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OUTLINE

EM fields in relativistic heavy-ion collisions:  
• External classical field generated by colliding ions  
• Quantum excitations inherent to QGP

๏ Electrodynamics in the presence of the chiral anomaly 



Generation of intense EM field in relativistic 
heavy-ion collisions
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MACROSCOPIC EM FIELD IN HEAVY-ION COLLISIONS
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Fig. 1: Schematic representation of the various stages of a HIC as a function of time t and the longitudinal
coordinate z (the collision axis). The ‘time’ variable which is used in the discussion in the text is the proper time
⌧ ⌘

p
t2 � z2, which has a Lorentz–invariant meaning and is constant along the hyperbolic curves separating

various stages in this figure.

concern the partonic stages of a heavy ion collision, at sufficiently early times. These are also the stages
to which refers most of the experimental and theoretical progress over the last decade.

2 Stages of a heavy ion collision: the case for effective theories
The theoretically motivated space–time picture of a heavy ion collision (HIC) is depicted in Fig. 1. This
illustrates the various forms of QCD matter intervening during the successive phases of the collision:

1. Prior to the collision, and in the center-of-mass frame (which at RHIC and the LHC is the same as
the laboratory frame), the two incoming nuclei look as two Lorentz–contracted ‘pancakes’, with a
longitudinal extent smaller by a factor � ⇠ 100 (the Lorentz boost factor) than the radial extent in
the transverse plane. As we shall see, these ‘pancakes’ are mostly composed with gluons which
carry only tiny fractions x ⌧ 1 of the longitudinal momenta of their parent nucleons, but whose
density is rapidly increasing with 1/x. By the uncertainty principle, the gluons which make up
such a high–density system carry relatively large transverse momenta. A typical value for such a
gluon in a Pb or Au nucleus is k? ' 2 GeV for x = 10�4. By the ‘asymptotic freedom’ property of
QCD, the gauge coupling which governs the mutual interactions of these gluons is relatively weak.
This gluonic form of matter, which is dense and weakly coupled, and dominates the wavefunction
of any hadron (nucleon or nucleus) at sufficiently high energy, is universal — its properties are the
same form all hadrons. It is known as the colour glass condensate (CGC).

2. At time ⌧ = 0, the two nuclei hit with each other and the interactions start developing. The
‘hard’ processes, i.e. those involving relatively large transferred momenta Q & 10 GeV, are those
which occur faster (within a time ⌧ ⇠ 1/Q, by the uncertainty principle1). These processes are
responsible for the production of ‘hard particles’, i.e. particles carrying transverse energies and
momenta of the order of Q. Such particles, like (hadronic) jets, direct photons, dilepton pairs,
heavy quarks, or vector bosons, are generally the most striking ingredients of the final state and
are often used to characterize the topology of the latter — e.g., one speaks about ‘a dijet event’, cf.
Fig. 2 left, or ‘a photon–jet’ event, cf. Fig. 2 right.

3. At a time ⌧ ⇠ 0.2 fm/c, corresponding to a ‘semi-hard’ transverse momentum scale Q ⇠ 1 GeV,
1Throughout these notes, we shall generally use the natural system of units ~ = c = kB = 1, so in particular there is no

explicit factor ~ in the uncertainty principle. Yet, in some cases, we shall restore this factor for more clarity.

3

Ions about to collide

EM field of each ion is a boosted Coulomb field

B1 =
�ev�̂

4⇡

b

(b2 + �2(vt� z)2)3/2
<latexit sha1_base64="oKX+j1BgxB9WHJZsp5EJn3QRL8M="></latexit>

 ZAu =79, b~R=7 fm, γ=100 ⇒ eB = (200 MeV)2 ≈ mπ2

<latexit sha1_base64="6jLvIFY854An5KjkciLnJ1D6Tn4="></latexit>

B ⇠ 1018G
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EM FIELD IN QUARK-GLUON PLASMA

Ions about to collide

15

0

100

200

300

0

200

400

dN
ch

/d
η

-4 -2 0 2 40

200

400

600

-4 -2 0 2 4
Pseudorapidity η

-4 -2 0 2 4

0

50

100

150 (a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

130 GeV

Au+Au

0-3%3-6%6-10%

10-15%15-20%20-25%

25-30%30-35%35-40%

40-45%45-50%

FIG. 17: Same as Fig. 16 but for Au+Au collisions at
√
sNN =

130 GeV. The solid curves represent best fits to the data over
the region -4.9< η <4.9 using Eq. 12 (see text) and the shaded
regions represent the systematic error band at 90% confidence
limit. The open points were obtained by the tracklet analysis
in the range |η| < 1.

ybeam is independent of collision energy - the limiting
fragmentation hypothesis. The N tot

ch estimate is thus the
integral of the average of this extended distribution and
the fit using Eq. 12(dashed curve in Fig. 22b).

Tables VII and VIII (see Appendix) summarize the to-
tal charged particle multiplicity results for Au+Au and
Cu+Cu collisions, respectively. The estimated average
number of participants associated with each centrality
bin was obtained from Glauber model (Monte Carlo ver-
sion) [29] and listed in column two. Column three lists
the full width at half maximum (FWHM) of the dNch/dη
distributions, whereas the three total multiplicity esti-
mates discussed above are listed in columns 4-6.

The upper panels of Figs. 23 and 24 display the values
Np

ch (solid points) and Nch ||η|<5.4 (open circles). In all
cases one observes participant scaling (Ref. [28]), an es-
sentially linear dependence on 〈Npart〉. This is illustrated
more clearly in the middle panels, where the participant-
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FIG. 18: Same as Fig. 17 but for Au+Au collisions at
√
sNN

= 200 GeV. The solid curves represent best fits to the data
over the full η range using Eq. 12 and the shaded regions
represent 90% C.L. systematic errors. The open points were
obtained by the tracklet analysis in the range |η| < 1.

scaled results, dNch/dη/〈Npart/2〉 are seen to be essen-
tially independent of 〈Npart/2〉 and exceeding the values
obtained in pp/pp collisions. We observe that this quan-
tity is almost constant with collision centrality. It is in-
teresting to note that the normalized particle production
in heavy-ion collisions is larger by about 40% than those
of p̄p collisions (solid squares)[43] and pp collisions (solid
diamonds) [42].

The widths of the dNch/dη-distributions, represented
by the Full Width at Half Maximum (FWHM) are shown
in the bottom panels in Figs. 23 and 24 for Au+Au and
Cu + Cu collisions, respectively. The FWHM exhibit a
decline with centrality, which indicates that the increased
particle production with centrality preferentially occurs
in the midrapidity region. Note also that the FWHM
for p̄p reactions at 200 GeV and pp reactions at 62.4
GeV and 19.6 GeV follow the trend of the Au+Au data
extrapolated to 〈Npart 〉 = 2. A similar trend is found for
Cu+ Cu collisions.

y

dNval

dy
⇠ e��R(Y�y) + e��R(Y+y) , �R ⇡ 0.47

-Y

It is too “expensive” to transfer net baryon 
and electric charge to the central plateau 
region.

dNval

dy
⇠ e��R(Y�y) + e��R(Y+y) , �R ⇡ 0.47

dNπ/dy Matter distribution 
Number of valence quarks (μB) at y=0 
decreases with energy: “baryon stopping”.

+Y

Plasma
⇒ The contribution of the “stopped” 

baryons is exponentially (in y) small

EM field = sum of two boosted 
Coulomb fields of each ion
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EM FIELD IN QUARK-GLUON PLASMA

EM field in plasma: need to solve Magneto-Hydrodynamics. 

EM is weakly coupled to the plasma ⇒ 0th approximation:  

12

G. Late-stage (QGP-stage) time evolution

The discussions and simulations presented in the last subsection are based on the assumption

that the produced matter is ideally insulting. This assumption is adoptable only in the early stage

where the system is gluon-dominated but becomes less and less justified as the system evolves

and more and more quarks and anti-quarks emerge. As a matter of fact, the QGP is a good conduc-

tor according to the theoretical and lattice QCD studies. At very high temperature the perturba-

tive study gives that the electric conductivity of QGP is σ ≈ 6T/e2 [75]. An old lattice calculation

with Nf = 0 found that σ ≈ 7CEMT [76] at 1.5Tc < T < 3Tc with Tc the deconfinement tempera-

ture. Another quenched lattice simulation using staggered fermions found that σ ≈ 0.4CEMT [77].

Recent quenched lattice studies using Wilson fermions obtained that σ ≈ (1/3)CEMT −CEMT [78–

80] for temperature Tc < T < 3Tc. The lattice calculation with Nf = 2 dynamical Wilson fermions

found that σ ≈ 0.4CEMT at T ∼ 250 MeV [81]. Another new lattice simulation using Nf = 2 + 1

fermions obtained that σ ≈ 0.1CEMT − 0.3CEMT for temperature Tc < T < 2Tc [82, 83]. In these

results, the EM vertex parameter CEM ≡ ∑ f q2
f and q f is the charge of quark with flavor f ; for

example, CEM = (5/9)e2 if u, d quarks are considered while CEM = (2/3)e2 if u, d, s quarks are

considered. Note that the deconfinement temperature Tc is different in Nf = 0 and Nf %= 0 cases;

for example, if Nf = 0 we have Tc ∼ 270 MeV while if Nf = 2 + 1 we have Tc ∼ 170 MeV.

At T = 350 MeV and choosing σ ≈ 0.3CEMT with u, d, s quarks contributing to CEM, one

can find that the resulted σ is about 103 times larger than that of copper at room temperature

(σCu ≈ 4.43 × 10−3 MeV at T = 20oC).

Now let us analyze how the large σ influences the time evolution of the EM fields in the QGP

stage which we refer to as “late stage”.

Our discussion will be based on magnetohydrodynamics. We first write down the Maxwell’s

equations,

∇×E = −∂B

∂t
, (12)

∇×B =
∂E

∂t
+ J , (13)

where J is the electric current. We treat the QGP as being locally charge neutral but conducting,

thus J is the sum of the external one and the one determined by the Ohm’s law,

J = σ (E + v ×B) + Jext, (14)

where v is the flow velocity of QGP and Jext is the current due to the motion of unwounded

protons (most are in spectators). Using Eq. (14), we can rewrite the Maxwell’s equations as mag-

netohydrodynamic equations

∂B

∂t
= ∇× (v ×B) +

1

σ

(

∇2B − ∂2B

∂t2
+∇× Jext

)

, (15)

∂E

∂t
+

∂v

∂t
×B = v× (∇×E) +

1

σ

(

∇2E − ∂2E

∂t2
− Jext

∂t

)

, (16)
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where we have used the Gauss laws ∇ ·B = 0 and ∇ ·E = ρ = 0. Equation (15) is the induction

equation, which plays a central role in describing the dynamo mechanism of stellar magnetic field

generation. The first terms on the right-hand sides of Eqs. (15)-(16) are the convection terms, while

the remained terms are called “diffusion terms” although they are not exactly in the diffusion-

equation type. Let us discuss some outcomes of these magnetohydrodynamic equations.

(1) If v = 0, that is, if the QGP does not flow, the Eq. (15) reduces to

∂B

∂t
=

1

σ

(

∇2B − ∂2B

∂t2
+∇× Jext

)

. (17)

This equation can be solved by using the method of Green’s function, the details can be found in

Refs. [54, 84–88] in which the authors studied how the spectators induced magnetic field evolve

in QGP phase (assuming the system is already in the QGP phase at the initial time). The main

information from these studies are that the presence of the conducting matter can significantly

delay the decay of the magnetic field. This is easily understood as the consequence of the Faraday

induction: a fast decaying external magnetic field induces a circular electric current in the medium

which in turn causes a magnetic field that compensates the decaying external magnetic field.

For late times, the external current Jext from the spectators can be neglected (we will always

assume this case in this subsection hereafter). If σ $ 1/tc with tc the characteristic time scale over

which the field strongly varies, one can neglect the second-order time derivative term and render

Eq. (17) a diffusion equation:

∂B

∂t
=

1

σ
∇2B. (18)

This case was studied in Ref. [51]. This equation describes the decay of the field due to diffusion,

and the diffusion time of the magnetic field is given by

tD = L2σ, (19)

with L a characteristic length scale of the system over which the magnetic field varies strongly.

Upon setting L ∼ 10 fm and σ ≈ 0.3CEMT ≈ 6 MeV at T = 300 MeV, the diffusion time is

about tD ∼ 3 fm. However, as argued by Mclerran and Skokov [89], in this case the condition

σ $ 1/tc ∼ 1/tD is not satisfied, so it is more realistic to solve Eq. (17) instead its diffusion-type

simplification.

(2) If v '= 0 and the magnetic Renolds number Rm = LUσ $ 1 (the magnetic Renolds number

quantifies the ratio of the convection term over the “diffusion term”), we can approximately keep

only the convection terms in Eqs. (15)-(16). This corresponds to the ideally conducting limit. The

equations such obtained are

∂B

∂t
= ∇× (v ×B), (20)

E = −v ×B. (21)
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E = −v ×B. (21)

Lattice calculations for T~Tc: σ=5.8 MeV, very small compared to the typical 
QCD scale of 200 MeV.

So let’s neglect the medium effect on the EM field altogether… ? 
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Is electrical conductivity indeed that small?

r ·B = 0 , r⇥E = �@B

@t
,

r ·D = e�(z � vt)�(b) , r⇥H =
@D

@t
+ �E + evẑ�(z � vt)�(b)

In momentum space:

H!k = �2⇡iev
k ⇥ ẑ

!2✏̃µ� k2
�(! � kzv) , E!k = �2⇡ie

!µvẑ � k/✏

!2✏̃µ� k2
�(! � kzv)

✏̃ = ✏+ i�/!where 

Consider a single valence charge e moving with velocity v:

Time dependence of electromagnetic field is determined by singularities in the 
complex ω-plane with finite imaginary part. Take for simplicity ε=μ=1 (neglect 
the polarization and magnetization response of QGP).
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In practice: γ=100, σ≈5.8 MeV, b=7 fm: λ=19

If !≪1 plasma has no effect on the field:
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EM FIELD IN QUARK-GLUON PLASMA 

Due to the relativistic time-
dilation, the characteristic time 
scale for the medium response is

<latexit sha1_base64="78IQKNLbHSBcQSDFmJ48ZWABCWs="></latexit>

1/(��)

Intense EM field coexists 
with the QGP 

Relevant parameter 

<latexit sha1_base64="QlHVUMLzU2TkPQLsMvSLqLpxNlM="></latexit>

� > 1
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FIG. 2. The electric (left) and magnetic (right) fields in the transverse plane at z = 0 in the lab

frame at a proper time ⌧ = 1 fm/c after a Pb+Pb collision with 20-30% centrality (corresponding to

impact parameters in the range 6.24 fm < b < 9.05 fm) and with a collision energy
p
s = 2.76 ATeV.

The fields are produced by the spectator ions moving in the +z (�z) direction for x < 0 (x > 0)

as well as by the ions that participate in the collision. In both panels, the contribution from the

spectators is larger, however. The direction of the fields are shown by the black arrows. The

strength of the field is indicated both by the length of the arrows and by the color. We see that

the magnetic field is strongest at the center of the plasma, where it points in the +y direction as

anticipated in Fig. 1. The electric field points in a generally outward direction and is strongest on

the periphery of the plasma. Its magnitude is not azimuthally symmetric: the field is on average

stronger where it is pointing in the ±y directions than where it is pointing in the ±x directions.

and

�vn ⌘ vn(h
+)� vn(h

�), (17)

are the quantities of interest.

III. ELECTROMAGNETIC FIELDS

It is instructive to analyze the spatial distribution and the evolution of the electromagnetic

fields in heavy-ion collisions. We shall do so in this Section, before turning to a discussion

of the results of our calculations in the next Section.

Fig. 2 presents our calculation of the magnitude and direction of the electromagnetic

11

Gürsoy, Kharzeev, Marcus, Rajagopal, Shen, 2018

E B



10

INITIAL VALUE PROBLEM FOR EM FIELD IN QGP

Solution:

�r2'2 + @2
t '2 + �@t'2 = ⇢ ,

�r2A2 + @2
tA2 + �@tA2 � �u⇥ (r⇥A2) = j ,

<latexit sha1_base64="Ois8eFyujOddIbtPgGWVjOx7G5I="></latexit>

Aµ
2 (r, t0) = Aµ

1 (r, t0) ⌘ Aµ(r) ,

@tA
µ
2 (r, t)

��
t=t0

= @tA
µ
1 (r, t)

��
t=t0

⌘ Vµ(r)
<latexit sha1_base64="ckbnnoUw5ynegD0rGoBUKgXiFz8="></latexit>

Aµ
2 (r, t) =

Z t0+

⌧
dt0

Z
d3r0jµ(r0, t0)G2(r, t|r0, t0)

+

Z
d3r0

⇥
�Aµ(r0) + Vµ(r0)

⇤
G2(r, t|r0, t0)

��
t0=t0

�
Z

d3r0Aµ(r0)@t0G2(r, t|r0, t0)
��
t0=t0

<latexit sha1_base64="/UebAuM6RoY7zf2d/9gVmWrEBTE="></latexit>

G2(r, t|r0, t0) =
1

4⇡
e�

1
2�(t�t0) �(t� t0 �R)

R
✓(t� t0)

+
1

4⇡
e�

1
2�(t�t0) �/2p

(t� t0)2 �R2
I1

⇣�
2

p
(t� t0)2 �R2

⌘
✓(t� t0 �R)✓(t� t0)

<latexit sha1_base64="rk6shAwqqttYSQ8SsNdwXnTXq5Y="></latexit>

the original pulse

wake produced by 
the induced currents

Stewart, KT (2015)

Matching 
conditions: 

proportional to σ2 
→ small
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EM FIELD AT LATER TIME

0 2 4 6 8
t(fm)

0.001

0.010

0.100

1

10

100

e B

mπ
2

e B
mπ

2
vs t for various σ , s=1

The field magnitude strongly depends on 
medium properties and dynamics during the 
first fm/c.   

Stewart, KT (to appear)

“sudden” emergence of QGP

adiabatic switching on
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Effects induced by EM field in Quark-Gluon 
Plasma
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SYNCHROTRON RADIATION

γ

Spacing between the Landau levels ~ eB/ε, while their thermal width ~ T. When eB/ε≳T 
it is essential to account for quantization of fermion spectra. 

"j =
q

m2 + p2 + 2jefB , "k =
q

m2 + q2 + 2kefB

p, j q, k

!, n̂

j,k are the quantum numbers of the fermion Landau orbits.

"j = ! + "k , p = q + ! cos ✓

dIj

d!d⌦
=
X

f

z2
f↵

⇡
!2

jX

k=0

�jk

�
|M?|2 + |Mk|2

 
�(! � "j + "k)

Magnetic field does no work, thus energy is conserved. Magnetic Lorentz force has no 
component along the B-direction:

Angular distribution of the power spectrum:

B θ

Matrix elements are well-known functions of Laguerre polynomials. Sokolov, Ternov (1968) and others
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SYNCHROTRON RADIATION
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Azimuthal asymmetry of photons 
in magnetic field

Contribution to the total photon spectrum
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HADRON DISSOCIATION

J/ψ

B0

V

J/ψ

B

E

Lab frame: center-of-mass 
frame of a heavy-ion collision 

hadron rest frame

V=0
translation 
velocity

Ω

<latexit sha1_base64="0I7NNqqPSK/AE0nC+6vj4rfGNSs="></latexit>

ds2 = c2dt2 � dx2 � dy2 � dz2
<latexit sha1_base64="2Fr/wjZ1jRbKjIHWot3LO3/gQp8="></latexit>

ds2 = [c2 � ⌦2(x2 + y2)]dt2 � dx2 � dy2 � dz2

+2⌦ydxdt� 2⌦xdydt .

Electric field breaks the bound state 
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QUALITATIVE PICTURE OF DISSOCIATION 

-eEy=|e|Ey

εb
|e|Ey+εkin

J/ψ rest frame. There is finite quantum probability for the anti-quark (e<0) to tunnel 
through the potential barrier and go to y→-∞.

y

Dissociation rate can be calculated in the WKB approximation as a tunneling 
rate of quark thru the potential barrier. 

(neglect B 
and Ω for a 
moment)

Keldysh (1965)
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ROLE OF MAGNETIC FIELD

E=0

E=Bê2

E=BB=0

e0-1 0.2 0.4 0.6 0.8 1.0
y

-0.3

-0.2

-0.1

0.1

0.2
Uêm

"0 =
p

m2 + (p � eA)2 + e' =
q

m2 + (px + eBy)2 + p2
y + p2

z � eEy

The larger B, the smaller is 
the dissociation probability 

larg
er 

B
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ROLE OF ROTATION

-|e|

A

ΩB

p
y

x

z

A
-p

The effective synchrotron frequency of the negative charge appears to 
be smaller than the effective synchrotron frequency of the positive one. 

The magnetic field decreases the charge of escaping 

The dissociation probability is larger for negative charges

⇒

Lab Frame

Ω

Rotating Frame

-|e| rotates slower 
than +|e|
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IMAGINARY TIME METHOD

Imaginary Time Method: the quasi-classical transition probability is
<latexit sha1_base64="VyFCJbG+qGucSnb2JcvsuQ9ifls="></latexit>

w = exp(�2ImW )

<latexit sha1_base64="giL+J4cLQsMp5Rk21QQ8J9H3JOI="></latexit>

W =

Z 0

t0

(L+ "0)dt� p · r|t=0

where the action is computed along the extremal classically forbidden 
trajectory.
Assumptions: (i) motion of the CoM is negligible in the hadron rest frame (e.g. 
the hadron is made up of a heavy and a light quarks); (ii) The binding potential 
is short range, (iii) motion of the light quark is non-relativistic; (iv) B and Ω are 
constant. 

5

III. SUB-BARRIER TRAJECTORY

The classical sub-barrier trajectory that minimizes the restricted action is a solution to Eqs. (8)-

(10). It starts at the imaginary time t0, ends at t = 0 and satisfies the boundary conditions [33]:

r(t0) = 0 , (14)

Im r(0) = Imv(0) = 0 , (15)

1

2
mv2(t0) = "0 �mc2 = �"b . (16)

where "b > 0 is the hadron binding energy. Eq. (16) determines the initial time t0 of the sub-barrier

motion.

Multiplying (9) by i and adding (8) we obtain an equation for ⇠ = x+ iy:

⇠̈ + i(2⌦+ !B)⇠̇ � ⌦2⇠ = i!E , (17)

where we denoted

!E =
eE

m
, !B =

eB

m
. (18)

The general solution to (17) is

⇠ = C1e
�it!+ + C2e

�it!� �
i!E

⌦2
, (19)

where the characteristics frequencies are

!± = ⌦+
!B

2
±

r
⌦!B +

!2
B

4
, (20)

and C1 and C2 are complex constants. We are going to derive the extremal trajectory for real !±

and then analytically continue it to complex values (at �4⌦ < !B < 0). Accordingly, taking the

real and imaginary parts of (19) and introducing real constants A1,2, B1,2 we obtain

x = A1 cos(!+t)�A2 sin(!+t) +B1 cos(!�t)�B2 sin(!�t) , (21)

y = �A1 sin(!+t)�A2 cos(!+t)�B1 sin(!�t)�B2 cos(!�t)�
!E

⌦2
. (22)

In the classically forbidden region, it is expedient to parameterize the trajectory in terms of the

real Euclidean time ⌧ = it. Applying the initial condition (14) one derives

x(⌧) =
i!E

⌦2 sinh[(!+ � !�)⌧0]
{sinh(!�⌧0) sinh(!+⌧)� sinh(!+⌧0) sinh(!�⌧)} , (23)

y(⌧) =
!E

⌦2

⇢
�
sinh(!�⌧0) cosh(!+⌧)

sinh[(!+ � !�)⌧0]
+

sinh(!+⌧0) cosh(!�⌧)

sinh[(!+ � !�)⌧0]
� 1

�
, (24)
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Extremal 
trajectory:
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where ⌧0  ⌧  0 and ⌧0 < 0. Continuing (23) and (24) to the complex values of the characteristic

frequencies !± furnishes the desired extremal trajectory for any !E , !B, and ⌦. The extremal

sub-barrier trajectory lies entirely in the xy-plane because the boundary condition (15) applied to

the solution of (10): z = vz(t� t0) = �ivz0(⌧ � ⌧0) implies vz0 = 0.

IV. DISSOCIATION PROBABILITY

The restricted action W appearing in (1) is given by

W =

Z 0

t0

(L+ "0)dt� p · r|t=0 . (25)

Substituting the Lagrangian (13) and the trajectory (23),(24) one obtains

W = i
m!2

E

8⌦4

!+ � !�

sinh2[(!+ � !�)⌧0]

�
� 2⌧0(!+ � !�) + 2⌧0!+ cosh(2!�⌧0)� 2!�⌧0 cosh(2!+⌧0)

� sinh[2(!+ � !�)⌧0]� sinh(2!�⌧0) + sinh(2!+⌧0)
 
. (26)

Eq. (16) determines implicitly the initial instant of the sub-barrier motion ⌧0:

�2 =
!2
B

⌦4 sinh2[(!+ � !�)⌧0]

�
2!+!� sinh(!�⌧0) sinh(!+⌧0) cosh[(!+ � !�)⌧0]

�!2
+ sinh2(!�⌧0)� !2

� sinh2(!+⌧0)
 
, (27)

where we introduced a positive dimensionless parameter [34, 35]

� =

r
2"b
m

B

E
. (28)

Eliminating ⌧0 from (26) and (27) and substituting into in (1) yields the desired dissociation

probability. Fig. 1 displays the function F defined as

F =
3|!B|

3

m!2
E�

3
ImW =

3|e|E

m2

✓
m

2"b

◆3/2

ImW , (29)

which is the imaginary part of W normalized to unity in the limit !B ! 0 and ⌦ ! 0, see (34).

We observe that F falls o↵ with ⌦ indicating that the dissociation probability w increases with the

angular velocity. This occurs because the centrifugal force makes the bound state less stable.

One can also see that at a given ⌦ positive charges have larger F hence smaller dissociation

probability w than the negative charges. In particular, the maximum of F , corresponding to the

minimum of w, occurs for positive charges at a certain angular velocity ⌦ < !B. To understand

this e↵ect, observe that in the laboratory frame a negative charge rotates counterclockwise in the

6
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HADRON DISSOCIATION

e>0e<0

-4 -2 2 4
Ω/ωB

0.1

0.2

0.3

0.4

0.5

w

V=2/3

V=1/3

V=1/6

•  The centrifugal force increases the dissociation probability. 
•  At the same B and Ω the negative charge has larger probability to run away.

•  Dissociation probability increases with hadron velocity V 
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CHARGE ASYMMETRY 

1 2 3 4 5
Ω/|ωB|

0.05

0.10

0.15

0.20

w(e<0)-w(e>0)

V=2/3

V=1/3

V=1/6

• w(D-) > w(D+), i.e. there are more D+ than D- in the final spectrum. 
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There are many other effects of B on QGP
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Chiral anomaly and Chiral Magnetic Effect
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UL(Nf )⇥ UR(Nf ) ' SUL(Nf )⇥ SUR(Nf )⇥ UB(1)⇥ UA(1)

Broken spontaneously Baryon 
symmetry 

(exact)

Axial symmetry 
(broken by anomaly)

Chiral symmetry of nuclear matter

Axial symmetry  ! ei�5✓ broken by quantum fluctuations!

anomaly coefficient cA
is topologically protected

@µJ
µ
5 = cA ~E · ~B

E.g.:

) d(NR �NL)

dt
= cA

Z
~E · ~Bd3x

CHIRAL ANOMALY

Magnetic helicity
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QCD vacuum is a superposition of states with different topology, characterized by the  
topological charge density  

TOPOLOGY OF THE QCD VACUUM

20

This means that the gauge field configuration which goes to pure gauge at infinity and has finite

q can induce a transition from vacuum of winding number nw(t = −∞) to another vacuum of

winding number nw(t = ∞). In zero temperature, such gauge field configurations are called

instantons [160] and they are responsible for the quantum tunneling through the energy barrier

between vacua of different winding numbers [161–164].

The high energy barrier (∼ ΛQCD ∼ 200 MeV) between two vacua suppresses the instanton

transition rate exponentially, but at high-enough temperature, the transition between different

vacua can also be induced by another, classical, thermal excitation called sphaleron [165, 166]

which, instead of tunneling through the barrier, can take the vacuum over the barrier. In elec-

troweak theory, sphaleron transitions cause baryon number violation and may be important for

the cosmological baryogenesis [167, 168]. In QCD, the existence of the sphaleron configurations at

finite temperature enormously increases the transition rate [169–178]. At very high temperature,

the perturbative calculation of the sphaleron transition rate gives [2, 170–178]

Γsph ∼ (αsNc)
5T4, (39)

while the strong coupled holographic approach gives an even larger rate Γsph = (g2Nc)2/(256π2)T4 [179].

Thus at high temperature, the sphaleron transition rate can be very large. This provides a machin-

ery of generating P and CP odd bubbles in QGP (note that a transition process from a topologically

trivial vacuum to a topologically nontrivial vacuum violates P and CP symmetry as is evident

from the integrand of q).

Now if we integrate the axial anomaly equation in the QCD sector (for massless quarks)

∂µJ
µ
A =

g2Nf

16π2
Ga

µνG̃
µν
a , (40)

where J µ
A = ∑ f 〈ψ̄ f γµγ5ψ f 〉 ( f is over all massless flavors) is the axial current, we see that

NA(t = ∞)− NA(t = −∞) = 2q, (41)

where NA =
∫

d3xJ 0
A(x) is the total chirality or axial charge. This demonstrates that a topolog-

ically nontrivial gauge field configuration can create or annihilate the total chirality of fermions,

and thus if the QGP contains a (sufficiently large) domain in which q is finite we would expect

that it finally will contain unequal numbers of RH and LH quarks or anti-quarks even if initially

NA(t = −∞) = 0. This is how QGP can become chiral. We note here that the probabilities of

generating positive chirality and negative chirality are equal which means that over many col-

liding events in heavy-ion collisions the averaged chirality should vanish. What remains after

event average is the chirality fluctuation rather the chirality itself and any measurement of the

chirality-imbalance effects should be on the event-by-event basis, see Sec. IV.

(4) What is axial chemical potential? — There is a conceptual problem in interpreting µA as

the axial chemical potential for fermions: as when we talk about the chemical potential we always

   N
CS =   -2       -1        0         1          2 

instanton 

sphaleron 

Energy of 

gluon field 
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QCD vacuum is a superposition of states 

            with different topology

Transitions between such states create

the local imbalance of chirality

Tuesday, January 3, 2012

Transitions between such states creates local imbalance of chirality. 

2

where cA = Nc
P

f q
2
fe

2/2⇡2 is the QED anomaly coe�cient and the field ✓ is sourced by the

topological charge density

q(x) =
g2

32⇡2
Ga

µ⌫G̃
aµ⌫(x) (2)

which varies in space and time across a CP -odd domain. As a result (1) cannot be rewritten as

a total derivative and removed from the Lagrangian. Instead, it appears in the modified Maxwell

equations as the spatial and the temporal derivatives of ✓.

It has been known since the pioneering article by Carroll, Feld and Jackiw [28] that in QED cou-

pled to the axion field, photons acquire an imaginary mass mA making possible their spontaneous

emission by fermions. This phenomenon is referred to as the vacuum Cherenkov radiation [29, 30].

Since the electromagnetic field in QGP is coupled to the axion-like field ✓, it is natural to expect

that a similar mechanism of photon radiation exists in hot nuclear medium as well. This idea was

developed in [31, 32] where it was argued that ultrarelativistic fermions moving in a finite-✓ domain

radiate photons, which we referred to as the chiral Cherenkov radiation. Additionally, fermions in

QGP radiate the chiral transition radiation as they cross the boundary between the plasma and

vacuum due to the di↵erence in the photon wave function inside and outside the plasma. The

spectra of both processes are proportional to the average values of the spatial and the temporal

✓-derivatives. Since the chiral Cherenkov radiation scales with the system volume, whereas the

chiral transition radiation scales with its area, the former is dominant when the contribution of

the entire QGP (as opposed to a single fast quark) is considered. Thus, the present work focuses

on the chiral Cherenkov radiation by QGP.

The analysis of [31, 32] relied on two basic assumptions: (i) ✓(x) is a slowly varying adiabatic

function of its arguments and (ii) the absolute value of the photon mass generated by the anomaly

|mA| is much larger than the plasma frequency !pl. The first assumption is the simplest model

that captures the essential dynamics of the chiral magnetic e↵ect [33–36]. It is supported by the

results obtained by Zhitnitsky [37, 38]. The second assumption is justified for large enough photon

energy ! becausem2
A is proportional to !, see (10), whereas the plasma frequency is !-independent.

These are the assumptions that are carried over to the present study as well. However, unlike the

radiation by a single quark discussed in [31, 32] where one is free to choose the quark energy high

enough so that most of the photon spectrum satisfy |mA| � !pl, in the case of QGP the bulk of the

photon radiation occurs at ! . T , where T is the QGP temperature. Still, it is argued in the next

section that at high enough temperatures, the photon mass satisfies the second assumption since

the plasma frequency is proportional to T , see (8), whereas the absolute value of m2
A is proportional

The transition rate per unit volume is exponentially suppressed at low 
temperatures, but increases at high temperatures as

The topological domains with finite q may be as large as few fm. Zhitnitsky et al
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r ·B = 0 ,

r ·E = ⇢� cr✓ ·B ,

r⇥E = �@tB ,

r⇥B = @tE + j + c(@t✓B +r✓ ⇥E) ,

+ + + 

- - -
Kharzeev, McLerran, Warringa (2008)

Chiral magnetic effect

Sikivie (84), Wilczek (87), Carroll et al (90)

The anomalous current 

<θ>≠0

Breaks Parity!

External magnetic field drives 
the charge separation.

LMCS = LQED + cA✓(x) ~E · ~B

j = ��B

P-odd,
T-odd

P-even,
T-odd

QED WITH CHIRAL ANOMALY

Often used notations: 
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In a slowly varying field ✓, its first derivatives @µ✓ can be replaced by their constant domain–average

values denoted by �� = cA✓̇[35, 36, 43], referred to as the chiral conductivity, and b = cAr✓. In this

approximation the photon and the ✓-field dynamics decouple and one can consider electrodynamics

in the topologically non-trivial background [44].

The average of the ✓-field over an ensemble of CP -odd domains vanishes. However, its value in

a single domain can be finite due to the fluctuations of the topological number NCS . In the context

of this work we need to know the temperature dependence of the ✓-field in a domain because it

determines the temperature dependence of the e↵ective photon mass mA. In particular, if its T -

dependence is steeper than linear, then one expects that there is a range of temperatures where the

plasma becomes radioactive as explained at the end of Sec. I. The topological number density can

be estimated as q ⇠ NCS/Vdom, where Vdom ⇠ 1/m4
ax is the domain 4-volume. Since the sphaleron

size is inversely proportional to T , the domain volume decreases as Vdom ⇠ 1/T 4. Fluctuations

of NCS are related to the sphaleron transition rate � as
⌦
N2

CS

↵
= 2�Vpl [45] for large enough 4-

volume Vpl of plasma. Therefore, the variance of the topological number density is
⌦
q2
↵
⇠ m8

ax�Vpl.

Employing (5) it is seen that the typical variance of the ✓-field strength is
⌦
✓2
↵
⇠ m4

ax�Vpl/f4. �

is exponentially suppressed at low temperatures, but increases as T 4 at high temperatures [46–49].

It follows, using (10) of the next section, that mA ⇠ h✓i1/2 ⇠ T 4. Thus, |mA| exceeds !pl at high

T making the chiral Cherenkov radiation possible.

III. PHOTON DISPERSION RELATION

Now that the model parameters have been outlined, it is instructive to review the photon

dispersion relation. In the case ✓ = 0 the photon dispersion relation at finite temperature T and

finite chemical potentials of the right and left-handed fermions µR,L was computed in [50]. In the

high-energy limit, when the photon is near the mass-shell and transversely polarized, its dispersion

relation is !2
� k2 = !2

pl, where

!2
pl =

m2
D

2
=

e2

2

✓
T 2

6
+

µ2

2⇡2

◆
, (8)

and µ2 = µ2
R + µ2

L.

At finite ✓ the photon dispersion relation acquires an extra term due its interaction with the

CP -odd domains

!2
� k2 = !2

pl +m2
A +O(! � k) , (9)
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Anomalous Hall Effect

Fukushima, Kharzeev, 
Warringa (2008)
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New Territory of CME Physics: 3D Semimetals
The anomalous transport phenomena are universal phenomena across 
boundaries of disciplines, encompassing a wide range of chiral systems!

Weyl semimetal  
(non-degenerated bands) 

TaAs 
NbAs 
NbP 
TaP 

Dirac semimetal  
(doubly degenerated bands) 

ZrTe5 

Na3Bi, 

Cd3As2 

One should expect to see CME in semimetals — 
CME in fact becomes a signal of chiral fermions! 

@µJ
µ
5 = CA

~E · ~B

b

In Weyl semimetals and non-uniform QGP: field θ is time-independent and

r✓ = b/cA ⇡ const.

New Territory of CME Physics: Table-Top Exp.

vRL BE
c

eN τ
π

!!

"
⋅≈ 22

2

, 4

vRL BE τµµµ
!!
⋅−≡ ~

BeJCME
!!

µ
π 2

2

2
=

2~   ; BEJ zz
CME

kik
CME

i
CME σσ=

arXiv:1412.6543 [cond-mat.str-el]

σ = σo +σCME = + σo + a(T)B2  

CHIRAL MAGNETIC EFFECT IN CMP
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Chiral Magnetic Instability of EM field
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CME EFFECT AND EM FIELD

Far away from any sources, Maxwell equations in momentum space read
k ·B!,k = 0 ,

✏k ·E!,k = 0 ,

k ⇥E!,k = !B!,k ,

k ⇥B!,k = �!✏E!,k � i��B!,k

[!(! + i�)� k2]2 = �2
�k

2

Electromagnetic waves have the 
dispersion relation

!�1,�2 = � i�

2
+ �1

q
k2 + �2��k � �2/4Four solutions:

k < ��

In this case                  indicating a solution exponentially growing with time: 

All four poles lie in the lower-half plane of complex    except when 

⇒ instabilityB ⇠ eIm!±t

!

Im!± > 0

�1,�2 = ±1
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Limits on a Lorentz- and parity-violating modification of electrodynamics

Sean M. Carroll and George B. Field
Harvard Sm-ithsonian Center for Astrophysics, Cambridge, Massachusetts 02138

Roman Jackiw*
Department ofPhysics, Columbia University, Netv York, Netv York 10027

(Received 5 September 1989)

The Chem-Simons Lagrangian has been studied previously in (2+1)-dimensional spacetime,
where it is both gauge and Lorentz invariant. In 3+1 dimensions, this term couples the dual elec-
tromagnetic tensor to an external four-vector. If we take this four-vector to be fixed, the term is
gauge invariant but not Lorentz invariant. In this paper, we examine both the theoretical conse-
quences of such a modification and observational limits we can put on its magnitude. The Chern-
Simons term would rotate the plane of polarization of radiation from distant galaxies, an effect
which is not observed. From the observations we deduce that the magnitude of the vector is
& 1.7 X 10 "h, GeV, where ho is the Hubble constant in units of 100 km sec ' Mpc

I. INTRODUCTION

Gauge and Lorentz invariance are two symmetries of
Maxwell's electrodynamics that have come to dominate
all fundamental physical theory. They provide physical
principles that guide the invention of models describing
fundamental phenomena, and their experimental
status —within electromagnetism —is well established.
The properties of electromagnetic radiation, both in a
natural setting and in high-energy accelerators, are pre-
cisely described by Lorentz-invariant dynamics. Gauge
invariance, interpreted as the masslessness of the photon,
is validated by stringent limits on the photon mass.

Experimental tests of such well-established and univer-
sal physical ideas are best discussed within a theoretical
framework that allows departures to be governed by arbi-
trary parameters; experimental data then set limits on the
magnitude of these symmetry-breaking parameters.
Thus, violations of gauge invariance are parametrized by
a mass p for the photon field A, . A mass term is hy-
pothesized to modify the electromagnetic Maxwell
Lagrange density REM,

EM ———4F~t,F
so that the photon becomes massive:

2
Z = —-'F F"'+" A "A

P 4 VA. 2 V (2)

Here F & is the electromagnetic tensor F &
=B,, A &—B&A, and the field equations in the presence of a con-

served current J read

~A +By (4)

is clearly lost. Geomagnetic data then set the limit'

A +p A =4m.J, 0 A =0,
where is the d'Alembertian 0=t), —V . (We set c
equal to unity throughout. ) Gauge invariance

&cs —,
' p A13F (6)

where F ~ is the dual electromagnetic tensor,
F P = —,

' e ~"'F„,. This modification couples the elec-
tromagnetic field to an (as yet unspecified) four-vector p .

When electromagnetic phenomena are confined to a
plane, as in the quantum Hall effect and high-T, super-
conductivity, the approximation can be made that no in-
teresting dynamical motion takes place in the direction
perpendicular to the plane. Then the external vector p
may be chosen to lie in that direction as well, and (6)
reduces to an unconventional electrodynamic action that
is Lorentz and gauge invariant in a three-dimensional
spacetime, i.e., boosts in the plane leave dynamics un-
changed. It was in this context that the Chem-Simons
term was initially investigated as a "topological mass"
term for gauge fields in (2+ I)-dimensional spacetime. 3

Models in which Xcs is taken to be the entire gauge field
action have found application in examinations of the
quantum Hall effec and high- T, superconductivity.
Moreover, several purely mathematical applications for
Lcs have also been found.

In this paper we shall consider the (3+1)-dimensional
case, where considerations of both Lorentz and gauge in-
variance play a crucial role.

p ~ 3 X 10 GeV; observations of the galactic magnetic
field set the more stringent bound of p ~ 3 X 10 GeV;
see below.

In this paper we explore the experimental limits on
another modification of Maxwell theory, which also in-
volves a mass parameter p, but respects gauge
invariance —rather, it is Lorentz invariance that is violat-
ed.

The modification we consider involves adding to the
Maxwell Lagrange density a Chem-Simons term:

+p +EM+pcs '

The Chem-Simons term is given by
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[(—co +k ) —m k ]g= 1 . (33)

In Fourier space, with g(co, k)= fdt dre' ' ""g(t,r),
this reads

From (33) we see that a tachyonic pole arises in g for long
wavelengths, k & m. A solution which does not grow in
time, and reduces to the Lienard-Wiechert formula when
m=0, is

g(t, r)=
m

2 sin —r
2

vrmr
9(t) f dz

0

mcosr +z
4

2m
4

1/2

m/2
sintz ——' dz2 0

mcosr
4

Z 2

' 1/2

m 2

4
Z

—jtjz. 1/2 (34)

This solution is noncausal, in the sense that the second
term in parentheses, present when mAO, acts even at
t &0, before the 5-function disturbance has occurred. A
causal solution, vanishing for t &0, would of course pos-
sess exponential growth in time —it would be a runaway
solution.

The potential instability manifests itself once again in
the existence of no nsingular, static solutions to the
source-free equations. To find these we set sources and
time derivatives to zero in (11)—(14) and find (for p=O)
that the divergence and curl of E vanish, hence so does E,
while 8 is a divergence-free vector field satisfying

VXB= —mB,
which also implies

(V' +m )B=O .

(35a)

(35b)

A=V Xa—ma, (36a)

where a is any triplet of fields satisfying

(V +m )a=O (36b)

then B=VX A solves (35). For example, a could have a
single nonvanishing component equal to (sinmr)Ir. This
space-filling magnetic field makes stationary the magnetic
energy, defined as the energy in (21a) with vanishing elec-
tric field:

E~=—,
' f dr B (r)

Equations (35) have arisen previously in magnetohy-
drodynamics. There they are obtained within conven-
tional electrodynamics, in the presence of static, neutral
sources (p=O, V J=O), when the condition is imposed
that J is proportional to B, so that (35a) is equivalent to
Ampere's law. Here, Eqs. (35) arise in the static, source-
free case when Maxwell theory is modified by the Chern-
Simons term.

The solution to (35) is most easily presented in terms of
the vector potential A whose curl is B. One verifies that
with A given by

ventional mass arising, for example, as in (2) and (3),
leads to the static equation ( —V +p, }A =0, which hasP
no regular solutions. In the Chem-Sirnons case p is re-
placed by —m, and regular solutions do exist.

IV. GEOMAGNETIC CONSTRAINTS

Just as for the gauge-noninvariant modification (2) and
(3), geomagnetic data limit the magnitude of the Chern-
Sirnons modification, but not as effectively as astrophysi-
cal data (discussed below). Static fields arising from sta-
tionary, neutral sources (p=O, V J=O) obey equations
which follow from (11)—(14) with p set to zero, so that
@0=m:

V B=O,
VXE=O,
V E=O,
VXB=4n.J—mB .

(38a)

(38b)

(38c)

(38d)

Evidently, the magnetic field satisfies

( —V —m )B=4n.VXJ—4am J . (39)

The geomagnetic constraint on p is determined by ex-
panding the integrand of (41) in powers of r'Ir and keep-
ing the dipole term:

Again we see the mass parameter m entering as an imagi-
nary mass. The solution to (39) is

B(r)= fdr', [V XJ(r') —m J(r')]+Bo, (40), cosm ~r —r'~

jr —r'/

where B0 is the space-filling solution to the homogeneous
equations (35) and (36).

This is to be contrasted with the corresponding solu-
tion when the mass term violates gauge invariance:

e
—

)M jr —r'j
B(r)= fdr', V'X J(r') . (41)

+ drdr'8 "(r)K" (r —r')B (r') .
2

(37)

—pr
B(r)= [[3(r D)r —D](1+pr+ ,'p r )—

r

It is seen that the vanishing of 5E~I5A(r) implies (35);
also, EM vanishes when evaluated on a solution to (35}.

Note that the Chem-Simons mass term enters (35b)
and (36b) as an imaginary mass, in the sense that a con-

where

——",V"'D]

D= —,
' f drrX J(r)

(42)

(43)
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3 e" =4mJ FP P (17) satz and get

e~"we' (18)

Note that the Chem-Simons addition, which contrib-
utes the last term to (15), renders the energy-tnomentum
tensor nonsymmetric:

co E—k E+(k.E)k=i( —pok XE+cop XE), (24)

where co is the frequency and k the wave vector, which
form the four-vector k =(co, k ); k =

~
k ~. The corre-

sponding dispersion relation is

which again indicates the absence of Lorentz invariance.
The energy and momentum densities are not gauge in-

variant: or

(k k ) +(k k )(p~p&)=(k p )

' —1/2

(25)

0g=e~=~E'+-'B'+ p B AP 2 2 2
(19a) co —k =+(pok —cop cos6)) 1—p sin L9

k
(26)

P=e"=(ExB)'+ (B A) .P (19b)

which holds provided functions drop off sufficiently rap-
idly at large distances so that the integration by parts
needed to relate the two sides of (20) does not produce
surface terms. Thus

Rather, under a gauge transformation they change by a
total derivative, since

B A~B (A —Vy)=B A —V (By) .
Consequently, the integrals over all space, which define
the electromagnetic energy and momentum, are gauge in-
variant. Indeed, the spatial integrals may be presented as
explicitly gauge invariant by spatially nonlocal formulas
that make use of the identity

fdr B(r) A(r) = fdr B(r) fdr', V X B(r'),1

4~fr —r'f

(20)

where 8 is the angle between p and k, p =
~ p~, and the +

and —correspond to right-and left-handed circularly po-
larized waves, respectively. From this it is clear that in-
troducing p has the consequence of splitting the photons
into two modes. The waves travel with a group velocity
which differs from one in second order in p:

= 1+0(p (27)

co'=k(k+m ) (28)

while the phase velocity co/k already differs from 1 even
in the lowest order. That the two polarization modes
propagate at different velocities is forceful evidence for
violation of Lorentz and parity invariance.

Note that the wave four-vector k can become space-
like; i.e., exponentially unstable modes can so1ve the field
equations. This is clearly seen in the p rest frame, where
(26) implies

E=fdry(r)
=

—,
' fdr[E (r)+B (r)]

0
+ dr dr'B "(r)K" (r r')B (r'), —

2

P= fdrP(r)

dr Er XBr

+ dr dr'B "(r)K" (r r')B (r'), —
2

where the kernel K" is given by

K nm(r ) pnmig 1
' 4mr

(21a)

(21b)

(22)

Ez+m V X E = —4mB, J
GB+m VXB=4~VXJ, ,

(29a)

(29b)

where Ez and Jz are transverse electric field and current,
respectively. Equivalently we have, in the Coulomb
gauge,

A+m V X A=4'~ . (30)

so co becomes imaginary for k &m. Such runaway solu-
tions do not contradict energy conservation because the
two integrals in (23) can each become arbitrarily large
while their difference remains a finite, time-independent
quantity.

However, runaway, exponentially growing, tachyonic
modes need not be excited by well-behaved sources. The
modified Maxwell equations imply (for p =0)

0E=—' dr E2+ Q+ P A2 2

2 2

8
(23)

Note that the energy is not positive definite. This is
most easily seen from (19a), which implies

The form of the fields responding to the source is most
appropriately described by constructing the Green's func-
tion for (29), i.e., the response function to a disturbance
localized by a 6 function at the origin in space and time.
The Green's function is transverse and is given by

Here we encounter the first evidence of an instability in
the theory; we shall discuss this in more detail below.

To find wave solutions to the source-free (p=J=O)
versions of (11)—(14), we posit the phase-exponential an-

O'J(t, r)=[(5"—B,B)/V )Cl+me" BI, ]g(t, r),
where g satisfies

g+m V g=4~5 (x) .

(31)

(32)

Photon propagator 

A very partial list of other references:  Redlich, Wijewardhana(1985), Rubakov (1986), Joyce, Shaposhnikov (1987), Adam, Klinkhamer 
(2001), Boyarsky at al (2012), Sadofyev, Zakharov et al (2013), Akamatsu,Yamamoto(2013), Hirono, Kharzev, Yin (2015), Manuel, 
Torres-Rincon(2015), Buividovich, Ulybyshev (2016), Kaplan, Reddy, Sen (2016).
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TAMING INSTABILITY: HELICITY CONSERVATION

Chiral anomaly 

6

V. CHIRAL ANOMALY

Time-dependence of �� is determined by the chiral anomaly equation and the equation of state

that connects the average chiral charge density hnAi to the axial chemical potential µ5. The chiral

anomaly equation reads [23, 24]

@µj
µ
A = cAE ·B . (33)

In a homogeneous medium r · jA = ��r ·B = 0, so that (33) reduces to an equation for the time

component of the anomalous current

ṅA = cAE ·B . (34)

Averaging over volume and using (28) gives†

@t hnAi =
cA
V

Z
E ·B d3x = �

cA
2V

@tHem . (35)

Integrating, one obtains the total helicity conservation condition

2V

cA
hnAi+Hem = Htot , (36)

where Htot is a constant.

Magnetic helicity Hem explicitly depends on ��(t), rather than on hnAi. Therefore, in order

to solve (36) one needs an equation of state of the chiral medium that connects the chiral charge

density and the axial potential. It can be computed from the grand canonical potential ⌦ as [22]

hnAi = �
1

V

@⌦

@µ5
. (37)

Clearly, the equation of state depends on medium properties and, in general, is complicated even

in the non-interacting approximation. It simplifies in two important limits: when temperatures T

and quark chemical potentials µ are much higher or much lower than the axial chemical potential

µ5. We refer to these limits as the hot and cold medium respectively and consider separately in

the following two sections.

VI. MAGNETIC FIELD EVOLUTION IN HOT MEDIUM

In a hot medium with µ, T � µ5, the equation of state is linear [22]

hnAi = �µ5 , (38)

†
Our notations generally follow [2].

In a homogeneous medium
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ṅA = cAE ·B . (34)

Averaging over volume and using (28) gives†

@t hnAi =
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V

Z
E ·B d3x = �
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2V
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Integrating, one obtains the total helicity conservation condition

2V

cA
hnAi+Hem = Htot , (36)

where Htot is a constant.

Magnetic helicity Hem explicitly depends on ��(t), rather than on hnAi. Therefore, in order

to solve (36) one needs an equation of state of the chiral medium that connects the chiral charge

density and the axial potential. It can be computed from the grand canonical potential ⌦ as [22]

hnAi = �
1

V

@⌦

@µ5
. (37)

Clearly, the equation of state depends on medium properties and, in general, is complicated even

in the non-interacting approximation. It simplifies in two important limits: when temperatures T

and quark chemical potentials µ are much higher or much lower than the axial chemical potential

µ5. We refer to these limits as the hot and cold medium respectively and consider separately in

the following two sections.

VI. MAGNETIC FIELD EVOLUTION IN HOT MEDIUM

In a hot medium with µ, T � µ5, the equation of state is linear [22]

hnAi = �µ5 , (38)

†
Our notations generally follow [2].
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where the chiral conductivity defined as [21, 22]

�� = cAµ5 (8)

is a function of only time. In the radiation gauge r ·A = 0, A0 = 0 Eq. (6) can be written as an

equation for the vector potential

�r
2A = �@2

tA+ j + ��(t)r⇥A . (9)

III. THE FASTEST GROWING STATE

We proceed by expanding the vector potential into eigenstates of the curl operator Wk�(x),

known also as the Chandrasekhar-Kendall (CK) states [1]. A particular form of these functions is

not important, but its easier to deal with them in Cartesian coordinates where they are represented

by the circularly polarized plane waves

Wk�(x) =
✏�

p
2kV

eik·x , (10)

where V is volume and � = ±1 corresponds to the right and left polarizations. Functions (10)

satisfy the eigenvalue equation

r⇥Wk�(x) = �kWk�(x) (11)

and the normalization condition

Z
W ⇤

k�(x) ·Wk0�0(x)d3x =
1

2k
���0�k,k0 . (12)

Expansion of the vector potential into a complete set of the CK states reads

A =
X

k,�

[ak�(t)Wk0�0(x) + a⇤k0�0(t)W ⇤
k0�0(x)] . (13)

The corresponding electric and magnetic fields are given by

E = �@tA =
X

k,�

[�ȧk�(t)Wk0�0(x)� ȧ⇤k�(t)W
⇤
k�(x)] , (14)

B = r⇥A =
X

k,�

[�k ak�(t)Wk�(x) + �ka⇤k�(t)W
⇤
k�(x)] . (15)

Substituting (13) into (9) and using the Ohm’s law j = �E one gets an equation

k2ak� = �äk� � �ȧk� + ��(t)�k ak� . (16)

(recall:               )
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where the susceptibility � depends on µ and T , but not on time. It follows then from (8) that

��(t) =
cA
�

hnA(t)i , (39)

The helicity conservation (36) now reads

��(t)

↵
= 1�

Hem(t)

Htot
, (40)

where ↵ = Htotc2A/(2V �) is a characteristic energy scale.

The vector potential in (23) is normalized such that at the initial time the magnetic helicity

equals unity Hem(0) = 1. Denoting the initial value of the chiral conductivity by ��(0) = �0 one

can infer from (40) that

�0 = ↵(1�H
�1
tot) < ↵ . (41)

The ratio �0
0 = �0/↵ determines the fraction of the total initial helicity stored in the medium. If

at t = 0 Htot � 1, then most of the initial helicity is stored in the medium, implying �0
0 . 1.

Note that �0
0 never equals 1 for a finite positive total helicity.‡ In the opposite case, all helicity is

initially magnetic Htot = Hem(0) = 1 implying �0
0 = 0.

Substituting (31) into (40), using the definition of � from (22) and taking the time-derivative,

one derives an equation for ��

�̇� = �

⇣q
�2 + �2

� � �
⌘
(↵� ��) . (42)

It is convenient to use a set of dimensionless quantities

�0
� = ��/↵ , �0 = �/↵ , ⌧ = ↵t , (43)

in terms of which Eq. (42) is cast into the form

�̇0
� = �

⇣q
�02 + �02

� � �0
⌘
(1� �0

�) . (44)

In view of (41), the right-hand-side of (44) is always negative. Perforce, �� is a monotonically

decreasing function of time implying that helicity always flows from the medium to the field until

all of it is stored in the field. This is in contrast to [2, 4] where the helicity can flow in both

directions. How long it takes to transfer the helicity to the field depends on an equation of state

as discussed in this and the following sections.

‡
In the case of negative helicity, all terms in (36) would change sign, see footnote ⇤.

Equation of state

⇒ 

Hirono, Kharzev, Yin (2015)
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The fastest growing mode:

4

It can be solved in the adiabatic approximation, which is adequate for analysis of the unstable

states. Namely, we are seeking a solution in the form

ak� = e�i
R t
0 !k�(t0)dt0 (17)

and assume that !k�(t) is a slow varying function, which allows one to neglect terms proportional

to !̇k�. This yields

!k�(t) =


�
i�

2
+ �1

q
k2 � ���k � �2/4

�
, (18)

with �1 = ±1. States with �1 = 1 and k such that the expression under the square root is

negative are unstable. A more detailed analyzes can be found in [3]. We are going to concentrate

on the fastest growing state, whose momentum k0 corresponds to the maximum of the function

�(k2 � ���k � �2/4). Namely,

k0 =
���

2
. (19)

Clearly, ��� is positive in an unstable state. We assume that �� > 0 and � = 1.⇤ At k = k0

Eq. (18) becomes

!0(t) = �
i�

2
+

i

2

q
�2 + �2

�(t) . (20)

Thus, the fastest growing state is

a0(t) = e�(t)/2 , (21)

with

�(t) =

Z t

0

hq
�2 + �2

�(t
0)� �

i
dt0 . (22)

The model employed in the ensuing sections of this paper, consists in approximating the vector

potential by the fastest growing mode given by (21),(22). The corresponding vector potential is

A(r, t) ⇡ a0(t)Wk0+(r) + c.c. (23)

To verify that the ansatz Eq. (23) is indeed a solution to Eq. (9) one has to keep in mind that

when taking the time-derivative of A, function Wk0+ is treated as time-independent (even though

k0 depends on time), because its time-derivative is proportional to !̇0, which is neglected in the

adiabatic approximation.

⇤
If during the evolution �� changes sign, then � = 1 state stops growing while � = �1 becomes the fastest growing

state.
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where the susceptibility � depends on µ and T , but not on time. It follows then from (8) that

��(t) =
cA
�

hnA(t)i , (39)

The helicity conservation (36) now reads

��(t)

↵
= 1�

Hem(t)

Htot
, (40)

where ↵ = Htotc2A/(2V �) is a characteristic energy scale.

The vector potential in (23) is normalized such that at the initial time the magnetic helicity

equals unity Hem(0) = 1. Denoting the initial value of the chiral conductivity by ��(0) = �0 one

can infer from (40) that

�0 = ↵(1�H
�1
tot) < ↵ . (41)

The ratio �0
0 = �0/↵ determines the fraction of the total initial helicity stored in the medium. If

at t = 0 Htot � 1, then most of the initial helicity is stored in the medium, implying �0
0 . 1.

Note that �0
0 never equals 1 for a finite positive total helicity.‡ In the opposite case, all helicity is

initially magnetic Htot = Hem(0) = 1 implying �0
0 = 0.

Substituting (31) into (40), using the definition of � from (22) and taking the time-derivative,
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‡
In the case of negative helicity, all terms in (36) would change sign, see footnote ⇤.
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0 = �0/↵ determines the fraction of the total initial helicity stored in the medium. If
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Note that �0
0 never equals 1 for a finite positive total helicity.‡ In the opposite case, all helicity is
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�̇� = �

⇣q
�2 + �2

� � �
⌘
(↵� ��) . (42)

It is convenient to use a set of dimensionless quantities
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� = ��/↵ , �0 = �/↵ , ⌧ = ↵t , (43)

in terms of which Eq. (42) is cast into the form

�̇0
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⇣q
�02 + �02

� � �0
⌘
(1� �0

�) . (44)

In view of (41), the right-hand-side of (44) is always negative. Perforce, �� is a monotonically
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directions. How long it takes to transfer the helicity to the field depends on an equation of state
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‡
In the case of negative helicity, all terms in (36) would change sign, see footnote ⇤.

Helicity flows between the magnetic field and 
medium. Total helicity is conserved.

Fraction of the total 
helicity in plasma

Fraction of the total 
helicity in the field

Helicity conservation
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Characteristic energy scale

(adiabatic approx.)
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EVOLUTION OF CHIRAL CONDUCTIVITY
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Magnetic field develops a maximum only if the initial helicity in medium >50%

9

Since �0
�(⌧) is monotonically decreasing from its initial value �0

0, the magnetic field has maximum

only if �0
0 > 1/2, i.e. if most of the initial helicity is in the medium. Otherwise, B(t) is a mono-

tonically decreasing function of time (despite the fact that A always grows). This is shown in

Fig. 2.
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FIG. 2: Evolution of the magnetic field in hot medium for �0 = 0 (solid line), 1 (dotted line), 10 (dashed

line). The initial condition is �0
�(0) ⌘ �0

0 = 0.5, i.e. 50% of the initial helicity is in the field (left panel) and

�0
0 = 0.95, i.e. 95% of the initial helicity is in medium, (right panel).

A. Insulating medium � = 0

The chiral conductivity can be explicitly expressed as a function of ⌧ in the case of vanishing

electrical conductivity � = 0. In this case, solution to Eq. (44) reads

�0
�(⌧) =

1

1 +
⇣

1
�0
0
� 1

⌘
e⌧

. (49)

Clearly, at ⌧ ⌧ 1, the chiral conductivity is constant, while at t > 1 it exponentially decreases

with time, see Fig. 1. To compute the corresponding magnetic field substitute (49) into (22), which

yields

�(t) =

Z t

0
��(t

0)dt0 = ⌧ � ln
⇥
e⌧

�
1� �0

0

�
+ �0

0

⇤
. (50)

Plugging this into (21) one derives for an insulating medium

a0(t) =
e⌧/2p

e⌧ (1� �0
0) + �0

0

. (51)

Since ȧ0 > 0 for any �0
0 > 0, magnetic helicity Hem = a20 increases from its initial value Hem(0) = 1

to the final value of Hem(1) = (1� �0
0)

�1 = Htot, where (41) has been used.

EVOLUTION OF CHIRAL CONDUCTIVITY



quite comparable with that observed in sQGP experimentally,
as shown in Fig. 3. What is also worth noting is that it does
predict a maximum of this ratio at T ¼ Tc, reflecting the
behavior of the density of monopoles.
Returning to QCD-like theories which do not have powerful

extended supersymmetries that would prevent any phase
transitions and guarantee smooth transition from UV to IR,
one finds a transition to confining and chirally broken phases.
Those have certain quantum condensates which divert the
renormalization group (RG) flow to a hadronic phase at
T < Tc. Therefore the duality argument must hold at least
in the plasma phase, at T > Tc. We can follow the duality
argument and the Dirac condition only halfway, until
e2=4πℏc ∼ g2=4πℏc ∼ 1. This is a plasma of coexisting
electric quasiparticles and magnetic monopoles.
One can summarize the picture of the so-called magnetic

scenario by a schematic plot shown in Fig. 5, from Liao and
Shuryak (2007). At the top (the high T domain) and at the right
(the high density domain) one finds weakly coupled or
“electrically dominated” regimes (wQGP). On the contrary,
near the origin of the plot, in vacuum, the electric fields are
subdominant and confined into the flux tubes. The vacuum is
filled by the magnetically charged condensate, known as a dual
superconductor. The region in between (relevant for matter
produced at RHIC and the LHC) is close to the “equilibrium
line,” marked by e ¼ g on the plot. In this region both electric
and magnetic coupling are equal and thus αelectric ¼
αmagnetic ¼ 1: so neither the electric nor magnetic formulations
of the theory are simple.
Do we have any evidence of a presence or importance for

heavy ion physics of magnetic objects? Here are some
arguments for that based on lattice studies and phenomenol-
ogy, more or less in historical order.

(i) In the RHIC-LHC region Tc < T < 2Tc the VEVof the
Polyakov line hPi is substantially different from 1. Hidaka
and Pisarski (2008) argued that hPi must be incorporated
into a density of thermal quarks and gluons and thus
suppress their contributions. They called such matter “semi-
QGP” emphasizing that only about one-half of the QGP
degrees of freedom should actually contribute to thermody-
namics at such T. And yet, the lattice data insist that the
thermal energy density remains close to the T4 trend nearly
all the way to Tc.
(ii) The magnetic scenario (Liao and Shuryak, 2007)

proposed to explain this puzzle by ascribing “another half”
of such contributions to the magnetic monopoles, which are
not subject to hPi suppression because they do not have the
electric charge. A number of lattice studies found magnetic
monopoles and showed that they behave as physical quasi-
particles in the medium. Their motion definitely shows Bose-
Einstein condensation at T < Tc (D’Alessandro, D’Elia, and
Shuryak, 2010). Their spatial correlation functions are plas-
malike. Even more striking is the observation (Liao and
Shuryak, 2008) revealing magnetic coupling which grows
with T, being indeed an inverse of the asymptotic free-
dom curve.
The magnetic scenario also has difficulties. Unlike the

instanton dyons, lattice monopoles so far defined are gauge
dependent. The original t’Hooft–Polyakov solution requires
an adjoint scalar field, absent in the QCD Lagrangian, but
perhaps an effective scalar can be generated dynamically. In
the Euclidean time finite-temperature setting this is not a
problem, as A0 naturally takes this role, but it cannot be used
in real-time applications required for kinetic calculations.
(iii) Plasmas with electric and magnetic charges show

unusual transport properties: The Lorenz force enhances
the collision rate and reduces viscosity (Liao and Shuryak,
2007). Quantum gluon-monopole scattering leads to a large
transport cross section (Ratti and Shuryak, 2009), providing
small viscosity in the range close to that observed at the RHIC
and the LHC.
(iv) The high density of (noncondensed) monopoles near Tc

leads to compression of the electric flux tubes, perhaps
explaining curious lattice observations of very high tension
in the potential energy (not free energy) of the heavy-quark
potentials near Tc (Liao and Shuryak, 2007); see Sec. X.
(v) Last but not least, the peaking density of monopoles

near Tc seems to be directly relevant to jet quenching;
see Sec. XI.
Completing this introduction to monopole applications, it

is impossible not to mention the remaining unresolved issues.
Theories with adjoint scalar fields, such as, e.g., the cel-
ebrated N ¼ 2 Seiberg-Witten theory, naturally have parti-
clelike monopole solutions. However, in QCD-like theories
without scalars the exact structure of the lattice monopole are
not yet well understood. There are indications that most, if
not all, of the monopole physics can be taken care of via the
instanton dyons previously mentioned: in this case the role of
the adjoint “Higgs” is played by the time component of the
gauge potential A4. The dyon solution is well defined
and real in Euclidean time, but becomes imaginary in the
Minkowski continuation: so it is not a “particle” in the
ordinary sense.

FIG. 5. A schematic phase diagram on a (compactified) plane of
temperature and baryonic chemical potential T − μ. The shaded
(blue) region shows the magnetically dominated region g < e,
which includes the deconfined hadronic phase as well as a small
part of the QGP domain. The unshaded region includes the
electrically dominated part of QGP and the color superconducting
(CS) region, which has e-charged diquark condensates and is
therefore “magnetically confined.” The dashed line (e ¼ g) is the
line of electric-magnetic equilibrium. The solid lines indicate true
phase transitions, while the dash-dotted line is a deconfinement
crossover line. From Liao and Shuryak, 2007.

Edward Shuryak: Strongly coupled quark-gluon plasma in heavy …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035001-8
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MAGNETIC MONOPOLES AND THE INSTABILITY 

Chiral evolution with magnetic monopoles: always ends up in a superconducting state.

Magnetic monopoles at T=0: dual superconductor, 
color confinement.

Motivation:

The condensate may not melt away at Tc

⇒ Important part of QGP dynamics

Shuryak, 2009

Li, KT, 2018
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TIME-VARIATION OF TOPOLOGICAL CHARGE 

σχ is adiabatic

⌧c ⇠ 1/(g4T )
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Since �� ⇠ e2µ5
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By the time t=τc the chiral instability becomes

��⌧c ⌧ 1

<latexit sha1_base64="+jvaPKgbMSSOGXYTqt0VuwiI0Yo="></latexit>

⇒ ⇒

the topological charge changes by the time the instability fully develops.

How does magnetic field evolve at t � ⌧c

<latexit sha1_base64="jcVDMk8/P71ywfcVz5kGfuKPES8="></latexit>

?

Model: the chiral conductivity is a stochastic process with 

exp(��⌧c)
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h��i = 0
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⌃� =
q
h�2

�i = cAµ5
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h��(t)��(t� ⌧)i 6= 0
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t < ⌧c
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when

Early times t ⌧ ⌧c
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where sphaleron transition time
   N

CS =   -2       -1        0         1          2 

instanton 

sphaleron 

Energy of 

gluon field 

15

QCD vacuum is a superposition of states 

            with different topology

Transitions between such states create

the local imbalance of chirality

Tuesday, January 3, 2012
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HARMONIC OSCILLATOR WITH RANDOM FREQUENCY 

x = ak�e
�t/2
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ẍ(t) + !2[1 + ↵⇠(t)]x(t) = 0
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!2 = k2 � �2

4
, ↵ = ��k

!2
⌃� , ⇠ =

��

⌃�
, ⌃� =

q⌦
�2
�

↵
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⇒

Magnetic field amplitude in medium with fluctuating topological charge is harmonic 
oscillator with random frequency

Harmonic oscillator with random frequency belongs to the class of linear stochastic 
equations

du(t0)

dt0
= [A0 + ↵⇠(t0)B]u(t0)
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t0 = !t
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d hu(t0)i
dt0

=

⇢
A0 + ↵2

Z 1

0
h⇠(t0)⇠(t0 � ⌧ 0)iBeA0⌧

0
Be�A0⌧

0
d⌧ 0

�
hu(t0)i
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It can be converted to an ordinary integro-differential equation at 

provided that

t � ⌧c
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↵ ⌧ 1
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Van Kampen (1975)

i.e. the fluctuating term is a perturbation.
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EVOLUTION OF AVERAGE AMPLITUDE

hak�(t)i± = exp

⇢
±i!t� ↵2

4
(c2 ± ic1)!t�

1

2
�t

�
.
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Evolution of average amplitude 

It can be shown that for any conductivity all <a> modes are decreasing with time. 

⇒ no instability at t � ⌧c
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Equation for the first moments u =

✓
x
ẋ

◆
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EVOLUTION OF AVERAGE ENERGY

Ornstein-Uhlenbeck process (for illustration): h⇠(t)⇠(t� ⌧)i = e�⌧/⌧c
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• Average energy is unstable in poor conductors (such as QGP) if σ<g4T and Σχ≫σ. 

• The magnetic helicity of R and L modes increases exponentially. However, their sum 
vanishes. Thus, the helicity conservation cannot tame the instability at later times as is does 
at early times. The instability is not chiral!
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INSTABILITY REGION 
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Generation of intense EM field in relativistic 
heavy-ion collisions at finite θ
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EM FIELD OF VALENCE CHARGES AT FINITE Θ

valence electric charges

✓
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EM FIELD OF A POINT CHARGE AT EARLY TIME

2

Cherenkov radiation that exist only in the chiral medium. This is in striking contrast with the

collisional energy loss in non-chiral medium which is independent of the particle’s energy in the

ultra-relativistic limit. We also argue that in a wide range of particle energies, quantum corrections

due to the recoil e↵ects are small.

The collisional energy loss spectrum is given by Eqs. (10)–(18). It contains the anomalous

contribution, mostly due to the chiral Cherenkov radiation, which is clearly seen in Fig. 1 for

Quark-Gluon Plasma and in Fig. 2 for a Weyl semimetal. In the later case the photon spectrum is

strongly enhanced in the ultraviolet and X-ray regions which makes it amenable to experimental

investigation.

II. ELECTROMAGNETIC FIELDS IN CHIRAL MEDIUM

Electrodynamics of isotropic chiral medium is characterized by the emergence of the anomalous

current proportional to the magnetic field viz. jA = ��B, where �� is the chiral conductivity

[1, 10]. As a result, the field equations for a point charge q moving in the positive z direction with

constant velocity v read:

r⇥B = @tD + ��B + qvẑ�(z � vt)�(b) , (1a)

r ·D = q�(z � vt)�(b) , (1b)

r⇥E = �@tB , (1c)

r ·B = 0 , (1d)

where b denotes the transverse components of the position vector r. The solution to (1) with

D! = ✏(!)E!, where Ez = 1
2⇡

R1
�1Ez!e�i!td! etc., was derived in [8] as a superposition of the

helicity states � = ±1, which are the eigenstates of the curl operator in the Cartesian coordinates:

B(r, t) =

Z
d2k?d!

(2⇡)3
eik·r�i!t

X

�

✏�k
qẑ · ✏⇤

�k�k

k2? + !2(1/v2 � ✏)� ���k
, (2a)

E(r, t) =

Z
d2k?d!

(2⇡)3
eik·r�i!t

 
X

�

✏�k
iq!ẑ · ✏⇤

�k

k2? + !2(1/v2 � ✏)� ���k
+ k̂

q

ivk"

!
, (2b)

where k = k? + (!/v)ẑ is the wave vector, k =
q
k2? + !2/v2 its length and ✏�k are the circular

polarization vectors satisfying the conditions ✏�k · ✏⇤
µk = ��µ, ✏�k · k = 0 and the identity

ik̂ ⇥ ✏�k = �✏�k . (3)

3

Summations over � are performed using the polarization sums given in Appendix of [8]. The space-

time dependence of the electromagnetic field given by the integrals (2a),(2b) was approximately

evaluated in [8, 11, 12] assuming the low frequency limit of a conductor ✏ = 1 + i�/! and used to

compute the e↵ect of the chiral anomaly on the magnetic field produced in relativistic heavy-ion

collisions.

To compute the energy loss we need only the frequency components of the fields, see (10). These

can be computed exactly. For illustration, consider

B!(r) =

Z
d2k?
(2⇡)2

q k ei!z/v+ik?·b

[k2? + !2(1/v2 � ✏)]2 � (��k)2

⇥
(
[k2? + !2(1/v2 � ✏)]

X

�

�✏�k(ẑ · ✏⇤
�k) + ��k

X

�

✏�k(ẑ · ✏⇤
�k)

)
(4)

Its azimuthal component is

B�!(r) =

Z
d2k?
(2⇡)2

q k ei!z/v+ik?·b

[k2? + !2(1/v2 � ✏)]2 � (��k)2

⇥
⇢
[k2? + !2(1/v2 � ✏)]

�ik?
k

cos ✓ + ��k
�kzk?
k2

sin ✓

�
, (5)

where k? · b = k?b cos ✓. Integration over ✓ and then over k? yields (6a) below. Other field

components an be obtained in a similar way with the following result:

B�!(r) =
q

2⇡

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k⌫(k
2
⌫ � s2)K1(bk⌫) , (6a)

Bb!(r) =��
q

2⇡

i!

v

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫k⌫K1(bk⌫) , (6b)

Bz!(r) =��
q

2⇡

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k2⌫K0(bk⌫) , (6c)

Ez!(r) =
q

2⇡

i!

v2✏

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1
⇥
(v2✏� 1)(k2⌫ � s2)� �2

�

⇤
K0(bk⌫) , (6d)

Eb!(r) =
q

2⇡

1

v✏

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k⌫
�
k2⌫ � s2 � �2

�

�
K1(bk⌫) , (6e)

E�!(r) =vBb!(r) , (6f)

where

k2⌫ = s2 �
�2
�

2
+ (�1)⌫��

s

!2✏+
�2
�

4
(7)

with ⌫ = 1, 2 and

s2 = !2

✓
1

v2
� ✏(!)

◆
. (8)

Maxwell-Chern-Simons equations

Can be solved for constant chiral conductivity

B� =
eb

8⇡x2�
e
� b2�

4x�


� cos

✓
b2��
4x�

◆
+ �� sin

✓
b2��
4x�

◆�
High energy approximation:

B#
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Bz v
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FIG. 2: Magnetic field of a point charge as a function of time t at z = 0. (Free space contribution is not

shown). Electrical conductivity � = 5.8 MeV. Solid line on both panels corresponds to B = B� at �� = 0.

Broken lines correspond to B� (dashed), Br (dashed-dotted) and Bz (dotted) with �� = 15 MeV on the left

panel and �� = 1.5 MeV on the right panel. Note that the vertical scale on the two panels is di↵erent.

we find for the longitudinal field component:

Bz =
eb

4⇡x�
e
� b2�

4x�


� sin

✓
b2��
4x�

◆
� �� cos

✓
b2��
4x�

◆�
. (67)

It is seen in (65) and (67) that the field components Br and Bz are generated only at a finite chiral

conductivity ��.

Eqs. (62),(63) and (67) is the main result of this paper. It shows that at finite ��, magnetic

field of a point charge acquires two components that are absent in the chirally neutral medium:

the radial and the longitudinal components. All field components oscillate at early times. This is

clearly seen in Fig. 2. The Bz and Br components change sign at light-cone times

x(n)� =
b2��

4[arctan ��

� + ⇡n]
, n = 0, 1, . . . , (68)

while the B� components changes sign at

x̃(n)� =
b2��

4[� arctan �
��

+ ⇡n]
, n = 0, 1, . . . , (69)

The latest oscillation corresponds to n = 0; it increases with ��.

VI. DISCUSSION AND SUMMARY

There are two major results presented in this paper.

(i) I showed that solutions to the Maxwell equations are not stable in the presence of the chirality

imbalance. It is possible that electromagnetic field collapses into a set of magnetic knots. This

B#

B#

Br

Bz σ$=0.26σ

σ$=2.6σ

OSCILLATIONS OF EM FIELD AT EARLY TIMES
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EM AT LATER TIMES

6

The result is

B�(r, t) =
qv

8⇡2

Z +1

�1
dkze

ikz(z�vt)

⇥
X

�=±1

q
k2z/�

2 � i�kzv + ���kz K1

✓
b
q
k2z/�

2 � i�kzv + ���kz

◆
. (21)

This equation is plotted in Fig. 1 for t < ⌧c. The other components of the magnetic and electric

field can be computed in a similar way [1, 2].

Employing a stronger approximation � ⌧ k? ⌧ kz ⌧ �� and integrating in (19) first over kz

and then over k? obtains a simple formula [1, 2]

B�(r, t) ⇡
Z

dk?k?
(2⇡)2

Z +1

�1
dkz

qvk?eikz(z�vt)J1(k?b)⇥
k2? � i�kzv

⇤2 � (��k)2

⇥
k2? � i�kzv

⇤

=
qb

8⇡⇣2
exp

✓
�b2�

4⇣

◆
� cos

✓
b2��
4⇣

◆
+ �� sin

✓
b2��
4⇣

◆�
, (22)

Eq. (22) is a very good approximation of (21) in the relativistic heavy-ion collision kinematics.

V. ELECTROMAGNETIC FIELD AT LATER TIMES

To study the late time t � ⌧c behavior of the electromagnetic field, one can regard the chiral

conductivity ��(t) as a random process and hence (11a) becomes a stochastic equation describ-

ing time-evolution of the field amplitude with momentum k and polarization �. Introducing an

auxiliary variable x = ��ke�t/2 one can cast (11a) in the form

ẍ(t) + !2[1 + ↵⇠(t)]x(t) = �kJ�k(t)e
�t/2 , (23)

where

!2 = k2 � �2

4
, ↵ = ��k

!2
⌃� , ⇠(t) =

��
⌃�

. (24)

Eq. (23) describes the one-dimensional harmonic oscillator with random frequency. It does not have

an analytical solution. However, one can deduce from it a set of ordinary di↵erential equations for

the expectation value of the amplitude moments [13]. In particular, assuming ↵ ⌧ 1, the average

value of x satisfies the equation

@2
t hx(t)i+

1

2
c2↵

2!@t hx(t)i+
✓
1� 1

2
↵2c1

◆
!2 hx(t)i = �kJ�k(t)e

�t/2(1 + ↵2c0) . (25)

where
<latexit sha1_base64="bfrBcisBrLvt+4i1PiiN//0nSMs="></latexit>

B�k = x�k(t)✏�ke
��t/2

7

where

c0(!) =

Z 1

0
K(⌧) sin(!⌧)[1� cos(!⌧)]d(!⌧) , (26a)

c1(!) =

Z 1

0
K(⌧) sin(2!⌧)d(!⌧) , (26b)

c2(!) =

Z 1

0
K(⌧)[1� cos(2!⌧)]d(!⌧) . (26c)

with the autocorrelation function K(⌧) = h⇠(t)⇠(t� ⌧)i. Eq. (25) can be converted into the equa-

tions for the average of the amplitude ��k:

@2t h��ki+
✓
� +

↵2

2
c2!

◆
@t h��ki+

✓
!2 +

�2

4
� ↵2

2
c1!

2 +
↵2

4
c2�!

◆
h��ki

= �kJ�k(t)(1 + ↵2c0) . (27)

The terms proportional to ↵2 represent contributions of the fluctuating chiral conductivity. Solution

to (27) is

h��k(t)i =
qvẑ · ✏⇤�k�k(1 + ↵2c0)e�ikzvt

k2 � (kzv)2 � i�kzv + ↵2Q(!)
. (28)

were a shorthand notation is used

Q(!) =
1

4

�
c2�! � 2ic2kzv! � 2c1!

2
�
. (29)

Substituting (28) into (3a) yields the magnetic field:

hB(r, t)i =
X

�

Z
d3k

(2⇡)3
eikz(z�vt)eik?·b qv✏�k(ẑ · ✏⇤�k)�k(1 + ↵2c0)

k2 � (kzv)2 � i�kzv + ↵2Q(!)
, (30)

The z-component of the magnetic field vanishes due to (A11). Its b component vanishes when (A21)

is substituted into (30) and integrated over the azimuthal angle  . Using (A20) the azimuthal

component of the magnetic field is

hB�(r, t)i =
Z

d3k

(2⇡)3
eikz(z�vt)eik?·b (�ik · b̂)qv(1 + ↵2c0)

k2 � (kzv)2 � i�kzv + ↵2Q(!)
. (31)

The electric field is obtained using (3b), (8) and (28):

hE(r, t)i =
Z

d3k

(2⇡)3
eik?·b�ikz(vt�z)

(
�
X

�

�

k

(�ikzv)qv✏�k(ẑ · ✏⇤�k)�k(1 + ↵2c0)

k2 � (kzv)2 � i�kzv + ↵2Q(!)
� ik

k2"kzv

)
(32)

In particular, employing (A8) and (A19) the non-vanishing components are

hEz(r, t)i = q

Z
d3k

(2⇡)3
eik?·b�ikz(vt�z) ikz

k2
k2

�
v2 � "�1

kzv

�
� ↵2Q(!)"�1

kzv
+ ↵2c0k2?v

2

k2 � (kzv)2 � i�kzv + ↵2Q(!)
, (33)

hEb(r, t)i = �q

Z
d3k

(2⇡)3
eik?·b�ikz(vt�z) ik · b̂

k2

�
k2 + ↵2Q(!)

�
"�1
kzv

+ ↵2c0k2zv
2

k2 � (kzv)2 � i�kzv + ↵2Q(!)
. (34)

At later times needs to sum over fluctuations of the topological charge 
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Solution for the average amplitude 
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FIG. 1: Azimuthal component of magnetic field (left panels) and its absolute value (right panels) at ⌧c = 2 fm

(vertical dotted line). Solid lines:
⌦
�2
�(t)

↵1/2
= ⌃� 6= 0 as indicated on each panel, dashed lines:

⌦
�2
�(t)

↵
= 0.

The minima of the right panels are the zeros of the field at which it reverses its direction, as shown in the

inset in the lower right panel. Other parameters: � = 100, ��1 = 34 fm, b = 7.4 fm, z = 0.

result given by (30),(33) and (34) is derived. In the relativistic heavy-ion collisions kinematics the

field expressions reduce to (35). Fig. 1 is the graphic representation of the magnetic field produced

in a typical heavy-ion collision by a single valence quark. One observes that the field oscillations

at early times, first observed in [1], may persist at later times at large chiral conductivity. If the

chiral conductivity is indeed that large, observation of the chiral magnetic [14, 15] and associated

e↵ects [16] in relativistic heavy-ion collisions becomes especially challenging.

Throughout the paper the topological charge density has been assumed to be spatially homoge-

neous [4, 5]. In practice this might not be a good approximation if more than one CP-odd domain

is produced in a single heavy-ion collision. The impact of spatial and temporal variations as well

as the quantum interference e↵ects deserve a dedicated analysis. Furthermore, throughout the

paper it is assumed that the electrical conductivity is constant. This is clearly not the case in

a realistic heavy-ion collisions. One should be mindful of these limitations when considering the

phenomenological applications of the results of this work.
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Fast particles in chiral media: chiral Cherenkov 
radiation
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PARTICLE RADIATION IN MATTER: CHERENKOV 
AND TRANSITION RADIATION

Classical Cherenkov radiation is 
emitted by a charged particle that 
moves faster than the phase 
velocity of light: vn>1

Kirill Tuchin Phys. 572 Lecture Notes 75

There are two interesting limiting cases. In free space � ! 0 and we have

B� =
q

c⇡
⇡�

Z 1

0
J1(xb)x e

�x(z/v�t) dx =
q�

c

b

(b2 + �2(z/v � t)2)3/2
. (7.23)

This is precisely the magnetic field of a uniformly moving charge in free space, i.e. boosted Coulomb potential. If the
medium is a very good conductor, then we can expand the square roots in (7.22):

B� =
q

c⇡

2⇡

�

Z 1

0
J1(xb)x

2 exp

⇢
1

2
��2

✓
2x2

�2�2

◆⇣z
v
� t

⌘�
dx =

q

c

b�

2( zv � t)2
exp

⇢
�

b2�

4(t� z
v )

�
. (7.24)

This is reminiscent of quasi-static fields that we discussed in Ch. 4, see in particular (4.41). This is not surprising
because the quasi-static approximation is applicable to good conductors.

• Additional reading: http://arxiv.org/pdf/1305.5806.pdf.

§2. Cherenkov radiation.

A. Electromagnetic field in the radiation zone.

To understand what electromagnetic radiation by a fast particle in medium, we need to examine the electromagnetic
field, which we computed in the previous section, in the radiation zone sr? � 1. Recall the asymptotic behavior of
the modified Bessel functions at large values of argument, see (1.180)

K⌫(sr?) =

r
⇡

2sr?
e�sr? . (7.25)

Clearly, the integral over ! in (7.14)–(7.17) is convergent only if Re s > 0. Suppose that the medium is transparent,
i.e. ✏ is a real function. Then there are two possibilities. (i) ��2 > ✏(!). Then, s is real and the wave decays
exponentially. In this case there is no radiation. (ii) ��2 < ✏(!) (velocity of particle is larger than the speed of light
in the medium). In such a case, electromagnetic field decreases as 1/

p
r?, which gives finite contribution to the power

at large r?, and corresponds to a cylindrical wave.
Let us investigate the case ��2 < ✏(!) in more detail. We have from (7.11)

s = ±
i!

c

r
✏(!)�

1

�2
. (7.26)

To decide which sign is physical, we need to take into account a small imaginary part of ✏. Writing ✏ = ✏0 + i✏00 and
expanding (7.26) in ✏00 we get

s = ±
i!

c

r
✏0 �

1

�2

✓
1 +

i✏00

2(✏0 � ��2)

◆
. (7.27)

Since ✏00 > 0 (see text after (5.117)) and ✏0 > ��2 the real part of s is positive only if we choose the minus sign in
(7.26).

Now, consider the phase of a monochromatic component of electromagnetic field in the radiation zone, which can
be read o↵ (7.14)–(7.16) and (7.25):

exp
n
i!

⇣z
v
� t

⌘
� sr?

o
= exp

n
�i!t+ ikzz + ikzr?

p
�2✏� 1

o
, (7.28)

where we used the dispersion relation ! = kzv and (7.27). On the other hand, phase (7.28) is a solution to Lorentz-
invariant wave equation. Therefore it must have form �ikµxµ = �i!t + k · r. Let ✓ be the polar angle of k with
respect to z-axis. Then, kz = k cos ✓ and k? = k sin ✓ = kz tan ✓. Hence, k · r = kzz + kzr? tan ✓. Comparing this
with (7.28) we conclude that tan ✓ =

p
�2✏� 1. This implies that

cos ✓ =
1

�
p
✏
=

1

�n
, (7.29)

where in transparent medium
p
✏ is just the index of refraction. We observe that electromagnetic field in the radiation

zone has a form of a wave propagating at angle ✓, given by (7.29), to the fast particle velocity v = vẑ. Therefore, if
�n > 1, a charged particle moving through transparent medium with constant velocity emits electromagnetic waves
with frequency ! and at angle ✓. This is the Cherenkov radiation.

Notice that in view of (7.7) and (7.5), Bk! · v = Bk! · k = Ek! · k = 0.

Classical transition radiation is emitted 
by a charged particle that moves 
through inhomogeneous matter.
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33. Passage of particles through matter 33

33.7. Cherenkov and transition radiation [33,77,78]

A charged particle radiates if its velocity is greater than the local phase velocity of
light (Cherenkov radiation) or if it crosses suddenly from one medium to another with
different optical properties (transition radiation). Neither process is important for energy
loss, but both are used in high-energy and cosmic-ray physics detectors.

θc

γc

η

Cherenkov wavefront

Particle velocity   v = βc

v =
 v g

Figure 33.26: Cherenkov light emission and wavefront angles. In a dispersive
medium, θc + η != 900.

33.7.1. Optical Cherenkov radiation :

The angle θc of Cherenkov radiation, relative to the particle’s direction, for a particle
with velocity βc in a medium with index of refraction n is

cos θc = (1/nβ)

or tan θc =
√

β2n2 − 1

≈
√

2(1 − 1/nβ) for small θc, e.g . in gases. (33.43)

The threshold velocity βt is 1/n, and γt = 1/(1−β2
t )1/2. Therefore, βtγt = 1/(2δ+δ2)1/2,

where δ = n − 1. Values of δ for various commonly used gases are given as a function of
pressure and wavelength in Ref. 79. For values at atmospheric pressure, see Table 6.1.
Data for other commonly used materials are given in Ref. 80.

Practical Cherenkov radiator materials are dispersive. Let ω be the photon’s frequency,
and let k = 2π/λ be its wavenumber. The photons propage at the group velocity
vg = dω/dk = c/[n(ω) + ω(dn/dω)]. In a non-dispersive medium, this simplies to
vg = c/n.

In his classical paper, Tamm [81] showed that for dispersive media the radiation is
concentrated in a thin conical shell whose vertex is at the moving charge, and whose
opening half-angle η is given by

cot η =

[

d

dω
(ω tan θc)

]

ω0

=

[

tan θc + β2ω n(ω)
dn

dω
cot θc

]

ω0

, (33.44)

where ω0 is the central value of the small frequency range under consideration.
(See Fig. 33.26.) This cone has a opening half-angle η, and, unless the medium is
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Figure 33.27: X-ray photon energy spectra for a radiator consisting of 200 25µm
thick foils of Mylar with 1.5 mm spacing in air (solid lines) and for a single
surface (dashed line). Curves are shown with and without absorption. Adapted
from Ref. 88.
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1→2 PROCESSES IN CHIRAL MATTER

The dispersion relation

Radiative instability of quantum electrodynamics in chiral matter

Kirill Tuchin1

1Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

(Dated: June 29, 2018)

Modification of the photon dispersion relation in chiral matter enables 1 ! 2 scattering.

As a result, the single fermion and photon states are unstable to photon radiation and

pair production respectively. The corresponding spectra are derived in the ultra-relativistic

approximation. It is shown that the polarization of the produced and decayed photons is

determined by the sign of the chiral conductivity. Impact of a flat thin domain wall on the

spectra is computed.

I. INTRODUCTION

One of the macroscopic manifestations of the chiral anomaly of QCD is the emergence of the

topological CP -odd domains in hot nuclear matter [1]. QED is coupled to these domains via its

own chiral anomaly. This is represented by the triangular diagrams that involve two photon fields

and the axial current generated by the topological fluctuations of the gluon field. The axial current

rapidly increases with temperature which triggers a variety of non-trivial electromagnetic e↵ects

in quark-gluon plasma [2].

At a more fundamental level, the chiral anomaly makes photon topologically massive [3]. Con-

sequently, single photon and fermion states become unstable. Recall that photon radiation by a

charged fermion in vacuum f(p) ! f(p0) + �(k) and the cross-channel process of pair production

in vacuum �(k) ! f(p0) + f̄(p) are prohibited by momentum conservation.⇤ Indeed in the rest

frame of one of the fermions k2 = (p± p0)2 = 2m(m± "). The right-hand-side never vanishes since

" > m, whereas in the left-hand-side k2 = 0 [4]. In chiral matter, i.e. in a matter supporting the

CP -odd domains, the chiral anomaly modifies the photon dispersion relation as [5–8]†

k2 = ����|k| , (1)

where � and k are photon helicity and momentum and �� is the chiral conductivity [9–11]. This

opens the 1 ! 2 scattering channels, viz. the pair-production if k2 > 0 and the photon radiation

if k2 < 0. Thus, single-particle states in chiral matter are unstable with respect to spontaneous

⇤ p, p0 and k are four-momenta with the components p = (",p), p0 = ("0,p0) and k = (!,k).
† In covariant form k2 = ��

p
(n · k)2 � n2k2, where nµ = ���

µ
0 in the matter rest frame.

→ photon becomes space- or timelike
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Pair production: ) ��� < 0

Photon radiation: k2 < 0 ) ��� > 0

Let field θ be homogenous and weekly time-dependent

In radiation gauge:

✓̇ = const

r2A = @2
tA� ��r⇥A
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A solution to (12) can be written as

' = eik?·x? exp

⇢
�i

1

2!

Z z

0

⇥
k2? � ��(z

0)!�
⇤
dz0

�
. (14)

It follows from (9) that

'0 = �e� · k?
!

' . (15)

Substituting (14) and (15) into (8) yields the photon wave function in the high energy approxima-

tion

A =
1p
2!V

✏� e
i!z+ik?·x?�i!t exp

⇢
�i

1

2!

Z z

0

⇥
k2? � ��(z

0)!�
⇤
dz0

�
, (16)

where the polarization vector

✏� = e� � e� · k?
!

ẑ . (17)

Clearly, ✏� · k = 0 up to the terms of order k2?/!
2 and ��/!. If the scattering process happens

entirely within a single domain, then the chiral conductivity is constant. However, if a domain

wall is located at, say, z = 0, than the chiral conductivity is di↵erent at z < 0 and z > 0. This is

why a possible z-dependence of �� is indicated in (16). Even though the boundary conditions on

the domain wall induce a reflected wave, it can be neglected in the ultra-relativistic approximation

[12, 17].

It is seen in (1) that half of the infrared modes |k| < ��� have Im! > 0 implying exponential

growth of the corresponding wave function with time. This infrared instability and its applications

are discussed in many recent publications [2, 6, 18? –33]. However, it is only tangentially related

to the radiative instability discussed in this paper, even though both originate from the same

dispersion relation. In particular, the infrared instability can be ignored in the ultra-relativistic

limit ! � k? � |��| because equation

kz ⇡ ! � 1

2!

�
k2? � ���!

�
(18)

has only real solutions.

III. FERMION WAVE FUNCTION

The free fermion wave function  at high energy " � p?,m can be obtained using the same

procedure. Since it satisfies the Dirac equation we are looking for a solution in the form

 =
1p
2"V

u(p)�ei"z�i"t , (19)

UR approx.:
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A SINGLE UNIFORM INFINITE DOMAIN

Photon 
radiation 
rate

Kappa is negative if

6

The amplitude M0 can most e�ciently be computed in the helicity basis using the matrix elements

derived in [34]. Keeping in mind that at high energies k+ = xp+, one obtains

M0 = �eQū�0(p0)� · ✏⇤�(k)u�(p) (30)

= � eQp
2(1� x)


xm(� + �)��0,�� � 1

x
(2� x+ x��)(qx � i�qy)��0,�

�
, (31)

where � = ±1 and �0 ± 1 are the fermion helicities before and after photon radiation.

The transition probability can be computed as

dw = |S|2V d3p0

(2⇡)3
V d3k

(2⇡)3
= |S|2V d2p?dp0z

(2⇡)3
V d2q?dkz

(2⇡)3
(32)

The cross section is the rate per unit flux V �1, while the number of produced photons N is the

cross section per unit area. Using the usual rules for dealing with the squares of the delta-functions

and integrating over the phase space yields

dN =
1

(2⇡)3
1

8x(1� x)"2
1

2

X

�,�,�0

|M|2d2q?dx , (33)

where the sum runs over the photon and fermion helicities. Eqs. (33),(31),(27) give the spectrum

of radiated photons. In the following subsections the explicit expressions for the photon spectrum

are derived for a single domain and for two domains separated by a domain wall at z = 0.

A. One infinite domain

Consider first an infinite chiral matter with constant chiral conductivity. Performing the integral

over z in (27) yields

M = 4⇡"x(1� x)M0�(q
2
? + �) . (34)

The square of the delta-function in (34) gives A�(q2?+�)/(4⇡), where A is the cross sectional area

of the domain. The relevant intensive observable quantity is the number of photons produced per

unit area dW = dN/A. It is given by

dW =
1

16⇡2
x(1� x)dx

1

2

X

�,�,�0

|M|2 ✓(��) , (35)

where ✓ is the step-function. It follows from (29) that � is negative if ��� > 0 and

x < x0 =
1

1 +m2/(���")
. (36)
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Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (35) and performing the summations and the integration yields the

density of spontaneously radiated photons

dW+

dx
=

↵Q2

2⇡x

⇢
�
✓
x2

2
� x+ 1

◆
+ +

x4m2

2

�
✓(x0 � x)

=
↵Q2

2⇡
(1� x)

⇢
��"

✓
x2

2
� x+ 1

◆
�m2x

�
✓(x0 � x) , (37)

dW�
dx

= 0 . (38)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (37) is of the order ↵2.

The total energy radiated by a fermion per unit area is

�" =

Z 1

0

dW+

dx
x"dx =

↵Q2

2⇡

13

120
��"

2 , (39)

where the terms of order m2/|��|" have been neglected for simplicity. It increases as "2 indicating

the necessity to resum the high order corrections at very high energies " ⇠ 10/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(40)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (41)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (41), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN
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↵Q2
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q2? +

x4m2
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2

. (42)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection are reproduced if one

identifies � = 4/A ‡.

‡ In electrically conducting matter � receives a contribution proportional to electrical conductivity �. In hot nuclear

matter this contribution has negligible e↵ect on the photon spectrum since � ⌧ 1/
p
A.
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Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (35) and performing the summations and the integration yields the

density of spontaneously radiated photons
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dW�
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Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (37) is of the order ↵2.

The total energy radiated by a fermion per unit area is
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0
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↵Q2
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��"

2 , (39)

where the terms of order m2/|��|" have been neglected for simplicity. It increases as "2 indicating

the necessity to resum the high order corrections at very high energies " ⇠ 10/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0
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dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
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iz
q2?+�+i�

2"x(1�x)

)
(40)

= 2"x(1� x)M0
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q2? + � + i�
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, (41)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (41), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN
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=
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The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection are reproduced if one

identifies � = 4/A ‡.

‡ In electrically conducting matter � receives a contribution proportional to electrical conductivity �. In hot nuclear

matter this contribution has negligible e↵ect on the photon spectrum since � ⌧ 1/
p
A.
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where u(p) is a spinor describing a free fermion with momentum p and � is a scalar function of

coordinates. Substituting  into (@2 +m2) = 0 and neglecting @z� compared to "� one obtains

2i"@z�+r2
?� = m2� (20)

with a solution

� = exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (21)

Thus, the fermion wave function is

 =
1p
2"V

u(p)ei"z�i"t exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (22)

IV. PHOTON RADIATION

Modification of the photon dispersion relation in chiral matter makes possible spontaneous

photon radiation f(p) ! f(p0) + �(k). The corresponding scattering matrix element reads

S =� ieQ

Z
 ̄�µ Aµd

4x (23)

=� ieQ(2⇡)�(! + "0 � ")
ū(p0)�µu(p)✏⇤µp

8""0!

Z 1

�1
dz

Z
d2x? �

⇤
p0(z,x?)'

⇤
k(z,x?)�p(z,x?) (24)

=i(2⇡)3�(! + "0 � ")�(p? � k? � p0
?)

Mp
8""0!V 3

, (25)

where Q is the fermion electric charge. The wave functions 'k and �p are given by (14) and (22)

respectively with the subscripts indicating the corresponding momenta. The amplitude M is given

by

M =� eQū(p0)�µu(p)✏⇤µ

Z 1

�1
dz exp

(
i

Z z

0
dz0

"
p02? +m2

2"0
�

p2? +m2

2"
+

k2? � ��!�

2!

#)
(26)

=M0

Z 1

�1
dz exp

⇢
i

Z z

0

q2? + �(z0)

2"x(1� x)
dz0

�
, (27)

where we introduced notations M0 = �eQū(p0)�µu(p)✏⇤µ, x = !/",

q? = xp0 � (1� x)k? , (28)

and

�(z) = x2m2 � (1� x)x���" . (29)

Total rate of energy loss

Vanishes as ℏ→0 
Quantum anomaly!
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Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (36) and performing the summations and the integration yields the

density of spontaneously radiated photons

dW+

dx
=
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⇢
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✓
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�
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⇢
��"

✓
x2

2
� x+ 1

◆
�m2x

�
✓(x0 � x) , (38)

dW�
dx

= 0 . (39)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (38) is of the order ↵2.

The total energy radiated by a fermion per unit time is

�"

T
=

Z 1

0

dW+

dx
x"dx =

1

3
↵Q2��" , (40)

where the terms of order m2/|��|" have been neglected for simplicity. Thus, energy loss increases

exponentially with time. It can be neglected only for time intervals much smaller than ⇠ 1/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(41)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (42)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (42), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x

⇢✓
x2

2
� x+ 1

◆
q2? +

x4m2

2

�X

�

����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (43)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection, provided that the square

of the delta functions is treated as explained after (34). Let us also note that when q2? + � = 0

in (41), the second integral equals T/2, which implies that we have to identify � = 4"x(1 � x)/T

(the same result is of course obtained using the first integral).
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Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (36) and performing the summations and the integration yields the

density of spontaneously radiated photons
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=
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dW�
dx

= 0 . (39)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (38) is of the order ↵2.

The total energy radiated by a fermion per unit time is

�"

T
=

Z 1

0

dW+

dx
x"dx =

1

3
↵Q2��" , (40)

where the terms of order m2/|��|" have been neglected for simplicity. Thus, energy loss increases

exponentially with time. It can be neglected only for time intervals much smaller than ⇠ 1/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(41)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (42)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (42), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x
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x2

2
� x+ 1
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q2? +

x4m2

2
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The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection, provided that the square

of the delta functions is treated as explained after (34). Let us also note that when q2? + � = 0

in (41), the second integral equals T/2, which implies that we have to identify � = 4"x(1 � x)/T

(the same result is of course obtained using the first integral).

Chiral Cherenkov effect: photon radiation at

4

the resonant behavior, while the other one is suppressed. Whether the photon spectrum is right-

or left-hand polarized depends on the sign of ��.

Since µ2 ⇡ ����!, the angular distribution of the photons peaks at the angle #2 = q2?/!
2 =

��/x2"2 with respect to the fermion momentum. If the fermion mass is negligible and bearing in

mind that most photons are soft (x ⌧ 1) we can estimate #2 ⇡ ���/!.

III. APPLICATIONS

1. As the first application, consider jet emission from the quark-gluon plasma (QGP) with

a homogenous chiral conductivity. QGP is isotropic at the scales of interest here, hence the

corresponding case is (i). Jets in heavy-ion collisions are produced by the highly energetic color

particles. If a jet is originated by a quark (as opposed to a gluon) we expect radiation of circularly

polarized photons in a cone with the opening angle # ⇠
p
|��|/! with respect to the jet momentum.

The chiral conductivity is an unknown parameter. If we estimate it as �� ⇠ 10 MeV, then

! = 1 GeV photons are emitted at the angle # ⇠ 0.1, provided that the jet energy " is much larger

than !. Thus the observation of circularly polarized photons at angle # to the jet direction would

be an indication of the chiral transition radiation.

2. We have seen that the main feature of the transition radiation from chiral matter is the

emergence of the resonance factor in (11). It arises entirely due to the energy and momentum

conservation in a 1 ! 2 process involving a photon with complex “mass” µ. Thus we expect to see

the same resonant factor as in (11) arising in the case (ii) which deals with an anisotropic matter.

The calculation of the pre-factor requires a more careful analysis that will be presented elsewhere.

In the high energy limit Eq. (4) reduces to µ2 ⇡ ��!b cos�, where � is the angle between b and

the photon momentum. The soft photon emission angle in the massless limit is #2 ⇡ �b cos�/!.

Similarly to the previous case (i), the photon spectrum is circularly polarized. One can verify

that now � is negative only if � cos� > 0 and x < [1 +m2/(�"b cos�)]�1. Thus the polarization

direction depends on whether b points towards or away from the boundary. Furthermore, since µ2

is proportional to cos�, the radiation is maximal when � = 0 or ⇡ and vanishes in the perpendicular

direction. To estimate the characteristic radiation angle discussed above, consider a Weyl semimetal

with b = (↵/⇡)80 eV [18, 19]. An electron with energy about GeV moving parallel to b (� = 0)

would radiate, say, ! = 10 MeV photons at # = 1.3 · 10�4. This can be tested by injecting a beam

of energetic electrons normal to a Weyl semimetal film and measuring the polarization and angular

distribution of the photons emitted in a cone with the opening angle # around the beam direction.

can become negative!

<latexit sha1_base64="p4cGPX1KeGq4qt94J1ncVTwaDh4="></latexit>

M = �eQū(p0)�µu(p)✏⇤µ ⇥ 4⇡"x(1� x)�(q2? + �)
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7

Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (35) and performing the summations and the integration yields the

density of spontaneously radiated photons
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dx
=
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dW�
dx

= 0 . (38)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (37) is of the order ↵2.

The total energy radiated by a fermion per unit area is

�" =

Z 1

0

dW+

dx
x"dx =

↵Q2

2⇡

13

120
��"

2 , (39)

where the terms of order m2/|��|" have been neglected for simplicity. It increases as "2 indicating

the necessity to resum the high order corrections at very high energies " ⇠ 10/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(40)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (41)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (41), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x
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x2

2
� x+ 1
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q2? +

x4m2

2
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2

. (42)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection are reproduced if one

identifies � = 4/A ‡.

‡ In electrically conducting matter � receives a contribution proportional to electrical conductivity �. In hot nuclear

matter this contribution has negligible e↵ect on the photon spectrum since � ⌧ 1/
p
A.

(Transition radiation in ordinary materials corresponds to

8

Away from the poles, one can neglect � in (42). The resulting spectrum coincides with the

spectrum of the transition radiation once �’s are replaced by tr = m2x2+m2
�(1�x), where m� is

the e↵ective photon mass [12, 17]. Unlike the spontaneous radiation, the transition radiation is not

possible in a uniform matter. Indeed, the amplitude (34) vanishes because tr > 0. Another key

di↵erence between the transition and spontaneous radiation is that the former has a finite classical

limit ~ ! 0, while the later one does not. The spontaneous radiation spectrum (43),(44) is a purely

quantum e↵ect that vanishes in the classical limit ~ ! 0. This is of course not surprising at all

because it originates from a quantum anomaly.

Integral over the momentum q? in (42) is dominated by the poles at q2? = �� and q2? = �0�.

There are two distinct cases depending on whether �� and �0
� have the same or opposite signs.

Consider first �� > 0 and �0
� > 0. In this case the photon spectrum is approximately right-

polarized. Keeping only the terms proportional to 1/� = A/4 one obtains

dW++

dx
=

↵Q2

8x

✓
x2

2
� x+ 1

◆
|+ + 0+|+

x4m2

2

�
✓(x0 � x)✓(x00 � x) , (43)

where the double plus subscript indicates that the helicity is positive in both domains. The

maximum energy fraction taken by the photon x0 is defined in (36); x00 is the same as x0 with ��

replaced by �0
�. Consider now �0

� > 0 and �� < 0. The integration gives

dW+�
dx

=
↵Q2

8x

⇢✓
x2

2
� x+ 1

◆
|0+|+

x4m2

4

�
✓(x00 � x)

+

✓
x2

2
� x+ 1

◆
|�|+

x4m2

4

�
✓(x0 � x)

�
. (44)

Clearly, photons radiated to the left of the domain wall (z < 0) are right-polarized, while those

radiated to its right (z > 0) are left-polarized.

V. PAIR PRODUCTION

Momentum conservation prohibits the spontaneous photon decay �(k) ! f̄(p)+f(p0) in vacuum.

However, in chiral matter this channel is open due to the chiral anomaly. This is the cross-channel

of the photon radiation computed in the previous section. The scattering matrix is now given by

S = i(2⇡)3�(! � "0 � ")�(k? � p? � p0
?)

Mp
8""0!V 3

, (45)

where

M =� eQū(p0)�µv(p)✏µ

Z +1

�1
dz exp

⇢
i

Z z

0

q̃2? + ̃�(z0)

2!x(1� x)
dz0

�
. (46)

finite at ℏ→0)

Contribution of the pole at q2? + � = 0 is the chiral Cherenkov radiation.

The rest is the “chiral transition radiation”
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• Charged particles traveling through the chiral medium emit electromagnetic 
radiation sensitive to the chiral anomaly.  

• It is circularly polarized and has resonant peaks at angles proportional to 
the anomaly

XG Huang, KT (2018)
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FERMI’S MODEL OF COLLISIONAL ENERGY LOSS

Chiral Cherenkov radiation is closely related to the collisional energy loss.

4

Without loss of generality we assume that �� > 0 which implies that k22 > k21. The plasma

permittivity is well described by

✏ = 1�
!2
p

!2 + i!�
, (9)

where !p is the plasma frequency and the damping constant � is related to the electrical conduc-

tivity.

III. COLLISIONAL ENERGY LOSS

The energy loss rate can be computed as the flux of the Poynting vector out of a cylinder of

radius a coaxial with the particle path. For a particle moving with velocity v along the z-axis the

total loss per unit length reads

�d"

dz
= 2⇡a

Z 1

�1
(E�Bz � EzB�)dt = 2aRe

Z 1

0
(E�!B

⇤
z! � Ez!B

⇤
�!

)d! . (10)

To calculate the integral over ! we first isolate the contribution of the pole in 1/✏ at ! = !p using

the rule

1

✏
=

!2

!2 � !2
p + i0

= �i⇡!2
p�(!

2 � !2
p) + P !2

!2 � !2
p

, (11)

where it is assumed that � ⌧ !p. Substituting the field components from (6) into (10) and

replacing 1/✏ by its imaginary part one derives

�d"pole

dz
=

q2!2
p

4⇡v2
K0 (a!p/v) Re

n
a
q
!2
p/v

2 � �2
�K1

⇣
a
q
!2
p/v

2 � �2
�

⌘o
. (12)

Away from the pole, the permittivity is real. In this case the contribution to the integral over !

comes from those domains of ! where at least one of k⌫ ’s is imaginary. There are two such domains

(A) and (B). Domain (A) k21 < k22 < 0. Inspection of (7) reveals that k22 < 0 if either !2 > !2
+ or

!2 < !2
� where

!2
± =

�2(1/v2 � 1)!2
p + �2

�/v
2 ±

q
[2(1/v2 � 1)!2

p � �2
�/v

2]2 � 4(1/v2 � 1)2!4
p

2(1/v2 � 1)2
. (13)

Additionally, if !p < ��/
p
2 the inequality

0 < ! <

s
�2
�/2� !2

p

1/v2 � 1
(14)

The energy loss rate = flux of the Poynting vector out of cylinder of radius a 
coaxial with the particle path:

The field components are known, e.g.: 
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A. Ultrarelativistic limit

In the limit ak⌫ ⌧ 1, the contribution of the pole (12) is proportional to large logarithm ln a,

the term (18) is independent of a, whereas the remaining terms are suppressed by the positive

powers of ak⌫ . The corresponding energy loss reads
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The integration domain (B) simplifies in the ultrarelativistic limit v ! 1: !2
p/�� < ! < �2��,

where � = (1� v2)�1/2. Expanding the integrand at large frequencies, assuming ! � ��, yields
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where the precise value of the lower limit is irrelevant as long as � � 1. Integrating one obtains
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We observe that the energy loss due to the anomaly, represented by the second term in (21),

dominates at high energies. Inclusion of quantum e↵ects produces the logarithmic dependence of

the first term on � but this does not change our conclusion.

B. Non-chiral medium

In the limit �� ! 0 the contributions of (15),(16) and (18) vanish. The finite limit emerges

from (17) which along with (12) yields
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The second term vanishes in plasma since ✏ < 1 implies that s2 is always positive, see (8) and (9).

However, if medium contains bound states, then the second term contributes when the velocity

of the particle is larger than the phase velocity of light in the medium. A single bound state of

frequency !0 contributes to the permittivity as
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In this case (22) is generalized as
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Fermi’s model:

Setting <latexit sha1_base64="v/ibaCZPZP+SdMTZw6N0OjtW9Rg="></latexit>

�� = 0 get the original Fermi’s result at
<latexit sha1_base64="XzHDpTv9Uoe/6kGo9CRxjMlP2Fw="></latexit>

a ! 0

(small) Cherenkov radiation contribution emerges at <latexit sha1_base64="6L+AyA7OY1UqkUDDmFwiuiFi1z8="></latexit>
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Neglecting �, the integration region s2 < 0 is equivalent to (1 � ✏(0)v2)/(1 � v2) < !2/!2
0 < 1 if

v < 1/
p

✏(0) and to ! < !0 if v > 1/
p

✏(0). Integration over ! in the second term yields the

well-known Fermi’s result [9].

C. Cherenkov radiation

Some of the collisional energy loss emerges in the form of the Cherenkov radiation. In the non-

chiral medium it is included in the second term in (22) (provided that ✏(0) is finite, as explained

in the previous subsection) and is small compared to the large first term that describes excitation

of the longitudinal oscillations in the medium (medium polarization).

In the chiral medium the Cherenkov radiation emerges even when ✏ = 1, which is known as

the chiral (or, in a di↵erent context, vacuum) Cherenkov radiation [14–17].† It is generated by the

anomalous electromagnetic current in the presence of the moving charged particle. The Cherenkov

radiation is that part of the total energy flux moving radially away from the particle which is finite

at a ! 1. It can be computed by replacing the Bessel functions appearing in (15)–(18) with their

asymptotic expressions. In particular, the rate of the chiral Cherenkov radiation emitted in a unit

interval of frequencies by an ultrarelativistic particle in empty space (✏ = 1) is given by
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which comes about from (18). Expansion in powers of ��/! is justified for the ultrarelativistic

particle. Eq. (25) is derived neglecting the fermion recoil which proportional to ~!. It is a good

approximation as long as !+ = ���2 ⌧ ", in other words when � ⌧ m/��, where m is the particle

mass. The total radiated power P is obtained by integrating (25) over !d!. It is dominated by

the upper limit so that only the first two terms contribute at large � with the result:

P =
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We observe that the spectrum (25) is exactly the same as (20) which indicates that all energy lost

by the ultrarelativistic particle due to the anomalous current is radiated as the chiral Cherenkov

radiation.

The spectrum of the chiral Cherenkov radiation was previously computed by one of the authors

in the leading order of QED with the result [16]
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† It was proposed to be a test of the Lorentz symmetry violation in [13–15, 18–24].
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Summations over � are performed using the polarization sums given in Appendix of [8]. The space-

time dependence of the electromagnetic field given by the integrals (2a),(2b) was approximately

evaluated in [8, 11, 12] assuming the low frequency limit of a conductor ✏ = 1 + i�/! and used to

compute the e↵ect of the chiral anomaly on the magnetic field produced in relativistic heavy-ion

collisions.

To compute the energy loss we need only the frequency components of the fields, see (10). These

can be computed exactly. For illustration, consider
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where k? · b = k?b cos ✓. Integration over ✓ and then over k? yields (6a) below. Other field
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B�!(r) =
q

2⇡

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k⌫(k
2
⌫ � s2)K1(bk⌫) , (6a)

Bb!(r) =��
q

2⇡

i!

v

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫k⌫K1(bk⌫) , (6b)

Bz!(r) =��
q

2⇡

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k2⌫K0(bk⌫) , (6c)

Ez!(r) =
q

2⇡

i!

v2✏

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1
⇥
(v2✏� 1)(k2⌫ � s2)� �2

�

⇤
K0(bk⌫) , (6d)

Eb!(r) =
q

2⇡

1

v✏

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k⌫
�
k2⌫ � s2 � �2

�

�
K1(bk⌫) , (6e)

E�!(r) =vBb!(r) , (6f)

where

k2⌫ = s2 �
�2
�

2
+ (�1)⌫��

s

!2✏+
�2
�

4
(7)

with ⌫ = 1, 2 and

s2 = !2

✓
1

v2
� ✏(!)

◆
. (8)

3

Summations over � are performed using the polarization sums given in Appendix of [8]. The space-

time dependence of the electromagnetic field given by the integrals (2a),(2b) was approximately

evaluated in [8, 11, 12] assuming the low frequency limit of a conductor ✏ = 1 + i�/! and used to

compute the e↵ect of the chiral anomaly on the magnetic field produced in relativistic heavy-ion

collisions.

To compute the energy loss we need only the frequency components of the fields, see (10). These

can be computed exactly. For illustration, consider
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Summations over � are performed using the polarization sums given in Appendix of [8]. The space-

time dependence of the electromagnetic field given by the integrals (2a),(2b) was approximately

evaluated in [8, 11, 12] assuming the low frequency limit of a conductor ✏ = 1 + i�/! and used to

compute the e↵ect of the chiral anomaly on the magnetic field produced in relativistic heavy-ion

collisions.

To compute the energy loss we need only the frequency components of the fields, see (10). These

can be computed exactly. For illustration, consider
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where k? · b = k?b cos ✓. Integration over ✓ and then over k? yields (6a) below. Other field

components an be obtained in a similar way with the following result:
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Summations over � are performed using the polarization sums given in Appendix of [8]. The space-

time dependence of the electromagnetic field given by the integrals (2a),(2b) was approximately

evaluated in [8, 11, 12] assuming the low frequency limit of a conductor ✏ = 1 + i�/! and used to

compute the e↵ect of the chiral anomaly on the magnetic field produced in relativistic heavy-ion

collisions.

To compute the energy loss we need only the frequency components of the fields, see (10). These

can be computed exactly. For illustration, consider
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Hansen, KT (2021)
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“CLASSICAL” CHIRAL CHERENKOV RADIATION

For simplicity consider
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A. Ultrarelativistic limit

In the limit ak⌫ ⌧ 1, the contribution of the pole (12) is proportional to large logarithm ln a,

the term (18) is independent of a, whereas the remaining terms are suppressed by the positive

powers of ak⌫ . The corresponding energy loss reads
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The integration domain (B) simplifies in the ultrarelativistic limit v ! 1: !2
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where the precise value of the lower limit is irrelevant as long as � � 1. Integrating one obtains
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We observe that the energy loss due to the anomaly, represented by the second term in (21),

dominates at high energies. Inclusion of quantum e↵ects produces the logarithmic dependence of

the first term on � but this does not change our conclusion.

B. Non-chiral medium

In the limit �� ! 0 the contributions of (15),(16) and (18) vanish. The finite limit emerges

from (17) which along with (12) yields
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The second term vanishes in plasma since ✏ < 1 implies that s2 is always positive, see (8) and (9).

However, if medium contains bound states, then the second term contributes when the velocity

of the particle is larger than the phase velocity of light in the medium. A single bound state of

frequency !0 contributes to the permittivity as
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In this case (22) is generalized as
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at a→0 gives energy loss

Chiral Cherenkov radiation emerges at a→∞ even if
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Neglecting �, the integration region s2 < 0 is equivalent to (1 � ✏(0)v2)/(1 � v2) < !2/!2
0 < 1 if

v < 1/
p

✏(0) and to ! < !0 if v > 1/
p

✏(0). Integration over ! in the second term yields the

well-known Fermi’s result [9].

C. Cherenkov radiation

Some of the collisional energy loss emerges in the form of the Cherenkov radiation. In the non-

chiral medium it is included in the second term in (22) (provided that ✏(0) is finite, as explained

in the previous subsection) and is small compared to the large first term that describes excitation

of the longitudinal oscillations in the medium (medium polarization).

In the chiral medium the Cherenkov radiation emerges even when ✏ = 1, which is known as

the chiral (or, in a di↵erent context, vacuum) Cherenkov radiation [14–17].† It is generated by the

anomalous electromagnetic current in the presence of the moving charged particle. The Cherenkov

radiation is that part of the total energy flux moving radially away from the particle which is finite

at a ! 1. It can be computed by replacing the Bessel functions appearing in (15)–(18) with their

asymptotic expressions. In particular, the rate of the chiral Cherenkov radiation emitted in a unit

interval of frequencies by an ultrarelativistic particle in empty space (✏ = 1) is given by
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which comes about from (18). Expansion in powers of ��/! is justified for the ultrarelativistic

particle. Eq. (25) is derived neglecting the fermion recoil which proportional to ~!. It is a good

approximation as long as !+ = ���2 ⌧ ", in other words when � ⌧ m/��, where m is the particle

mass. The total radiated power P is obtained by integrating (25) over !d!. It is dominated by

the upper limit so that only the first two terms contribute at large � with the result:
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We observe that the spectrum (25) is exactly the same as (20) which indicates that all energy lost

by the ultrarelativistic particle due to the anomalous current is radiated as the chiral Cherenkov

radiation.

The spectrum of the chiral Cherenkov radiation was previously computed by one of the authors

in the leading order of QED with the result [16]
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† It was proposed to be a test of the Lorentz symmetry violation in [13–15, 18–24].

This classical formula coincides with the quantum calculation
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✏(0). Integration over ! in the second term yields the

well-known Fermi’s result [9].

C. Cherenkov radiation

Some of the collisional energy loss emerges in the form of the Cherenkov radiation. In the non-

chiral medium it is included in the second term in (22) (provided that ✏(0) is finite, as explained

in the previous subsection) and is small compared to the large first term that describes excitation

of the longitudinal oscillations in the medium (medium polarization).

In the chiral medium the Cherenkov radiation emerges even when ✏ = 1, which is known as

the chiral (or, in a di↵erent context, vacuum) Cherenkov radiation [14–17].† It is generated by the

anomalous electromagnetic current in the presence of the moving charged particle. The Cherenkov

radiation is that part of the total energy flux moving radially away from the particle which is finite

at a ! 1. It can be computed by replacing the Bessel functions appearing in (15)–(18) with their

asymptotic expressions. In particular, the rate of the chiral Cherenkov radiation emitted in a unit
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which comes about from (18). Expansion in powers of ��/! is justified for the ultrarelativistic

particle. Eq. (25) is derived neglecting the fermion recoil which proportional to ~!. It is a good
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mass. The total radiated power P is obtained by integrating (25) over !d!. It is dominated by

the upper limit so that only the first two terms contribute at large � with the result:
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We observe that the spectrum (25) is exactly the same as (20) which indicates that all energy lost

by the ultrarelativistic particle due to the anomalous current is radiated as the chiral Cherenkov

radiation.

The spectrum of the chiral Cherenkov radiation was previously computed by one of the authors

in the leading order of QED with the result [16]

dW quant

d!
=

q2

(4⇡)2!

⇢
��

✓
x2

2
� x+ 1

◆
� m2

"
x

�
, ! < !M , (27)

† It was proposed to be a test of the Lorentz symmetry violation in [13–15, 18–24].

when recoil is neglected
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approximation as long as !+ = ���2 ⌧ ", in other words when � ⌧ m/��, where m is the particle

mass. The total radiated power P is obtained by integrating (25) over !d!. It is dominated by

the upper limit so that only the first two terms contribute at large � with the result:
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We observe that the spectrum (25) is exactly the same as (20) which indicates that all energy lost

by the ultrarelativistic particle due to the anomalous current is radiated as the chiral Cherenkov

radiation.

The spectrum of the chiral Cherenkov radiation was previously computed by one of the authors

in the leading order of QED with the result [16]
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† It was proposed to be a test of the Lorentz symmetry violation in [13–15, 18–24].

at high energy power of chiral cherenkov radiation = energy loss.

Hansen, KT (2021)

(recoil reduces 
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FIG. 1. Electromagnetic part of the collisional energy loss spectrum of a d-quark with � = 20 in Quark-Gluon

Plasma. Plasma parameters: !p = 0.16T , � = 1.11T [36], m = T = 250 MeV. Solid line: �� = 10 MeV,

dashed line: �� = 7 MeV, dotted line: �� = 0. !± are defined in (13).

e↵ect. The chiral Cherenkov radiation emerges as a bump between !� and !+. The relevant

parameters are inferred from the lattice calculations [36] or by the way of educated guess in the

case of the chiral conductivity. The quantum corrections due to the recoil would shift the UV

endpoint of the anomalous contribution to the left since !M < !+ = ���2. However, the overall

e↵ect of the recoil is not that significant since !M = 0.44" is not too close to unity. The rate of

energy loss due to the anomaly is about 10�4 of particle energy per unit fm regardless of particle

energy as indicated by (26). This is of course much smaller than the QCD energy loss mechanisms

[37] at not too high energies; however the QCD fraction decreases as 1/
p
".

In anisotropic chiral medium such as Weyl semimetals there is an additional anomalous current

jAH = b ⇥ E that generates the anomalous Hall e↵ect [18, 38, 39]. Parameter b is the distance

between the Weyl nodes in the momentum space (not to be confused with the impact parameter

used in Sec. II). The spectrum of the corresponding chiral Cherenkov radiation was computed in

[40]. In the ultra-relativistic limit, the energy loss equals the total radiated power and is given

by (29) with �� replaced by b (assuming that electron’s velocity is parallel to b). To estimate the

energy loss in a semimetal reported in [42, 43] we use b = (↵/⇡)80 eV. According to (30) at room

temperatures most of energy is lost due to chiral Cherenkov radiation. The energy loss spectrum

for a typical semimetal computed using the results of Sec. III is displayed in Fig. 2. The recoil

e↵ect is negligible since !M . ���2 ⌧ ". One observes significant enhancement of the ultraviolet

and X-ray regions of the photon spectrum which presents an exciting opportunity for experimental

study of the chiral anomaly e↵ects.

The same qualitative picture in QCD (after e→g, including color factors etc.)

QCD/QED:
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FIG. 2. Collisional energy loss spectrum of electron with � = 100 in a semimetal with parameters !p =

0.5 eV, � = 0.025 eV (so that its conductivity is 10 eV at room tempearture) [41] and m = 0.5 MeV. Solid

line: �� = 0.19 eV [42, 43], dashed line: �� = 0. !± are defined in (13). The seeming discontinuity at

! = !+ is a visual artifact.
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Plasma. Plasma parameters: !p = 0.16T , � = 1.11T [36], m = T = 250 MeV. Solid line: �� = 10 MeV,

dashed line: �� = 7 MeV, dotted line: �� = 0. !± are defined in (13).

e↵ect. The chiral Cherenkov radiation emerges as a bump between !� and !+. The relevant

parameters are inferred from the lattice calculations [36] or by the way of educated guess in the

case of the chiral conductivity. The quantum corrections due to the recoil would shift the UV

endpoint of the anomalous contribution to the left since !M < !+ = ���2. However, the overall

e↵ect of the recoil is not that significant since !M = 0.44" is not too close to unity. The rate of

energy loss due to the anomaly is about 10�4 of particle energy per unit fm regardless of particle

energy as indicated by (26). This is of course much smaller than the QCD energy loss mechanisms

[37] at not too high energies; however the QCD fraction decreases as 1/
p
".

In anisotropic chiral medium such as Weyl semimetals there is an additional anomalous current

jAH = b ⇥ E that generates the anomalous Hall e↵ect [18, 38, 39]. Parameter b is the distance

between the Weyl nodes in the momentum space (not to be confused with the impact parameter

used in Sec. II). The spectrum of the corresponding chiral Cherenkov radiation was computed in

[40]. In the ultra-relativistic limit, the energy loss equals the total radiated power and is given

by (29) with �� replaced by b (assuming that electron’s velocity is parallel to b). To estimate the

energy loss in a semimetal reported in [42, 43] we use b = (↵/⇡)80 eV. According to (30) at room

temperatures most of energy is lost due to chiral Cherenkov radiation. The energy loss spectrum

for a typical semimetal computed using the results of Sec. III is displayed in Fig. 2. The recoil

e↵ect is negligible since !M . ���2 ⌧ ". One observes significant enhancement of the ultraviolet

and X-ray regions of the photon spectrum which presents an exciting opportunity for experimental

study of the chiral anomaly e↵ects.
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8

where x = !/" is the fraction of the fermion energy carried away by the radiated photon and

!M =
"

1 +m2/(��")
. (28)

Photon spectrum always extends all the way to !M since !M < ���2. Moreover, since !M < "

and hence x < 1, (27) is valid even at � � m/��, in contrast to the classical formula (25). The

classical limit of (27) is recovered in the limit x ⌧ 1: the term in (27) proportional to �� reduces

to the second term in (25), while the second term in (27) reduces to the first term in (25). The

total radiation power is

P quant =
q2

4⇡

��"

3
, (29)

where the terms of order m/" = 1/� were neglected. Evidently, the e↵ect of the recoil on the

energy loss is to reduce the energy dependence from "2 to ".

IV. DISCUSSION

The classical calculation performed in this paper captures the main feature of the energy loss

in chiral medium, namely, its much faster increase with the particle energy that in a non-chiral

medium. Taking the recoil e↵ects into account, the energy loss is proportional to energy ". In

contrast, energy dependence of the collisional energy loss in non-chiral medium is at most logarith-

mic. The conventional radiative energy loss is likewise proportional to energy in the non-coherent

Bethe-Heitler (BH) regime. The ratio of the energy loss due to the chiral Cherenkov (�C) e↵ect

to the conventional radiative loss is

�"�C

�"BH
⇠ ��

e2T
⇠ µ5

T
, (30)

where T is the plasma temperature and µ5 is the axial chemical potential. The coherence e↵ects

reduce the energy dependence of the radiative energy loss to
p
" (see review [25]). This significantly

increases the ratio (30). In this paper we assumed that distribution of the topological charge density

is homogenous and therefore there are no coherence e↵ects on the chiral Cherenkov radiation. This

is a good approximation as long as the coherence length associated with photon radiation is smaller

than the distance over which the topological charge density significantly varies. This maybe the case

in the nuclear matter where there is evidence—supported by the theoretical arguments [26, 27]—of

the topological domains of nearly constant density in wide range of temperatures [28–35].

Fig. 1 displays the spectrum of the collisional energy loss by a fast particle in Quark-Gluon

Plasma computed using the results of Sec. III. We emphasize that this is a purely electromagnetic

Neglecting coherence effects: 

Coherence effects reduce energy dependence of BH (LPM effect) 
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Coherence effects in Cherenkov radiation: unknown, depends on spatial distribution 
of topological charge density.

>>1 in a TaAs at room temp.

Contribution of the Chiral Cherenkov rapidly increases with E.
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PHOTON PRODUCTION BY QGP VIA THE CHIRAL 
ANOMALY (W/O EXTERNAL MAGNETIC FIELD)

The photon energy produced by thermal quarks is controlled by the plasma temperature 
→ must take into account the plasma frequency

4

In a slowly varying field ✓, its first derivatives @µ✓ can be replaced by their constant domain–average

values denoted by �� = cA✓̇[35, 36, 43], referred to as the chiral conductivity, and b = cAr✓. In this

approximation the photon and the ✓-field dynamics decouple and one can consider electrodynamics

in the topologically non-trivial background [44].

The average of the ✓-field over an ensemble of CP -odd domains vanishes. However, its value in

a single domain can be finite due to the fluctuations of the topological number NCS . In the context

of this work we need to know the temperature dependence of the ✓-field in a domain because it

determines the temperature dependence of the e↵ective photon mass mA. In particular, if its T -

dependence is steeper than linear, then one expects that there is a range of temperatures where the

plasma becomes radioactive as explained at the end of Sec. I. The topological number density can

be estimated as q ⇠ NCS/Vdom, where Vdom ⇠ 1/m4
ax is the domain 4-volume. Since the sphaleron

size is inversely proportional to T , the domain volume decreases as Vdom ⇠ 1/T 4. Fluctuations

of NCS are related to the sphaleron transition rate � as
⌦
N2

CS

↵
= 2�Vpl [45] for large enough 4-

volume Vpl of plasma. Therefore, the variance of the topological number density is
⌦
q2
↵
⇠ m8

ax�Vpl.

Employing (5) it is seen that the typical variance of the ✓-field strength is
⌦
✓2
↵
⇠ m4

ax�Vpl/f4. �

is exponentially suppressed at low temperatures, but increases as T 4 at high temperatures [46–49].

It follows, using (10) of the next section, that mA ⇠ h✓i1/2 ⇠ T 4. Thus, |mA| exceeds !pl at high

T making the chiral Cherenkov radiation possible.

III. PHOTON DISPERSION RELATION

Now that the model parameters have been outlined, it is instructive to review the photon

dispersion relation. In the case ✓ = 0 the photon dispersion relation at finite temperature T and

finite chemical potentials of the right and left-handed fermions µR,L was computed in [50]. In the

high-energy limit, when the photon is near the mass-shell and transversely polarized, its dispersion

relation is !2
� k2 = !2

pl, where

!2
pl =

m2
D

2
=

e2

2

✓
T 2

6
+

µ2

2⇡2

◆
, (8)

and µ2 = µ2
R + µ2

L.

At finite ✓ the photon dispersion relation acquires an extra term due its interaction with the

CP -odd domains

!2
� k2 = !2

pl +m2
A +O(! � k) , (9)
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At finite ✓ the photon dispersion relation acquires an extra term due its interaction with the

CP -odd domains

!2
� k2 = !2

pl +m2
A +O(! � k) , (9)Photon mass gets two contributions:

5

where m2
A is given by

m2
A = ����! , or m2

A = ��k · b , (10)

depending on which of the parameters �� or b is largest [32]⇤ and � = ±1 is the right and left-

handed photon polarization. Note that mA can be real or imaginary. As explained in the previous

two sections, at high enough photon energies and plasma temperatures !pl is but a small correction

compared to mA and will be neglected in the following sections.

IV. PHOTON RADIATION RATE

Photon emission by means of the chiral Cherenkov radiation mechanism can proceed via two

channels: (i) the decay channel q ! q� and (ii) the annihilation channel qq̄ ! �.† The total photon

radiation rate is the sum of rates of these two processes.

A. Decay channel

The scattering matrix element for photon radiation in the decay channel q(p) ! q(p0) + �(k) is

given by SD = (2⇡)4�(4)(p0 + k � p)iMD where

iMD = �ieQ
ūp0s0/✏

⇤
k�ups

p

8""0!V 3
. (11)

The components of the 4-vectors are p = (",p), p0 = ("0,p0) and k = (!,k), Q is quark charge and

m = gT/
p
3 its thermal mass [11]. We retained the relativistic normalization factors (2p0V )�1/2

for each of the three fields, where V is the normalization volume. The radiation probability can

be computed as

dwD = 2Nc
1

2

X

�ss0

|SD|
2f(")[1� f("0)]

V d3p0

(2⇡)3
V d3k

(2⇡)3
V d3p

(2⇡)3
, (12)

where 2Nc accounts for the number quarks and antiquarks of di↵erent color, 1/2 comes from the

incident quark spin average and f(") is the quark equilibrium distribution function, which reads

f(") =
1

e"/T + 1
. (13)

⇤ In [32] mA was denoted as µ. The dispersion relations for arbitrary �� and b can be found in [28].
† I am using the term ‘the chiral Cherenkov radiation’ with respect to both channels.

mA ⇠
p

h✓2i ⇠ �sp ⇠ T 4
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Due to the topological number fluctuations

Thus, at high enough T mA � !pl
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→ Cherenkov radiation is possible
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FIG. 3. Ideal QGP and hadronic photon rate near the cross-
over region.

validity of perturbative QCD calculation of prompt pho-
tons, additional measurements will also help constrain
uncertainties due to the photon fragmentation function,
which are significant in the soft domains of perturbative
QCD calculation of prompt photons [50]. Without direct
measurements, those uncertainties will likely persist.

B. Thermal photons

The “thermal photons” are those photons result-
ing from the interaction of thermalized medium con-
stituents1. The computation of photon production rates
may be done using thermal field theory techniques, or
using relativistic kinetic theory [51]. Both approaches
have contributed to the compendium of rates used in this
work.

In the partonic sector, photon-production processes
calculated at leading order in the strong coupling con-
stant, gs, have been available for almost 15 years [52].
Those are used here2. At high energies, the charged
particle multiplicity is dominated by mesons. In the
hadronic sector at temperatures comparable to, and
lower than, the crossover temperature, photons originat-
ing from thermal reactions of mesonic origins were calcu-
lated in Ref. [26]. That same work also includes the pho-
tons obtained from taking the ⇢-meson self-energy to zero
invariant mass. This procedure accounts for the baryonic
contributions, be it radiative decays or reactions of the
type ⇡N ! ⇡N�, and NN ! NN�, where N represents
a nucleon. The net rate parametrized in Ref. [26] also

1
The thermalization approximation will be relaxed later.

2
Some recent work has extended this seminal result by going up

next-to-leading order [53]. For values of the strong coupling rel-

evant to the phenomenology considered in the current work, the

net photon rate at NLO is a modest 20% larger than that at LO.

avoids possible double-counting issues between mesonic
and baryonic contributions. Finally, this work includes
also recent estimates of ⇡⇡ bremsstrahlung contributions
[27], and of the reactions ⇡⇢ ! !�, ⇡! ! ⇢�, and
⇡! ! ⇢⇡ [28], absent from Ref. [26]. It is instructive
to compare rates, prior to integrating them with a dy-
namical four-volume evolution. This is done in Fig. 3.
The figure shows the LO partonic rates of Ref. [52] (solid
lines) compared with the hadronic rates of Refs. [26–28]
(dashed lines) for a range of temperatures in the cross-
over region.

C. Non-cocktail hadronic decay photons

As the strongly-interacting fluid hadronizes, it trans-
forms into hadrons which will interact. When those in-
teractions cease, the momentum distributions are frozen
and the particles free-stream out to the experimental de-
tectors. The longer-lived hadrons will contribute signif-
icantly to the photon signal and therefore have to be
included. Collectively, they are dubbed “the cocktail”
and are (for ALICE) ⇡0, ⌘, ⇢,!, ⌘0,�; the relevant photon-
producing decays are subtracted from the measured in-
clusive signal [54], to expose a combination of thermal
photons and prompt photons. There are however other,
shorter-lived, states which decay with a photonic com-
ponent in the final states [55]. This work includes all
of the ones with a mass M < 1.7 GeV. The di↵erential
cross section of the decay photons can then be calculated,
knowing the relevant branching ratio. After including all
of these, together with the decays considered in Ref. [56],
the most important channels were found to be ⌃ ! ⇤�,
f1(1285) ! ⇢0�, and K⇤(982) ! K�. All contributions
are however included, for completeness.

IV. CORRECTING THE PHOTON EMISSION
RATES FOR VISCOSITY

As mentioned earlier, it is an established fact that the
bulk dynamics of strongly interacting matter is sensitive
to the value of shear and bulk viscosities, two of the trans-
port coe�cients of QCD. Switching to a corpuscular de-
scription, and considering separately the reactions that,
together, define the fluid enables a channel-by-channel
viscous correction of the photon emission rates. The pho-
ton production rate, R� , admits a kinetic theory formu-
lation. For 2 ! 2 scattering (1 + 2 ! 3 + �) it is [51]

!
d3R�

d3k
=

1

2(2⇡)3

Z
d3p1

2P 0
1 (2⇡)

3

d3p2
2P 0

2 (2⇡)
3

d3p3
2P 0

3 (2⇡)
3

⇥(2⇡)4�4(P1 + P2 � P3 �K)|M|2fB/F (P1)fB/F (P2)

⇥
�
1 + �B/F fB/F (P3)

�
, (9)

where |M|2 is the squared matrix element corresponding
to the 2 ! 2 scattering, fB/F is the particle momentum
distribution for bosons (�B = 1) or fermions (�F = �1),
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CONTRIBUTION OF ANOMALY TO TRANSPORT

Photon propagator in MCS:

2

the momentum space. The latter is encoded in the photon propagator which can be derived using

the Maxwell-Chern-Simons theory [9, 10] that couples electrodynamics to the topological charge

induced by external sources. The corresponding term in the Lagrangian is [8–10]

LA = �cA
4
✓Fµ⌫F̃

µ⌫ , (1)

where cA is the chiral anomaly coe�cient of QED [11, 12] and the dimensionless pseudoscalar field

✓ describes the topological charge. In many systems ✓ is believed to be a slowly varying function

of coordinates and time [4]. This is the approximation also assumed in this work. In particular, we

treat the first derivative @✓ as constant and adopt a fairly standard notation of the constant vector

bµ = (b0,�b) = cA@µ✓ = cA(✓̇,�r✓); b0 is also known as the chiral conductivity �� [13, 14]. The

photon propagator in chiral matter reads [8, 15]

Dµ⌫(q) = �i
q2gµ⌫ + i✏µ⌫⇢�b⇢q� + bµb⌫

q4 + b2q2 � (b · q)2 . (2)

Since we are interested in the static limit, it is convenient to introduce a notation Dµ⌫(q) =

limq0!0Dµ⌫(q) and the corresponding expression in the configuration space Dµ⌫(x). Throughout

the paper the bold face font distinguishes the three-dimensional vectors. The potential induced by

a stationary current J⌫(x) can be computed as

Aµ(x) = �i

Z
d3x0Dµ⌫(x� x0)J⌫(x

0) = �i

Z
d3q

(2⇡)3
eiq·xDµ⌫(q)J⌫(q) . (3)

In the forthcoming sections we consider electron scattering o↵ potential Aµ at the leading order

of the perturbation theory. Following [16] it is instructive to consider two di↵erent types of chiral

matter: (i) homogenous matter with b0 6= 0, b = 0 and (ii) stationary matter with b0 = 0, b 6= 0.

The paper is organized accordingly: Sec. II deals with the homogeneous chiral matter in which

case the scattering cross section (14) is found to have a resonance at momentum transfer q2 = �b20.

It appears due to the periodic variation of the vector potential with the wavenumber b0[16, 17] and

is intimately related to the chiral instability of the electromagnetic field [8]. Therefore, at T � b0

the transport cross section �T is enhanced as can be seen in (17). As a consequence, the mean free

path, which in a dilute gas of density n can be estimated as ` ⇠ 1/n�T , is shorter than at b0 = 0

by a factor of ⇠ M2/T 2. This implies suppression of transport coe�cients at high temperatures

and, in particular, of the ratio of the shear viscosity to the entropy density is ⌘/s ⇠ T ` hvi, which

may be a reason for the smallness of this ratio in Quark Gluon Plasma [18]. Indeed, the gluon

propagator has exactly same form as (2) apart from the color factor.

The stationary chiral matter is discussed in Sec. III and the corresponding scattering and

transport cross sections given by (23) and (25b) reflect the axial symmetry with respect of the

Lenhert, Potting
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Static limit q0=0

3

vector b. In Sec. IV the e↵ect of the new terms in the transport cross section is illustrated by

computing the electrical conductivity using the classical transport theory. In homogeneous matter

the result is displayed in Fig. 3 which shows suppression of the conductivity at T � b0. In

stationary matter the applied external electric field induces electric current along its direction and

in the direction of b with the corresponding conductivities � and �0. Their temperature dependence

is shown in Fig. 4. The discussion and conclusions are presented in Sec. V.

II. HOMOGENOUS MATTER

A. Potential

In homogeneous chiral matter with b = 0, b0 6= 0, the components of the propagator (2) read

in the static limit [16]

D00(q) =
i

q2
, (4a)

D0i(q) = D0i(q) = 0 , (4b)

Dij(q) = � i�ij
q2 � b20

�
✏ijkqk

b0(q2 � b20)
+
✏ijkqk

b0q2
. (4c)

The current density of the static point source (the “ion”) of charge e0 is J⌫(x) = e0�⌫0�(x). It

induces the Coulomb potential

A0(q) = e0/q2 , A(q) = 0 (5)

implying that the scattering cross section o↵ the point charge is given by the Rutherford formula

and is not a↵ected by the anomaly (in the static limit).

A non-trivial contribution comes about if the “ion” is in a state  with a finite expectation value

of the magnetic moment µ. Indeed, the spin current associated with such a state is r⇥ ⇤µ . In

the point particle limit the spin current can be written as J(x) = r⇥ (µ�(x)). It represents the

first non-vanishing multipole moment of the vector potential. Altogether the electrical current of

ion is

J0(x) = e0�(x) , J(x) = r⇥ (µ�(x)) , (6)

which in momentum space reads

J0(q) = e0 , J(q) = iq ⇥ µ . (7)

Qiu, Cao, Huang

(a) (b)

(c) (d)

FIG. 1. The topology of Abelian magnetic flux: (a) upper left – untwisted loop; (b) upper right –

twisted magnetic flux; (c) lower left – the self-linked magnetic flux (trefoil knot shown); (d) lower

right – the self-linked Chandrasekhar-Kendall state.

minimize the total magnetic energy

EM ⌘ 1

2

Z
d3x B2 (2.6)

at a given magnetic helicity (1.1). We thus expect that the CME currents will lead to the

transition from Hopfion states to CK states at late times, once the Ohmic currents have

dissipated. We will see below that explicit computations indeed yield this result.
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|q| = 2|p| sin #
2 . To be sure, the electron wave function also gets anomalous contributions, however

those external leg contributions are irrelevant for the scattering problem.

The static limit which is used in derivation of (12) requires that the energy transfer be negligible

compared to (i) the momentum transfer, i.e. q0 ⌧ |q| and (ii) the anomaly parameter, i.e. q0 ⌧ b0

as can be seen by examining the denominator of (2). Using q0 = q2/2M the first condition implies

that |q| ⌧ M , while the second condition imposes a stronger constraint |q| ⌧
p
b0M (since

b0 ⌧ M). In the static limit the interaction time 1/q0 is much longer than the time 1/b0 it takes

the chiral instability to develop.

Substituting the vector potential from(8b) and the scalar potential from (5) into (12) yields

d�

d⌦0 =
e2

4⇡2

(
e0E

q2
+

b0(µ · q p · q � p · µq2)

(q2 � b20)q
2

�2
+

[µ · (p⇥ p0)]2

(q2 � b20)
2

� q2

4


e02

q4
� (µ⇥ q)2

(q2 � b20)
2

✓
1 +

b20
q2

◆�)
.

(13)

Since the magnetic moments are usually randomly oriented, Eq. (13) needs to be averaged over its

directions. Using hµiµji = µ2�ij/3 one finds

⌧
d�

d⌦0

�
=

e2

8⇡2

⇢
2E2e02

q4

✓
1� q2

4E2

◆
+

2µ2

3(q2 � b20)
2

✓
1 +

b20
q2

◆
(p⇥ q)2 +

q4

2

��
. (14)

The first term in (14) corresponds to scattering o↵ the Coulomb potential, while the second one

involves a contribution of the magnetic moment. It is the last contribution that is dependent on

the anomaly parameter b0. It produces the resonant behavior at momentum transfers q2 = b20.

The origin of this behavior can be seen in the coordinate space, where the vector potential (10)

oscillates with the wave number b0. As have been already noted, |q| = b0 is the runaway mode

responsible for the chiral instability.

The transport cross section is defined as

�T =

Z
(1� cos#)d� =

1

2p2

Z
q2d� . (15)

Integration on the right-hand-side runs over the directions of momentum p0. Plugging (14) into

(15) and using (p⇥ q)2 = p2q2 � q4/4 we obtain for the transport cross section

�T =
e2

16⇡p4

Z (2p)2

0

⇢
2E2e02

q2

✓
1� q2

4E2

◆
+

2µ2

3

q2

(q2 � b20)
2 + �4

✓
1 +

b20
q2

◆✓
p2q2 +

q4

4

◆�
dq2

(16)

where � is related to the photon decay rate w in the chiral medium as �2 = q0w where w ⇠ e2b0

[20]. Actually, any process that tames the chiral instability also contributes to w.
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where � is related to the photon decay rate w in the chiral medium as �2 = q0w where w ⇠ e2b0

[20]. Actually, any process that tames the chiral instability also contributes to w.
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ELECTRON-ION CROSS SECTION

Current of an ion with charge e’ and magnetic moment %:

3

vector b. In Sec. IV the e↵ect of the new terms in the transport cross section is illustrated by

computing the electrical conductivity using the classical transport theory. In homogeneous matter

the result is displayed in Fig. 3 which shows suppression of the conductivity at T � b0. In

stationary matter the applied external electric field induces electric current along its direction and

in the direction of b with the corresponding conductivities � and �0. Their temperature dependence

is shown in Fig. 4. The discussion and conclusions are presented in Sec. V.

II. HOMOGENOUS MATTER

A. Potential

In homogeneous chiral matter with b = 0, b0 6= 0, the components of the propagator (2) read

in the static limit [16]

D00(q) =
i

q2
, (4a)

D0i(q) = D0i(q) = 0 , (4b)

Dij(q) = � i�ij
q2 � b20

�
✏ijkqk

b0(q2 � b20)
+
✏ijkqk

b0q2
. (4c)

The current density of the static point source (the “ion”) of charge e0 is J⌫(x) = e0�⌫0�(x). It

induces the Coulomb potential

A0(q) = e0/q2 , A(q) = 0 (5)

implying that the scattering cross section o↵ the point charge is given by the Rutherford formula

and is not a↵ected by the anomaly (in the static limit).

A non-trivial contribution comes about if the “ion” is in a state  with a finite expectation value

of the magnetic moment µ. Indeed, the spin current associated with such a state is r⇥ ⇤µ . In

the point particle limit the spin current can be written as J(x) = r⇥ (µ�(x)). It represents the

first non-vanishing multipole moment of the vector potential. Altogether the electrical current of

ion is

J0(x) = e0�(x) , J(x) = r⇥ (µ�(x)) , (6)

which in momentum space reads

J0(q) = e0 , J(q) = iq ⇥ µ . (7)

4

According to (3) and (4) it produces the potential

A`(q) = �iD`i(q)Ji(q) = �✏ijkµ
kqj

✓
� i�`i
q2 � b20

� ✏`irqr

b0(q2 � b20)
+

✏`irqr

b0q2

◆
(8a)

= � 1

q2 � b20


i(µ⇥ q)` +

b0
q2

(µ · qq` � q2µ`)

�
, (8b)

while the time component is still given by the first equation of (5). Transformation to the config-

uration space is accomplished using the integral

Z
eiq·x

|q|2 � b20 � i0
d3q =

2⇡2

|x| e
i|x|b0 . (9)

The potential, or, more precisely, the zero-frequency component of the vector potential, in the

configuration space reads

A(x) =
µ⇥ x

4⇡|x|3 (1� ib0|x|) eib0|x| �
µ

2⇡b0|x|3
⇣
1� eib0|x| + ib0|x|eib0|x|

⌘

+
(µ⇥ x)⇥ x

4⇡b0|x|5
h
3
⇣
eib0|x| � 1

⌘
� ib0|x|(3� ib0|x|)eib0|x|

i
. (10)

In the anomaly-free limit b0 ! 0 (10) reduces to the classical result

A(x) =
1

4⇡

µ⇥ x

|x|3 =
1

4⇡

Z r0 ⇥ (µ�(x0))

|x� x0| d3x0 , bµ = 0 . (11)

Since µ ⇠ e/M , the magnetic contribution (10) is a relativistic correction to the Coulomb potential.

The oscillatory behavior of the potential (10) stems from the non-dissipative nature of the

anomalous current [19]. Its imaginary part indicates the radiative instability with respect to the

pair-production [20]. An important feature of the photon propagator in chiral matter (2) is the

emergence of the unstable modes that produce the chiral instability of the electromagnetic field.

This instability originates in the momentum interval |q| < b0 and appears as the pole in the upper-

half of the complex q0-plane [8, 17]. In the static limit q0 ! 0 there is a single mode |q| = b0 that

causes the chiral instability and it appears as the singularity in (8b).

B. Cross sections

The scattering cross section of “electron” of charge e o↵ an “ion” of charge e0 reads

d�

d⌦0 =
e2

8⇡2

⇥
p ·A⇤(q) p0 ·A(q)� p · p0|A(q)|2 + p ·A(q) p0 ·A⇤(q) +m2|A(q)|2

⇤
, (12)

where p = (E,p) and p0 = (E,p0) are particle momentum before and after scattering and q =

p0 � p is the momentum transfer. In terms of the scattering angle # the momentum transfer is
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1
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1
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Since µ ⇠ e/M , the magnetic contribution (10) is a relativistic correction to the Coulomb potential.

The oscillatory behavior of the potential (10) stems from the non-dissipative nature of the

anomalous current [19]. Its imaginary part indicates the radiative instability with respect to the

pair-production [20]. An important feature of the photon propagator in chiral matter (2) is the

emergence of the unstable modes that produce the chiral instability of the electromagnetic field.

This instability originates in the momentum interval |q| < b0 and appears as the pole in the upper-

half of the complex q0-plane [8, 17]. In the static limit q0 ! 0 there is a single mode |q| = b0 that

causes the chiral instability and it appears as the singularity in (8b).

B. Cross sections

The scattering cross section of “electron” of charge e o↵ an “ion” of charge e0 reads

d�

d⌦0 =
e2

8⇡2

⇥
p ·A⇤(q) p0 ·A(q)� p · p0|A(q)|2 + p ·A(q) p0 ·A⇤(q) +m2|A(q)|2

⇤
, (12)

where p = (E,p) and p0 = (E,p0) are particle momentum before and after scattering and q =

p0 � p is the momentum transfer. In terms of the scattering angle # the momentum transfer is

In the static limit, there is only one unstable mode

5

|q| = 2|p| sin #
2 . To be sure, the electron wave function also gets anomalous contributions, however

those external leg contributions are irrelevant for the scattering problem.

The static limit which is used in derivation of (12) requires that the energy transfer be negligible

compared to (i) the momentum transfer, i.e. q0 ⌧ |q| and (ii) the anomaly parameter, i.e. q0 ⌧ b0

as can be seen by examining the denominator of (2). Using q0 = q2/2M the first condition implies

that |q| ⌧ M , while the second condition imposes a stronger constraint |q| ⌧
p
b0M (since

b0 ⌧ M). In the static limit the interaction time 1/q0 is much longer than the time 1/b0 it takes

the chiral instability to develop.

Substituting the vector potential from(8b) and the scalar potential from (5) into (12) yields

d�

d⌦0 =
e2

4⇡2

(
e0E

q2
+

b0(µ · q p · q � p · µq2)

(q2 � b20)q
2

�2
+

[µ · (p⇥ p0)]2

(q2 � b20)
2

� q2

4


e02

q4
� (µ⇥ q)2

(q2 � b20)
2

✓
1 +

b20
q2

◆�)
.

(13)

Since the magnetic moments are usually randomly oriented, Eq. (13) needs to be averaged over its

directions. Using hµiµji = µ2�ij/3 one finds

⌧
d�

d⌦0

�
=

e2

8⇡2

⇢
2E2e02

q4

✓
1� q2

4E2

◆
+

2µ2

3(q2 � b20)
2

✓
1 +

b20
q2

◆
(p⇥ q)2 +

q4

2

��
. (14)

The first term in (14) corresponds to scattering o↵ the Coulomb potential, while the second one

involves a contribution of the magnetic moment. It is the last contribution that is dependent on

the anomaly parameter b0. It produces the resonant behavior at momentum transfers q2 = b20.

The origin of this behavior can be seen in the coordinate space, where the vector potential (10)

oscillates with the wave number b0. As have been already noted, |q| = b0 is the runaway mode

responsible for the chiral instability.

The transport cross section is defined as

�T =

Z
(1� cos#)d� =

1

2p2

Z
q2d� . (15)

Integration on the right-hand-side runs over the directions of momentum p0. Plugging (14) into

(15) and using (p⇥ q)2 = p2q2 � q4/4 we obtain for the transport cross section

�T =
e2

16⇡p4

Z (2p)2

0

⇢
2E2e02

q2

✓
1� q2

4E2

◆
+

2µ2

3

q2

(q2 � b20)
2 + �4

✓
1 +

b20
q2

◆✓
p2q2 +

q4

4

◆�
dq2

(16)

where � is related to the photon decay rate w in the chiral medium as �2 = q0w where w ⇠ e2b0

[20]. Actually, any process that tames the chiral instability also contributes to w.

Coulomb Anomaly

The corresponding potential

Cross section averaged over the magnetic moment directions:
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SPIN AVERAGE CROSS-SECTION

Transport cross section

6

Integration in (16) yields

�T =
e2

16⇡p4

✓
4E2e02L+

2µ2

3
4p4I

◆
, (17)

where L stands for the Landau logarithm (the first, Coulomb term, in (16) is computed with the

logarithmic accuracy) and we defined

I = 1 +
1

✏

⇥
2a(1 + a)� ✏2
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arctan

1� a

✏
+ arctan
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2
(1 + 3a) ln
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◆
, (18)

with

a =
b20
4p2

, ✏ =
�2

4p2
. (19)

This function is displayed in Fig. 1. At large momenta (18) can be expanded at small a while

keeping the ratio a/✏ fixed. With the logarithmic accuracy this gives I ⇡ ln a�1. If |p| � M , then

the anomalous term dominates and the transport cross section which reads⇤

�T ⇡ e2µ2

6⇡
ln

4p2

b20
, |p| � b0 ,� . (20)

In the opposite limit |p| ⌧ b0,�, I ⇡ 6p2b20/(b
4
0 + �4) so that the Coulomb term dominates the

transport cross section. It is noteworthy that the transport cross section is only logarithmically

sensitive to the chiral conductivity b0 and does not depend on the external parameter � in two

asymptotic regimes. The transition between these regimes at moderate momenta is the most

sensitive to their values.

FIG. 1. Function I(a) at ✏ = 0.03.

⇤ A more precise expression is obtained by keeping sub-logarithmic corrections in (18) which is accounted for by

replacing in (20) ln(4p2/b20) ! ln(4p2/b20) + 1 + ⇡y + 2y arctan y � (1/2) ln(1 + 1/y2) with y = b20/�
2.
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At large momenta

Γ is width
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|q| = 2|p| sin #
2 . To be sure, the electron wave function also gets anomalous contributions, however

those external leg contributions are irrelevant for the scattering problem.

The static limit which is used in derivation of (12) requires that the energy transfer be negligible
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p
b0M (since

b0 ⌧ M). In the static limit the interaction time 1/q0 is much longer than the time 1/b0 it takes

the chiral instability to develop.

Substituting the vector potential from(8b) and the scalar potential from (5) into (12) yields

d�

d⌦0 =
e2

4⇡2

(
e0E

q2
+

b0(µ · q p · q � p · µq2)

(q2 � b20)q
2

�2
+

[µ · (p⇥ p0)]2

(q2 � b20)
2

� q2

4


e02

q4
� (µ⇥ q)2

(q2 � b20)
2

✓
1 +

b20
q2

◆�)
.

(13)

Since the magnetic moments are usually randomly oriented, Eq. (13) needs to be averaged over its

directions. Using hµiµji = µ2�ij/3 one finds

⌧
d�

d⌦0

�
=

e2

8⇡2

⇢
2E2e02

q4

✓
1� q2

4E2

◆
+

2µ2

3(q2 � b20)
2

✓
1 +

b20
q2

◆
(p⇥ q)2 +

q4

2

��
. (14)

The first term in (14) corresponds to scattering o↵ the Coulomb potential, while the second one

involves a contribution of the magnetic moment. It is the last contribution that is dependent on

the anomaly parameter b0. It produces the resonant behavior at momentum transfers q2 = b20.

The origin of this behavior can be seen in the coordinate space, where the vector potential (10)

oscillates with the wave number b0. As have been already noted, |q| = b0 is the runaway mode

responsible for the chiral instability.

The transport cross section is defined as

�T =

Z
(1� cos#)d� =

1

2p2

Z
q2d� . (15)

Integration on the right-hand-side runs over the directions of momentum p0. Plugging (14) into

(15) and using (p⇥ q)2 = p2q2 � q4/4 we obtain for the transport cross section

�T =
e2

16⇡p4

Z (2p)2

0

⇢
2E2e02

q2

✓
1� q2

4E2

◆
+

2µ2

3

q2

(q2 � b20)
2 + �4

✓
1 +

b20
q2

◆✓
p2q2 +

q4

4

◆�
dq2

(16)

where � is related to the photon decay rate w in the chiral medium as �2 = q0w where w ⇠ e2b0

[20]. Actually, any process that tames the chiral instability also contributes to w.

due to processes that 
tame the instability

6

Integration in (16) yields

�T =
e2

16⇡p4

✓
4E2e02L+

2µ2

3
4p4I

◆
, (17)

where L stands for the Landau logarithm (the first, Coulomb term, in (16) is computed with the

logarithmic accuracy) and we defined

I = 1 +
1

✏

⇥
2a(1 + a)� ✏2

⇤✓
arctan

1� a

✏
+ arctan

a

✏

◆
+

1

2
(1 + 3a) ln

✓
1 +

1� 2a

a2 + ✏2

◆
, (18)

with

a =
b20
4p2

, ✏ =
�2

4p2
. (19)

This function is displayed in Fig. 1. At large momenta (18) can be expanded at small a while

keeping the ratio a/✏ fixed. With the logarithmic accuracy this gives I ⇡ ln a�1. If |p| � M , then

the anomalous term dominates and the transport cross section which reads⇤

�T ⇡ e2µ2

6⇡
ln

4p2

b20
, |p| � b0 ,� . (20)

In the opposite limit |p| ⌧ b0,�, I ⇡ 6p2b20/(b
4
0 + �4) so that the Coulomb term dominates the

transport cross section. It is noteworthy that the transport cross section is only logarithmically

sensitive to the chiral conductivity b0 and does not depend on the external parameter � in two

asymptotic regimes. The transition between these regimes at moderate momenta is the most

sensitive to their values.

FIG. 1. Function I(a) at ✏ = 0.03.

⇤ A more precise expression is obtained by keeping sub-logarithmic corrections in (18) which is accounted for by

replacing in (20) ln(4p2/b20) ! ln(4p2/b20) + 1 + ⇡y + 2y arctan y � (1/2) ln(1 + 1/y2) with y = b20/�
2.

Large 

Coulomb Anomaly

⇒ anomaly dominates Coulomb

<latexit sha1_base64="tFV0GQ8OLfr0ptjgTW3VAuHoXKY="></latexit>�T ⇒ small m.f.p. ⇒ suppression of transport coefficients
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ANOMALOUS CONTRIBUTION TO CONDUCTIVITY

Conductivity

9

e = e0 and n = n0 for notational simplicity. We proceed by computing the current (26) in two

limiting cases.

A. Homogeneous matter

Electrical conductivity at b = 0 can be computed using the standard formula

� =
e2

3T

Z
f0

1

n�T
d3p , (27)

where the transport cross section is given by (17). As explained there, at low energies/temperatures

the Coulomb term dominates the transport cross section so that one recovers the textbook result

� = 16⇡T/e2L, where L = ln(T/mD). At high temperatures one obtains using (20)

� =
⇡

µ2T ln(T/b0)
, T � b0, � . (28)

Remarkably, this formula does not depend on the resonance width � (which is essentially a cuto↵)

and only weakly depends on b0. It shows that the electrical conductivity of homogenous chiral

matter with b0 6= 0 is suppressed at high temperatures by a factor of e2/8µ2T 2 ⇠ M2/2T 2, where

M is the ion mass. This is exhibited in Fig. 3, neglecting the temperature dependance of the Landau

logarithm. The suppression happens because of the resonance in the scattering cross section at

the scattering angle # = b0/|p|, which in turn can be traced back to the oscillatory behavior of the

potential as explained in Sec. II.

FIG. 3. Electrical conductivity (27) at � = 0.1b0, M = 5b0 and L = 5 (solid line). Dashed line: the

Coulomb limit, dotted line: the anomalous contribution (28) with the correction mentioned in footnote ⇤.

In relativistic heavy-ion collisions b0 is conjectured to be on the order of 1–10 MeV [4].
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9

e = e0 and n = n0 for notational simplicity. We proceed by computing the current (26) in two

limiting cases.

A. Homogeneous matter

Electrical conductivity at b = 0 can be computed using the standard formula

� =
e2

3T

Z
f0

1

n�T
d3p , (27)

where the transport cross section is given by (17). As explained there, at low energies/temperatures

the Coulomb term dominates the transport cross section so that one recovers the textbook result

� = 16⇡T/e2L, where L = ln(T/mD). At high temperatures one obtains using (20)

� =
⇡

µ2T ln(T/b0)
, T � b0, � . (28)

Remarkably, this formula does not depend on the resonance width � (which is essentially a cuto↵)

and only weakly depends on b0. It shows that the electrical conductivity of homogenous chiral

matter with b0 6= 0 is suppressed at high temperatures by a factor of e2/8µ2T 2 ⇠ M2/2T 2, where

M is the ion mass. This is exhibited in Fig. 3, neglecting the temperature dependance of the Landau

logarithm. The suppression happens because of the resonance in the scattering cross section at

the scattering angle # = b0/|p|, which in turn can be traced back to the oscillatory behavior of the

potential as explained in Sec. II.

FIG. 3. Electrical conductivity (27) at � = 0.1b0, M = 5b0 and L = 5 (solid line). Dashed line: the

Coulomb limit, dotted line: the anomalous contribution (28) with the correction mentioned in footnote ⇤.

In relativistic heavy-ion collisions b0 is conjectured to be on the order of 1–10 MeV [4].

(anomaly contribution to f0 is 
neglected for simplicity)



67

SUMMARY

Electrodynamics of chiral media (e.g. quark-gluon plasma, Weyl 
semimetals, axion dark matter, primordial magnetic fields) has 

many novel effects and intriguing features. 

Many opportunities for ambitious experimentalists.

read more

https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20a%20tuchin,k&ui-citation-summary=true

