Neutron star mergers and the origins of the heaviest elements

Rebecca Surman University of Notre Dame

Theoretical Physics Colloquium Arizona State University

15 April 2020

heavy element nucleosynthesis processes

r-process observables: abundance patterns

solar system r-process residuals

Arnould+2007, Hotokezaka+2018

r-process observables: abundance patterns

r-process observables: electromagnetic signatures

r-process observables: electromagnetic signatures

Barnes+2016 sGRB 130603B: Tanvir+2013 Kilpatrick+2017, Kasen+2017, etc. GW170817

kilonova SSS17a bolometric light curve

neutron star merger r-process environments

neutron star merger r-process environments

R Surman, ASU colloquium

15 April 20

nsm integrated nucleosynthesis yields

Martin+2018

open questions in nsm/r-process nucleosynthesis

Can we understand neutron star merger nucleosynthesis from first principles?

Are neutron star mergers responsible for the production of all *r*-process elements, or do multiple distinct sites contribute?

nuclear data for *r*-process simulations: masses

beta-decay rates

beta-delayed neutron emission probabilities neutron capture rates

> fission rates fission product distributions neutrino interaction rates spallation cross sections

masses from AME2016

nan, ASU colloquium

impact of mass uncertainties on abundance patterns

Abundance pattern ranges for 50 sets of masses calculated with the UNEDF1 functional

Sprouse, Navarro Perez, Surman, McLaughlin, Mumpower, Schunk arXiv:1901.10337, accepted in PRC

Abundance pattern ranges for 10 distinct mass models

Côté, Fryer, Belczynski, Korobkin, Chru**ś**li**ń**ska, Vassh, Mumpower, Lippuner, Sprouse, Surman, Wollaeger 2018

impact of mass uncertainties on kilonova heating rates

Yonglin Zhu, FIRE/NCSU grad student

Zhu+ in preparation

nan, ASU colloquium 15 April 20

experimental prospects: masses

Sprouse, Navarro Perez, Surman, McLaughlin, Mumpower, Schunk arXiv:1901.10337, accepted in PRC

kilonova signatures

signature of actinide production?

²⁵⁴Cf and late-time radioactive heating

Zhu, Wollaeger, Vassh, Surman, Sprouse, Mumpower, Möller, McLaughlin, Korobkin, Jaffke, Holmbeck, Fryer, Even, Couture, Barnes, ApJL 2018

R Surman, ASU colloquium 15 April 20

²⁵⁴Cf and late-time radioactive heating

Zhu, Wollaeger, Vassh, Surman, Sprouse, Mumpower, Möller, McLaughlin, Korobkin, Jaffke, Holmbeck, Fryer, Even, Couture, Barnes, ApJL 2018

R Surman, ASU colloquium 15 April 20

²⁵⁴Cf: nuclear uncertainties

Vassh, Vogt, Surman, Randrup, Sprouse, Mumpower, Jaffke, Shaw, Holmbeck, Zhu, McLaughlin, J Phys G 2019

Arnould+2007, Hotokezaka+2018

Arnould+2007, Hotokezaka+2018

mass model reverse engineering for rare earth peak formation

Arnould+2007, Hotokezaka+2018

mass model reverse engineering for rare earth peak formation

actinide production: clues from metal-poor stars

actinide production in *r*-process simulations

Erika Holmbeck, JINA-CEE/ND grad student

Holmbeck, Sprouse, Mumpower, Vassh, Surman, Beers, Kawano 2019

actinide dilution model

Holmbeck, Sprouse, Mumpower, Vassh, Surman, Beers, Kawano 2019

actinide dilution + matching model

R Surman, ASU colloquium 15 April 20

spallation of r-process nuclei

Wang, Fields, Mumpower, Sprouse, Surman, Vassh, arXiv:1909.12889 accepted in ApJ

spallation & ionic loss

R Surman, ASU colloquium

spallation of r-process nuclei

Wang, Fields, Mumpower, Sprouse, Surman, Vassh, arXiv:1909.12889 accepted in ApJ

spallation & ionic loss

Arnould+2007, Hotokezaka+2018

mass model reverse engineering for rare earth peak formation

spallation and the A ~ 195 peak

Xilu Wang, N3AS/ND postdoc

Wang, Fields, Mumpower, Sprouse, Surman, Vassh, arXiv:1909.12889 accepted in ApJ

Arnould+2007, Hotokezaka+2018

mass model reverse engineering for rare earth peak formation

deducing *r*-process conditions from abundance pattern details: the rare earth peak

mass modification parameterization:

$$M(Z, N) = M_{DZ}(Z, N) + a_N e^{-(Z-C)^2/2f}$$

Mumpower, McLaughlin, Surman, Steiner, 2016

deducing *r*-process conditions from abundance pattern details: the rare earth peak

mass modification parameterization:

$$M(Z, N) = M_{DZ}(Z, N) + a_N e^{-(Z-C)^2/2f}$$

Mumpower, McLaughlin, Surman, Steiner, 2016

reverse-engineering results for a hot wind r-process

Nicole Vassh, FIRE/ND postdoc

reverse-engineering results for a hot wind r-process + new experimental masses

masses from CPT at CARIBU

astrophysical conditions of a hot, (n,γ) - (γ,n) equilibrium wind

reverse-engineering results for three distinct scenarios

Vassh+ in preparation

summary

The origin of the heaviest elements in the *r*-process of nucleosynthesis has been one of the greatest mysteries in nuclear astrophysics for decades.

Evidence from a variety of directions increasingly points to neutron star mergers as an important source of *r*-process elements, but more work is needed, e.g., advances in astrophysical modeling, neutrino physics, and nuclear theory and experiment.

On the nuclear side, the next generation of radioactive beam facilities offers great promise to reach the increasingly neutron-rich nuclei whose properties may provide key insight into the astrophysical conditions of *r*-process production.

