Soft pions and the dynamics of the chiral phase transition

Derek Teaney Stony Brook University

- Eduardo Grossi, Alex Soloviev, DT, Fanglida Yan: PRD, arXiv:2005.02885
- Eduardo Grossi, Alex Soloviev, DT, Fanglida Yan: PRD, arXiv:2101.10847
- Adrien Florio, Eduardo Grossi, Alex Soloviev, DT, PRD, arXiv:2111.03640

Colliding Nuclei and Creating Plasma of Quarks and Gluons (QGP)

The QGP is Born

The nuclei pass through each other leaving QGP expanding rapidly

Measuring the hydrodynamics of the plasma

Amazing Success: the "Standard" Hydro Model

- 1. $V_1 \dots V_6$
- 2. Momentum dependence $V_n(p)$
- 3. Probabilities $P(|V_n|^2)$
- 4. Covariances between harmonics: $\langle V_2 V_3 V_5^* \rangle$
- 5. Full covariance matrix: $\langle V_2(p_1)V_2^*(p_2)\rangle$

Uses the equation of state from lattice QCD and

$$\partial_{\mu}T^{\mu\nu} = 0$$

but we want more ...

QCD and Chiral Symmetry

QCD is (almost) symmetric between, left and right, and up and down:

$$\mathcal{L}_{QCD} = \sum_{q=u,d} \bar{q}_L(i\not\!\!D)q_L + \bar{q}_R(i\not\!\!D)q_R - \underbrace{m_q\left(\bar{q}_Lq_R + \bar{q}_Rq_L\right)}_{\text{small}}$$

Then one would expect four approx. conservation laws, u_L , d_L , u_R , d_R :

$$n_B$$
: $(u_L + d_L) + (u_R + d_R)$ Baryon number
 n_{anom} : $(u_L - u_R) + (d_L - d_R)$ Anomalous: not consv.

Teaney

QCD and Chiral Symmetry

QCD is (almost) symmetric between, left and right, and up and down:

$$\mathcal{L}_{QCD} = \sum_{q=u,d} \bar{q}_L(i\mathcal{D})q_L + \bar{q}_R(i\mathcal{D})q_R - \underbrace{m_q\left(\bar{q}_L q_R + \bar{q}_R q_L\right)}_{\text{small}}$$

Then one would expect four approx. conservation laws, u_L , d_L , u_R , d_R :

$$egin{aligned} ec{n}_V : & (u_L+u_R)-(d_L+d_R) & & \mbox{Isovector charge} \\ ec{n}_A : & (u_L-u_R)-(d_L-d_R) & & \mbox{Isoaxial vect. charge} \end{aligned}$$

Teaney

Chiral symmetry breaking and heavy ion collisions

Chiral symmetry plays no role in the "Standard Hydro Model" ...

Our cold world: T< Tcritical

The slow modulation of the $SU_A(2)$ phase of $\bar{q}_R q_L = \bar{\sigma} e^{i\vec{\tau}\cdot\vec{\varphi}(x)}$ $\vec{q}_R q_L = \bar{\sigma} e^{i\vec{\tau}\cdot\vec{\varphi}(x)}$

The hot world: T> Tcritical

State is disordered: pion propagation is frustrated

This talk will describe pion propagation during the O(4) phase transition

Ising ModelQCDmagnetization
$$\vec{M}$$
 $\bar{q}_L q_R = \sigma e^{i \vec{\tau} \cdot \vec{\varphi}}$ condensatemagnetic \vec{H} m_q or H quark mass $\mathcal{H} = \int d^3 x \, \vec{H} \cdot \vec{M}$ $\mathcal{H} = \int d^3 x \, m_q \, (\bar{q}_R q_L + \bar{q}_L q_R)$

 $\vec{\tau}$ are Pauli matrices for the SU(2) order parameter

Real World QCD

- There are three flavors of quarks u, d, s which are massive
 - This changes structure phase diagram
- We will assume the real world is "close" to the O(4) critical point.

Real world lattice QCD and the O(4) critical point:

Hot QCD, PRL 2019

Fluctuations of order parameter, $\sigma \propto \bar{u}u + dd$, vs temperature and m_q

$$\chi_M = \langle \sigma^2 \rangle - \langle \sigma \rangle^2$$

The QCD lattice knows about the O(4) critical point! Hydro should too!

Static Universality and the Chiral Phase Transition

• The O(4) order parameter fluctuates in amplitude and phase:

$$\phi_a = (\phi_0, \phi_1, \phi_2, \phi_3) = (\sigma, \vec{\pi})$$

The quark condensate scales as

$$\bar{q}_R q_L \sim \sigma e^{i\vec{\tau}\cdot\vec{\varphi}} \simeq \sigma + i\vec{\tau}\cdot\vec{\pi}$$

- The Landau Ginzburg function for the ${\cal O}(4)$ order parameter is: $\phi^2\equiv\phi_a\phi_a$

$$\mathcal{H} = \int d^3x \; \frac{1}{2} \nabla \phi_a \cdot \nabla \phi_a + \frac{1}{2} m_0^2(T) \, \phi^2 + \frac{\lambda}{4} \, \phi^4 - \underbrace{H}_{\propto \ m_q} \sigma$$

- The model has a critical mass, $m_0 - m_c \propto (T - T_c)$

The critical model makes a definite prediction for the susceptibility:

Scaling predictions from the O(4) model

Simulations at different magnetic field are related to each other

$$\chi_M = h^{1/\delta - 1} f_{\chi}(z) \qquad z = z_0 t_{\rm r} h^{-1/\beta\delta}$$

Here $h \propto H$ and $t_{
m r} \propto (T-T_C)$ are the reduced field and temperature

numerical data from Engels, Seniuch, Fromme, Karsch

Scaling predictions and QCD

 $\chi_M = \left\langle \sigma^2 \right\rangle - \left\langle \sigma \right\rangle^2$

Scaling predictions reasonably describe how the peak rises and shifts.

$$\chi_M \propto m_q^{1/\delta - 1} f_{\chi}(z) \qquad z = z_0 \left(\frac{T - T_C}{T_C}\right) m_q^{-1/\beta\delta}$$

Teaney

Hot QCD, 2019

From Thermodynamics to Hydrodynamics

Hydrodynamics of the O(4) transition:

Rajagopal and Wilczek '92, Son '99, Son and Stephanov '01, and finally us, arxiv:2101.10847.

1. The order parameter

$$\phi_a = (\sigma, \vec{\pi})$$

2. The approximately conserved charges quantities:

$$ec{n_V} = \underbrace{ar{\psi}\gamma^0ec{ au}\psi}_{ ext{isovect chrg}}$$
 and $ec{n_A} = \underbrace{ar{\psi}\gamma^0\gamma^5ec{ au}\psi}_{ ext{isoaxial-vect chrg}}$

which are combined into an anti-symmetric O(4) tensor n_{ab}

$$n_{ab} = (\vec{n}_A, \vec{n}_V)$$

The charge n_{ab} generates O(4) rotations, $\phi \rightarrow \phi_c + \frac{i}{\hbar} \theta_{ab}[n_{ab}, \phi_c]$, implying a Poisson bracket between the hydrodynamic fields:

$$\{n_{ab}(\boldsymbol{x}), \phi_c(\boldsymbol{y})\} = \epsilon_{abcd} \phi_d(\boldsymbol{x}) \,\delta(\boldsymbol{x} - \boldsymbol{y})$$

The Landau-Ginzburg Hamiltonian for the O(4) transition:

The Hamiltonian is tuned to the crit. point with $m_0^2(T) < 0$ and $H \propto m_q$:

$$\mathcal{H} = \int d^3x \; \frac{1}{2} \nabla \phi_a \cdot \nabla \phi_a + \frac{1}{2} m_0^2(T) \phi^2 + \frac{\lambda}{4} \phi^4 - H\sigma + \frac{n_{ab}^2}{4\chi_0}$$

and gives the equilibrium distribution with the correct critical EOS:

$$Z = \int D\phi \, Dn \, e^{-\mathcal{H}[\phi,n]/T_c}$$

The hydro equations of motion take the form

$$\frac{\partial \phi}{\partial t} + \{\phi, \mathcal{H}\} = 0 + \text{visc. corrections} + \text{noise}$$
$$\frac{\partial n_{ab}}{\partial t} + \{n_{ab}, \mathcal{H}\} = 0 + \text{visc. corrections} + \text{noise}$$

The Landau-Ginzburg Hamiltonian for the O(4) transition:

The Hamiltonian is tuned to the crit. point with $m_0^2(T) < 0$ and $H \propto m_q$:

$$\mathcal{H} = \int d^3x \; \frac{1}{2} \nabla \phi_a \cdot \nabla \phi_a + \frac{1}{2} m_0^2(T) \phi^2 + \frac{\lambda}{4} \phi^4 - H\sigma + \frac{n_{ab}^2}{4\chi_0}$$

and gives the equilibrium distribution with the correct critical EOS:

$$Z = \int D\phi \, Dn \, e^{-\mathcal{H}[\phi,n]/T_c}$$

The hydro equations of motion take the form

$$\frac{\partial \phi}{\partial t} + \{\phi, \mathcal{H}\} = -\Gamma \frac{\delta \mathcal{H}}{\delta \phi_a} + \xi_a$$
$$\frac{\partial n_{ab}}{\partial t} + \{n_{ab}, \mathcal{H}\} = \underbrace{\sigma_0 \nabla^2 \frac{\delta \mathcal{H}}{\delta n_{ab}}}_{\text{dissipation}} + \underbrace{\nabla \cdot \xi_{ab}}_{\text{noise}}$$

The equations and the simulations:

We have a charge diffusion equation coupled to order parameter:

$$\partial_t n_{ab} + \underbrace{\nabla \cdot (\nabla \phi_{[a} \phi_{b]})}_{\text{poisson bracket}} + H_{[a} \phi_{b]} = \underbrace{D_0 \nabla^2 n_{ab}}_{\text{diffusion}} + \underbrace{\nabla \cdot \xi_{ab}}_{\text{noise}}$$

and a rotation of the order parameter induced by the charge:

Numerical scheme based operator splitting:

- 1. Evolve the Hamiltonian evolution with a position Verlet type stepper
- 2. Treat the dissipative Langevin steps as Metropolis-Hastings updates

Preliminaries: Statics

$$M_a(t)\equiv rac{1}{V}\sum_{m{x}}\phi_a(t,m{x})\equiv {
m Order}\;{
m Parameter}$$

with time average:

Teaney

Scan the phase transition:

After measuring order parameter, susceptibility, etc

$$ar{\sigma} = h^{1/\delta} f_G(z)$$
 $z = t_{
m r} h^{-1/\beta\delta}$

we have fixed the scaling parameters, $h = H/H_0$, and $t_{\rm r} = (m_0^2 - m_c^2)/\mathfrak{m}^2$

"Artists" conception of the phase transition dynamics

High Temperature: Diffusion of axial charge $n_A = u_L - d_R$

Low Temperature: pion propagation

The phase transition and axial charge correlations:

$$G_{AA}(t) = \int \mathrm{d}^3 x \, \left\langle \vec{n}_A(t, \boldsymbol{x}) \cdot \vec{n}_A(0, \boldsymbol{0}) \right\rangle$$

See a change in the dynamics across $T_{\rm pc}$:

Let's take a fourier transform and analyze the transition

Teaney

Features of the phase transition in the axial charge correlations:

$$G_{AA}(\omega) = \int \mathrm{d}t \, \mathrm{d}^3 x \, e^{i\omega t} \, \left\langle \vec{n}_A(t, \boldsymbol{x}) \cdot \vec{n}_A(0, \boldsymbol{0}) \right\rangle$$

Can see the transition from diffusion of quarks to propagation of pions!

Quantitative analysis of a pion EFT well below T_c , z = -2.2:

The predicted pole position m_p^2 of pion waves is given by static quantities:

$$m_p^2 = v^2 m^2 = \frac{H\bar{\sigma}}{\chi_0}$$

This is the finite temperature Gell-Mann Oakes Rener relation:

Scaling of simulations at T_c :

See a scaling behavior of the real time correlations, with quark mass, which tunes the correlation length

Dynamical critical exponent of the O(4) transition:

The relaxation time and correlations *scale* with the correlation length ξ :

$$\omega G_{AA}(\omega,\xi) = \underbrace{f(\omega \tau_R)}_{\text{universal fcn}} \quad \text{with} \quad \underbrace{\tau_R \propto \xi^{\zeta}}_{\text{relaxation time}}$$

The correlation length scales as $\xi \propto H^{-\nu_c}$ and the time as $\tau_R \propto H^{-\zeta\nu_c}$:

Phenomenology of Soft Pions in Data

Evidence for the chiral crossover in the heavy ion data?

A recent ordinary hydro fit from Devetak et al 1909.10485

See also, Guillen&Ollitrault arXiv:2012.07898; Schee, Gürsoy, Snellings: arXiv:2010.15134

Because the pions are the Goldstones of the transition, I expect an enhancement at low p_T , relative to vanilla hydro

Teaney

The Pion EFT

- Below T_C the condensate is frozen up to phase fluctuations $\bar{q}_R q_L = \bar{\sigma} e^{i \vec{\tau} \cdot \vec{\varphi}(x)}$
- The ideal equations of motion the phase is (with $\mu_A = n_A/\chi_0$):

$$\partial_t \varphi = \mu_A$$
 Josephson Constraint

while the axial charge EOM is:

$$\partial_t n_A + \nabla \cdot \boldsymbol{J}_A = f^2 m^2 \varphi$$
 Axial Current

where the current is the gradient of the phase: $oldsymbol{J}_A=f^2
abla arphi$

- The pion EFT is written with $f^2\simeq \bar{\sigma}^2$ and $f^2m^2=H\bar{\sigma}$

We can use the EFT to find the dispersion curve of soft pions, including dissipative corrections The Pion EFT

- Below T_C the condensate is frozen up to phase fluctuations $\bar{q}_R q_L = \bar{\sigma} e^{i \vec{\tau} \cdot \vec{\varphi}(x)}$
- The ideal equations of motion the phase is (with $\mu_A = n_A/\chi_0$):

 $\partial_t \varphi = \mu_A + \mathcal{O}(\Gamma \nabla^2 \varphi)$ Josephson Constraint

while the axial charge EOM is:

$$\partial_t n_A + \nabla \cdot \boldsymbol{J}_A = f^2 m^2 \, \varphi + \mathcal{O}(D \nabla^2 n_A)$$
 Axial Current

where the current is the gradient of the phase: $oldsymbol{J}_A=f^2
abla arphi$

- The pion EFT is written with $f^2\simeq \bar{\sigma}^2$ and $f^2m^2=H\bar{\sigma}$

We can use the EFT to find the dispersion curve of soft pions, including dissipative corrections

· Linearizing the equations, the quasi particle energy is

$$\omega_q^2 \equiv v_0^2(q^2+m^2) \qquad \qquad v_0^2(T) \equiv \frac{f^2}{\chi_0} \quad \Leftarrow \text{ pion velocity}$$

Both v_0 and m scale with the condensate:

$$v_0^2 \propto \underbrace{\bar{\sigma}^2}_{\text{condensate}}$$

$$v_0^2 m^2 \propto \underbrace{\bar{\sigma}}_{\text{condensate}}$$

which vanishes at the critical point, $\bar{\sigma}(-t)^{eta}$

Evidence for the chiral crossover in the heavy ion data?

A recent ordinary hydro fit from Devetak et al 1909.10485

See also, Guillen&Ollitrault arXiv:2012.07898; Schee, Gürsoy, Snellings: arXiv:2010.15134

Expect an enhancement at low p_T

$$n(\omega_q) = \frac{1}{e^{vq/T} - 1} \simeq \frac{T}{vq} \Rightarrow \infty,$$

Since at T_c , the velocity $v \Rightarrow 0$!

Teaney

With a modified dispersion curve (relative to vacuum) the yields increase

$$n(\omega(p)) = \frac{1}{e^{\omega(p)/T} - 1} \qquad \omega^2(p) = v^2(T)(p^2 + m^2(T))$$

We estimated the drop in $v^2(T)$ and $v^2m^2(T)$ from lattice data \dots

Encouraging estimate which motivates additional work on critical dynamics

New Detector: ALICE ITS3

Summary and Outlook:

- 1. We are encouraged by estimates and current measurements.
- 2. We are simulating the real-time dynamics of the chiral critical point
 - ► The numerical method may be useful for stochastic hydro generally
- 3. We reproduced the expected dynamical scaling laws:

$$\tau_R \propto \xi^{\zeta} \qquad \zeta = \frac{d}{2} \simeq 1.47 \pm 0.01$$

- 4. The pion waves are well calibrated.
- 5. The next step is to study the expanding case:
 - This will predict soft pions and their correlations with expansion for heavy ion collisions

The hadronization of the pion is the (only) hadronization process that can be studied rigorously, *and only with hydrodynamics!*

Backup

Comparison of π and σ

Dynamical scaling of σ correlation functions:

$$G_{\sigma\sigma}(\omega) = \int \mathrm{d}t \, \mathrm{d}^3 x \, e^{i\omega t} \, \left\langle \sigma(t, \boldsymbol{x}) \cdot \sigma(0, \boldsymbol{0}) \right\rangle$$

