS 202I)
- T. Schäfer and G. Baym, arXiv:2I09.06924 (PNAS 202I)

Summary

- Conformal invariance
- Nonrelativistic conformal invariance
- Fermion at unitarity
- Unnuclear physics
- Nuclear reaction with final-state neutrons

Role of symmetry in physics

- Symmetries play a very important role in physics
- In particular, spacetime symmetry is key to understanding of elementary particles

Poincaré symmetry

- 1 time and 3 spatial translations: $4 P^{\mu} \quad x^{\mu} \rightarrow x^{\mu}+a^{\mu}$
- 3 rotations +3 boosts $M^{\mu \nu}$
- Elementary particles: irreducible representations of the Poincaré group, characterized by Casimirs
- mass and spin when $m \neq 0$
- when $m=0$: helicity instead of spin

Conformal symmetry

- An extension of Poincaré group: conformal symmetry
- All transformations that preserve angle
- include: dilatation $x^{\mu} \rightarrow \lambda x^{\mu}$
- and 4 "proper conformal transformations"
- Field theory with this symmetry: conformal field theory
- applications in theoretical physics including phase transitions

CFT in particle physics?

$\begin{aligned} & \text { U } \\ & \text { up } \end{aligned}$	charm	$\underset{\text { top }}{t}$	
	S strange		
V_{e} electron neutrino	$\boldsymbol{V}_{\boldsymbol{\mu}}^{\text {muon }} \text { neutrino }$	$V_{\substack{\text { tau } \\ \text { neutrino }}}$	W W boson
electron		76	$\underset{\text { gluon }}{9}$

- The Standard Model is not a conformal field theory
- CFT cannot have massive particles
- $E=\sqrt{p^{2}+m^{2}}$ not invariant under $E \rightarrow \lambda E$, $p \rightarrow \lambda p$
- can only have massless particles or some fuzzy "stuff"

Georgi's unparticle

- In CFT: $\langle\mathscr{U}(x) \mathscr{U}(0)\rangle=\frac{c}{|x|^{2 \Delta_{U}}}$
- In momentum space $G_{\mathscr{U}}(p) \sim p^{2 \Delta_{\mathscr{U}^{-4}}}$
- Particle: $\Delta_{\phi}=1, G_{\phi}(p) \sim p^{-2}$
- but otherwise the propagator has cuts, not poles
- Energy is not fixed when momentum is fixed: $E>p c$
- Georgi: unparticle, hypothesize that it can be a hidden sector coupled to the SM

Signal of unparticles

- Energy spectrum of B is continuous
- near end point depends on the dimension of \mathscr{U} :

$$
\text { - } \frac{d \sigma}{d P_{\mathscr{U}}^{2}} \sim\left(P_{\mathscr{U}}^{2}\right)^{\Delta-2}
$$

Search for unparticles

- CMS collaboration: no unparticle found so far at LHC
- Nonrelativistic conformal field theory is fruitful
- Realized in nature
- has experimentally verifiable consequences

Schrödinger symmetry

- Nonrelativistic version of conformal symmetry: "Schrödinger symmetry"
- Symmetry of the free time-dependent Schrödinger equation

$$
i \partial_{t} \psi=-\frac{\nabla^{2}}{2 m} \psi
$$

Galilean boost: $\tilde{\psi}(t, \mathbf{x})=e^{i m \mathbf{v} \cdot \mathbf{x}-\frac{i}{2} m v^{2} t} \psi(t, \mathbf{x}-\mathbf{v} t)$
Dilatation: $\tilde{\psi}(t, \mathbf{x})=\psi\left(\lambda^{2} t, \lambda \mathbf{x}\right)$
Special conformal transformation:

$$
\tilde{\psi}(t, \mathbf{x})=\frac{1}{(1+\alpha t)^{3 / 2}} \exp \left(\frac{i}{2} \frac{m \alpha x^{2}}{1+\alpha t}\right) \psi\left(\frac{t}{1+\alpha t}, \frac{\mathbf{x}}{1+\alpha t}\right)
$$

Schrödinger algebra

- Free particles $\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right), a=1,2, \ldots N$
- $\mathbf{P}=\sum_{a} \mathbf{p}_{a} \quad H=\sum_{a} \frac{p_{a}^{2}}{2 m}$

- $\mathbf{K}=\sum m \mathbf{x}_{a} \quad$ Galilean boosts
- $D=\sum \frac{1}{2}\left(\mathbf{x}_{a} \cdot \mathbf{p}_{a}+\mathbf{p}_{a} \cdot \mathbf{x}_{a}\right) \quad$ dilatation
- $C=\frac{1}{2} m \sum x_{a}^{2} \quad$ proper conformal transformation
- Angular momentum
- Mass $M=N m$

Schrödinger algebra

$X \backslash Y$	P_{j}	K_{j}	D	C	H
P_{i}	0	$-i \delta_{i j} M$	$-i P_{i}$	$-i K_{i}$	0
K_{i}	$i \delta_{i j} M$	0	$i K_{i}$	0	$i P_{i}$
D	$i P_{j}$	$-i K_{j}$	0	$-2 i C$	$2 i H$
C	$i K_{j}$	0	$2 i C$	0	$i D$
H	0	$-i P_{j}$	$-2 i H$	$-i D$	0

$$
\begin{aligned}
& {\left[J_{i j}, N\right]=\left[J_{i j}, D\right]=\left[J_{i j}, C\right]=\left[J_{i j}, H\right]=0,} \\
& {\left[J_{i j}, P_{k}\right]=i\left(\delta_{i k} P_{j}-\delta_{j k} P_{i}\right), \quad\left[J_{i j}, K_{k}\right]=i\left(\delta_{i k} K_{j}-\delta_{j k} K_{i}\right),} \\
& {\left[J_{i j}, J_{k l}\right]=i\left(\delta_{i k} J_{j l}+\delta_{j l} J_{i k}-\delta_{i l} J_{j k}-\delta_{j k} J_{i l}\right) .}
\end{aligned}
$$

Special role of dilatation

$$
D=\sum \frac{1}{2}\left(\mathbf{x}_{a} \cdot \mathbf{p}_{a}+\mathbf{p}_{a} \cdot \mathbf{x}_{a}\right)
$$

- Dilatation operator rescales coordinates and momenta:

$$
\begin{array}{ll}
\text { - } p \rightarrow \lambda p, x \rightarrow \lambda^{-1} x & {\left[D, P_{i}\right]=i P_{i}} \\
\text { - } H=p^{2} / 2 m \rightarrow \lambda^{2} H & {[D, H]=2 i H}
\end{array}
$$

Beyond free theory

- Is the Schrödinger symmetry good only for noninteracting theory?
- Most general Hamiltonian: not scale-invariant $[D, H] \neq 2 i H$
- There exists a way to have the symmetry in interacting theory: unitarity regime

Unitarity regime

- Take a potential of a certain shape (e.g., square well)
- shrink the range, adjusting the depth so that there is one bound state at threshold
- In the language of scattering theory: infinite scattering length, zero range
- Interaction has no energy/length scale: Hamiltonian is scale invariant $[D, H]=2 i H$

Properties of unitary gas

- A gas of spin- $1 / 2$ particles with fine-tuned to unitarity
- Can be realized with trapped cold atoms Feshbach resonance
- Scale invariance: physical quantities can be figured out by scaling arguments
- Example: Bertsch parameter $\xi(T=0)$

$$
\text { - } \frac{E}{N}=\xi \frac{3}{5} \varepsilon_{F}, \quad \varepsilon_{F}=\frac{1}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}
$$

Shear and bulk viscosities

- Scaling: $\eta, \zeta=\hbar n f_{\eta, \zeta}\left(\frac{T}{\varepsilon_{F}}\right)$
- Conformal invariance: $\zeta=0$

Nonrelativistic CFT

Y. Nishida, DTS, 2007

- One can build up the formalism of nonrelativistic conformal field theory in analogy with the relativistic theory
- Many notions can be extended
- primary operators
- operator-state correspondence

Fermions at unitarity as a NRCFT

- $L=i \psi^{\dagger}\left(\partial_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-c_{0} \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow} \quad \Delta[\psi]=\frac{3}{2}$
- Introducing auxiliary field ϕ
- $L=i \psi^{\dagger}\left(\partial_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \phi-\phi^{\dagger} \psi_{\downarrow} \psi_{\uparrow}+\frac{\phi^{\dagger} \phi}{c_{0}}$
- Propagator of ϕ

$$
G_{\phi}(\omega, \mathbf{p})=\frac{1}{\sqrt{\frac{p^{2}}{4 m}-\omega}} \quad \Delta[\phi]=2 \neq 2 \times \frac{3}{2}
$$

Renormalization

- $G_{\phi}^{-1}(\omega, \mathbf{p})=c_{0}^{-1}+$ one-loop integral
- $=c_{0}^{-1}+\Lambda+\left(\frac{p^{2}}{4 m}-\omega\right)^{1 / 2}$

- Unitarity: fine-tuning so that $c_{0}+\Lambda=0$
- (scattering length: $c_{0}+\Lambda=\frac{1}{a}$)
- Physically: fine-tune the attractive short-range potential to have a bound state at threshold

$$
G_{\phi}(\omega, \mathbf{p})=\frac{1}{\sqrt{\frac{p^{2}}{4 m}-\omega}}
$$

Local operators

- Local operators are classified by mass and dimension
- $[M, O(x)]=-M_{O} O(x)$
- $[D, O(0)]=i \Delta_{O} O(0)$
- Commuting with P and H increases the dimension by 1 and 2, commuting with K and C by -1 and -2
- Representation theory for operators with $M \neq 0$ is simple

Raising and lowering dimensions

- Operators with $M \neq 0$ are organized in towers
- Dimension raised by P and H, lowered by K and C
- Primary operators: lowest in a ladder $[K, O(0)]=[C, O(0)]=0$

Operator-state correspondence

- Dimension of a primary operator = energy of a state in a harmonic potential
- Example: in free theory $[\psi]=\frac{d}{2}$, ground state of 1
particle in harmonic potential: $E=\frac{d}{2} \hbar \omega$

Two-point function of a primary operator

- $G_{\mathscr{U}}(t, \mathbf{x})=-i\left\langle T \mathscr{U}(t, \mathbf{x}) \mathscr{U}^{\dagger}(0, \mathbf{0})\right\rangle=C \frac{\theta(t)}{(i t)^{\Delta}} \exp \left(\frac{i M x^{2}}{2 t}\right)$
- $G_{\chi}(\omega, \mathbf{p}) \sim\left(\frac{p^{2}}{2 M}-\omega\right)^{\Delta-\frac{5}{2}}$
$\omega-\frac{p^{2}}{2 M}$ is the energy in the CM frame

Operator dimensions for fermions at unitarity

- Dimensions of operators: either by field theory or quantum mechanical calculation in a harmonic trap
- Lowest-dimension operators

N	S	L	O	Δ
2	0	0	$\psi_{\uparrow} \psi_{\downarrow}$	2
3	$1 / 2$	1	$\psi_{\downarrow} \psi_{\uparrow} \boldsymbol{\nabla} \psi_{\uparrow}$	4.273
3	$1 / 2$	0	$\psi_{\downarrow} \boldsymbol{\nabla} \psi_{\uparrow} \cdot \nabla \psi_{\uparrow}$	4.666
4	0	0	$\psi_{\downarrow} \psi_{\uparrow} \nabla \psi_{\downarrow} \cdot \nabla \psi_{\uparrow}$	$5.0-5.1$

$N(l)$	$\mathcal{O}_{N}^{(l)}$	$\Delta_{\mathcal{O}}$	$E / \hbar \omega$ in $d=3$
$2(l=0)$	$\psi_{\uparrow} \psi_{\downarrow}$	2	$2[30]$
$3(l=0)$	$\psi_{\uparrow} \psi_{\downarrow}\left(\partial_{t} \psi_{\uparrow}\right)$	$5+O\left(\bar{\epsilon}^{2}\right)$	$4.66622[26]$
$3(l=1)$	$\psi_{\uparrow} \psi_{\downarrow}\left(\partial \psi_{\uparrow}\right)$	$4+O\left(\bar{\epsilon}^{2}\right)$	$4.27272[26]$
$4(l=0)$	$\psi_{\uparrow} \psi_{\downarrow}\left(\partial \psi_{\uparrow} \cdot \boldsymbol{\partial} \psi_{\downarrow}\right)$	$6-\bar{\epsilon}+\left(\bar{\epsilon}^{2}\right)$	$\approx 5.028[33]$
$5(l=0)$	$(*)$	$9-\frac{11 \pm \sqrt{105} \bar{\epsilon}+O\left(\bar{\epsilon}^{2}\right)}{16}$	$\approx 8.03[33]$
$5(l=1)$	$\psi_{\uparrow} \psi_{\downarrow}\left(\partial \psi_{\uparrow} \cdot \partial \psi_{\downarrow}\right) \partial \psi_{\uparrow}$	$8-\bar{\epsilon}+O\left(\bar{\epsilon}^{2}\right)$	$\approx 7.53[33]$
$6(l=0)$	$\psi_{\uparrow} \psi_{\downarrow}\left(\partial \psi_{\uparrow} \cdot \partial \psi_{\downarrow}\right)^{2}$	$10-2 \bar{\epsilon}+\left(\bar{\epsilon}^{2}\right)$	$\approx 8.48{ }^{[33]}$

$(*)=a \psi_{\uparrow} \psi_{\downarrow}\left(\boldsymbol{\partial} \psi_{\uparrow} \cdot \boldsymbol{\partial} \psi_{\downarrow}\right) \partial^{2} \psi_{\uparrow}+b \psi_{\uparrow} \partial_{i} \psi_{\downarrow}\left(\boldsymbol{\partial} \psi_{\uparrow} \cdot \boldsymbol{\partial} \psi_{\downarrow}\right) \partial_{i} \psi_{\uparrow}+c \psi_{\uparrow} \psi_{\downarrow}\left(\left(\partial_{i} \boldsymbol{\partial} \psi_{\uparrow}\right) \cdot \boldsymbol{\partial} \psi_{\downarrow}\right) \partial_{i} \psi_{\uparrow}-$ $d \psi_{\uparrow} \psi_{\downarrow}\left(\partial \psi_{\uparrow} \cdot \partial \psi_{\downarrow}\right) i \partial_{t} \psi_{\uparrow}$ with $(a, b, c, d)=(\pm 19 \sqrt{3}-5 \sqrt{35}, \mp 16 \sqrt{3},-6 \sqrt{35} \mp 6 \sqrt{3}, 16 \sqrt{35})$.
Y. Nishida, DTS, arXiv: I 004.3597

"UnNuclear physics"

A nonrelativistic version of unparticle physics field in NRCFT:"unnucleus"
H.-W. Hammer and DTS, 2103.126IO

Few-neutron systems as unnuclei

- Neutrons have anomalously large scattering length: $a_{n n} \approx-19 \mathrm{fm}$
- vs effective range $r_{0} \approx 2.8 \mathrm{fm}$
- In a wide range of energy is neutrons are fermions at unitarity

Nuclear reactions

- Many nuclear reactions with emissions of neutrons:
- ${ }^{3} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{n}$
- ${ }^{7} \mathrm{Li}+{ }^{7} \mathrm{Li} \rightarrow{ }^{11} \mathrm{C}+3 n$
- ${ }^{4} \mathrm{He}+{ }^{8} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be}+4 \mathrm{n}$
- Final-state neutrons can be considered as forming an "unnucleus" - a field in NRCFT
- Regime of validity: kinetic energy of neutrons in their c.o.m. frame between $\hbar^{2} / m a^{2} \sim 0.1 \mathrm{MeV}$ $\hbar^{2} / m r_{0}^{2} \sim 5 \mathrm{MeV}$

Few-neutron systems as unnuclei

Factorization: $\quad \frac{d \sigma}{d E} \sim|\mathscr{M}|^{2} \sqrt{E_{B}} \times \operatorname{Im} G_{\mathscr{U}}\left(E_{\mathscr{U}}, \mathbf{p}\right)$
primary reaction has larger energy than final-state interaction

Rates of processes involving an unnucleus

$$
E_{\text {kin }}=E+E_{\chi}
$$

- $\frac{d \sigma}{d E} \sim|\mathscr{M}|^{2} \sqrt{E} \times \underbrace{\operatorname{Im} G_{\chi}\left(E_{\text {kin }}-E, \mathbf{p}\right)}$

$$
\left(E_{\text {kin }}-E-\frac{p^{2}}{2 M_{\mathscr{U}}}\right)^{\Delta-\frac{5}{2}}
$$

- Near end point: $\frac{d \sigma}{d E} \sim\left(E_{0}-E\right)^{\Delta-\frac{5}{2}}$

Nuclear reactions

- ${ }^{3} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{n}$
- ${ }^{7} \mathrm{Li}+{ }^{7} \mathrm{Li} \rightarrow{ }^{11} \mathrm{C}+3 \mathrm{n}$
- ${ }^{4} \mathrm{He}+{ }^{8} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be}+4 \mathrm{n}$

- Prediction:

$$
\frac{d \sigma}{d E} \sim\left(E_{0}-E\right)^{\alpha}
$$

- Regime of validity: kinetic energy of neutrons in their c.o.m. frame between $\hbar^{2} / m a^{2} \sim 0.1 \mathrm{MeV}$ $\hbar^{2} / m r_{0}^{2} \sim 5 \mathrm{MeV}$

Comparison with microscopic models

$$
\mu^{-}+{ }^{3} \mathrm{H} \rightarrow \nu_{\mu}+3 n
$$

Conclusion

- There is a nonrelativistic version of conformal field theory
- Example: fermions at unitarity
- Approximately realized by neutrons; leads to "unnuclear behavior"
- Possible extension to other systems X(3872) Braaten and Hammer

Thank you

