
Hydrodynamics with 50 particles. What does it mean and how

to think about it?

G.Torrieri

Based on 2007.09224



This is a very speculative talk so don’t take any of my answers too
seriously, for they could be wrong.

But think about the issues I am rasing, for they are important!

A lot of very useful context in Pavel Kovtun’s excellent talk,
https://m.youtube.com/watch?feature=youtu.be&v=s3OXzAX-XnM

Much of the same issues, but an ”orthogonal” perspective!

Also a great workshop going on right now on these topics,
https://indico.ectstar.eu/event/94/

https://m.youtube.com/watch?feature=youtu.be&v=s3OXzAX-XnM
https://indico.ectstar.eu/event/94/


• The necessity to redefine hydro

– Small fluids and fluctuations
– Statistical mechanicists and mathematicians

• A possible answer:

– Describing equilibrium at the operator level using the Zubarev operator
– Definining non-equilibrium at the operator level using Crooks theorem

Relationship to usual hydrodynamics analogous to ”Wilson loops” vs
”Chiral perturbation” regarding usual QCD

• Discussion, extensions, implementations etc.



Some experimental data warmup (Why the interest in relativistic hydro ?)
(2004) Matter in heavy ion collisions seems to behave as a perfect fluid,
characterized by a very rapid thermalization



The technical details
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A "fluid"
Particles continuously
interact.  Expansion
determined by density
gradient (shape)

A "dust"
Particles ignore each
other, their path
is independent of
initial shape
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Calculations
using ideal
hydrodynamics

P.Kolb and U.Heinz,Nucl.Phys.A702:269,2002. P.Romatschke,PRL99:172301,2007



The conventional widsom
Hydrodynamics is an ”effective theory”, built around coarse-graining and
”fast thermalization”. Fast w.r.t. Gradients of coarse-grained variables
If thermalization instantaneus, then isotropy,EoS enough to close evolution

Tµν = (e+ P (e))uµuν + P (e)gµν

In rest-frame at rest w.r.t. uµ

Tµν = Diag (e(p), p, p, p)

(NB: For simplicity we assume no conserved charges, µB = 0 )



If thermalization not instantaneus,

Tµν = T eq
µν +Πµν , uµΠ

µν = 0

∑

n

τnΠ∂
n
τΠµν = −Πµν +O (∂u) +O

(
(∂u)2

)
+ ...

A series whose ”small parameter” (Barring phase transitions/critical
points/... all of these these same order):

K ∼ lmicro

lmacro
∼ η

sT
∇u ∼ DetΠµν

DetTµν
∼ ...

and the transport coefficients calculable from asymptotic correlators of
microscopic theory

Navier-Stokes ∼ K , Israel-Stewart ∼ K2 etc.



So hydrodynamics is an EFT in terms of K and correlators

η = lim
k→0

1

k

∫
dx

〈
T̂xy(x)T̂xy(y)

〉
exp [ik(x− y)] , τπ ∼

∫
eikx 〈TTT 〉 , ...

This is a classical theory , T̂µν → 〈Tµν〉 Higher order correlators
〈Tµν(x)...Tµν〉 play role in transport coefficients, not in EoM (if you
know equation and initial conditions, you know the whole evolution!)

As is the case with 99% of physics we know how to calculate rigorously
mostly in perturbative limit. But 2nd law of thermodynamics tells us
that A Knudsen number of some sort can be defined in any limit as a
thermalization timescale can always be defined Strong coupling → lots
of interaction → ”fast” thermalization → ”low” K



e.g. “quantum lower limits” on viscosity? top-down answers
Danielewicz and Gyulassy used the uncertainity principle and Boltzmann
equation

η ∼ 1

5
〈p〉nlmfp , lmfp ∼ 〈p〉−1 → η

s
∼ 10−1

KSS and extensions from AdS/CFT (actually any classical Gauge/gravity):
Viscosity≡ Black hole graviton scattering → η

s = 1
4π



Von Neuman QM (profound?) or Heisenberg’s microscope (early step?)
Both theories not realistic... in a similar way!

Danielewitz+Gyulassy In strongly coupled system the Boltzmann
equation is inappropriate because molecular chaos not guaranteed

KSS UV-completion is conformal,planar, strong

Planar limit and molecular chaos has a surprisingly similar effect: decouple
”macro” and ”micro” DoFs. ”number of microscopic DoFs infinite”, ”large”
w.r.t. the coupling constant!



2011-2013 FLuid-like behavior has been observed down to very small sizes,
p− p collisions of 50 particles



CMS  1606.06198

BSchenke 1603.04349

H.W.Lin 1106.1608

1606.06198 (CMS) : When you consider geometry differences, hydro with
O (20) particles ”just as collective” as for 1000. Thermalization scale ≪
color domain wall scale.

Little understanding of this in ”conventional widsom”



Hydrodynamics in small systems: “hydrodynamization”/”fake equilibrium”
A lot more work in both AdS/CFT and transport theory about
”hydrodynamization”/”Hydrodynamic attractors”

Kurkela et al
1907.08101..

Fluid-like systems far from equilibrium (large gradients )! Usually from 1D
solution of Boltzmann and AdS/CFT EoMs! “hydrodynamics converges
even at large gradients with no thermal equilibrium”

But I have a basic question: ensemble averaging!



• What is hydrodynamics if N ∼ 50 ...

– Ensemble averaging , 〈F ({xi} , t)〉 6= F ({〈xi〉} , t)
suspect for any non-linear theory. molecular chaos in Boltzmann,
Large Nc in AdS/CFT, all assumed . But for O (50) particles?!?!

– For water, a cube of length η/(sT ) has O
(
109

)
molecules,

P (N 6= 〈N〉) ∼ exp
[
−〈N〉−1

(N − 〈N〉)2
]
≪ 1

.

• How do microscopic, macroscopic and quantum corrections talk to eac
other? EoS is given by p = T lnZ but ∂2 lnZ/∂T 2, dP/dV ??

NB: nothing to do with equilibration timescale . Even ”things born in
equilibrium” locally via Eigenstate thermalization have fluctuations!



And there is more... How does dissipation work in such a “semi-microscopic
system”?

• What does local and global equilibrium mean there?

• If Tµν → T̂µν what is Π̂µν Second law fluctuations? Sometimes because
of a fluctuation entropy decreases!



???

Bottom line: Either hydrodynamics is not the right explanation for these
observables (possible! But small/big systems similar! ) or we are not
understanding something basic about what’s behind the hydrodynamics!
What do fluctuations do?
In ”fireball” there might be ”infinite correlated” DoFs ,
but final entropy ≪ ∞



Landau and Lifshitz (also D.Rishke,B Betz et al): Hydrodynamics has three
length scales

lmicro︸ ︷︷ ︸
∼s−1/3,n−1/3

≪ lmfp︸︷︷︸
∼η/(sT )

≪ Lmacro

Weakly coupled: Ensemble averaging in Boltzmann equation good up to
O
(
(1/ρ)1/3∂µf(...)

)

Strongly coupled: classical supergravity requires λ ≫ 1 but λN−1
c =

gY M ≪ 1 so

1

TN
2/3
c

≪ η

sT

(
or

1√
λT

)
≪ Lmacro

QGP: Nc = 3 ≪ ∞ ,so lmicro ∼ η
sT . Cold atoms: lmicro ∼ n−1/3 > η

sT ?



Why is lmicro ≪ lmfp necessary? Without it, microscopic fluctuations
(which come from the finite number of DoFs and have nothing to do with
viscosity ) will drive fluid evolution.

∆ρ/ρ ∼ C−1
V ∼ N−2

c , thermal fluctuations “too small” to be important!

Kovtun, Moore, Romatschke, 1104.1586 As η → 0 “infinite propagation of
soundwaves” inpacts “IR limit of Kubo formula”

lim
η,k→0

∫
d3xeikx 〈T xyxy(x)T xyxy(0)〉 ≃ −iω

7Tpmax

60π2γη
+ (i+ 1)ω

3
2

7T

240πγ
3
2
η

where pmax is the maximum momentum scale and γη = η/(e+ p)



Kovtun,Moore and Romatschke plug in pmax into viscosity

η−1 ∼ η−1
bare

(
1 +

pmax

T

)
,

η

s
≥ T

pmax
≥ T

s1/3

Away from planar limit relaxation time overwhelmed by “stochastic mode”,
∼ w3/2

G.Moore,P.Romatschke

Phys.Rev.D84:025006,2011arXiv:1104.1586 

s=KSSη/Nc=3, 

This is interesting but makes the 50 particles problem worse! . And isn’t
assuming pmax “circular”? In fireball could be ”many correlated” DoFs!



Can one go further? Away from critical point, hydro is non-renormalizeable
(pmax physical) but strongly coupled (anomalous dimensions...?)

If we could include both microscopic and collective modes minimal viscosity
might calculable just from hydrodynamics and, e.g., Lorentz symmetry and
Quantum mechanics? after all,

χijkl(w) =

∫
dx

〈
T̂ij(x)T̂kl(y)

〉
eik(x−y)

{
c2s
η

}
∼ lim

w→0
w−1

[
Re[χzzzz]
Im[χxyxy]

]

These include both microscopic and macroscopic fluctuations calculable
in equilibrium! “Dyson-Schwinger equations”? Eigenstate thermalization
hypothesis? (Delacretaz et al, 1805.04194)

ρ̂ ⇒︸︷︷︸
fast ∼lmicro

δ(E − Ei) ⇒︸︷︷︸
cell

exp
[
−uµ

T
Ĥ
]



Between Eigenstate thermalization, Kramers-Konig, the EoS

{
Re
Im

}
χijkl =

1

π

∫
dw′

w − w′

{
Im
−Re

}
χijkl ,

〈
T̂µ
µ

〉
∼ 〈e〉 − 3 〈p〉

and the Ward identity (Lorentz invariance) ∂α
{〈[

T̂µν(x), T̂αβ(x
′)
]〉

−

−δ(x− x′)
(
gβµ

〈
T̂αν(x

′)
〉
+ gβν

〈
T̂αµ(x

′)
〉
− gβα

〈
T̂µν(x

′)
〉)}

= 0

We should be able to relate microscopic Lagrangian to “ideal” fluid limit
with fluctuations in equilibrium!

Problem: What happens when macro and micro talk to each other in a
strongly coupled/turbulent regime?
Turbulence a strongly coupled fixed point, and vortices have no energy gap
and don’t propagate! ⇒ “non-perturbative” vacuum



System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

A classical low-viscosity fluid is turbulent. Typically, low-k modes cascade
into higher and higher k modes via sound and vortex emission (phase space
looks more ”fractal”). In a non-relativistic incompressible fluid

η/(sT ) ≪ Leddy ≪ Lboundary , E(k) ∼
(
dE

dt

)2/3

k−5/3

For a classical ideal fluid, no limit! since limδρ→0,k→∞ δE(k) ∼ δρkcs → 0
but for quantum perturbations, E ≥ k so conservation of energy has to cap
cascade.



My previous attempt, from Endlich et al, 1011.6396 Continuus mechanics
(fluids, solids, jellies,...) is written in terms of 3-coordinates φI(x

µ), I =
1...3 of the position of a fluid cell originally at φI(t = 0, xi), I = 1...3 .

φ

φ

1

3φ

φ

φ

1

3
φ

φ

φ

1

3
φ

2
2

2

The system is a Fluid if it’s Lagrangian obeys some symmetries (Ideal
hydrodynamics ↔ Isotropy in comoving frame)

L → lnZ Z =

∫
Dφi exp

[
−T 4

0

∫
F (B(φI))d

4x

]
, 〈O〉 ∼ ∂lnZ

∂...



A lot of work on this 1903.08729

Some accomplishments EFT techniques, insights from Ostrogradski’s
theorem,extensions to polarization (minimum viscosity? )
https://indico.ectstar.eu/event/94/contributions/1879/

Polarization could provide a “soft dissipative gap” to vortices and stabilize
hydrodynamics

Some limitations no clear way to incorporate microscopic fluctuations,
functional integral hard , lattice regularization possible but limited to
hydrostatic case (1502.05421 )

Using a volume cell as a DoF makes it hard to understand fluctuations
within it!

https://indico.ectstar.eu/event/94/contributions/1879/


System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

Consider effective Lagrangian approach of ideal fluid,
Endlich et al, 1011.6396

Coupling constant ∼ kα ,

For vortices ideal Lagrangian has no kinetic term L ∼ π̇ ,
no S-matrix, non-perturbative!

Lagrangian hydro on lattice (T.Burch,GT,1502.05421 ) evidence for
phase transition between hydrostatic and turbulent phases



More fundamentally: Let us take a stationary slab of fluid at local
equilibrium.

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

Statistical mechanics: This is a system in global equilibrium, described by
a partition function Z(T, V, µ) , whose derivatives give expectation values
〈E〉 ,fluctuations

〈
(∆E)2

〉
etc. in terms of parameters representing

conserved charges

Fluid dynamics: This is the state of a field in local equilibrium which can
be perturbed in an infinity of ways. The perturbations will then interact
and dissipate according to the Euler/N-S equations



More fundamentally: Let us take a stationary slab of fluid at local
equilibrium.

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

To what extent are these two pictures the same?

• Global equilibrium is also local equilibrium, if you forget fluctuations

• Dissipation scale in local equilibrium η/(Ts) , global equilibration
timescale (Ts)/η



Some insight from maths
Millenium problem: existence and smoothness of the Navier-Stokes
equations

Important tool are “weak solutions” , similar to what we call “coarse-
graining”.

F

(
d

dx
, f(x)

)
= 0 ⇒ F

(∫
d

dx
φ(x)..., f(x)

)
= 0

φ(x) “test function”, similar to coarse-graining!



Existance of Wild/Nightmare solutions and non-uniqueness of weak solutions
shows this tension is non-trivial, coarse-graining “dangerous”

I am a physicist so I care little about the ”existence of ethernal solutions” to
an approximate equation, Turbulent regime and microscopic local equilibria
need to be consistent

Thermal fluctuations could both ”stabilize” hydrodynamics and
”accellerate” local thermalization



PS: All highly theoretical but transfer of micro to macro DoFs
experimentally proven!

Polarization by vorticity
in heavy ion collisions

NATURE
August 2017

STAR
collaboration

1701.06657



Our proposal



Every statistical theory needs a ”state space” and an ”evolution dynamics”
The ingredients

State space:Zubarev hydrodynamics Mixes micro and macro DoFs

Dynamics: Crooks fluctuation theorem provides the dynamics via a
definition of Πµν from fluctuations

T̂µν is an operator, so any decomposition, such as T̂µν
0 + Π̂µν must be

too!



Zubarev partition function for local equilibrium: think of Eigenstate
thermalization...
Let us generalize the GC ensemble to a co-moving frame E/T → βµT

µ
ν

ρ̂(Tµν
0 (x),Σµ, βµ) =

1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

Z is a partition function with a field of Lagrange multiplies βµ , with
microscopic and quantum fluctuations included.

Effective action from ln[Z] . Correction to Lagrangian picture?

All normalizations diverge but hey, it’s QFT! (Later we resolve this! )



This is perfect global equilibrium. What about imperfect local?

• Dynamics is not clear. Becattini et al, 1902.01089: Gradient expansion
in βµ . Reproduces Euler and Navier-Stokes, but...

– 2nd order Gradient expansion (Navier stokes) non-causal perhaps...
– Use Israel-Stewart, Πµν arbitrary perhaps...
– Foliation dΣµ arbitrary but not clear how to link to Arbitrary Πµν

• What about fluctuations? Coarse-graining and fluctuations mix? How
does one truncate?



An operator formulation

T̂µν = T̂µν
0 + Π̂µν

and T̂µν
0 truly in equilibrium!

ρ̂(Tµν
0 (x),Σµ, βµ) =

1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

describes all cumulants and probabilities

〈Tµν
0 (x1)T

µν
0 (x2)...T

µν
0 (xn)〉 =

∏

i

δn

δβµ(xi)
lnZ



and also the full energy-momentum tensor

〈Tµν(x1)T
µν(x2)...T

µν(xn)〉 =
∏

i

δn

δgµν(xi)
lnZ

What this means

• Equilibrium at ”probabilistic” level

T̂µν = T̂µν
0 + Π̂µν

• KMS Condition obeyed by ”part of density matrix” in equilibrium,
“expand” around that! An operator constrained by KMS condition is
still an operator! ≡ time dependence in interaction picture



Does this make sense

T̂µν
0 + Π̂µν , ρ̂Tµν =

ρ̂T0 + ρ̂Π0

Tr (ρ̂T0 + ρ̂Π0)
≃ ρ̂T0 (1 + δρ̂)

For any flow field βµ and lagrangian we can define

ZT0(J(y)) =

∫
Dφ exp

[
−
∫ T−1(x

µ
i )

0

dτ ′
∫

d3x (L(φ) + J(y)φ)

]
∝

∝ exp
[
−β0T̂00

]∣∣∣
βµ=(T−1(x,t),~0)



E.g. Nishioka, 1801.10352 〈x| ρ |x′〉 =

=
1

Z

∫ τ=∞

τ=−∞

∫
[Dφ,Dy(τ)Dy′(τ)] e−iS(φy,y′)·δ

[
y(0+)− x′

]
δ
[
y′(0−)− x

]
︸ ︷︷ ︸

δJi(y(0
+))

δJi(x
′)

δJj(y(0
−))

δJj(x)

⇒ δ2

δJi(x)δJj(x′)
ln [ZT0(T

µν, J)× ZΠ(J)]J=J1(x)+J2(x′)

J1(x) + J2(x
′) chosen to respect Matsubara conditions!

Any ρ can be separated like this for any βµ . The question is, is this a
good approximation? “Close enough to equilibrium”

The source J related to the smearing in “weak solutions”. Pure maths
angle?



Entropy/Deviations from equilibrium

• In quantum mechanics Entropy function of density matrix

s = Tr(ρ̂ ln ρ̂) =
d

dT
(T lnZ)

Conserved in quantum evolution, not coarse-graining/gradient expansion

• In IS entropy function of the dissipative part of E-M tensor

nν∂ν (su
µ) = nµΠ

αβ

T
∂αββ , ≥ 0

nµ = dΣµ/|dΣµ|,Πµν arbitrary. How to combine coarse-graining? if
vorticity non-zero nµu

µ 6= 0



What about fluctuations

nν∂ν (su
µ) = nµΠ

αβ

T
∂αββ , ≥ 0

• If nµ arbitrary cannot be true for “any” choice

• 2nd law is true for “averages” anyways, sometimes entropy can decrease

We need a fluctuating formulation!

• “Statistical” (probability depends on “local microstates”)

• Dynamics with fluctuations, time evolution of βµ distribution



So we need

• a similarly probabilistic definition of Π̂µν = T̂µν − T̂µν
0 as an operator!!

• Probabilistic dynamics, to update Π̂µν, T̂µν !

Crooks fluctuation theorem!

From talk
Gabriel Landi

Relates fluctuations, entropy in small fluctuating systems (Nano,proteins )



Crooks fluctuation theorem!

P (W )/P (−W ) = exp [∆S]

P(W) Probability of a system doing some work in its usual thermal
evolution

P(-W) Probability of the same system “running in reverse” and decreasing
entropy due to a thermal fluctuation

∆S Entropy produced by P (W )



Looks obvious but...

Is valid for systems very far from equilibrium (nano-machines, protein
folding and so on)

Proven for Markovian processes and fluctuating systems in contact with
thermal bath

Leads to irreducible fluctuation/dissipation: TUR (more later!)

Applying it to locally equilibrium systems within Zubarev’s formalism is
straight-forward . Since ratios of probabilities, divergences are resolved!



How is Crooks theorem useful for what we did? Guarnieri et al,
arXiv:1901.10428 (PRX) derive Thermodynamic uncertainity relations from

ρ̂ness ≃ ρ̂les(λ)e
Σ̂ Zles

Zness
, ρ̂les =

1

Zles
exp

[
−Ĥ

T

]

ρ̂les is Zubarev operator while Σ is calculated with a Kubo-like formula

Σ̂ = δβ∆Ĥ+ , Ĥ+ = lim
ǫ→0+

ǫ

∫
dteǫte−Ĥt∆ĤeĤt

Relies on

lim
w→0

〈[
Σ̂, Ĥ

]〉
→ 0 ≡ lim

t→∞

〈[
ˆΣ(t), Ĥ(0)

]〉
→ 0

This “infinite” is “small” w.r.t. hydro gradients. ≡ Markovian as in Hydro
with lmfp → ∂ but with operators→ carries all fluctuations with it!



P (W )/P (−W ) = exp [∆S] Vs Seff = lnZ

KMS condition reduces the functional integral to a Metropolis type
weighting, ≡ periodic time at rest with βµ

Markovian systems exhibit Crooks theorem, two adjacent cells interaction
outcome probability proportional to number of ways of reaching outcome
. The normalization divergence is resolved since ratios of probabilities
are used . “instant decoherence/thermalization” within each step

Relationship to gradient expansion similar to relationship between Wilson
loop coarse-graining ( Jarzynski’s theorem, used on lattice ,Caselle et al,
1604.05544) with hadronic EFTs



Applying Crooks theorem to Zubarev hydrodynamics: Stokes theorem

Wσ∼ Ω

−W

−
∫

Σ(τ0)

dΣµ

(
T̂µνβν

)
= −

∫

Σ(τ ′)

dΣµ

(
T̂µνβν

)
+

∫

Ω

dΩ
(
T̂µν∇µβν

)
,

true for “any” fluctuating configuration.



Wσ∼ Ω

−W

Let us now invert one foliation so it goes “backwards in time” assuming
Crooks theorem means

exp
[
−
∫
σ(τ)

dΣµβνT̂
µν
]

exp
[
−
∫
−σ(τ)

dΣµβνT̂µν
] = exp

[
1

2

∫

Ω

dΩµ
µ

[
Π̂αβ

T

]
∂ββα

]



Small loop limit
〈
exp

[∮
dΣµω

µνβαT̂αν

]〉
=

〈
exp

[∫
1
2dΣµβ

µΠ̂αβ∂αββ

]〉

A non-perturbative operator equation,divergences cancel out...

Π̂µν

T

∣∣∣∣∣
σ

=

(
1

∂µβν

)
δ

δσ

[∫

σ(τ)

dΣµβνT̂
µν −

∫

−σ(τ)

dΣµβνT̂
µν

]

Note that a time-like contour produces a Kubo-formula

t
Kubo



Ω

t

dV

A sanity check: For a an equilibrium spacelike dΣµ = (dV,~0) (left-panel)
we recover Boltzmann’s

Πµν ⇒ ∆S =
dQ

T
= ln

(
N1

N2

)



A sanity check

t
Kubo

When η → 0 and s−1/3 → 0 (the first two terms in the hierarchy),
Crooks fluctuation theorem gives P (W ) → 1 P (−W ) → 0 ∆S → ∞ so
Crooks theorem reduces to δ-functions of the entropy current

δ (dΣµ (su
µ)) ⇒ nµ∂µ (su

µ) = 0

We therefore recover conservation equations for the entropy current, a.k.a.
ideal hydro



Crooks theorem: thermodynamic uncertainity relations
Andr M. Timpanaro, Giacomo Guarnieri, John Goold, and Gabriel T. Landi
Phys. Rev. Lett. 123, 090604

〈
(∆Q)2

〉

〈Q〉2
≥ 2

∆S(W )

Valid locally in time!
d

dτ
∆S ≥ 1

2

d

dτ

〈Q〉2
〈(∆Q)2〉

Relates thermal fluctuations and dissipation, producing an irreducible
uncertainity. Non-dissipative nano-engines fluctuate like crazy, produces
“dissipation” anyway



COnsequences: Hydro-TUR? Separate flow into potential and vortical part

βµ = ∂µφ+ ζµ , nµ → T∂µφ , ωµν = gµν|comoving

A likely TUR is

〈[Tµγ, T
γ
ν ]〉

〈Tµν〉2
≥ Cǫµγκ 〈T γκ〉 βµ

Παβ∂βζα
, C ∼ O (1)



Ω

t

dV

Deform the equilibrium contour and get Kubo formula! (right panel)

C = lim
w→0

Re [F (w)]

Im [F (w)]
, F (w) =

∫
d3xdt 〈T xy(x)T xy(0)〉 ei(kx−wt)



−dissipation does not vanish at
zero viscosity

"will be proven by
a different generation!"

Vlad Vicol (talk)

〈[Tµγ, T
γ
ν ]〉

〈Tµν〉2
≥ O (1) ǫµγκ 〈T γκ〉βµ

Παβ∂βζα

Fluctuations+Low viscosity ⇒ Turbulence ⇒ high vorticity ⇒ dissipation!
(usually mathematicians consider incompressible fluids, non-relativistic!)



Towards equations: Gravitational Ward identity!

∂α
{〈[

T̂µν(x), T̂αβ(x
′)
]〉

−

−δ(x− x′)
(
gβµ

〈
T̂αν(x

′)
〉
+ gβν

〈
T̂αµ(x

′)
〉
− gβα

〈
T̂µν(x

′)
〉)}

= 0

Small change in Tµν related to infinitesimal shift! Conservation of
momentum!

Can be used to fix one component of βµ = uµ/T , so uµu
µ = −1 and

(βµβ
µ)−1/2 = T weights Π̂µν in a way that conserves Π̂µν + T̂µν

0



Putting everything together: Dynamics at Z level

〈Tµν〉 =
2√−g

δ lnZ

δgµν
= 〈T0〉µν +Πµν

〈Tµν
0 〉 = δ2 lnZ

δβµdnν
, 〈Πµν〉 = 1

∂µβν
∂γ

d

d ln(βαβα)
[βγ lnZ]

∂α

[
2√−g

δ2 lnZ

δgµνδgαβ
− δ(x− x′)

2√−g

(
gβµ

δ lnZ

δgαν
+ gβν

δ lnZ

δgαµ
− gβα

δ lnZ

δgνµ

)]
= 0

and, finally, Crook’s theorem

δ2

δgµνδgαβ
lnZ =

√−g

2

βκ

2ωµνβα
∂βn

κ∂γ
d

d ln(βαβα)
[βγ lnZ]



Ito process

T̂µν(t) = T̂µν(t0) +

∫
∆αβ

[
T̂µαT̂βν

]
+

∫
1

2
dΣµβνΠ̂αβ∂

αββ

lnZ|t+dt =

∫
Dgµν(x)T

µν|t+dt , βµ|t+dt =
δ lnZ|t+dt

δTµν
nν

At every point in a foliation, dynamics is regulated by a stochastic term
and a dissipation term. Can be done numerically with montecarlo with an
ensemble of configurations at every point in time...

Need: Euclidean correlator in equilibrium 〈Tµν(x)Tµν〉 (x′)



A numerical formulation

Define a field βµ field and nµ

Generate an ensemble of

lnZ|t+dt =

∫
Dgµν(x)T

µν|t+dt , βµ|t+dt =
δ lnZ|t+dt

δTµν
nν

According to a Metropolis algorithm ran via Crooks theorem

Reconstruct the new β and Πµν . The Ward identity will make sure
βµβ

µ = −1/T 2

Computationally intensive (an ensemble at every timestep), but who
knows?



A semiclassical limit?

∂µ

〈
T̂µν

〉
= 0 , ∂µ

〈
T̂µν
0

〉
= −∂µ

〈
Π̂µν

〉

Integrating by parts the second term over a time scale of many ∆µν gives,
in a frame comoving with dΣµ

∫ τ

0

dτ ′
〈
Π̂µν

〉
∂µβν ∼ βµ∂µ

〈
Π̂µν

〉
+
〈
Π̂µν

〉
= F (∂n≥1βµ, ...)

where F (βµ) is independent of Πµν . (Because local entropy is maximized
at vanishing viscosity F () depends on gradients. Israel-Stewart

However , results of, e.g., Gavassino 2006.09843 and Shokri 2002.04719
suggest that fluctuations with decreasing entropy have a role at first order
in gradient!



What next?
Zubarev

Crooks
+



A 1D example
β,Π are numbers and there is no vorticity so no Σ either!

Tµν
0 = U−1

(
e 0
0 −p(E)

)
U , U = (1− β2)−1

(
1 β
β −1

)

Πµν =

(
0 Π
Π 0

)
, Σµ ∝ βµ

Random matrix distribution of {β, e} ↔ {π}

P ({e}+ dββw)

P ({e} − dββw)
∝ exp

[
{Π}β−1 {∂β}

]
δ (Ward[e, β, π])

Ward identity can fix {β} from {π}, rest is Markov chain



Polarization,Chemical potential, rotations,accellerations,...

βµT
µν → βµT

µν + µNµ +WJ µ

F.Becattini et al, 2007.08249, Prokhorov et. al. 1911.04545: Global
equilibrium under general “passive” non-inertial transformation

A paradox: State in “Global equilibrium” (Maximum entropy) but
generally does not obey KMS conditions Stationarity/stability!

Global/local equilibrium not the same.

2nd law of thermodynamics defined locally, “entropy” frame dependent
in non-inertial fluctuating system

How do you translate all this to dynamics?



Polarization,Chemical potential, rotations,accellerations,...

βµT
µν → βµT

µν + µNµ +WJ µ

Crooks Approach allows us to resolve these ambiguities straight-forwardly.

• System evolves to a state where KMS condition obeyed by
proper time in the local foliation, ensemble foliation-independent

• Gauge potentials will lead to non-local correlations that never equilibrate,
Nµ → Nµ + U∂µU

GT, 1810.12468



Wild speculations



General relativity/Theory of everything T.Jacobson,gr-qc/9504004

dS ∝ dA , dQ = TdS ⇒ Gµν ∝ Tµν

a

a

a

https://en.wikipedia.org/wiki/Entropic_gravity

T.Jacobson, gr−qc/9504004

T.Padmanabhan  0911.5004

E.Verlinde, 1001.0785

a

a



a

a

a

https://en.wikipedia.org/wiki/Entropic_gravity

T.Jacobson, gr−qc/9504004

T.Padmanabhan  0911.5004

E.Verlinde, 1001.0785

a

a

Started the field of “entropic gravity”

• gravity is emergent and spacetime is a thermalized state

• ”Quantum dynamics” is actually fluctuating equilibrium state

• Difficoulty of quantizing gravity makes it an interesting idea



Combining Crooks theorem with relativistic field theory

S =

∫
dA+ Tr [ρ ln ρ]

Dynamics of the geometry given by exp [∆S] = P (W )/P (−W )
P (W ) given by the density matrix , P (W ) = Tr[W.ρ̂]

ρ̂ =
1

Z

∫
Dφ < φ|Ψ >< Ψ|φ >

Could lead to way to update density matrix. ”detailed balance”
fluctuation/dissipation ⇒ general covariance (GT, 1501.00435 )

Fluctuation : i → {ijk...} , Dissipation : {ijk...} → i

Ensemble generally covariant/Foliation independent



”Every tenured physics professor should write at least one paper on a theory
of everything.”
What if the universe is governed by Crooks?

a

alots of experimental evidence!



Seriously... some conclusions

• Fluctuations force us to go beyond transport and perturbation theory

• Zubarev hydrodynamics and Crooks fluctuation theorem naturally provide
us with a way!

• Lots to do but lots of potential!


