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Outline

e Neutron star introduction

e Somewhat myopic view of the last decade on the nature of hot and
dense matter

e Nuclear physics input for neutron star mergers

e Putting it all together: NP3M
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Neutron Stars

A neutron star

Outer Crust
(Z,N)+e

Inner crust
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Outer Core: n+p+e
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Plot inspired by Dany Page; open source

e The final state in the evolution of stars between 8 and 20 times Mg
e Nucleiwith A ~ 10°’ that provide information about QCD
e Degenerate: (Umincore & 20 MeV) > T



Equation of State of Dense Matter and the
Neutron Star Mass-Radius Curve

103 5

P (MeV /fm®)
2

m I

dp:‘%”z‘ﬁ(”r?)(1+““P""3)(1—?@)”‘

0 _
1077 | . 1—1 correspondence —
]_ 0 i 1 I | I | l I | I I I I | | I I O " D | I I | I | ] I | I I I I
0 500 100 1500 10 15 20
e (MeV /fm?) R (km)

e Thereis a 1-1 correspondence between the (cold) equation of state and
the neutron star mass-radius curve

e Attempts to make this connection go back to Cameron (1959)



Neutron Star Mass-Radius Curves, 2007
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e A significant amount of uncertainty in the EOS across a range of
densities
e Observational and theoretical constraints lead to the grey region



Neutron Star Mass-Radius Curves, 2010
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Steiner et al. (2010) based on Chandra
observations, work by Ozel et al., etc.

e Radius information for six stars

e Radil beteen 10.4 and 12.9 km
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e Observation of a two solar
mass neutron star

e New information on the
equation of state!
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Constrain the Nucleon-Nucleon Interaction, 2012

e Normally nn-interaction = EOS = neutron
star prediction
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Constrain the Nucleon-Nucleon Interaction, 2012

e Normally nn-interaction = EOS = neutron
star prediction

e [ake advantage of Bayesian inference as
"iInverse probability”

e Neutron star observations constrain L, the
density derivative of the nuclear symmetry
energy

S(np) = Eneut(np) — Enyc(np)
L= 3nBS ’(HB)

(from Steiner and Gandolfi 2012)



Constrain the Nucleon-Nucleon Interaction, 2012
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Implication for Core-Collapse Supernovae, 2013

Steiner et al. (2013)

e Create a new equation of state
for core-collapse supernovae

e Updated theory, observations
and nuclear structure
constraints



Implication for Core-Collapse Supernovae, 2013
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Steiner et al. (2013)
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Neutron Star Mergers, pre-LIGO, 2015
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e Gravitational analog of nuclear
electric polarizability

e [idal deformability correlated
with NS radius



Neutron Star Mergers, pre-LIGO, 2015

Satellite m—

e Nearby neutron star creates a
tidal force

e |IGO measures "tidal
deformabillity”

e Gravitational analog of nuclear
electric polarizability
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e New observations + modern
theory + nuclear structure

e Predict tidal deformabillity
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Neutron Star Mergers, pre-LIGO, Part I, 2015

e SFHoO equation of state used in
neutron star merger simulations
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Neutron Star Mergers, pre-LIGO, Part I, 2015

e SFHoO equation of state used in
neutron star merger simulations

e Abundances are not strongly
modified by equation of state
changes

e However, amount of mass
ejected significantly increased:
SFHo: > 1.0 X 107> Mg
DD2: < 2.1 X 10~ Mg
T™M1: < 1.2 X 107> Mg
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Sekiguchi et al. (2015)

e Improves ability of mergers to
produce r-process elements!



GW 170817 (2017)
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GW 170817 (2017)
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2500 - neutron star merger
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GW 170817 (2017)
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e Not only that, but we get a

kilonovae which offers some
support for mergers as an
r-process site!



Revised Results After GW 170817
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Revised Results After GW 170817

e Now LIGO + 11 EM
observations, including NICER

e Better constraints on M-R
curve and EOS

o Still prior-dominated in some
regions of the M-R curve and
across the EOS



We can use neutron star

observations to learn about the
nature of strongly-interacting

matter at high densities!




We can use neutron star

observations to learn about the
nature of strongly-interacting

matter at high densities!

What about using neutron star
mergers as a laboratory?



Astrophysical Processes Require Nuclear Physics Input
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Astrophysical Processes Require Nuclear Physics Input

- 32
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24.
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NS-NS merger simulation, Radice et al. (2016) Core-collapse simulation, 15 Mg

progenitor, Lentz et al. (2015)

e Requires: EOS, nuclear
reactions, transport, and
neutrino interactions with
matter
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The EOS challenge

e Three-dimensional space, (ng, Y, ~ n,/ng, T)
e Different physical regimes:
o |sospin-symmetric matter near saturation
ng ~ng, Y. ~ 1/2, T ~ 0
o Neutron-rich matter near saturation
ng ~ny, Y, ~0, T ~0
o Nearly non-degenerate matter
ng small or 1" large
o Dense neutron-rich matter
nglarge, Y, ~ 0,7 ~ 0
o Hot matter near saturation
ng ~ny, Y. ~1/2, T €1 —20] MeV
e Canonically, most EOS tables have focused on choosing one nucleon-
nucleon interaction, and extrapolating



Quilting an EOS

e Require different interactions, different
many-body techniques, and are
constrained by different data

o Different physical regimes:
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EOS as a Probability Distribution
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EOS as a Probability Distribution

e Probability distribution for EOS
for simulations at ng > 3n

e Probability density peaks at
lower values because of
influence of NS radius
observations

e Nine sample EOS tables
available now!

e |mplications for stellar evolution
and r-process nucleosynthesis
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e Propagating uncertainties
through the neutrino opacities
for charged and neutral
current processes

Lin et al., in prep.
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Nuclear Physics of Multi-Messenger Mergers

e Understanding neutron star mergers will require a coordinated effort between many
communities
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Collaboration

e Nuclear structure theory, low-energy nuclear theory, high-energy nuclear theory, nuclear
experiment, astrophysics theory, astronomical observations, gravitational wave experiment
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Nuclear Physics from Multi-Messenger

Mergers

The Nuclear Physics from Multi-Messenger Mergers (NP3M) Focused
Research Hub is a national nuclear physics effort which aims to
systematically probe the properties of hot and dense strongly
iInteracting matter with multi-messenger observations of neutron star

mergers.

NP3M is supported by the National Science Foundation under Grant Number 21-16686. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.
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The Nuclear Physics from Multi-Messenger Mergers (NP3M) Focused
Research Hub is a national nuclear physics effort which aims to
systematically probe the properties of hot and dense strongly
iInteracting matter with multi-messenger observations of neutron star

mergers.

NP3M is supported by the National Science Foundation under Grant Number 21-16686. Any opinions,
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not necessarily reflect the views of the National Science Foundation.

e Join Us!
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There iIs a lot yet missing here:

there i1s a lot more to the
nucleon-nucleon interaction
than just the equation of state!
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Simplifying Composition and Superfluidity

Even those two topics are too complicated for one research group

Begin by assuming that hot and dense matter contains only neutrons
and protons

For now, don't focus on singlet neutron superfluidity, where theory and
experiment are providing guidance

Use neutron star observations to tackle proton superconductivity and
neutron triplet superfluidity in high-density matter



Thermal Emission from Isolated Neutron Stars

. I —10~7. M = 1.0 M.
e After ~ 10 years, the neutron star is 11— 08 7” ot
; '“‘,.‘_ _‘-\._ - -~ ff — 1 ;.
isothermal = one temperature = T 1| e 202 a0y /M =2.0 M,
dT J pLS — 1055
dt . = ] /
. 1357 / Fs
o0 ) _ e =l
5 52 0833 | \
= . . 1856
e ' i 1706 \ |
= d1n=10"" M = 1.0 M, | v "“
2o . U 0720
~ 31— | v
] 0633\ \ |}
| i i
] 1
— \ !
30 — ' :
" ! !
2 \ [
. n=10"", M = 2.0 M, \ { IS
. 2043]
29 1 I 1 11 | I 1 11 | P 1T 11 l 11 I B I I B | | ! | L | |
2.9 3.0 3.9 4.0 1.5 5.0 H.5 6.0 6.5

10!’5’31[1[7E (}"Tﬁ)]

Beloin et al. (2019)




Thermal Emission from Isolated Neutron Stars

o After ~ 10 years, the neutron star is

isothermal = one temperature = T

dT
C_=Lp+
Y dt S

e Assume only neutrons and protons

logy[L (erg/s)]

_ ' h v UR T [ o720

] n=10"7, M = 2.0 M,

|
2043 |
29 IIIIII|IlIlllllllllllllllllllllliIl!lllllll
2.9 3.0 3.9 4.0 4.5 5.0 2.0 6.0 6.5

108;1[1[7E (}"1'5)]

Beloin et al. (2019)



Thermal Emission from Isolated Neutron Stars

o After ~ 10 years, the neutron star is e
isothermal = one temperature = T
dT -
CV_ — Ly + L}/ 33__
dt L
e Assume only neutrons and protons 2 32— '1856\)‘
o A ¥ 23 1706 . »
g - = 41 =1 ‘M = 1.0 Mg ‘=
e Age taken from, e.g., association with a g ] ' ‘ h N T
— 31— \
: :
30 — [
- : i
i |
. n=10"7, M = 2.0 M, { I
I 2043| |
2{‘) | I 1 1 | P11 | Ir 1T 11 | B I rrnl | I B | | ‘ | 1 nd | |

2.5 3.0 3.5 1.0 4.5 5.0 5.5 6.0 6.5
108?1[1“ (}"1'5)]

Beloin et al. (2019)



Thermal Emission from Isolated Neutron Stars
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J0002-6216, i.e. the "cannonball pulsar"

(This star is not in our data set.)
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Role of Composition

Beta-decay ("direct Urca
process"”) cools very quickly

n—->p+e+r,
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Degenerate system + energy
and momentum conservation
means it is allowed only if
ny/n, > 11%

Strong direct Urca process ruleo ] =g

by observations Log Age [yrs]
Page et al. (2000)

Most theoretical models predict
a direct Urca process for e Urca quandary: Why are there

M ~ 2 Mg so few cold isolated neutron
stars?
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Superfluidity and Superconductivity

e Superfluid properties are
particularly difficult to calculate

e Superfluidity prevents beta-
decay because it breaks a
neutron Cooper pair

e Parameterize neutron triplet and
proton singlet critical
temperature with simple
Gaussian

| I I I | | I |
3 - BCS

CHE & e

25 |

????
------

0 02 04 06 08 1 12 14
Ky [fm!]
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Early Cooling Results

e Proton fraction typically large,
allowing direct Urca for stars
with masses > 1.4 — 1.7 Mg
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Current Status: Large-Scale Bayesian Inference

e 30 isolated cooling neutron stars e EOS parameters

o Steady-state luminosities for 6 o Superfluidity/superconductivity
accreting neutron stars parameters

e 8 QLMXB or PRE radius e Atmosphere or envelope
observations composition for many stars

o 2 NICER observations e Mass of each star stars

e PREX and nuclear structure e Age for cooling isolated
constraints neutron stars

e GW 170817 e Average accretion rate for

accreting neutron stars



