The challenge of discovering QCD critical point

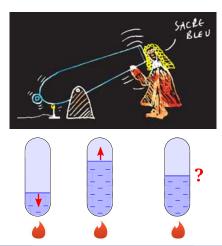
M. Stephanov

Outline

- Introduction.
 - Critical point. History.
 - QCD Critical point
 - Heavy-Ion Collisions
- Equilibrium physics of the QCD critical point
 - Critical fluctuations
 - Intriguing data from RHIC BES I
- 3 Non-equilibrium physics of the QCD critical point (work in progress)
 - Hydrodynamics and fluctuations
 - Hydro+
 - General formalism
- Summary and Outlook

History

Cagniard de la Tour (1822): discovered continuos transition from liquid to vapour by heating alcohol, water, etc. in a gun barrel, glass tubes.



M. Stephanov QCD Critical Point ASU 2020

3/36

Name

Faraday (1844) – liquefying gases:

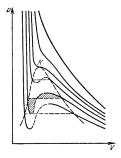
"Cagniard de la Tour made an experiment some years ago which gave me occasion to want a new word."

Mendeleev (1860) – measured vanishing of liquid-vapour surface tension: "Absolute boiling temperature".

Andrews (1869) – systematic studies of many substances established continuity of vapour-liquid phases. Coined the name "critical point".

Theory

van der Waals (1879) – in "On the continuity of the gas and liquid state" (PhD thesis) wrote e.o.s. with a critical point.



Smoluchowski, Einstein (1908,1910) - explained critical opalescence.

Landau - classical theory of critical phenomena

Fisher, Kadanoff, Wilson – scaling, full fluctuation theory based on RG.

M. Stephanov QCD Critical Point ASU 2020 5 / 36

Critical opalescence

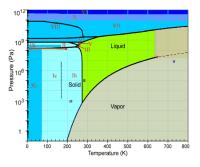
shining laser light through liquid

Substance[13][14] +	Critical temperature ¢	Critical pressure (absolute) +
Argon	-122.4 °C (150.8 K)	48.1 atm (4,870 kPa)
Ammonia ^[15]	132.4 °C (405.5 K)	111.3 atm (11,280 kPa)
Bromine	310.8 °C (584.0 K)	102 atm (10,300 kPa)
Caesium	1,664.85 °C (1,938.00 K)	94 atm (9,500 kPa)
Chlorine	143.8 °C (416.9 K)	76.0 atm (7,700 kPa)
Ethanol	241 °C (514 K)	62.18 atm (6,300 kPa)
Fluorine	-128.85 °C (144.30 K)	51.5 atm (5,220 kPa)
Helium	-267.96 °C (5.19 K)	2.24 atm (227 kPa)
Hydrogen	-239.95 °C (33.20 K)	12.8 atm (1,300 kPa)
Krypton	-63.8 °C (209.3 K)	54.3 atm (5,500 kPa)
CH ₄ (methane)	-82.3 °C (190.8 K)	45.79 atm (4,640 kPa)
Neon	-228.75 °C (44.40 K)	27.2 atm (2,760 kPa)
Nitrogen	-146.9 °C (126.2 K)	33.5 atm (3,390 kPa)
Oxygen	-118.6 °C (154.6 K)	49.8 atm (5,050 kPa)
CO ₂	31.04 °C (304.19 K)	72.8 atm (7,380 kPa)
N ₂ O	36.4 °C (309.5 K)	71.5 atm (7,240 kPa)
H ₂ SO ₄	654 °C (927 K)	45.4 atm (4,600 kPa)
Xenon	16.6 °C (289.8 K)	57.6 atm (5,840 kPa)
Lithium	2,950 °C (3,220 K)	652 atm (66,100 kPa)
Mercury	1,476.9 °C (1,750.1 K)	1,720 atm (174,000 kPa)
Sulfur	1,040.85 °C (1,314.00 K)	207 atm (21,000 kPa)
Iron	8,227 °C (8,500 K)	
Gold	6,977 °C (7,250 K)	5,000 atm (510,000 kPa)
Water[2][16]	373.946 °C (647.096 K)	217.7 atm (22.06 MPa)

Critical point

– end of phase coexistence – is a ubiquitous phenomenon

Water:



Is there one in QCD?

Physics of QCD

Fundamental constituents – quarks and gluons – are (almost) massless. But hadrons (quasiparticles of QCD) are massive.

$$m_{\rm proton} = E_{\rm QCD}/c^2$$

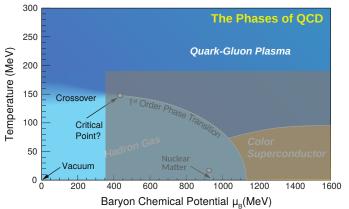
This is the origin of almost all of the visible mass in the Universe.

- Color charges and color forces are "confined" within hadrons.
- High-energy collisions expose color degrees of freedom and high T environment "liberates" color forces (gluons) and color charges.

The resulting new form of matter is Quark-Gluon Plasma.

Q1: Can the two phases continuously transform into each other? Yes.

Q1: Can the two phases continuously transform into each other? *Yes.* Lattice QCD at $\mu_B=0$ – a crossover.

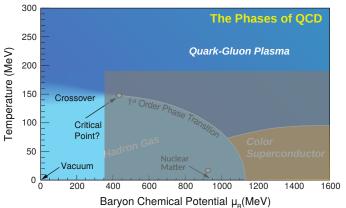


QCD in crossover region: no quasiparticles (not hadrons, not quarks/gluons). Strongly interacting matter (sQGP). More a liquid than a gas.

M. Stephanov QCD Critical Point ASU 2020 9 / 36

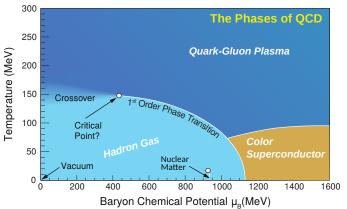
Q2: Is there phase coexistence, i.e., 1st order transition? Likely.

Q2: Is there phase coexistence, i.e., 1st order transition? *Likely.* Unfortunately, lattice QCD cannot reach beyond $\mu_B \sim 2T$.



M. Stephanov QCD Critical Point ASU 2020 10 / 36

Q2: Is there phase coexistence, i.e., 1st order transition? *Likely.* Unfortunately, lattice QCD cannot reach beyond $\mu_B \sim 2T$.



But 1st order transition (and thus C.P.) is ubiquitous in models of QCD: NJL, RM, Holography, Strong coupl. Lattice QCD, . . .

M. Stephanov QCD Critical Point ASU 2020 10 / 36

How can one discover the QCD critical point?

Essentially two approaches to discovering the QCD critical point. Each with its own challenges.

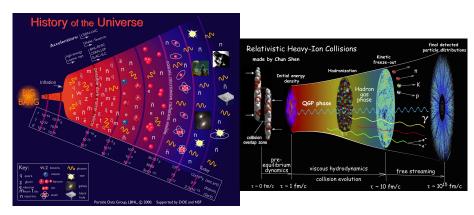
Lattice simulations.

The *sign problem* restricts reliable lattice calculations to $\mu_B = 0$.

Under different assumptions one can estimate the position of the critical point, assuming it exists, by extrapolation from $\mu=0$.

Heavy-ion collisions. Non-equilibrium.

Heavy-ion collisions vs the Big Bang



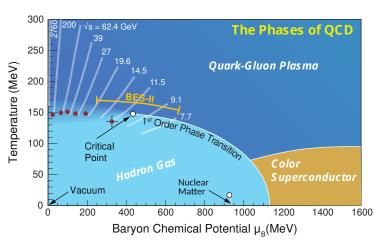
Similarity: expanding and cooling

Difference: One Event vs many events (cosmic variance vs e.b.e. fluctuations)

M. Stephanov QCD Critical Point ASU 2020 12 / 36

Similarity: Expansion accompanied by cooling, followed by freezeout.

Difference: tunable parameter μ_B via \sqrt{s} .



M. Stephanov QCD Critical Point ASU 2020 13 / 36

Assumption for the next part of this talk

H.I.C. are sufficiently close to equilibrium that we can study thermodynamics at freezeout T and μ_B — as a first approximation.

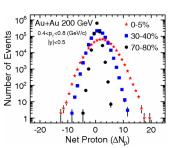
Assumption for the next part of this talk

H.I.C. are sufficiently close to equilibrium that we can study thermodynamics at freezeout T and μ_B — as a first approximation.

NB: Event-by-event fluctuations:

Heavy-ion collisions create systems which are large (thermodynamic limit), but not too large ($N\sim 10^2-10^4$ particles)

EBE fluctuations are small $(1/\sqrt{N})$, but measurable.



Outline

- Introduction.
 - Critical point. History
 - QCD Critical point
 - Heavy-Ion Collisions
- Equilibrium physics of the QCD critical point
 - Critical fluctuations
 - Intriguing data from RHIC BES I
- Non-equilibrium physics of the QCD critical point (work in progress)
 - Hydrodynamics and fluctuations
 - Hydro+
 - General formalism
- Summary and Outlook

EBE fluctuations vs \sqrt{s}

[PRL81(1998)4816]

Equilibrium = maximum entropy.

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

M. Stephanov QCD Critical Point ASU 2020 16 / 36

EBE fluctuations vs \sqrt{s}

[PRL81(1998)4816]

Equilibrium = maximum entropy.

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

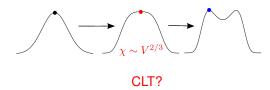
EBE fluctuations vs \sqrt{s}

[PRL81(1998)4816]

Equilibrium = maximum entropy.

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \delta \sigma^2 \rangle V \to \infty$.



16/36

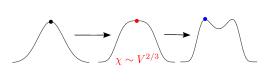
EBE fluctuations vs \sqrt{s}

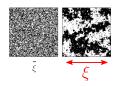
[PRL81(1998)4816]

Equilibrium = maximum entropy.

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \delta \sigma^2 \rangle V \to \infty$.





CLT?

 $\delta\sigma$ is not an average of ∞ many *uncorrelated* contributions: $\xi \to \infty$

In fact, $\langle \delta \sigma^2 \rangle \sim \xi^2 / V$.

Higher order cumulants

• n > 2 cumulants (shape of $P(\sigma)$) depend stronger on ξ .

E.g.,
$$\langle \sigma^2 \rangle \sim \xi^2$$
 while $\kappa_4 = \langle \sigma^4 \rangle_c \sim \xi^7$

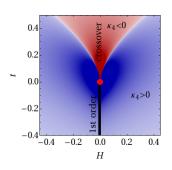
[PRL102(2009)032301]

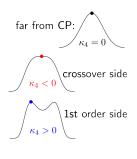
• For n > 2, sign depends on which side of the CP we are.

This dependence is also universal.

[PRL107(2011)052301]

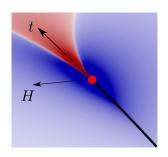
Using Ising model variables:





Mapping Ising to QCD and observables near CP

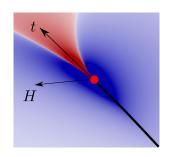
Equilibrium κ_4 vs μ_B and T:



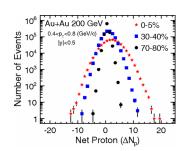
In QCD
$$(t,H) o (\mu - \mu_{\rm CP}, T - T_{\rm CP})$$
Pradeep-MS 1905.13247

Mapping Ising to QCD and observables near CP

Equilibrium κ_4 vs μ_B and T:

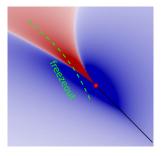


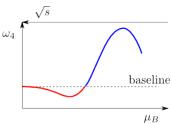
In QCD
$$(t,H) \rightarrow (\mu - \mu_{\rm CP}, T - T_{\rm CP})$$
Pradeep-MS 1905.13247



Beam Energy Scan I: intriguing hints

Equilibrium κ_4 vs μ_B and T:

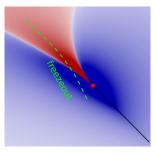


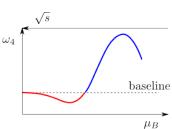


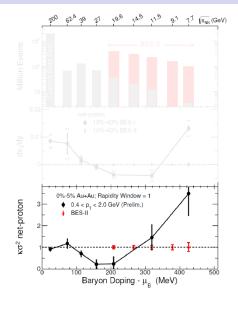
M. Stephanov

Beam Energy Scan I: intriguing hints

Equilibrium κ_4 vs μ_B and T:

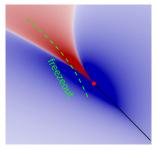


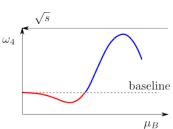


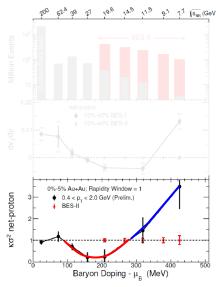


Beam Energy Scan I: intriguing hints

Equilibrium κ_4 vs μ_B and T:







"intriguing hint" (2015 LRPNS)

19/36

Outline

- Introduction.
 - Critical point. History
 - QCD Critical point
 - Heavy-Ion Collisions
- Equilibrium physics of the QCD critical point
 - Critical fluctuations
 - Intriguing data from RHIC BES I
- 3 Non-equilibrium physics of the QCD critical point (work in progress)
 - Hydrodynamics and fluctuations
 - Hydro+
 - General formalism
- Summary and Outlook

Non-equilibrium physics is essential near the critical point.

The challenge taken on by

- Goal: build a quantitative theoretical framework describing critical point signatures for comparison with experiment.
- Strategy:
 - ullet Parameterize QCD EOS with yet unknown $T_{\rm CP}$ and $\mu_{\rm CP}$ as variable parameters (e.g., Parotto *et al*, 1805.05249) .
 - ullet Use the EOS in a hydrodynamic simulation and compare with experiment to determine or constrain $T_{\rm CP}$ and $\mu_{\rm CP}$.

M. Stephanov QCD Critical Point ASU 2020 21 / 36

Stochastic hydrodynamics

• Hydrodynamic eqs. are conservation equations ($\partial_{\mu}T^{\mu\nu}=0$):

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$$

Stochastic hydrodynamics

• Hydrodynamic eqs. are conservation equations ($\partial_{\mu}T^{\mu\nu}=0$):

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$$

Stochastic variables $\check{\psi} = (\check{T}^{i0}, \check{J}^0)$ are local operators coarse-grained (over "cells" b:

$$\partial_t \breve{\psi} = -\nabla \cdot \left(\mathsf{Flux}[\breve{\psi}] + \mathsf{Noise} \right)$$
 (Landau-Lifshitz)

M. Stephanov QCD Critical Point ASU 2020 22 / 36

Stochastic hydrodynamics

• Hydrodynamic eqs. are conservation equations ($\partial_{\mu}T^{\mu\nu}=0$):

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$$

Stochastic variables $\check{\psi} = (\check{T}^{i0}, \check{J}^0)$ are local operators coarse-grained (over "cells" b: $\ell_{\rm mic} \ll b \ll L$):

$$\partial_t \breve{\psi} = -
abla \cdot \left(\mathsf{Flux}[\breve{\psi}] + \mathsf{Noise} \right)$$
 (Landau-Lifshitz)

- Linearized version has been considered and applied to heavyion collisions (Kapusta-Muller-MS, Kapusta-Torres-Rincon, ...)
- Non-linearities + point-like noise ⇒ UV divergences. In numerical simulations – cutoff dependence.

M. Stephanov QCD Critical Point ASU 2020 22 / 36

Deterministic approach

▶ Variables are one- and two-point functions: $\psi = \langle \breve{\psi} \rangle$ and $G = \langle \breve{\psi} \breve{\psi} \rangle - \langle \breve{\psi} \rangle \langle \breve{\psi} \rangle$ — equal-time correlator Nonlinearities lead to dependence of flux on G.

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi, G];$$
 (conservation)
$$\partial_t G = \mathsf{L}[G; \psi].$$
 (relaxation)

In Bjorken flow by Akamatsu et al, Martinez-Schaefer. For arbitrary relativistic flow – by An et al (this talk). Earlier, in nonrelativistic context, – by Andreev in 1970s.

M. Stephanov QCD Critical Point ASU 2020 23 / 36

Deterministic approach

▶ Variables are one- and two-point functions: $\psi = \langle \breve{\psi} \rangle$ and $G = \langle \breve{\psi} \breve{\psi} \rangle - \langle \breve{\psi} \rangle \langle \breve{\psi} \rangle$ – equal-time correlator Nonlinearities lead to dependence of flux on G.

$$\begin{split} \partial_t \psi &= -\nabla \cdot \mathsf{Flux}[\psi, G]; \qquad \text{(conservation)} \\ \partial_t G &= \mathsf{L}[G; \psi]. \qquad \text{(relaxation)} \end{split}$$

- In Bjorken flow by Akamatsu et al, Martinez-Schaefer. For arbitrary relativistic flow – by An et al (this talk). Earlier, in nonrelativistic context, – by Andreev in 1970s.
- Advantage: deterministic equations.
 "Infinite noise" causes UV renormalization of EOS and transport coefficients can be taken care of analytically (1902.09517)

M. Stephanov QCD Critical Point ASU 2020 23 / 36

Fluctuation dynamics near CP: Hydro+

Yin, MS, 1712.10305

- Fluctuation dynamics near CP requires two main ingredients:

 - Slow relaxation mode with $\tau_{\rm relax} \sim \xi^3$ (leading to $\zeta \to \infty$)

Yin. MS. 1712.10305

- Fluctuation dynamics near CP requires two main ingredients:
 - ightharpoonup Critical fluctuations ($\xi \to \infty$)
 - Slow relaxation mode with $\tau_{\rm relax} \sim \xi^3$ (leading to $\zeta \to \infty$)
- Both described by the same object: the two-point function of the slowest hydrodynamic mode $m \equiv (s/n)$, i.e., $\langle \delta m(x_1) \delta m(x_2) \rangle$.
- Without this mode, hydrodynamics would break down near CP when $\tau_{\rm expansion} \sim \tau_{\rm relax} \sim \xi^3$.

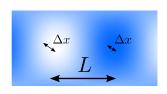
Additional variables in Hydro+

● At the CP the *slowest* new variable is the 2-pt function $\langle \delta m \delta m \rangle$ of the slowest hydro variable:

$$\phi_{\mathbf{Q}}(\mathbf{x}) = \int_{\Delta \mathbf{x}} \langle \delta m\left(\mathbf{x}_{+}\right) \, \delta m\left(\mathbf{x}_{-}\right) \rangle \, e^{i\mathbf{Q}\cdot\Delta\mathbf{x}}$$

where $\boldsymbol{x}=(\boldsymbol{x}_{+}+\boldsymbol{x}_{-})/2$ and $\Delta \boldsymbol{x}=\boldsymbol{x}_{+}-\boldsymbol{x}_{-}.$

● Wigner transformed b/c dependence on x ($\sim L$) is slow and relevant $\Delta x \ll L$. Scale separation similar to kinetic theory.



M. Stephanov QCD Critical Point ASU 2020 25 / 36

Relaxation of fluctuations towards equilibrium

• As usual, equilibration maximizes entropy $S = \sum_i p_i \log(1/p_i)$:

$$s_{(+)}(\epsilon, n, \phi_{\mathbf{Q}}) = s(\epsilon, n) + \frac{1}{2} \int_{\mathbf{Q}} \left(\log \frac{\phi_{\mathbf{Q}}}{\bar{\phi}_{\mathbf{Q}}} - \frac{\phi_{\mathbf{Q}}}{\bar{\phi}_{\mathbf{Q}}} + 1 \right)$$

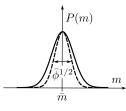
Relaxation of fluctuations towards equilibrium

■ As usual, equilibration maximizes entropy $S = \sum_i p_i \log(1/p_i)$:

$$s_{(+)}(\epsilon,n,\phi_{\boldsymbol{Q}}) = s(\epsilon,n) + \frac{1}{2} \int_{\boldsymbol{Q}} \left(\log \frac{\phi_{\boldsymbol{Q}}}{\bar{\phi}_{\boldsymbol{Q}}} - \frac{\phi_{\boldsymbol{Q}}}{\bar{\phi}_{\boldsymbol{Q}}} + 1 \right)$$

- Entropy = log # of states, which depends on the width of $P(m_Q)$, i.e., ϕ_Q :
 - Wider distribution more microstates more entropy: $\log(\phi/\bar{\phi})^{1/2}$; vs
 - **●** Penalty for larger deviations from peak entropy (at $\delta m = 0$): $-(1/2)\phi/\bar{\phi}$.

Maximum of $s_{(+)}$ is achieved at $\phi = \bar{\phi}$.



--- equilibrium (variance $\bar{\phi}$)

—- actual (variance ϕ)

Hydro+ mode kinetics

\blacksquare The equation for $\phi_{\boldsymbol{Q}}$ is a relaxation equation:

$$(u \cdot \partial)\phi_{\mathbf{Q}} = -\gamma_{\pi}(\mathbf{Q})\pi_{\mathbf{Q}}, \quad \pi_{\mathbf{Q}} = -\left(\frac{\partial s_{(+)}}{\partial \phi_{\mathbf{Q}}}\right)_{\epsilon,n}$$

 $\gamma_{\pi}({m Q})$ is known from mode-coupling calculation in 'model H'.

It is universal (Kawasaki function).

$$\gamma_{\pi}(\boldsymbol{Q}) \sim 2DQ^2$$
 for $Q \ll \xi^{-1}$. $(D \sim 1/\xi)$.

- **●** Characteristic rate: $\Gamma(Q) \sim \gamma_{\pi}(Q) \sim \xi^{-3}$ at $Q \sim \xi^{-1}$.
- Slowness of this relaxation process is behind the divergence of $\zeta \sim 1/\Gamma \sim \xi^3$ and the breakdown of *ordinary* hydro near CP (frequency dependence of ζ at $\omega \sim \xi^{-3}$).

Towards a general deterministic formalism

An, Basar, Yee, MS, 1902.09517,1912.13456

- To embed Hydro+ into a unified theory for critical as well as non-critical fluctuations we develop a general deterministic (hydro-kinetic) formalism.
 - We expand hydrodynamic eqs. in $\{\delta m, \delta p, \delta u^{\mu}\} \sim \phi$ and then average, using equal-time correlator $G(x,y) \equiv \langle \phi(x+y/2) \phi(x-y/2) \rangle$.
 - What is "equal-time" in relativistic hydro?
 - Renormalization.

Equal time

We use equal-time correlator $G = \langle \phi(t, \mathbf{x}_+) \phi(t, \mathbf{x}_-) \rangle$.

But what does "equal time" mean? Needs a frame choice.

The most natural choice is local u(x) ($x = (x_+ + x_-)/2$).

Derivatives wrt *x* at "*y*-fixed" should take this into account:



using
$$\Lambda(\Delta x)u(x+\Delta x)=u(x)$$
:

$$\Delta x \cdot \bar{\nabla} G(x, y) \equiv$$

$$G(x + \Delta x, \Lambda(\Delta x)^{-1} y) - G(x, y).$$

not
$$G(x + \Delta x, y) - G(x, y)$$
.

M. Stephanov QCD Critical Point ASU 2020 29 / 36

Confluent derivative, connection and correlator

Take out dependence of *components* of ϕ due to change of u(x):

$$\Delta x \cdot \bar{\nabla} \phi = \Lambda(\Delta x) \phi(x + \Delta x) - \phi(x)$$

Confluent two-point correlator:

$$\bar{G}(x,y) = \Lambda(y/2) \left< \phi(x+y/2) \, \phi(x-y/2) \right> \Lambda(-y/2)^T$$

 $u(x) \xrightarrow{\Lambda(\Delta x)} u(x + \Delta x)$ $\phi(x) \xrightarrow{x + \Delta x} \phi(x + \Delta x)$

(boost to u(x) – rest frame at midpoint)

$$\bar{\nabla}_{\mu}\bar{G}_{AB} = \partial_{\mu}\bar{G}_{AB} - \bar{\omega}^{C}_{\mu A}\bar{G}_{CB} - \bar{\omega}^{C}_{\mu B}\bar{G}_{AC} - \mathring{\omega}^{b}_{\mu a}\,y^{a}\frac{\partial}{\partial y^{b}}\bar{G}_{AB}\,.$$

Connection $\bar{\omega}$ corresponds to the boost Λ .

Connection $\mathring{\omega}$ makes sure derivative is independent of the choice of local space triad e_a needed to express $y \equiv x_+ - x_-$.

We then define the Wigner transform $W_{AB}(x,q)$ of $\bar{G}_{AB}(x,y)$.

M. Stephanov QCD Critical Point ASU 2020 30 / 36

Sound-sound correlation and phonon kinetic equation

Upon lots of algebra with many miraculous cancellations we arrive at "hydro-kinetic" equations for components of W.

The longitudinal components, corresponding to p and u^{μ} fluctuations at $\delta(s/n)=0$, obey the following eq. $(N_L\equiv W_L/(wc_s|q|))$

$$\underbrace{\left[(u+v) \cdot \bar{\nabla} + f \cdot \frac{\partial}{\partial q} \right] N_L}_{\mathcal{L}[N_L] - \text{Liouville op.}} = -\gamma_L q^2 \left(N_L - \underbrace{\frac{T}{c_s |q|}}_{N_L^{(0)}} \right)$$

ullet Kinetic eq. for phonons with $E=c_s|q|$, $v=c_sq/|q|$ $(q\cdot u=0)$

$$f_{\mu} = \underbrace{-E(a_{\mu} + 2v^{\nu}\omega_{\nu\mu})}_{\text{inertial + Coriolis}} \underbrace{-q^{\nu}\partial_{\perp\mu}u_{\nu}}_{\text{"Hubble"}} - \bar{\nabla}_{\perp\mu}E \ .$$

 $ightharpoonup N_L^{(0)}$ is equilibrium Bose-distribution.

Diffusive mode fluctuations

Fluctuations of $m \equiv s/n$ and transverse components of u^μ obey

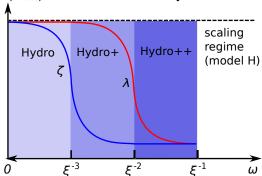
$$\begin{array}{ll} \text{(entropy-entropy)} & \mathcal{L}[N_{mm}] = -2\Gamma_{\lambda}\left(N_{mm} - \frac{c_p}{n}\right) + \dots \\ \text{(entropy-velosity)} & \mathcal{L}[N_{mi}] = -2(\Gamma_{\eta} + \Gamma_{\lambda})N_{mi} + \dots \\ \text{(velocity-velocity)} & \mathcal{L}[N_{ij}] = -2\Gamma_{\eta}\left(N_{ij} - \frac{Tw}{n}\right) + \dots \end{array}$$

- \mathcal{L} is Liouville operator with v=f=0, i.e., no propagation, but diffusion: $\Gamma_X=\gamma_Xq^2$, where $\gamma_\lambda=\lambda/c_p$ and $\gamma_\eta=\eta/w$.
- $m{\mathscr D}$ "..." are terms \sim background grads, mixing $N_{mm}\leftrightarrow N_{mi}\leftrightarrow N_{ij}$.
- Near critical point Γ_{λ} is smallest, $\gamma_{\lambda} = \lambda/c_p \sim 1/\xi \to 0$. N_{mm} equation decouples and matches Hydro+ ($\phi_Q = nN_{mm}$). Very nontrivially!

Beyond Hydro+

- Hydro+ breaks down when hydro frequency/rate is of order ξ^{-2} due to next-to-slowest modes $(N_{mi} \text{ and } N_{ij})$.
- **●** The formalism extends Hydro+ to higher frequencies, i.e., shorter hydrodynamic scales (all the way to ξ .)

Fluctuations (N_{mi}) enhance conductivity for small ω .



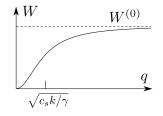
M. Stephanov QCD Critical Point ASU 2020 33 / 36

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} \, W(x,q)$.

This integral is divergent (equilibrium $G^{(0)}(x,y) \sim \delta^3(y)$).

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} \, W(x,q)$.

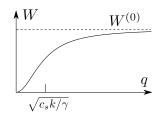
This integral is divergent (equilibrium $G^{(0)}(x,y) \sim \delta^3(y)$).



$$W(x,q) \sim \underbrace{W^{(0)}}_{Tw} + \underbrace{W^{(1)}}_{\partial u/q^2} + \widetilde{W}$$
 (~"OPE" or gradient expansion)

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} \, W(x,q)$.

This integral is divergent (equilibrium $G^{(0)}(x,y) \sim \delta^3(y)$).



$$W(x,q) \sim \underbrace{W^{(0)}}_{Tw} + \underbrace{W^{(1)}}_{\partial u/q^2} + \widetilde{W}$$
 (~"OPE" or gradient expansion)

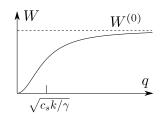
$$G(x,0) \quad \sim \quad \underbrace{\Lambda^3}_{\text{ideal (EOS)}} \quad + \quad \underbrace{\Lambda \, \partial u}_{\text{finite "$\partial^{3/2}$"}} \quad + \quad \underbrace{\widetilde{G}}_{\text{finite "$\partial^{3/2}$"}}$$

ASU 2020

34/36

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} W(x,q)$.

This integral is divergent (equilibrium $G^{(0)}(x,y) \sim \delta^3(y)$).



$$W(x,q) \sim \underbrace{W^{(0)}}_{Tw} + \underbrace{W^{(1)}}_{\partial u/q^2} + \widetilde{W}$$
 (~"OPE" or gradient expansion)

$$G(x,0) \quad \sim \quad \underbrace{\Lambda^3}_{\text{ideal (EOS)}} \quad + \quad \underbrace{\Lambda \, \partial u}_{\text{terms}} \quad + \quad \underbrace{\widetilde{G}}_{\text{finite "$\partial^{3/2}$"}}$$

$$\begin{split} \langle T^{\mu\nu}(x) \rangle &= \epsilon u^{\mu} u^{\nu} + p(\epsilon, n) \Delta^{\mu\nu} + \Pi^{\mu\nu} + \left\{ G(x, 0) \right\} \\ &= \epsilon_R u_R^{\mu} u^{\nu} + p_R(\epsilon_R, n_R) \Delta_R^{\mu\nu} + \Pi_R^{\mu\nu} + \left\{ \tilde{G}(x, 0) \right\} \,. \end{split}$$

M. Stephanov QCD Critical Point ASU 2020 34 / 36

Work in progress and outlook

- Add higher-order correlators for non-gaussian fluctuations.
- Connect fluctuating hydro with freezeout kinetics and implement in full hydrodynamic code and event generator. Compare with experiment.
- First-order transition in fluctuating hydrodynamics?
- Connection to action principle (SK) formulation.

Summary

- A fundamental question about QCD phase diagram: Is there a critical point on the QGP-HG boundary?
- Intriguing results from experiments (BES-I).
 More to come from BES-II (also FAIR/CBM, NICA, J-PARC).
 Quantitative theoretical framework is needed ⇒ BEST.
- In H.I.C., the magnitude of the fluctuation signatures of CP is controlled by dynamical non-equilibrium effects.
 In turn, critical fluctuations affect hydrodynamics.
 - The interplay of critical and dynamical phenomena: Hydro+.

M. Stephanov QCD Critical Point ASU 2020 36 / 36