ELECTRODYNAMICS OF HOT NUCLEAR MATTER AND OTHER CHIRAL MEDIA

Kirill Tuchin

Iowa State University

of science and technology

Arizona S.U. Theoretical Physics Colloquium (remote)
April 28, 2021

OUTLINE

EM fields in relativistic heavy-ion collisions:

- External classical field generated by colliding ions
- Quantum excitations inherent to QGP
- Electrodynamics in the presence of the chiral anomaly

Generation of intense EM field in relativistic heavy-ion collisions

MACROSCOPIC EM FIELD IN HEAVY-ION COLLISIONS

EM field of each ion is a boosted Coulomb field

$$
\begin{gathered}
\boldsymbol{B}_{1}=\frac{\gamma e v \hat{\boldsymbol{\phi}}}{4 \pi} \frac{b}{\left(b^{2}+\gamma^{2}(v t-z)^{2}\right)^{3 / 2}} \\
Z_{A u}=79, b \sim R=7 \mathrm{fm}, \gamma=100 \Rightarrow \quad e B=(200 \mathrm{MeV})^{2} \approx m_{\pi^{2}} \\
B \sim 10^{18} \mathrm{G}
\end{gathered}
$$

EM FIELD IN QUARK-GLUON PLASMA

EM FIELD IN QUARK-GLUON PLASMA

EM field in plasma: need to solve Magneto-Hydrodynamics.
EM is weakly coupled to the plasma \Rightarrow Oth approximation:

$$
\begin{gathered}
\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}, \\
\nabla \times \boldsymbol{B}=\frac{\partial \boldsymbol{E}}{\partial t}+\boldsymbol{J}, \quad \nabla \cdot \boldsymbol{B}=0 \\
\boldsymbol{J}=\sigma(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})+\boldsymbol{J}_{\mathrm{ext}}, \\
\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})+\frac{1}{\sigma}\left(\nabla^{2} \boldsymbol{B}-\frac{\partial^{2} \boldsymbol{B}}{\partial t^{2}}+\nabla \times \boldsymbol{J}_{\mathrm{ext}}\right), \\
\frac{\partial \boldsymbol{E}}{\partial t}+\frac{\partial \boldsymbol{v}}{\partial t} \times \boldsymbol{B}=\boldsymbol{v} \times(\nabla \times \boldsymbol{E})+\frac{1}{\sigma}\left(\nabla^{2} \boldsymbol{E}-\frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}-\frac{\boldsymbol{J}_{\mathrm{ext}}}{\partial t}\right),
\end{gathered}
$$

Lattice calculations for T~Tc: $\sigma=5.8 \mathrm{MeV}$, very small compared to the typical QCD scale of 200 MeV .

So let's neglect the medium effect on the EM field altogether... ?

EM FIELD IN QUARK-GLUON PLASMA

Is electrical conductivity indeed that small?
Consider a single valence charge e moving with velocity v:
$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$,
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}$,
$\boldsymbol{\nabla} \cdot \boldsymbol{D}=e \delta(z-v t) \delta(\boldsymbol{b})$,

$$
\boldsymbol{\nabla} \times \boldsymbol{H}=\frac{\partial \boldsymbol{D}}{\partial t}+\sigma \boldsymbol{E}+e v \hat{\boldsymbol{z}} \delta(z-\widehat{v t) \delta(\boldsymbol{b})}
$$

In momentum space:

$$
\begin{aligned}
& \boldsymbol{H}_{\omega \boldsymbol{k}}=-2 \pi i e v \frac{\boldsymbol{k} \times \hat{\boldsymbol{z}}}{\omega^{2} \tilde{\epsilon} \mu-\boldsymbol{k}^{2}} \delta\left(\omega-k_{z} v\right), \quad \boldsymbol{E}_{\omega \boldsymbol{k}}=-2 \pi i e \frac{\omega \mu v \hat{\boldsymbol{z}}-\boldsymbol{k} / \epsilon}{\omega^{2} \tilde{\epsilon} \mu-\boldsymbol{k}^{2}} \delta\left(\omega-k_{z} v\right) \\
& \text { where } \tilde{\epsilon}=\epsilon+i \sigma / \omega
\end{aligned}
$$

Time dependence of electromagnetic field is determined by singularities in the complex ω-plane with finite imaginary part. Take for simplicity $\varepsilon=\mu=1$ (neglect the polarization and magnetization response of QGP).

EM FIELD IN QUARK-GLUON PLASMA

$$
\boldsymbol{B}(t, \boldsymbol{r})=\frac{e}{2 \pi \sigma} \hat{\boldsymbol{\phi}} \int_{0}^{\infty} \frac{J_{1}\left(k_{\perp} b\right) k_{\perp}^{2}}{\sqrt{1+\frac{4 k_{\perp}^{2}}{\gamma^{2} \sigma^{2}}}} \exp \left\{\frac{1}{2} \sigma \gamma^{2} x_{-}\left(1-\sqrt{1+\frac{4 k_{\perp}^{2}}{\gamma^{2} \sigma^{2}}}\right)\right\} d k_{\perp}, \quad x_{-}=t-z / v
$$

Relevant parameter $\quad \lambda=\gamma \sigma b$
If $\lambda \ll 1$ plasma has no effect on the field: $\quad \boldsymbol{B}=\frac{e \gamma}{4 \pi} \frac{v b \hat{\boldsymbol{\phi}}}{\left(b^{2}+\gamma^{2} v^{2} x_{-}^{2}\right)^{3 / 2}}$

$$
\lambda>1 \quad B_{\phi}=\frac{e}{2 \pi} \frac{b \sigma}{4 x_{-}^{2}} e^{-\frac{b^{2} \sigma}{4 x_{-}}}
$$

In practice: $\gamma=100, \sigma \approx 5.8 \mathrm{MeV}, \mathrm{b}=7 \mathrm{fm}: \lambda=19$

Due to the relativistic timedilation, the characteristic time scale for the medium response is

$$
1 /(\sigma \gamma)
$$

Intense EM field coexists with the QGP

EM FIELD IN QUARK-GLUON PLASMA

FIG. 2. The electric (left) and magnetic (right) fields in the transverse plane at $z=0$ in the lab frame at a proper time $\tau=1 \mathrm{fm} / \mathrm{c}$ after a $\mathrm{Pb}+\mathrm{Pb}$ collision with $20-30 \%$ centrality (corresponding to impact parameters in the range $6.24 \mathrm{fm}<b<9.05 \mathrm{fm}$) and with a collision energy $\sqrt{s}=2.76 \mathrm{ATeV}$.

INITIAL VALUE PROBLEM FOR EM FIELD IN QGP

$$
-\nabla^{2} \boldsymbol{A}_{2}+\partial_{t}^{2} \boldsymbol{A}_{2}+\sigma \partial_{t} \boldsymbol{A}_{2}-\sigma \boldsymbol{u} \times\left(\boldsymbol{\nabla} \times \boldsymbol{A}_{2}\right)=\boldsymbol{j}
$$

Matching conditions:

$$
A_{2}^{\mu}\left(\boldsymbol{r}, t_{0}\right)=A_{1}^{\mu}\left(\boldsymbol{r}, t_{0}\right) \equiv \mathcal{A}^{\mu}(\boldsymbol{r}),
$$

$$
\left.\partial_{t} A_{2}^{\mu}(\boldsymbol{r}, t)\right|_{t=t_{0}}=\left.\partial_{t} A_{1}^{\mu}(\boldsymbol{r}, t)\right|_{t=t_{0}} \equiv \mathcal{V}^{\mu}(\boldsymbol{r})
$$

Solution: $\quad A_{2}^{\mu}(\boldsymbol{r}, t)=\int_{\tau}^{t_{0}+} d t^{\prime} \int d^{3} r^{\prime} j^{\mu}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right) G_{2}\left(\boldsymbol{r}, t \mid \boldsymbol{r}^{\prime}, t^{\prime}\right)$

$$
+\int d^{3} r^{\prime}\left[\sigma \mathcal{A}^{\mu}\left(\boldsymbol{r}^{\prime}\right)+\mathcal{V}^{\mu}\left(\boldsymbol{r}^{\prime}\right)\right] G_{2}\left(\boldsymbol{r}, t \mid \boldsymbol{r}^{\prime}\right.
$$

$$
-\left.\int d^{3} r^{\prime} \mathcal{A}^{\mu}\left(\boldsymbol{r}^{\prime}\right) \partial_{t^{\prime}} G_{2}\left(\boldsymbol{r}, t \mid \boldsymbol{r}^{\prime}, t^{\prime}\right)\right|_{t^{\prime}=t_{0}}
$$

$$
\begin{aligned}
G_{2}\left(\boldsymbol{r}, t \mid \boldsymbol{r}^{\prime}, t^{\prime}\right) & =\frac{1}{4 \pi} e^{-\frac{1}{2} \sigma\left(t-t^{\prime}\right)} \frac{\delta\left(t-t^{\prime}-R\right)}{R} \theta\left(t-t^{\prime}\right) \quad \text { the original pulse } \\
\square & +\frac{1}{4 \pi} e^{-\frac{1}{2} \sigma\left(t-t^{\prime}\right)} \frac{\sigma / 2}{\sqrt{\left(t-t^{\prime}\right)^{2}-R^{2}}} I_{1}\left(\frac{\sigma}{2} \sqrt{\left(t-t^{\prime}\right)^{2}-R^{2}}\right) \theta\left(t-t^{\prime}-R\right) \theta\left(t-t^{\prime}\right)
\end{aligned}
$$

wake produced by proportional to σ^{2}
the induced currents \rightarrow small

EM FIELD AT LATER TIME

Effects induced by EM field in Quark-Gluon

Plasma

Lecture Notes in Physics 871
Dmitri Kharzeev
Karl Landsteiner
Andreas Schmitt
Ho-Ung Yee Editors
Strongly
Interacting
Matter in Magnetic Fields

SYNCHROTRON RADIATION

Spacing between the Landau levels $\sim \mathbf{e B} / \boldsymbol{\varepsilon}$, while their thermal width $\sim \boldsymbol{T}$. When $\mathbf{e B} / \boldsymbol{\varepsilon} \approx \boldsymbol{T}$ it is essential to account for quantization of fermion spectra.

Magnetic field does no work, thus energy is conserved. Magnetic Lorentz force has no component along the B-direction:

$$
\varepsilon_{j}=\omega+\varepsilon_{k}, \quad p=q+\omega \cos \theta
$$

Angular distribution of the power spectrum:

$$
\frac{d I^{j}}{d \omega d \Omega}=\sum_{f} \frac{z_{f}^{2} \alpha}{\pi} \omega^{2} \sum_{k=0}^{j} \Gamma_{j k}\left\{\left|\mathcal{M}_{\perp}\right|^{2}+\left|\mathcal{M}_{\|}\right|^{2}\right\} \delta\left(\omega-\varepsilon_{j}+\varepsilon_{k}\right)
$$

Matrix elements are well-known functions of Laguerre polynomials. Sokolov, Ternov (1968) and others

SYNCHROTRON RADIATION

Contribution to the total photon spectrum

Azimuthal asymmetry of photons in magnetic field

Reaction plane

$$
\frac{d N}{d \phi}=C\left(1+\underset{\substack{\frac{8}{7} \\ 2 \mathrm{v}_{2}}}{ } \cos (2 \phi)+\frac{1}{5} \cos (4 \phi)+\ldots\right)
$$

γ-ray bursts by collapsing stars

HADRON DISSOCIATION

Lab frame: center-of-mass
frame of a heavy-ion collision
hadron rest frame
$d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}$

$$
\begin{aligned}
& d s^{2}=\left[c^{2}-\Omega^{2}\left(x^{2}+y^{2}\right)\right] d t^{2}-d x^{2}-d y^{2}-d z^{2} \\
&+2 \Omega y d x d t-2 \Omega x d y d t .
\end{aligned}
$$

Electric field breaks the bound state

QUALITATIVE PICTURE OF DISSOCIATION

$\mathbf{J} / \boldsymbol{\psi}$ rest frame. There is finite quantum probability for the anti-quark ($\mathrm{e}<0$) to tunnel through the potential barrier and go to $y \rightarrow-\infty$.

Dissociation rate can be calculated in the WKB approximation as a tunneling rate of quark thru the potential barrier.

$$
w=\exp \left\{-\frac{2}{3} \frac{\left(2 \varepsilon_{b} m\right)^{3 / 2}}{m e E}\right\}
$$

ROLE OF MAGNETIC FIELD

ROLE OF ROTATION

The effective synchrotron frequency of the negative charge appears to be smaller than the effective synchrotron frequency of the positive one.

The magnetic field decreases the charge of escaping \Rightarrow
The dissociation probability is larger for negative charges

IMAGINARY TIME METHOD

Imaginary Time Method: the quasi-classical transition probability is V.s. Popov et al.

$$
w=\exp (-2 \operatorname{Im} W)
$$

$$
W=\int_{t_{0}}^{0}\left(L+\varepsilon_{0}\right) d t-\left.\boldsymbol{p} \cdot \boldsymbol{r}\right|_{t=0}
$$

where the action is computed along the extremal classically forbidden trajectory.
Assumptions: (i) motion of the CoM is negligible in the hadron rest frame (e.g. the hadron is made up of a heavy and a light quarks); (ii) The binding potential is short range, (iii) motion of the light quark is non-relativistic; (iv) B and Ω are constant.

Extremal trajectory:

$$
\begin{aligned}
& y(\tau)=\frac{\omega_{E}}{\Omega^{2}}\left\{-\frac{\sinh \left(\omega_{-} \tau_{0}\right) \cosh \left(\omega_{+} \tau\right)}{\sinh \left[\left(\omega_{+}-\omega_{-}\right) \tau_{0}\right]}+\frac{\sinh \left(\omega_{+} \tau_{0}\right) \cosh \left(\omega_{-} \tau\right)}{\sinh \left[\left(\omega_{+}-\omega_{-}\right) \tau_{0}\right]}-1\right\} \\
& \gamma^{2}=\frac{\omega_{B}^{2}}{\Omega^{4} \sinh ^{2}\left[\left(\omega_{+}-\omega_{-}\right) \tau_{0}\right]}\left\{2 \omega_{+} \omega_{-} \sinh \left(\omega_{-} \tau_{0}\right) \sinh \left(\omega_{+} \tau_{0}\right) \cosh \left[\left(\omega_{+}-\omega_{-}\right) \tau_{0}\right]\right. \\
& \\
& \left.-\omega_{+}^{2} \sinh ^{2}\left(\omega_{-} \tau_{0}\right)-\omega_{-}^{2} \sinh ^{2}\left(\omega_{+} \tau_{0}\right)\right\}, \\
& \omega_{E}=\frac{e E}{m}, \quad \omega_{B}=\frac{e B}{m} \quad \omega_{ \pm}=\Omega+\frac{\omega_{B}}{2} \pm \sqrt{\Omega \omega_{B}+\frac{\omega_{B}^{2}}{4}} \quad \gamma=\sqrt{\frac{2 \varepsilon_{b}}{m}} \frac{B}{E}
\end{aligned}
$$

HADRON DISSOCIATION

- Dissociation probability increases with hadron velocity V
- The centrifugal force increases the dissociation probability.
- At the same B and Ω the negative charge has larger probability to run away.

CHARGE ASYMMETRY

$\bullet w\left(D^{-}\right)>w\left(D^{+}\right)$, i.e. there are more D^{+}than D^{-}in the final spectrum.

There are many other effects of B on QGP

Chiral anomaly and Chiral Magnetic Effect

CHIRAL ANOMALY

Chiral symmetry of nuclear matter

$$
\begin{aligned}
& U_{L}\left(N_{f}\right) \times U_{R}\left(N_{f}\right) \simeq S U_{L}\left(N_{f}\right) \times S U_{R}\left(N_{f}\right) \times \\
& \text { Broken spontaneously } \\
& \begin{array}{c}
\text { Baryon } \\
\text { symmetry }(1) \\
\text { (exact) }
\end{array} \\
& \times U_{A}(1) \\
& \text { Axial symmetry by anomaly) }
\end{aligned}
$$

Axial symmetry $\psi \rightarrow e^{i \gamma_{5} \theta} \psi$ broken by quantum fluctuations!

$$
\partial_{\mu} J_{5}^{\mu}=c_{A} \vec{E} \cdot \vec{B} \quad \Rightarrow \quad \frac{d\left(N_{R}-N_{L}\right)}{d t}=c_{A} \int \vec{E} \cdot \vec{B} d^{3} x
$$

anomaly coefficient c_{A} is topologically protected

TOPOLOGY OF THE QCD VACUUM

QCD vacuum is a superposition of states with different topology, characterized by the topological charge density

$$
q(x)=\frac{g^{2}}{32 \pi^{2}} G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu}(x)
$$

Transitions between such states creates local imbalance of chirality.
The transition rate per unit volume is exponentially suppressed at low temperatures, but increases at high temperatures as $\Gamma_{\mathrm{sph}} \sim\left(\alpha_{s} N_{c}\right)^{5} T^{4}$

The topological domains with finite q may be as large as few fm .

QED WITH CHIRAL ANOMALY

Sikivie (84), Wilczek (87), Carroll et al (90)

$$
\mathcal{L}_{\mathrm{MCS}}=\mathcal{L}_{\mathrm{QED}}+c_{A} \theta(x) \vec{E} \cdot \vec{B}
$$

$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$,
$\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho-c \boldsymbol{\nabla} \theta \cdot \boldsymbol{B}$,
The anomalous current
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}$,
$\boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{E}+\boldsymbol{j}+c\left(\partial_{t} \theta \boldsymbol{B}+\boldsymbol{\nabla} \theta \times \boldsymbol{E}\right)$,

External magnetic field drives the charge separation.

Breaks Parity!

Often used notations: $\sigma_{\chi}=c_{A} \dot{\theta} \quad \boldsymbol{b}=c_{A} \boldsymbol{\nabla} \theta$.

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation
(STAR Collaboration)

CHIRAL MAGNETIC EFFECT IN CMP

In Weyl semimetals and non-uniform QGP: field θ is time-independent and

$$
\nabla \theta=\boldsymbol{b} / c_{A} \approx \text { const. }
$$

TaAs
NbAs
NbP
TaP

nature
physics
LETTERS
PUBLISHED ONLINE: 8 FEBRUARY 2016 | DOI: 10.1038/NPHYS3648

Chiral magnetic effect in ZrTe_{5}

Qiang Li ${ }^{1 \star}$, Dmitri E. Kharzeev ${ }^{2,3 \star}$, Cheng Zhang ${ }^{1}$, Yuan Huang ${ }^{4}$, I. Pletikosicici,5 A. V. Fedorov ${ }^{6}$, R. D. Zhong ${ }^{1}$, J. A. Schneeloch ${ }^{1}$, G. D. Gu ${ }^{1}$ and T. Valla ${ }^{1 \star}$ arXiv:1412.6543 [cond-mat.str-el]

Chiral Magnetic Instability of EM field

CME EFFECT AND EM FIELD

Far away from any sources, Maxwell equations in momentum space read $\boldsymbol{k} \cdot \boldsymbol{B}_{\omega, \boldsymbol{k}}=0$,
$\epsilon \boldsymbol{k} \cdot \boldsymbol{E}_{\omega, \boldsymbol{k}}=0$,
$\boldsymbol{k} \times \boldsymbol{E}_{\omega, \boldsymbol{k}}=\omega \boldsymbol{B}_{\omega, \boldsymbol{k}}$,
Electromagnetic waves have the dispersion relation

$$
\left[\omega(\omega+i \sigma)-\boldsymbol{k}^{2}\right]^{2}=\sigma_{\chi}^{2} \boldsymbol{k}^{2}
$$

$\boldsymbol{k} \times \boldsymbol{B}_{\omega, \boldsymbol{k}}=-\omega \epsilon \boldsymbol{E}_{\omega, \boldsymbol{k}}-i \sigma_{\chi} \boldsymbol{B}_{\omega, \boldsymbol{k}}$
Four solutions: $\omega_{\lambda_{1}, \lambda_{2}}=-\frac{i \sigma}{2}+\lambda_{1} \sqrt{k^{2}+\lambda_{2} \sigma_{\chi} k-\sigma^{2} / 4} \quad \lambda_{1}, \lambda_{2}= \pm 1$

All four poles lie in the lower-half plane of complex ω except when $k<\sigma_{\chi}$

In this case $\operatorname{Im} \omega_{ \pm}>0$ indicating a solution exponentially growing with time:

$$
B \sim e^{\operatorname{Im} \omega_{ \pm} t} \Rightarrow \text { instability }
$$

CHIRAL MAGNETIC INSTABILITY

Limits on a Lorentz- and parity-violating modification of electrodynamics

Sean M. Carroll and George B. Field

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138

Roman Jackiw*

Department of Physics, Columbia University, New York, New York 10027
(Received 5 September 1989)

Photon propagator $G^{i j}(t, \mathbf{r})=\left[\left(\delta^{i j}-\partial_{\imath} \partial_{j} / \nabla^{2}\right) \square+m \epsilon^{i j k} \partial_{k}\right] g(t, \mathbf{r})$

A very partial list of other references: Redlich, Wijewardhana(1985), Rubakov (1986), Joyce, Shaposhnikov (1987), Adam, Klinkhamer (2001), Boyarsky at al (2012), Sadofyev, Zakharov et al (2013), Akamatsu, Yamamoto(2013), Hirono, Kharzev, Yin (2015), Manuel, Torres-Rincon(2015), Buividovich, Ulybyshev (2016), Kaplan, Reddy, Sen (2016).

TAMING INSTABILITY: HELICITY CONSERVATION

Chiral anomaly $\quad \partial_{\mu} j_{A}^{\mu}=c_{A} \boldsymbol{E} \cdot \boldsymbol{B}$
In a homogeneous medium $\quad \boldsymbol{\nabla} \cdot \boldsymbol{j}_{A}=\sigma_{\chi} \boldsymbol{\nabla} \cdot \boldsymbol{B}=0 \quad \Rightarrow \quad \dot{n}_{A}=c_{A} \boldsymbol{E} \cdot \boldsymbol{B}$
Averaging over volume $\partial_{t}\left\langle n_{A}\right\rangle=\frac{c_{A}}{V} \int \boldsymbol{E} \cdot \boldsymbol{B} d^{3} x=-\frac{c_{A}}{2 V} \partial_{t} \mathcal{H}_{\mathrm{em}}$
Integrate over time $\Rightarrow\left|\frac{2 V}{c_{A}}\left\langle n_{A}\right\rangle+\mathcal{H}_{\mathrm{em}}=\mathcal{H}_{\mathrm{tot}}\right| \quad \mathcal{H}_{\mathrm{em}}$: Magnetic helicity

Magnetic helicity depends on $\sigma_{\chi}(t)$ rather than on $\left\langle n_{A}\right\rangle \Rightarrow$ need equation of state

$$
\begin{aligned}
& \text { In hot medium } \quad\left\langle n_{A}\right\rangle=\chi \mu_{5} \quad\left(\text { recall: } \sigma_{\chi}=c_{A} \mu_{5}\right) \\
& \text { Equation of state } \quad \sigma_{\chi}(t)=\frac{c_{A}}{\chi}\left\langle n_{A}(t)\right\rangle
\end{aligned}
$$

EVOLUTION OF CHIRAL CONDUCTIVITY

$$
-\nabla^{2} \boldsymbol{A}=-\partial_{t}^{2} \boldsymbol{A}+\boldsymbol{j}+\sigma_{\chi}(t) \boldsymbol{\nabla} \times \boldsymbol{A}
$$

Expand in the circularly polarized plane wave basis

$$
\boldsymbol{A}=\sum_{\boldsymbol{k}, \lambda}\left[a_{\boldsymbol{k} \lambda}(t) \boldsymbol{W}_{\boldsymbol{k}^{\prime} \lambda^{\prime}}(\boldsymbol{x})+a_{\boldsymbol{k}^{\prime} \lambda^{\prime}}^{*}(t) \boldsymbol{W}_{\boldsymbol{k}^{\prime} \lambda^{\prime}}^{*}(\boldsymbol{x})\right] \quad \lambda=\text { helicity }
$$

The fastest growing mode:

$$
a_{0}(t)=e^{\gamma(t) / 2} \quad \gamma(t)=\int_{0}^{t}\left[\sqrt{\sigma^{2}+\sigma_{\chi}^{2}\left(t^{\prime}\right)}-\sigma\right] d t^{\prime}
$$ (adiabatic approx.)

Helicity conservation

$$
\frac{\sigma_{\chi}(t)}{\alpha}=1-\frac{\mathcal{H}_{\mathrm{em}}(t)}{\mathcal{H}_{\mathrm{tot}}}
$$

Helicity flows between the magnetic field and medium. Total helicity is conserved.

Vector potential is normalized so that

$$
\mathcal{H}_{\mathrm{em}}(0)=1
$$

Characteristic energy scale

$$
\alpha=\mathcal{H}_{\mathrm{tot}} c_{A}^{2} /(2 V \chi)
$$

EVOLUTION OF CHIRAL CONDUCTIVITY

EVOLUTION OF CHIRAL CONDUCTIVITY

50 of of initil heElicety
is in medium

$$
\begin{aligned}
& 95 \text { ols of INITIAC HEELICETY } \\
& \text { IS in MEDIUM }
\end{aligned}
$$

Magnetic field develops a maximum only if the initial helicity in medium >50\%

MAGNETIC MONOPOLES AND THE INSTABILITY

Motivation:

Magnetic monopoles at $\mathrm{T}=0$: dual superconductor, color confinement.

The condensate may not melt away at T_{c} \Rightarrow Important part of QGP dynamics

Chiral evolution with magnetic monopoles: always ends up in a superconducting state.
Li, KT, 2018

TIME-VARIATION OF TOPOLOGICAL CHARGE

* Early times $t \ll \tau_{c} \Rightarrow \quad \sigma_{x}$ is adiabatic where $\tau_{c} \sim 1 /\left(g^{4} T\right)$ sphaleron transition time

* By the time $\mathrm{t}=\mathrm{T}_{\mathrm{c}}$ the chiral instability becomes $\exp \left(\sigma_{\chi} \tau_{c}\right)$

Since $\sigma_{\chi} \sim e^{2} \mu_{5} \quad \Rightarrow \quad \sigma_{\chi} \tau_{c} \ll 1 \quad \Rightarrow$
the topological charge changes by the time the instability fully develops.

* How does magnetic field evolve at $t \gg \tau_{c}$?

Model: the chiral conductivity is a stochastic process with

$$
\left.\left\langle\sigma_{\chi}\right\rangle=0 \quad \Sigma_{\chi}=\sqrt{\left\langle\sigma_{\chi}^{2}\right.}\right\rangle=c_{A} \mu_{5} \quad\left\langle\sigma_{\chi}(t) \sigma_{\chi}(t-\tau)\right\rangle \neq 0 \quad \text { when } \quad t<\tau_{c}
$$

HARMONIC OSCILLATOR WITH RANDOM FREQUENCY

Magnetic field amplitude in medium with fluctuating topological charge is harmonic oscillator with random frequency

$$
\begin{aligned}
& x=a_{\boldsymbol{k} \lambda} e^{\sigma t / 2} \Rightarrow \quad \ddot{x}(t)+\omega^{2}[1+\alpha \xi(t)] x(t)=0 \\
& \omega^{2}=k^{2}-\frac{\sigma^{2}}{4}, \quad \alpha=-\frac{\lambda k}{\omega^{2}} \Sigma_{\chi}, \quad \xi=\frac{\sigma_{\chi}}{\Sigma_{\chi}}, \quad \Sigma_{\chi}=\sqrt{\left\langle\sigma_{\chi}^{2}\right\rangle} \quad \lambda=\text { helicity }
\end{aligned}
$$

Harmonic oscillator with random frequency belongs to the class of linear stochastic equations

$$
\frac{d u\left(t^{\prime}\right)}{d t^{\prime}}=\left[A_{0}+\alpha \xi\left(t^{\prime}\right) B\right] u\left(t^{\prime}\right) \quad t^{\prime}=\omega t
$$

It can be converted to an ordinary integro-differential equation at $t \gg \tau_{c}$

$$
\frac{d\left\langle u\left(t^{\prime}\right)\right\rangle}{d t^{\prime}}=\left\{A_{0}+\alpha^{2} \int_{0}^{\infty}\left\langle\xi\left(t^{\prime}\right) \xi\left(t^{\prime}-\tau^{\prime}\right)\right\rangle B e^{A_{0} \tau^{\prime}} B e^{-A_{0} \tau^{\prime}} d \tau^{\prime}\right\}\left\langle u\left(t^{\prime}\right)\right\rangle
$$

provided that $\alpha \ll 1$ i.e. the fluctuating term is a perturbation.

EVOLUTION OF AVERAGE AMPLITUDE

Equation for the first moments $u=\binom{x}{\dot{x}} \quad A_{0}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \quad B=\left(\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right)$

$$
\begin{array}{ll}
\frac{d^{2}\langle x\rangle}{d t^{\prime 2}}+\frac{1}{2} \alpha^{2} c_{2} \frac{d\langle x\rangle}{d t^{\prime}}+\left(1-\frac{1}{2} \alpha^{2} c_{1}\right)\langle x\rangle=0 & c_{1}=\int_{0}^{\infty}\left\langle\xi\left(t^{\prime}\right) \xi\left(t^{\prime}-\tau^{\prime}\right)\right\rangle \sin \left(2 \tau^{\prime}\right) d \tau^{\prime} \\
c_{2} & =\int_{0}^{\infty}\left\langle\xi\left(t^{\prime}\right) \xi\left(t^{\prime}-\tau^{\prime}\right)\right\rangle\left[1-\cos \left(2 \tau^{\prime}\right)\right] d \tau^{\prime}
\end{array}
$$

Evolution of average amplitude $\left\langle a_{\boldsymbol{k} \lambda}(t)\right\rangle_{ \pm}=\exp \left\{ \pm i \omega t-\frac{\alpha^{2}}{4}\left(c_{2} \pm i c_{1}\right) \omega t-\frac{1}{2} \sigma t\right\}$.
It can be shown that for any conductivity all <a> modes are decreasing with time.

$$
\Rightarrow \quad \text { no instability at } t \gg \tau_{c}
$$

EVOLUTION OF AVERAGE ENERGY

Ornstein-Uhlenbeck process (for illustration): $\quad\langle\xi(t) \xi(t-\tau)\rangle=e^{-\tau / \tau_{c}}$

$$
c_{1}=\frac{2\left(\omega \tau_{c}\right)^{2}}{1+4\left(\omega \tau_{c}\right)^{2}}, \quad c_{2}=\frac{4\left(\omega \tau_{c}\right)^{3}}{1+4\left(\omega \tau_{c}\right)^{2}}, \quad c_{3}=\frac{\left[2+4\left(\omega \tau_{c}\right)^{2}\right]\left(\omega \tau_{c}\right)}{1+4\left(\omega \tau_{c}\right)^{2}}
$$

Good conductor: $\sigma \sim T / e^{2} \Rightarrow$ average energy is always stable (due to dissipation)
Poor conductor: $\sigma \sim e^{2} T \quad$ e.g. QGP near T_{c}
The unstable modes of average energy:

$$
\left\langle\mathcal{E}_{\boldsymbol{k} \lambda}\right\rangle=\frac{k}{2} u_{0} \exp \left\{\frac{\Sigma_{\chi}^{2}}{2 k} \frac{2 \omega \tau_{c}}{1+4 \omega^{2} \tau_{c}^{2}} t-\sigma t\right\} \quad \text { Does not depend on helicity } \lambda
$$

- Average energy is unstable in poor conductors (such as QGP) if $\sigma<g^{4} T$ and $\Sigma_{x} \gg \sigma$.
- The magnetic helicity of R and L modes increases exponentially. However, their sum vanishes. Thus, the helicity conservation cannot tame the instability at later times as is does at early times. The instability is not chiral!

INSTABILITY REGION

Example: QGP $\quad \sigma \approx 5 \mathrm{MeV} \quad \tau_{c} \approx 5 \mathrm{fm} \quad \Rightarrow$ Instability occurs if $\Sigma_{\chi}=15 \mathrm{MeV}$
Unstable helicity modes: $\quad\left\langle\mathcal{H}_{\boldsymbol{k} \lambda}\right\rangle=\frac{\lambda u_{0}}{2} e^{\nu_{0} k t-\sigma t} \quad \Rightarrow \quad\langle\mathcal{H}\rangle=0$

Generation of intense EM field in relativistic heavy-ion collisions at finite θ

EM FIELD OF A POINT CHARGE AT EARLY TIME

Maxwell-Chern-Simons equations

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{D}+\sigma_{\chi} \boldsymbol{B}+q v \hat{\boldsymbol{z}} \delta(z-v t) \delta(\boldsymbol{b}) \\
& \boldsymbol{\nabla} \cdot \boldsymbol{D}=q \delta(z-v t) \delta(\boldsymbol{b}) \\
& \boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B} \\
& \boldsymbol{\nabla} \cdot \boldsymbol{B}=0
\end{aligned}
$$

Can be solved for constant chiral conductivity

$$
\begin{aligned}
B_{\phi \omega}(\boldsymbol{r})= & \int \frac{d^{2} k_{\perp}}{(2 \pi)^{2}} \frac{q k e^{i \omega z / v+i k_{\perp} \cdot \boldsymbol{b}}}{\left[k_{\perp}^{2}+\omega^{2}\left(1 / v^{2}-\epsilon\right)\right]^{2}-\left(\sigma_{\chi} k\right)^{2}} \\
& \times\left\{\left[k_{\perp}^{2}+\omega^{2}\left(1 / v^{2}-\epsilon\right)\right] \frac{-i k_{\perp}}{k} \cos \theta+\sigma_{\chi} k \frac{-k_{z} k_{\perp}}{k^{2}} \sin \theta\right\}
\end{aligned}
$$

High energy approximation:

$$
B_{\phi}=\frac{e b}{8 \pi x_{-}^{2}} e^{-\frac{b^{2} \sigma}{4 x_{-}}}\left[\sigma \cos \left(\frac{b^{2} \sigma_{\chi}}{4 x_{-}}\right)+\sigma_{\chi} \sin \left(\frac{b^{2} \sigma_{\chi}}{4 x_{-}}\right)\right]
$$

OSCILLATIONS OF EM FIELD AT EARLY TIMES

FIG. 2: Magnetic field of a point charge as a function of time t at $z=0$. (Free space contribution is not shown). Electrical conductivity $\sigma=5.8 \mathrm{MeV}$. Solid line on both panels corresponds to $B=B_{\phi}$ at $\sigma_{\chi}=0$. Broken lines correspond to B_{ϕ} (dashed), B_{r} (dashed-dotted) and B_{z} (dotted) with $\sigma_{\chi}=15 \mathrm{MeV}$ on the left panel and $\sigma_{\chi}=1.5 \mathrm{MeV}$ on the right panel. Note that the vertical scale on the two panels is different.

EM AT LATER TIMES

At later times needs to sum over fluctuations of the topological charge $\xi(t)$

$$
\ddot{x}(t)+\omega^{2}[1+\alpha \xi(t)] x(t)=\lambda k J_{\lambda \boldsymbol{k}}(t) e^{\sigma t / 2} \quad \begin{aligned}
\text { where } \boldsymbol{B}_{\lambda \boldsymbol{k}} & =x_{\lambda \boldsymbol{k}}(t) \boldsymbol{\epsilon}_{\lambda \boldsymbol{k}} e^{-\sigma t / 2} \\
& =\Phi_{\lambda \boldsymbol{k}} \boldsymbol{\epsilon}_{\lambda \boldsymbol{k}}
\end{aligned}
$$

Solution for the average amplitude

$$
\left\langle\Phi_{\lambda \boldsymbol{k}}(t)\right\rangle=\frac{q v \hat{\boldsymbol{z}} \cdot \epsilon_{\lambda k}^{*} \lambda k\left(1+\alpha^{2} c_{0}\right) e^{-i k_{z} v t}}{k^{2}-\left(k_{z} v\right)^{2}-i \sigma k_{z} v+\alpha^{2} Q(\omega)}
$$

Dashed line: $\left\langle\sigma_{\chi}^{2}\right\rangle=0$

Fast particles in chiral media: chiral Cherenkov radiation

PARTICLE RADIATION IN MATTER: CHERENKOV AND TRANSITION RADIATION

Classical Cherenkov radiation is emitted by a charged particle that moves faster than the phase velocity of light: $v n>1$

$$
\cos \theta=\frac{1}{\beta \sqrt{\epsilon}}=\frac{1}{\beta n}
$$

Classical transition radiation is emitted by a charged particle that moves through inhomogeneous matter.

33. Passage of particles through matter 33

33.7. Cherenkov and transition radiation [33,77,78]

A charged particle radiates if its velocity is greater than the local phase velocity of light (Cherenkov radiation) or if it crosses suddenly from one medium to another with different optical properties (transition radiation). Neither process is important for energy loss, but both are used in high-energy and cosmic-ray physics detectors.

Figure 33.27: X-ray photon energy spectra for a radiator consisting of $20025 \mu \mathrm{~m}$ thick foils of Mylar with 1.5 mm spacing in air (solid lines) and for a single surface (dashed line). Curves are shown with and without absorption. Adapted from Ref. 88.

$1 \rightarrow 2$ PROCESSES IN CHIRAL MATTER

Let field θ be homogenous and weekly time-dependent $\dot{\theta}=$ const In radiation gauge: $\quad \nabla^{2} \boldsymbol{A}=\partial_{t}^{2} \boldsymbol{A}-\sigma_{\chi} \boldsymbol{\nabla} \times \boldsymbol{A}$

The dispersion relation $k^{2}=-\lambda \sigma_{\chi}|\boldsymbol{k}| \quad \rightarrow$ photon becomes space- or timelike $\lambda=$ helicity

$k^{2}=\left(p \pm p^{\prime}\right)^{2}=2 m(m \pm \varepsilon) \quad$ forbidden in vacuum, but allowed in chiral medium
Pair production: $k^{2}>0 \Rightarrow \lambda \sigma_{\chi}<0$
Photon radiation: $k^{2}<0 \Rightarrow \lambda \sigma_{\chi}>0$

UR approx.: $\boldsymbol{A}=\frac{1}{\sqrt{2 \omega V}} \epsilon_{\lambda} e^{i \omega z+i k_{\perp} \cdot \boldsymbol{x}_{\perp}-i \omega t} \exp \{-i \frac{1}{2 \omega} \int_{0}^{z}[k_{\perp}^{2}-\underbrace{\sigma_{\chi}\left(z^{\prime}\right) \omega \lambda}_{" \sim_{\gamma}^{2} "}] d z^{\prime}\}$

A SINGLE UNIFORM INFINITE DOMAIN

$$
\begin{aligned}
\mathcal{M}= & -e Q \bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p) \epsilon_{\mu}^{*} \times 4 \pi \varepsilon x(1-x) \delta\left(q_{\perp}^{2}+\kappa_{\lambda}\right) \\
& \kappa_{\lambda}(z)=x^{2} m^{2}-(1-x) x \lambda \sigma_{\chi} \varepsilon \quad \text { can become negative! }
\end{aligned}
$$

Chiral Cherenkov effect: photon radiation at $\vartheta \sim \sqrt{\left|\sigma_{\chi}\right| / \omega}$

Kappa is negative if $\lambda \sigma_{\chi}>0 \quad$ and $\quad x<x_{0}=\frac{1}{1+m^{2} /\left(\lambda \sigma_{\chi} \varepsilon\right)}$
Photon radiation

$$
\frac{d W_{+}}{d x}=\frac{\alpha Q^{2}}{2 \varepsilon x}\left\{\sigma_{\chi} \varepsilon\left(\frac{x^{2}}{2}-x+1\right)-m^{2} x\right\} \theta\left(x_{0}-x\right) \quad \text { Vanishes as } \hbar \rightarrow 0
$$

Quantum anomaly!

Total rate of energy loss $\quad \frac{\Delta \varepsilon}{T}=\int_{0}^{1} \frac{d W_{+}}{d x} x \varepsilon d x=\frac{1}{3} \alpha Q^{2} \sigma_{\chi} \varepsilon$

TWO SEMI-INFINITE DOMAINS

(Transition radiation in ordinary materials corresponds to $\kappa_{\text {tr }}=m^{2} x^{2}+m_{\gamma}^{2}(1-x)$ finite at $\hbar \rightarrow 0$)
Contribution of the pole at $q_{\perp}^{2}+\kappa_{\lambda}=0$ is the chiral Cherenkov radiation.
The rest is the "chiral transition radiation"

CHERENKOV + TRANSITION RADIATION IN QGP

- Charged particles traveling through the chiral medium emit electromagnetic radiation sensitive to the chiral anomaly.
- It is circularly polarized and has resonant peaks at angles proportional to the anomaly

FERMI'S MODEL OF COLLISIONAL ENERGY LOSS

Chiral Cherenkov radiation is closely related to the collisional energy loss.
The energy loss rate = flux of the Poynting vector out of cylinder of radius a coaxial with the particle path:

$$
-\frac{d \varepsilon}{d z}=2 \pi a \int_{-\infty}^{\infty}\left(E_{\phi} B_{z}-E_{z} B_{\phi}\right) d t=2 a \operatorname{Re} \int_{0}^{\infty}\left(E_{\phi \omega} B_{z \omega}^{*}-E_{z \omega} B_{\phi \omega}^{*}\right) d \omega
$$

The field components are known, e.g.:

$$
\begin{array}{rlrl}
B_{\phi \omega}(\boldsymbol{r}) & =\frac{q}{2 \pi} \frac{e^{i \omega z / v}}{k_{1}^{2}-k_{2}^{2}} \sum_{\nu=1}^{2}(-1)^{\nu+1} k_{\nu}\left(k_{\nu}^{2}-s^{2}\right) K_{1}\left(b k_{\nu}\right) & k_{\nu}^{2}=s^{2}-\frac{\sigma_{\chi}^{2}}{2}+(-1)^{\nu} \sigma_{\chi} \sqrt{\omega^{2} \epsilon+\frac{\sigma_{\chi}^{2}}{4}} \\
B_{b \omega}(\boldsymbol{r})=\sigma_{\chi} \frac{q}{2 \pi} \frac{i \omega}{v} \frac{e^{i \omega z / v}}{k_{1}^{2}-k_{2}^{2}} \sum_{\nu=1}^{2}(-1)^{\nu} k_{\nu} K_{1}\left(b k_{\nu}\right) & s^{2}=\omega^{2}\left(\frac{1}{v^{2}}-\epsilon(\omega)\right)
\end{array}
$$

Fermi's model: $\quad \epsilon(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}-\omega_{0}^{2}+i \omega \Gamma}$
Setting $\sigma_{\chi}=0$ get the original Fermi's result at $a \rightarrow 0$ (small) Cherenkov radiation contribution emerges at $a \rightarrow \infty$ if $v>1 / \sqrt{\epsilon(0)}$.

"CLASSICAL" CHIRAL CHERENKOV RADIATION

For simplicity consider $\omega_{0}=0$
UR limit $\gamma \gg 1$ at $a \rightarrow 0$ gives energy loss

$$
-\frac{d \varepsilon}{d z}=\frac{q^{2}}{4 \pi v^{2}}\left(\omega_{p}^{2} \ln \frac{v}{a \omega_{p}}+\frac{1}{4} \gamma^{2} \sigma_{\chi}^{2}\right) \quad \text { increases as (energy) }{ }^{2} \text { due to anomaly }
$$

Chiral Cherenkov radiation emerges at $a \rightarrow \infty$ even if $\epsilon=1$

$$
\frac{d W}{d \omega}=-\left.\frac{d \varepsilon}{d z \omega d \omega}\right|_{a \rightarrow \infty}=\frac{q^{2}}{4 \pi}\left\{\frac{1}{2}\left(1-\frac{1}{v^{2}}\right)+\frac{\sigma_{\chi}}{2 \omega}+\frac{\left(1+v^{2}\right) \sigma_{\chi}^{2}}{8 v^{2} \omega^{2}}+\ldots\right\}, \quad \omega<\sigma_{\chi} \gamma^{2}
$$

This classical formula coincides with the quantum calculation

$$
\frac{d W^{\text {quant }}}{d \omega}=\frac{q^{2}}{(4 \pi) 2 \omega}\left\{\sigma_{\chi}\left(\frac{x^{2}}{2}-x+1\right)-\frac{m^{2}}{\varepsilon} x\right\} \quad \text { when recoil is neglected } x \ll 1
$$

Power of chiral Cherenkov radiation $P=\frac{q^{2}}{4 \pi} \frac{\sigma_{\chi}^{2} \gamma^{2}}{4} \quad\left(\right.$ recoil reduces $\gamma^{2} \rightarrow \gamma$)

APPLICATIONS:QGP

FIG. 1. Electromagnetic part of the collisional energy loss spectrum of a d-quark with $\gamma=20$ in Quark-Gluon Plasma. Plasma parameters: $\omega_{p}=0.16 T, \Gamma=1.11 T$ [36], $m=T=250 \mathrm{MeV}$. Solid line: $\sigma_{\chi}=10 \mathrm{MeV}$, dashed line: $\sigma_{\chi}=7 \mathrm{MeV}$, dotted line: $\sigma_{\chi}=0 . \omega_{ \pm}$are defined in (13).

The same qualitative picture in QCD (after $\mathrm{e} \rightarrow \mathrm{g}$, including color factors etc.)

$$
-\left.\frac{d \varepsilon}{d z}\right|_{\mathrm{anom}}=\frac{g^{2} C_{F}}{4 \pi} \frac{\tilde{\sigma}_{\chi} \varepsilon}{3}
$$

APPLICATIONS: WEYL SEMIMETAL

FIG. 2. Collisional energy loss spectrum of electron with $\gamma=100$ in a semimetal with parameters $\omega_{p}=$ $0.5 \mathrm{eV}, \Gamma=0.025 \mathrm{eV}$ (so that its conductivity is 10 eV at room tempearture) [41] and $m=0.5 \mathrm{MeV}$. Solid line: $\sigma_{\chi}=0.19 \mathrm{eV}[42,43]$, dashed line: $\sigma_{\chi}=0 . \omega_{ \pm}$are defined in (13). The seeming discontinuity at $\omega=\omega_{+}$is a visual artifact.

Very small recoil $\omega_{M} \lesssim \sigma_{\chi} \gamma^{2} \ll \varepsilon$

CHIRAL CHERENKOV VS BETHE-HEITLER

Neglecting coherence effects: $\frac{\Delta \varepsilon^{\chi C}}{\Delta \varepsilon^{B H}} \sim \frac{\sigma_{\chi}}{e^{2} T} \sim \frac{\mu_{5}}{T} \quad \gg 1$ in a TaAs at room temp.

Coherence effects reduce energy dependence of BH (LPM effect) $E \rightarrow \sqrt{E}$
Contribution of the Chiral Cherenkov rapidly increases with E.

Coherence effects in Cherenkov radiation: unknown, depends on spatial distribution of topological charge density.

Electromagnetic radiation of Quark-Gluon Plasma at finite θ

PHOTON PRODUCTION BY QGP VIA THE CHIRAL

ANOMALY (W/O EXTERNAL MAGNETIC FIELD)

The photon energy produced by thermal quarks is controlled by the plasma temperature \rightarrow must take into account the plasma frequency

$$
\omega_{\mathrm{pl}}^{2}=\frac{m_{D}^{2}}{2}=\frac{e^{2}}{2}\left(\frac{T^{2}}{6}+\frac{\mu^{2}}{2 \pi^{2}}\right)
$$

Photon mass gets two contributions: $\quad \omega^{2}-k^{2}=\omega_{\mathrm{pl}}^{2}+m_{A}^{2}+\mathcal{O}(\omega-k)$

$$
m_{A}^{2}=-\lambda \sigma_{\chi} \omega, \quad \text { or } \quad m_{A}^{2}=-\lambda \boldsymbol{k} \cdot \boldsymbol{b},
$$

Due to the topological number fluctuations $m_{A} \sim \sqrt{\left\langle\theta^{2}\right\rangle} \sim \Gamma_{\mathrm{sp}} \sim T^{4}$

Thus, at high enough $\mathrm{T} \quad m_{A} \gg \omega_{\mathrm{pl}} \rightarrow$ Cherenkov radiation is possible

TOTAL CHIRAL CHERENKOV RADIATION

FIG. 3. Ideal QGP and hadronic photon rate near the crossover region.

Conventional mechanisms

Comparable contributions

Transport anomalies

CONTRIBUTION OF ANOMALY TO TRANSPORT

scattering on a heavy "ion"
Qiu, Cao, Huang
Lenhert, Potting

Photon propagator in MCS:

$$
D_{\mu \nu}(q)=-i \frac{q^{2} g_{\mu \nu}+i \epsilon_{\mu \nu \rho \sigma} b^{\rho} q^{\sigma}+b_{\mu} b_{\nu}}{q^{4}+b^{2} q^{2}-(b \cdot q)^{2}} \quad b^{\mu}=\left(\sigma_{\chi}, \mathbf{0}\right)
$$

Static limit $q_{0}=0$

$$
\begin{aligned}
& D_{00}(\boldsymbol{q})=\frac{i}{\boldsymbol{q}^{2}}, \\
& D_{0 i}(\boldsymbol{q})=D_{0 i}(\boldsymbol{q})=0, \\
& D_{i j}(\boldsymbol{q})=-\frac{i \delta_{i j}}{\boldsymbol{q}^{2}-b_{0}^{2}}-\frac{\epsilon_{i j k} q^{k}}{b_{0}\left(\boldsymbol{q}^{2}-b_{0}^{2}\right)}+\frac{\epsilon_{i j k} q^{k}}{b_{0} \boldsymbol{q}^{2}}
\end{aligned}
$$

Potential induced by a stationary current

$$
A^{\mu}(\boldsymbol{x})=-i \int d^{3} x^{\prime} D^{\mu \nu}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) J_{\nu}\left(\boldsymbol{x}^{\prime}\right)=-i \int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \boldsymbol{q} \cdot \boldsymbol{x}} D^{\mu \nu}(\boldsymbol{q}) J_{\nu}(\boldsymbol{q})
$$

ELECTRON-ION CROSS SECTION

Current of an ion with charge e 'and magnetic moment μ :

$$
J^{0}(\boldsymbol{x})=e^{\prime} \delta(\boldsymbol{x}), \quad \boldsymbol{J}(\boldsymbol{x})=\boldsymbol{\nabla} \times(\boldsymbol{\mu} \delta(\boldsymbol{x}))
$$

The corresponding potential $\quad A^{\ell}(\boldsymbol{q})=-\frac{1}{\boldsymbol{q}^{2}-b_{0}^{2}}\left[i(\boldsymbol{\mu} \times \boldsymbol{q})^{\ell}+\frac{b_{0}}{\boldsymbol{q}^{2}}\left(\boldsymbol{\mu} \cdot \boldsymbol{q} q^{\ell}-\boldsymbol{q}^{2} \mu^{\ell}\right)\right]$
In the static limit, there is only one unstable mode $|\boldsymbol{q}|=b_{0}$

Cross section averaged over the magnetic moment directions:

$$
\begin{gathered}
\left\langle\frac{d \sigma}{d \Omega^{\prime}}\right\rangle=\frac{e^{2}}{8 \pi^{2}}\left\{\frac{2 E^{2} e^{\prime 2}}{\boldsymbol{q}^{4}}\left(1-\frac{\boldsymbol{q}^{2}}{4 E^{2}}\right)+\frac{2 \mu^{2}}{3\left(\boldsymbol{q}^{2}-b_{0}^{2}\right)^{2}}\left(1+\frac{b_{0}^{2}}{\boldsymbol{q}^{2}}\right)\left[(\boldsymbol{p} \times \boldsymbol{q})^{2}+\frac{\boldsymbol{q}^{4}}{2}\right]\right\} \\
\text { Coulomb }
\end{gathered}
$$

SPIN AVERAGE CROSS-SECTION

Transport cross section $\quad \sigma_{T}=\frac{e^{2}}{16 \pi \boldsymbol{p}^{4}}\left(\begin{array}{l}\left.4 E^{2} e^{\prime 2} L+\frac{2 \mu^{2}}{3} 4 \boldsymbol{p}^{4} \mathcal{I}\right) \\ \text { Coulomb Anomaly }\end{array}\right.$

$$
\begin{aligned}
\mathcal{I}=1+\frac{1}{\epsilon}\left[2 a(1+a)-\epsilon^{2}\right]\left(\arctan \frac{1-a}{\epsilon}+\arctan \frac{a}{\epsilon}\right)+ & \frac{1}{2}(1+3 a) \ln \left(1+\frac{1-2 a}{a^{2}+\epsilon^{2}}\right) \\
a=\frac{b_{0}^{2}}{4 \boldsymbol{p}^{2}}, \quad \epsilon=\frac{\Gamma^{2}}{4 \boldsymbol{p}^{2}} \quad & \\
& \\
& \text { due is width } \frac{\boldsymbol{q}^{2}}{\left(\boldsymbol{q}^{2}-b_{0}^{2}\right)^{2}+\Gamma^{4}} \\
& \text { tame the instability }
\end{aligned}
$$

At large momenta $\quad \sigma_{T} \approx \frac{e^{2} \mu^{2}}{6 \pi} \ln \frac{4 \boldsymbol{p}^{2}}{b_{0}^{2}} \Rightarrow$ anomaly dominates Coulomb

Large $\sigma_{T} \Rightarrow$ small m.f.p. \Rightarrow suppression of transport coefficients

ANOMALOUS CONTRIBUTION TO CONDUCTIVITY

Conductivity $\sigma=\frac{e^{2}}{3 T} \int f_{0} \frac{1}{n \sigma_{T}} d^{3} p$
(anomaly contribution to f_{0} is neglected for simplicity)

SUMMARY

Electrodynamics of chiral media (e.g. quark-gluon plasma, Weyl semimetals, axion dark matter, primordial magnetic fields) has many novel effects and intriguing features.

Many opportunities for ambitious experimentalists.
read more

