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Colliding Nuclei and Creating Plasma of Quarks and Gluons (QGP)

Kinematics of a heavy ion collision:
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The nuclei pass through each other leaving QGP expanding rapidly
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The QGP is Born

Hot QGP
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The nuclei pass through each other leaving QGP expanding rapidly
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Measuring the hydrodynamics of the plasma
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Amazing Success: the “Standard” Hydro Model

1. V1 . . . V6

2. Momentum dependence Vn(p)

3. Probabilities P (|Vn|2)
4. Covariances between harmonics:

〈
V2V3V

∗
5

〉
5. Full covariance matrix:

〈
V2(p1)V

∗
2 (p2)

〉

Uses the equation of state from lattice QCD and

∂µT
µν = 0

but we want more...
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QCD and Chiral Symmetry

and ditto for right

QCD is (almost) symmetric between, left and right, and up and down:

LQCD =
∑

q=u,d

q̄L(i /D)qL + q̄R(i /D)qR − mq (q̄LqR + q̄RqL)︸ ︷︷ ︸
small

Then one would expect four approx. conservation laws, uL, dL, uR, dR:

nB : (uL + dL) + (uR + dR) Baryon number

nanom : (uL − uR) + (dL − dR) Anomalous: not consv.
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QCD and Chiral Symmetry

and ditto for right

QCD is (almost) symmetric between, left and right, and up and down:

LQCD =
∑

q=u,d

q̄L(i /D)qL + q̄R(i /D)qR − mq (q̄LqR + q̄RqL)︸ ︷︷ ︸
small

Then one would expect four approx. conservation laws, uL, dL, uR, dR:

~nV : (uL + uR)− (dL + dR) Isovector charge

~nA : (uL − uR)− (dL − dR) Isoaxial vect. charge
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Chiral symmetry breaking and heavy ion collisions Pisarski, Wilczek

µ

T

Broken chiral symmetry

QGP with chiral symmetry

quarks
and gluons

hadrons

For two massless quarks the
chiral symmetry group is

This is broken, and the transition
is 2nd order. 

The mass smooths the transition
to a crossover, like a magnetic

field in the Ising model

B

Chiral symmetry plays no role in the “Standard Hydro Model” . . .
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Our cold world:   T< Tcritical

The hot world:   T> Tcritical

This talk will describe pion propagation during the O(4) phase transition
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QCDIsing Model

magnetization

magnetic
field

condensate

quark mass



Real World QCD

• There are three flavors of quarks u, d, s which are massive
I This changes structure phase diagram

• We will assume the real world is “close” to the O(4) critical point.
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See review Phillipsen, 2021

HotQCD 2019, 2020,
Cuteri, Philipsen, Sciara 2021
Kotov, Lombardo, Trunin, 2021

Strong evidence of 2nd order 
phase transition at physical

strange mass

Nf =2 

Nf=3
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Real world lattice QCD and the O(4) critical point: Hot QCD, PRL 2019

Fluctuations of order parameter, σ ∝ ūu+ d̄d, vs temperature and mq
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Figure 3. Quark mass dependence of the chiral susceptibility on lattices with temporal extent N⌧ = 8 for several
values of the light quark masses. The spatial lattices extent N� is increased as the light quark mass decreases:
N� = 32 (H�1 = 20, 27), 40 (H�1 = 40), 56 (H�1 = 80, 160). Black symbols mark the points
corresponding to 60% of the peak height. Figure is taken from13.
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Figure 4. Volume dependence of the chiral susceptibility on lattices with temporal extent N⌧ = 8 for three
different spatial lattice sizes at H = 1/80. Black symbols mark the points corresponding to 60% of the peak
height. Figure is taken from13.

2.2 Results

We show results for �M in Fig. 3, on lattices with temporal extent N⌧ = 8 for 5 different
values of the quark mass ratio, H = ml/ms, and the largest lattice available for each H .
The increase of the peak height, �max

M , with decreasing H is consistent with the expected
behavior, �max

M ⇠ H1/��1 + const., with � ' 4.8 within rather large uncertainty which
restricts a precise determination of �.

In Fig. 4 we show the volume dependence of �M for H = 1/80 on lattices with tem-

5

O(4) Scaling predictions

The QCD lattice knows about the O(4) critical point! Hydro should too!



Static Universality and the Chiral Phase Transition

• The O(4) order parameter fluctuates in amplitude and phase:

φa = (φ0, φ1, φ2, φ3) = (σ, ~π)

The quark condensate scales as

q̄RqL ∼ σei~τ ·~ϕ ' σ + i~τ · ~π

• The Landau Ginzburg function for the O(4) order parameter is:
φ2 ≡ φaφa

H =

∫
d3x

1

2
∇φa · ∇φa +

1

2
m2

0(T )φ2 +
λ

4
φ4 − H︸︷︷︸

∝ mq

σ

• The model has a critical mass, m0 −mc ∝ (T − Tc)

The critical model makes a definite prediction for the susceptibility:
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Scaling predictions from the O(4) model

Simulations at different magnetic field are related to each other

χM = h1/δ−1fχ(z) z = z0 trh
−1/βδ

Here h ∝ H and tr ∝ (T − TC) are the reduced field and temperature
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Scaling predictions and QCD Hot QCD, 2019

χM =
〈
σ2
〉
− 〈σ〉2
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Figure 3. Quark mass dependence of the chiral susceptibility on lattices with temporal extent N⌧ = 8 for several
values of the light quark masses. The spatial lattices extent N� is increased as the light quark mass decreases:
N� = 32 (H�1 = 20, 27), 40 (H�1 = 40), 56 (H�1 = 80, 160). Black symbols mark the points
corresponding to 60% of the peak height. Figure is taken from13.
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Figure 4. Volume dependence of the chiral susceptibility on lattices with temporal extent N⌧ = 8 for three
different spatial lattice sizes at H = 1/80. Black symbols mark the points corresponding to 60% of the peak
height. Figure is taken from13.

2.2 Results

We show results for �M in Fig. 3, on lattices with temporal extent N⌧ = 8 for 5 different
values of the quark mass ratio, H = ml/ms, and the largest lattice available for each H .
The increase of the peak height, �max

M , with decreasing H is consistent with the expected
behavior, �max

M ⇠ H1/��1 + const., with � ' 4.8 within rather large uncertainty which
restricts a precise determination of �.

In Fig. 4 we show the volume dependence of �M for H = 1/80 on lattices with tem-

5

Scaling predictions reasonably describe how the peak rises and shifts.

χM ∝ m1/δ−1
q fχ(z) z = z0

(
T − TC
TC

)
m−1/βδq
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From Thermodynamics to Hydrodynamics
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Hydrodynamics of the O(4) transition:
Rajagopal and Wilczek ’92, Son ’99, Son and Stephanov ’01, and finally us, arxiv:2101.10847.

1. The order parameter
φa = (σ, ~π)

2. The approximately conserved charges quantities:

~nV = ψ̄γ0~τψ︸ ︷︷ ︸
isovect chrg

and ~nA = ψ̄γ0γ5~τψ︸ ︷︷ ︸
isoaxial-vect chrg

which are combined into an anti-symmetric O(4) tensor nab

nab = (~nA, ~nV )

The charge nab generates O(4) rotations, φ→ φc + i
~θab[nab, φc],

implying a Poisson bracket between the hydrodynamic fields:

{nab(x), φc(y)} = εabcd φd(x) δ(x− y)
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The Landau-Ginzburg Hamiltonian for the O(4) transition:

The Hamiltonian is tuned to the crit. point with m2
0(T ) < 0 and H ∝ mq:

H =

∫
d3x

1

2
∇φa · ∇φa +

1

2
m2

0(T )φ2 +
λ

4
φ4 −Hσ +

n2ab
4χ0

and gives the equilibrium distribution with the correct critical EOS:

Z =

∫
DφDne−H[φ,n]/Tc

The hydro equations of motion take the form

∂φ

∂t
+ {φ,H} =0 + visc. corrections + noise

∂nab
∂t

+ {nab,H} =0 + visc. corrections + noise
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The Landau-Ginzburg Hamiltonian for the O(4) transition:

The Hamiltonian is tuned to the crit. point with m2
0(T ) < 0 and H ∝ mq:

H =

∫
d3x

1

2
∇φa · ∇φa +

1

2
m2

0(T )φ2 +
λ

4
φ4 −Hσ +

n2ab
4χ0

and gives the equilibrium distribution with the correct critical EOS:

Z =

∫
DφDne−H[φ,n]/Tc

The hydro equations of motion take the form

∂φ

∂t
+ {φ,H} =− Γ

δH
δφa

+ ξa

∂nab
∂t

+ {nab,H} = σ0∇2 δH
δnab︸ ︷︷ ︸

dissipation

+∇ · ξab
︸ ︷︷ ︸
noise
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The equations and the simulations: see also Schlichting, Smekal

We have a charge diffusion equation coupled to order parameter:

∂tnab + ∇ · (∇φ[aφb])︸ ︷︷ ︸
poisson bracket

+H[aφb] = D0∇2nab︸ ︷︷ ︸
diffusion

+∇ · ξab︸ ︷︷ ︸
noise

and a rotation of the order parameter induced by the charge:

∂tφa +
nab
χ0

φb
︸ ︷︷ ︸

poisson bracket

= Γ0
δH

δφa︸ ︷︷ ︸
dissipation

+ ξa
︸︷︷︸

noise

Numerical scheme based operator splitting:

1. Evolve the Hamiltonian evolution with a position Verlet type stepper

2. Treat the dissipative Langevin steps as Metropolis-Hastings updates
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Preliminaries: Statics

Ma(t) ≡
1

V

∑

x

φa(t,x) ≡ Order Parameter

with time average:

σ̄ = 〈M0(t)〉 and Σ = lim
H→0

lim
V→∞

σ̄

0

0.1

0.2

0.3

0.4

-0.08 -0.06 -0.04 -0.02 0

H=0

�

tr

b1 (-tr)� (1 + CT (-tr)� �)
b1 (-tr)�

FIG. 1. Left: � on the critical line for L = 32 and L = 64 together with a finite volume fit to

the data, which determines the non-universal parameters H0, L0 and CH . The fit form is taken

from Engels and Karsch [6] (see text surrounding eq. (B6)). Also shown is the results of the fit

at L = 1. Right: Extracted infinite volume expectation value, ⌃ ⌘ limH!0+ limL!1 �, as a

function tr ⌘ (m2
0 � m2

c)/|m2
c |. The fits and extraction procedure are discussed in the text. Also

shown is the fit result without the subleading correction.

Extracting the magnetization ⌃ is di�cult as, in any finite volume,

lim
H!0

�̄|L fixed = 0 . (28)

This is because when H⌃V ⇠ 1, the orientation of magnetization vector Ma begins to
wander on the group manifold, averaging to zero in the limit of zero external magnetic field.
One way to extract ⌃ is to look at the fluctuations of Ma, evaluating hM2i = hMaMai,
which is approximately ⌃2 at large volume. The leading deviation of hM2i and ⌃2 at finite
volume comes from the fluctuations of long wavelength Goldstone modes, and can be neatly
analyzed with a Euclidean pion EFT [37]. We detail these corrections in App. B 3, which
were essential to a reliable extraction of ⌃(T ).

Our results for ⌃(T ) are shown in the right panel of Fig. 1, and are fit with the functional
form

⌃ = b1(�tr)
� (1 + (�tr)

!⌫CT ) . (29)

with critical exponents � and � from [6] and ! from [36]. Here we are using

tr ⌘
m2

0 � m2
c

|mc|2
, (30)

instead of t̄r, and we defined b1 ⌘ (|m2
c |/m2)�. The second term in (29) captures the first

subleading correction to scaling.
Our fit to ⌃(T ) is shown in the right panel of Fig. 1 and yields b1 = 0.544(4) and

CT = 0.20(2) with a �2/dof = 1.4. We have excluded the largest value of (�tr) from the fit.
For comparison, we also show the fit results for the first term b1(�tr)

�. Clearly, for precision
work the subleading corrections are important in the temperature range we are considering.

10
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Scan the phase transition: Engels, Fromme, Seniuch, Karsch; Hasenbuch

After measuring order parameter, susceptibility, etc

σ̄ = h1/δfG(z) z = trh
−1/βδ

we have fixed the scaling parameters, h = H/H0, and tr = (m2
0 −m2

c)/m
2
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“Artists” conception of the phase transition dynamics

High Temperature:  Diffusion of axial charge

Low Temperature: pion propagation
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The phase transition and axial charge correlations:

GAA(t) =

∫
d3x 〈~nA(t,x) · ~nA(0,0)〉

See a change in the dynamics across Tpc:
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Let’s take a fourier transform and analyze the transition
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Features of the phase transition in the axial charge correlations:

GAA(ω) =

∫
dtd3x eiωt 〈~nA(t,x) · ~nA(0,0)〉
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Can see the transition from diffusion of quarks to propagation of pions!
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Quantitative analysis of a pion EFT well below Tc, z = −2.2:

The predicted pole position m2
p of pion waves is given by static quantities:

m2
p = v2m2 =

Hσ̄

χ0

This is the finite temperature Gell-Mann Oakes Rener relation:
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FIG. 7. Statistical correlators for the ⇡ and axial channels together with the result of a global fit

to the functional form from the chiral hydrodynamic theory (see text). The fitted parameters are

mp = (1.4387 ± 0.0005 (stat.)) · 10�2 and �p = (5.088 ± 0.005 (stat.)) · 10�3, with a �2/dof of 1.93.

Here m2
p is the pole mass of the pion excitation, m is the transverse static screening mass,

� is a dissipative coe�cient correcting the Josephson constraint, and finally �0 and �? are
the appropriate static susceptibilities, which are required to normalize these expressions

Z
d!

2⇡
G⇡⇡(!) = �? , (39)

Z
d!

2⇡
GAA(!) = �0 . (40)

The fact that the pions are pseudo-Goldstone bosons, and correspondingly that the axial
current is partially conserved (PCAC), leads to the well-known and remarkable property that
the dynamical pole mass mp can purely be computed from the static properties discussed
in Sect. III B. In particular, at low-enough temperatures, we have a finite temperature Gell-
Mann-Oakes-Renner (GOR) relation [29, 30, 39]

m2
p = v2m2 =

H�̄

�0

, (41)

where v2 ⌘ f 2/�0 is the pion velocity.
Already in Fig. 5 we saw the appearance of pion excitations. We will now try to assess

the validity of the pion EFT. To do so, we attempt to fit expressions (37)-(38) from our
statistical correlators. To perform these fits, we first fix the normalizations by extracting
from our data the susceptibilities, �0 and �?. We then use a two parameter model, involving
mp and �p = �m2, and simultaneously fit the statistical correlators in the ⇡ and axial
channels.

Results of these fits are shown in Fig. 7, yielding parameters

mp = (1.4387 ± 0.0005 (stat.)) · 10�2 , (42)

�p = (5.088 ± 0.005 (stat.)) · 10�3 , (43)

�2/dof = 1.93 . (44)

16

These are static inputs to fit:
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Scaling of simulations at Tc:

At T = Tc, we varied the magnetic field, finding the response functions:
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FIG. 8. Left: Time dependent axial charge correlation functions for di↵erent magnetic fields on

the critical line, z = 0. Right: Corresponding statistical correlator in frequency space.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t m
in
(H

2)
/t
m
in
(H

1)

H1 / H2

(H1/H2) (1.47 ± 0.01) � �c

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 300 600 900 1200

z=0

Href = 0.002

G
AA
(t)
/�

0

t�(Href / H) 1.47 � �c

H=0.002
H=0.003
H=0.004
H=0.006
H=0.01

FIG. 9. Left: Ratios, tmin(H2)/tmin(H1), extracted from the first minima of Fig. 8 as a function of

H1/H2 (see text). On the critical line, we expect this ratio to be described by a universal critical

exponent tmin(H2)/tmin(H1) = (H1/H2)
⇣⌫c . Our best fit gives ⇣ = 1.47 ± 0.01. Right: Time

dependent axial correlation functions as a function of an appropriately rescaled time variable.

We show this ratio as a function of H1/H2 in the left panel of Fig. 9. The data are well
described by the power law form, and we obtain a nominal value for the dynamical exponent
of

⇣fit = 1.47 ± 0.01 , (51)

taking ⌫c = 0.4024 from [6].

With an estimate of the critical exponent in hand, we can verify the ansatz (49). Indeed
by appropriately rescaling times and frequencies, we expect to see our correlators GAA(t, H)

18

See a scaling behavior of the real time correlations, with quark mass,
which tunes the correlation length
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Dynamical critical exponent of the O(4) transition: Rajagopal, Wilczek

The relaxation time and correlations scale with the correlation length ξ:

ωGAA(ω, ξ) = f(ω τR)︸ ︷︷ ︸
universal fcn

with τR ∝ ξζ︸ ︷︷ ︸
relaxation time

The correlation length scales as ξ ∝ H−νc and the time as τR ∝ H−ζνc :
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Phenomenology of Soft Pions in Data
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Evidence for the chiral crossover in the heavy ion data?
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Figure 3. Top: The best fit for ⇡, K, p spectra compared to the experimental data in five centrality classes

in Pb–Pb collisions at
p

sNN = 2.76 TeV. Bottom: The data to model ratios. The shaded areas correspond

to the sum in quadrature of the statistical and systematic experimental uncertainties.

While hpTi of kaons agrees very well with the experimental measurements, the hpTi of pions and

protons show some residual deviations. For the pions this is a reflection of the deviation between

model and data in the transverse momentum spectrum below pT = 0.5 GeV/c, which results in

a slightly larger hpTi for pions in our model. As for the protons, the slight discrepancy could be

due to the absence of an hadronic phase between chemical and kinetic freeze-out in our model. We

note that similar discrepancies are observed in other hydrodynamic simulations [40, 46] and none

appears able to reproduce data within the very small experimental uncertainties.

To our best knowledge no recent heavy-ion simulations (including our own presented here) are

able to produce a uniformly good description of identified particle spectra from central to mid-

central nucleus-nucleus collisions if experimental uncertainties are taken seriously. The pioneering

studies of [52] showed excellent agreement of identified particle spectra measured at RHIC with ideal

hydrodynamic simulations, but the agreement worsened when e↵ects of viscosity were included. In

the EKRT model [53], pion spectra are described well at the expense of over-predicted kaon and

proton yields, which is in line with our finding when we attempt to fit only the pion spectra.

In Ref. [40] where the e↵ect of both bulk viscosity and hadronic rescattering were studied, the

data to model agreement is arguably on the same level as in our work, although we employ a

single freeze-out approximation. We note here that the extensive Bayesian analyses of refs. [22, 41]

have concentrated on momentum integrated observables. In summary, the excellent quality of

experimental data of identified particle spectra indicates the need of including additional physics

in hydrodynamic simulations of heavy-ion collisions.

4.2 Strange, multi-strange and energy dependence of particle spectra

Having found the optimal parameters of our model, many other observables, not used in the fit,

can be directly predicted. This is an important step in validating the physics picture behind the

– 12 –

 A recent ordinary hydro fit from Devetak et al 1909.10485

typical pt

See also, Guillen&Ollitrault arXiv:2012.07898; Schee, Gürsoy, Snellings: arXiv:2010.15134

Because the pions are the Goldstones of the transition, I expect an
enhancement at low pT , relative to vanilla hydro
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The Pion EFT Son and Stephanov ’01+bit from us

• Below TC the condensate is frozen up to phase fluctuations

• The ideal equations of motion the phase is (with µA = nA/χ0):

∂tϕ = µA

+O(Γ∇2ϕ)

Josephson Constraint

while the axial charge EOM is:

∂tnA +∇ · JA = f2m2 ϕ

+O(D∇2nA)

Axial Current

where the current is the gradient of the phase: JA = f2∇ϕ
• The pion EFT is written with f2 ' σ̄2 and f2m2 = Hσ̄

We can use the EFT to find the dispersion curve of soft pions,
including dissipative corrections
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• Below TC the condensate is frozen up to phase fluctuations

• The ideal equations of motion the phase is (with µA = nA/χ0):

∂tϕ = µA +O(Γ∇2ϕ) Josephson Constraint

while the axial charge EOM is:

∂tnA +∇ · JA = f2m2 ϕ+O(D∇2nA) Axial Current

where the current is the gradient of the phase: JA = f2∇ϕ
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We can use the EFT to find the dispersion curve of soft pions,
including dissipative corrections
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Long wavelength pion (superfluid) modes: Son, Stephanov ’01 + a bit by us

ϕ(t, x)
q̄RqL = σ̄eiϕ(t,x)

• Linearizing the equations, the quasi particle energy is

ω2
q ≡ v20(q2 +m2) v20(T ) ≡ f2

χ0
⇐ pion velocity

Both v0 and m scale with the condensate:

v20 ∝ σ̄2︸︷︷︸
condensate

v20m
2 ∝ σ̄︸︷︷︸

condensate

which vanishes at the critical point, σ̄(−t)β
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Evidence for the chiral crossover in the heavy ion data?
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Figure 3. Top: The best fit for ⇡, K, p spectra compared to the experimental data in five centrality classes

in Pb–Pb collisions at
p

sNN = 2.76 TeV. Bottom: The data to model ratios. The shaded areas correspond

to the sum in quadrature of the statistical and systematic experimental uncertainties.

While hpTi of kaons agrees very well with the experimental measurements, the hpTi of pions and

protons show some residual deviations. For the pions this is a reflection of the deviation between

model and data in the transverse momentum spectrum below pT = 0.5 GeV/c, which results in

a slightly larger hpTi for pions in our model. As for the protons, the slight discrepancy could be

due to the absence of an hadronic phase between chemical and kinetic freeze-out in our model. We

note that similar discrepancies are observed in other hydrodynamic simulations [40, 46] and none

appears able to reproduce data within the very small experimental uncertainties.

To our best knowledge no recent heavy-ion simulations (including our own presented here) are

able to produce a uniformly good description of identified particle spectra from central to mid-

central nucleus-nucleus collisions if experimental uncertainties are taken seriously. The pioneering

studies of [52] showed excellent agreement of identified particle spectra measured at RHIC with ideal

hydrodynamic simulations, but the agreement worsened when e↵ects of viscosity were included. In

the EKRT model [53], pion spectra are described well at the expense of over-predicted kaon and

proton yields, which is in line with our finding when we attempt to fit only the pion spectra.

In Ref. [40] where the e↵ect of both bulk viscosity and hadronic rescattering were studied, the

data to model agreement is arguably on the same level as in our work, although we employ a

single freeze-out approximation. We note here that the extensive Bayesian analyses of refs. [22, 41]

have concentrated on momentum integrated observables. In summary, the excellent quality of

experimental data of identified particle spectra indicates the need of including additional physics

in hydrodynamic simulations of heavy-ion collisions.

4.2 Strange, multi-strange and energy dependence of particle spectra

Having found the optimal parameters of our model, many other observables, not used in the fit,

can be directly predicted. This is an important step in validating the physics picture behind the

– 12 –

 A recent ordinary hydro fit from Devetak et al 1909.10485

typical pt

See also, Guillen&Ollitrault arXiv:2012.07898; Schee, Gürsoy, Snellings: arXiv:2010.15134

Expect an enhancement at low pT

n(ωq) =
1

evq/T − 1
' T

vq
⇒∞, Since at Tc, the velocity v ⇒ 0 !
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With a modified dispersion curve (relative to vacuum) the yields increase

n(ω(p)) =
1

eω(p)/T − 1
ω2(p) = v2(T )(p2 +m2(T ))

v goes to zero at Tc

We estimated the drop in v2(T ) and v2m2(T ) from lattice data . . .

field scaling curves then give the values of the pole mass
and the pion velocity at the pseudocritical point:

m0pðzpcÞ ≃ 0.1 GeV; ð125aÞ

v20ðzpcÞ ≃ 0.25: ð125bÞ

In the future it would be nice to measure v0 and m very
precisely on the lattice (they are Euclidean quantities) and
to verify their critical scaling behavior in the chiral limit.
We have now fully specified the dispersion curve ω2ðqÞ

with Eqs. (121), (122a), (122b), and (125). Given the
dispersion curve we can estimate the expected enhance-
ment of yields

dNcrit

d3p
dNvac
d3p

¼ ωvacðpÞ
ωðpÞ

: ð126Þ

This prediction is shown in Fig. 5 for two different choices
of Λ. We note that using the full Bose-Einstein distribution
instead of its classical limit T=ω produces only minor
differences, which a slightly increases ratio shown in Fig. 5.
We note that at p ∼ 250 MeV the cutoff constitutes a ∼15%
correction to the scaling theory in (117).
The ratio estimated in Fig. 5 is roughly inline with the

observed enhancement, although strong conclusions about
the chiral critical point cannot be made at this time.
Nevertheless, we find the result encouraging and it strongly

motivates further research. The most obvious deficiency in
our estimate is the lack of resonance decays at a naïve level.
Resonances are a way of encoding interactions, and these
interactions are already incorporated into the dispersion
curve. It is therefore difficult “include” resonances without
double counting. From a phenomenological perspective, it
would be good to know if the fluctuations in the soft pion
yield are correlated with rest of the pion pT spectrum, or if
the variance of the soft yield has an independent compo-
nent. This correlation measurement certainly can be done,
and is ideally suited to the proposed ITS3 detector by the
ALICE collaboration [39]. Additional clarifying measure-
ments could include a direct measurement of the correla-
tions between two soft pions. It should be possible to
provide good theoretical predictions for these correlations
using Oð4Þ scaling ideas. These predictions can be con-
trasted with the (presumably) rather different predictions of
the hadron resonance gas. Finally, it would be interesting to
see if the velocity of the soft pions could be measured
directly with nonidentical particle correlations. We hope to
address these and other topics in the future.
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APPENDIX A: ENTROPY PRODUCTION

In this Appendix we compute entropy production with
guidance from [40] and the insightful eightfold way
classification scheme [41]. Repeating Eqs. (35) and (33)
for convenience, the entropy is given by the Gibbs-Duhem
relation

sΣ ¼ 1

T

!
eΣ þ pΣ −

1

2
μabnab

"
; ðA1Þ

and the pressure differential follows from the action

dpΣ ¼ sΣdT þ 1

2
nabdμab −

1

2
dð∂⊥ϕÞ2

þ
!
− ∂V
∂ϕa

þHa

"
dϕa: ðA2Þ

Here d≡ uμ∂μ, and below we define ∂u≡ ∂μuμ.
Differentiating (A1) and using (A2), the differential of

the entropy density dsΣ can be written as

TdsΣ ¼ deΣ −
1

2
μabdnab −

1

2
dð∂⊥ϕÞ2

þ
!
−

∂V
∂ϕa

þHa

"
dϕa: ðA3Þ
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FIG. 5. An estimate for the yield of pions, dN=d3p, with a
critically modified dispersion curve, ωðpÞ, relative to the yield
with the vacuum dispersion curve, ωvacðpÞ (see text). The black
dotted lines show the critical limit [with dispersion curve ω0ðpÞ
in (117)] and the vacuum limit; these are respectively valid at low
and high momentum. The red curves interpolate between these
two limits at a scale Λ ∼ πT, with Λ=πT varied between 0.8 and
1.2. The red lines are dashed when the interpolants deviate from
the low and high momentum limits by more than 20% and 10%,
respectively.
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Figure 3. Top: The best fit for ⇡, K, p spectra compared to the experimental data in five centrality classes

in Pb–Pb collisions at
p

sNN = 2.76 TeV. Bottom: The data to model ratios. The shaded areas correspond

to the sum in quadrature of the statistical and systematic experimental uncertainties.

While hpTi of kaons agrees very well with the experimental measurements, the hpTi of pions and

protons show some residual deviations. For the pions this is a reflection of the deviation between

model and data in the transverse momentum spectrum below pT = 0.5 GeV/c, which results in

a slightly larger hpTi for pions in our model. As for the protons, the slight discrepancy could be

due to the absence of an hadronic phase between chemical and kinetic freeze-out in our model. We

note that similar discrepancies are observed in other hydrodynamic simulations [40, 46] and none

appears able to reproduce data within the very small experimental uncertainties.

To our best knowledge no recent heavy-ion simulations (including our own presented here) are

able to produce a uniformly good description of identified particle spectra from central to mid-

central nucleus-nucleus collisions if experimental uncertainties are taken seriously. The pioneering

studies of [52] showed excellent agreement of identified particle spectra measured at RHIC with ideal

hydrodynamic simulations, but the agreement worsened when e↵ects of viscosity were included. In

the EKRT model [53], pion spectra are described well at the expense of over-predicted kaon and

proton yields, which is in line with our finding when we attempt to fit only the pion spectra.

In Ref. [40] where the e↵ect of both bulk viscosity and hadronic rescattering were studied, the

data to model agreement is arguably on the same level as in our work, although we employ a

single freeze-out approximation. We note here that the extensive Bayesian analyses of refs. [22, 41]

have concentrated on momentum integrated observables. In summary, the excellent quality of

experimental data of identified particle spectra indicates the need of including additional physics

in hydrodynamic simulations of heavy-ion collisions.

4.2 Strange, multi-strange and energy dependence of particle spectra

Having found the optimal parameters of our model, many other observables, not used in the fit,

can be directly predicted. This is an important step in validating the physics picture behind the

– 12 –

 A recent ordinary hydro fit from Devetak et al 1909.10485

typical pt

critical yields/vacuum yields

Encouraging estimate which motivates additional work on critical dynamics
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New Detector: ALICE ITS3
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Summary and Outlook:

1. We are encouraged by estimates and current measurements.

2. We are simulating the real-time dynamics of the chiral critical point

I The numerical method may be useful for stochastic hydro generally

3. We reproduced the expected dynamical scaling laws:

τR ∝ ξζ ζ =
d

2
' 1.47± 0.01

4. The pion waves are well calibrated.

5. The next step is to study the expanding case:

I This will predict soft pions and their correlations with expansion for
heavy ion collisions

The hadronization of the pion is the (only) hadronization process that can
be studied rigorously, and only with hydrodynamics!
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Comparison of π and σ

0

50

100

150

200

250

300

350

400

-0.04 -0.02 0 0.02 0.04

G
�
�(
�
)/
� �

�

z=3.87
zpc

0.7zpc
z=0

z=-2.2

0

10

20

30

40

50

60

70

80

90

-0.1 -0.05 0 0.05 0.1
G
�
�(
�
)/
� |
|

�

FIG. 6. Left: The Fourier transform of the ⇡⇡ correlator with z spanning the phase transition.

Right: The corresponding �� correlators. Note the di↵erent scales used in the two panels. In

particular, the gray curves in the left and right panels are almost identical, as shown in Fig. 4.

peak is already quite deformed, which reflects the nascent formation of the two quasiparticle
peaks.

In the left and right panels of Fig. 6, we show the corresponding statistical correlators for
the ⇡ and � fields as a functions of frequency, with z spanning the phase transition. In the
deeply unbroken phase the two channels are mostly indistinguishable (the grey bands), as
pointed out before. Lowering the temperature to the pseudocritical point, the pseudoscalar
channel acquires a double peak structure, while the scalar channel remains purely dissipative.
Going further down in temperature, the quasi-particle peaks in the pseudoscalar channel
separate. Interestingly at zpc, the pion correlator already has a quasiparticle peak, while
the axial charge correlator is still dissipative (Fig. 5); only past the pseudocritical point do
their correlation functions become closely related.

C. Broken phase: pion EFT

Deep in the broken phase, the fluctuations of the order parameter are dominated by
the phase fluctuations ⇡s(t, x) ' �̄'s(t, x), which are tightly correlated to the axial charge
fluctuations through the Josephson constraint, @t~' ' ~µA. The dissipative hydrodynamic
theory for the phase fluctuations has been worked out in [16, 17, 29], and provides a real
time analog of the static Gaussian e↵ective theory described in Sect. III B.

The linear response of hydrodynamic theory has been analyzed in [18, 29], and the hy-
drodynamic prediction for the dynamical correlators in the k = 0 case is

G⇡⇡(!) =
2�?�m2!2

(�!2 + m2
p)

2 + !2(�m2)2
, (37)

GAA(!) =
2�0�m2m2

p

(�!2 + m2
p)

2 + !2(�m2)2
. (38)
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Dynamical scaling of σ correlation functions:

Gσσ(ω) =

∫
dt d3x eiωt 〈σ(t,x) · σ(0,0)〉
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FIG. 11. Left: Statistical correlator in the �� channel, on the critical line. Right: Corresponding

spectral function as a function of rescaled frequencies. The estimated critical exponent used for

the rescaling is determined from the axial channel. The dynamical scaling hypothesis is satisfied

and we observe a collapse of the di↵erent curves.

a scan in temperature across the phase transition. We qualitatively confirmed that the
dynamics takes place as expected, by studying the real-time correlation functions in the ��,
⇡⇡ and axial-axial channels. At high temperature, the � and ⇡ are degenerate and the axial
charge is almost conserved. In the broken phase, the � remains purely dissipative, while
the ⇡ propagates and carries axial charge. In particular, we were able to observe that the
coupling of the ⇡ to the axial charge precisely happens in the vicinity of the pseudocritical
point, zpc, defined as the line in the phase diagram where the static susceptibility peaks.
This observation is yet another link between the static and dynamical properties of this
critical model.

We also performed a quantitative study of the pion properties in the broken phase. We
were able to fit the dynamical correlator to a particle resonance ansatz predicted by the chiral
hydrodynamic e↵ective theory, and extract the pole mass and decay width. Furthermore, we
verified that the Gell-Mann-Oakes-Renner relation, which relates the dynamical pole mass
of the pions to their static screening mass, holds at the sub-percent level. Last but not least,
we performed a set of simulations along the critical line and extracted the dynamical critical
exponent ⇣ = 1.47 ± 0.01 (stat), very close to the critical scaling prediction ⇣ = 1.5 [2].

The numerical determination of ⇣ can be considered as a first step towards a complete
quantitative characterization of the dynamics of the O(4) antiferromagnet. Such a char-
acterization would include additional studies at finite spatial momentum as in [27], and a
more complete investigation of the dynamics in the chiral limit at finite volume with an
appropriate real-time EFT. (The corresponding finite volume static EFT was written down
long ago [37], and was helpful in the thermodynamic analysis in Sect. B 3). In order to
use the model to analyze heavy-ion data as discussed in [17, 18], it will be important to
analyze the critical O(4) dynamics for an expanding fluid, which introduces a rich hierarchy
of scales. Finally, it will be interesting to apply the algorithm presented in App. A to other
stochastic and critical systems.
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