
Geometry and anomalies in Dirac matter

María A. H. Vozmediano
Instituto de Ciencia de Materiales de Madrid, CSIC

admin note: text overlap with

Condensed matter collaborators

A. Cortijo

F. de Juan

A. Grushin

Y. Ferreiros

V. Arjona

O. Pozo

High energy collaborators

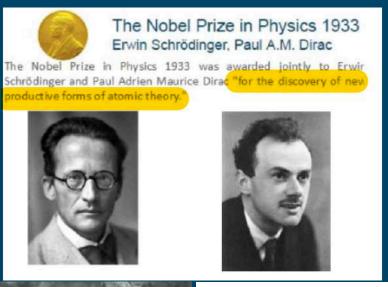
M. Chernodub

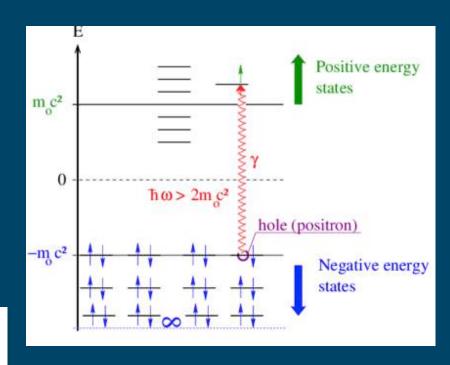
K. Landsteiner

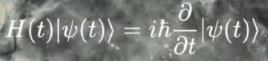
D. Kharzeev

M. Baggioli

https://wp.icmm.csic.es/field-theories-in-condensed-matter-physics/





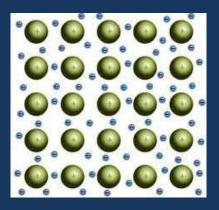


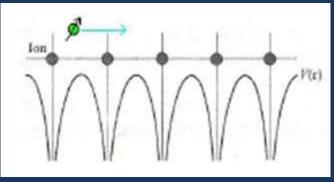
1. Dirac physics: HEP vs CM

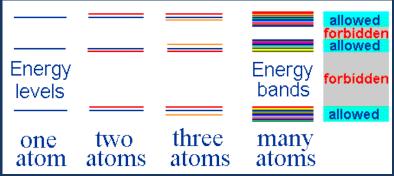
High school QFT fermions

$$(ix \cdot \partial - m) \psi = 0$$

Negative energy solutions:

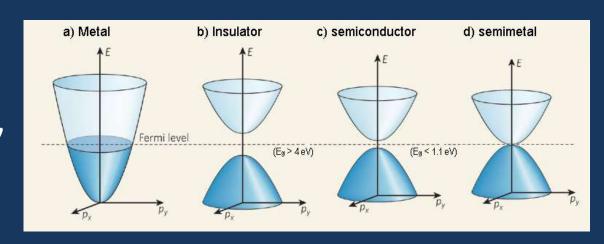

Particles: quantum excitations of the Dirac sea

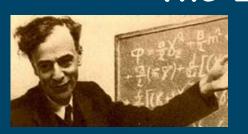

Antiparticles

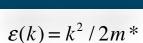


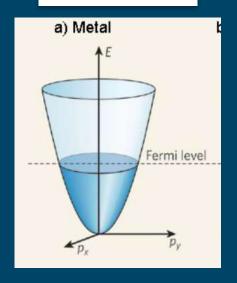
High school solids

Crystal: many atoms in a periodic lattice. Band theory.

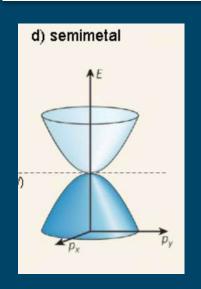


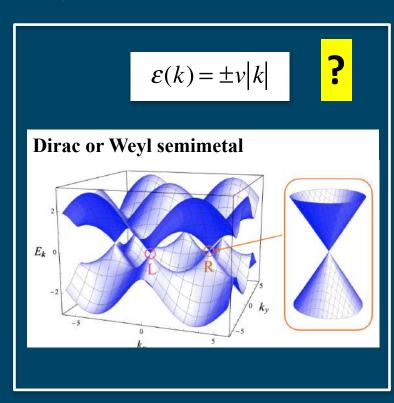



Electrons: Pauli exclusion principle


The Fermi level: Last occupied energy

The standard model of condensed matter The Landau Fermi liquid for metals*





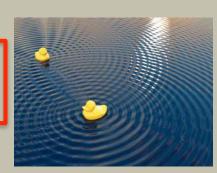
Vacuum: the Fermi sea

$$\varepsilon(k) = k^2 / 2m^*$$

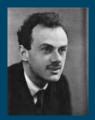
$$m^* = \partial^2 \varepsilon(k) / \partial k^2 \big|_{kF}$$

Quasiparticles: quantum excitations of the (filled) Fermi sea.

Particles and quasiparticles

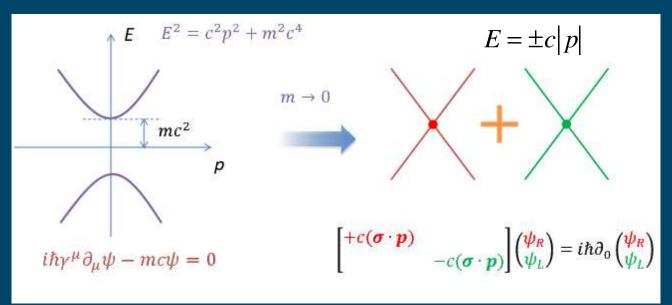


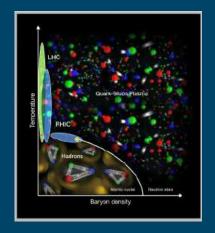
Dirac and Fermi seas


Particles Quasiparticles

 $\begin{cases} are elementary excitations of the \\ Fermi \end{cases}$

Same equations, same solutions!

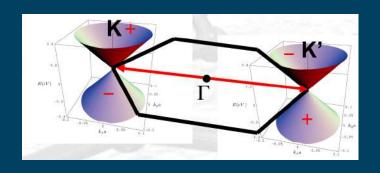

2. Weylfermions in nature

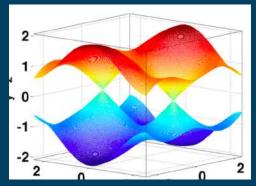


Dirac and Weyl fermions

Massless fermions in (3+1) dimensions are 4 component Dirac spinors which split into two 2 component Weyl fermions of well defined chirality. $H = \pm v_F \vec{\sigma} . \vec{p}$

High energy labs: Quark-gluon plasma in heavy ion collisions

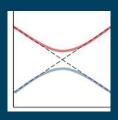

Early universe


Obstructions to the existence of Weyl fermions

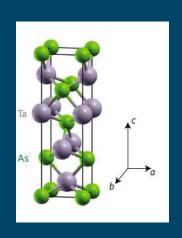
1. Nielsen-Ninomiya

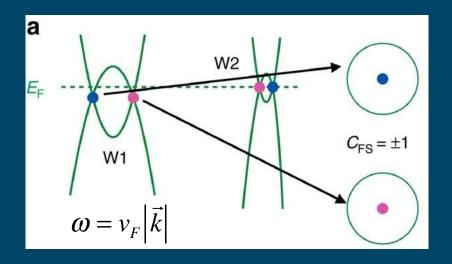
Absence of neutrinos on a lattice, NPB'81

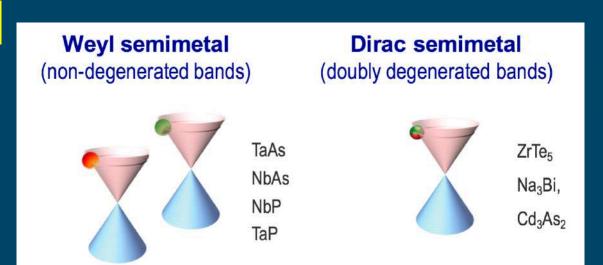
Chiral fermions in a lattice come in pairs of opposite **chirality**


2. Krammers degeneracy

Time reversal invariance -> pairs of oposite spin.

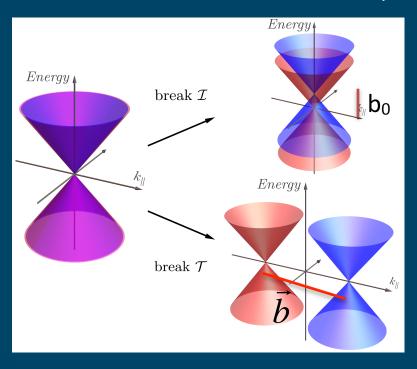

3. Level repulsion


Bands avoid crossings


Dirac fermions in condensed matter

Effective low energy description around band crossings in 3D crystals.

They exist!

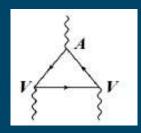


Special issue NATURE MATERIALS | VOL 15 | NOVEMBER 2016

Weyl from Dirac in 3D matter

Dirac: doubly degenerate Weyl

I broken crystal lattices. Nodes protected by crystal symmetries


Magnetic materials or pair of nodes at T conjugate points of the BZ.

$$H = \begin{pmatrix} -\vec{\sigma}(\vec{k} - \frac{\vec{b}}{2}) & 0\\ 0 & \vec{\sigma}(\vec{k} + \frac{\vec{b}}{2}) \end{pmatrix}.$$

$$\mathcal{L} = \bar{\Psi}\gamma^{\mu}(i\partial_{\mu} + \gamma^{5}b_{\mu})\Psi,$$

The nodes separation couples as a (constant) axial gauge field (more to come)

The chiral anomaly

Chiral anomaly

$$S = \int d^4x \; \overline{\Psi} \gamma^{\mu} \, \partial_{\mu} \Psi$$

Action classically invariant under independent L and R rotations: L and R currents and charges.

$$\Psi \rightarrow e^{i\alpha\gamma}\Psi$$

Electric (vector) current.

$$j^{\mu} = \overline{\Psi} \gamma^{\mu} \Psi$$
, $Q = \int j^{0}(x) d(x)$

Electric charge: $N_L + N_R$

$$\Psi \rightarrow e^{i\alpha\gamma_5} \Psi$$

Axial current.

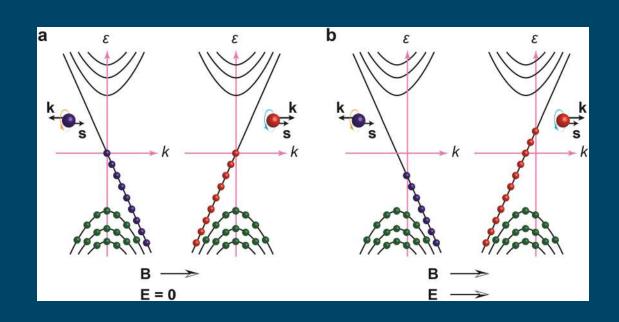
$$j_5^{\mu} = \overline{\Psi} \gamma_5 \gamma^{\mu} \Psi$$
, $Q_5 = \int j_5^{0}(x) d(x)$

Axial charge: N_L-N_R.

$$\boldsymbol{J_{V}} = \boldsymbol{J_{L}} + \boldsymbol{J_{R}} \ , \boldsymbol{J_{5}} = \boldsymbol{J_{L}} - \boldsymbol{J_{R}}$$

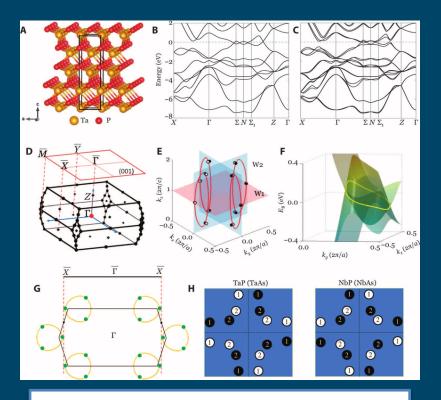
The quantum system can not keep both: axial charge not conserved at the quantum level.

$$\partial_{\mu}J_{\mu}^{A} = \frac{1}{8\pi^{2}}\vec{E}.\vec{B}$$


Physical implications: Nielsen-Ninomiya

The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B'83

$$\partial_{\mu}J_{5}^{\mu}=\frac{1}{8\pi^{2}}\vec{E}.\vec{B}\Longrightarrow$$
 Charge is pumped from L to R points


$$\frac{dQ_5}{dt} = \frac{e^2}{4\pi^2} \vec{E} \cdot \vec{B}$$

Observed?

It generates large negative MR locked to the B field.

Real materials complications

b

1.0

0.5

CO 2 MnGa

c

d $\frac{k_c(2\pi/a)}{0.1}$ 0.1

0.1

0.1

0.1

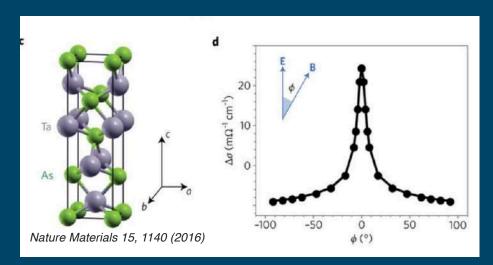
0.01

0.001

Science Advances 1, e1501092 (2015)

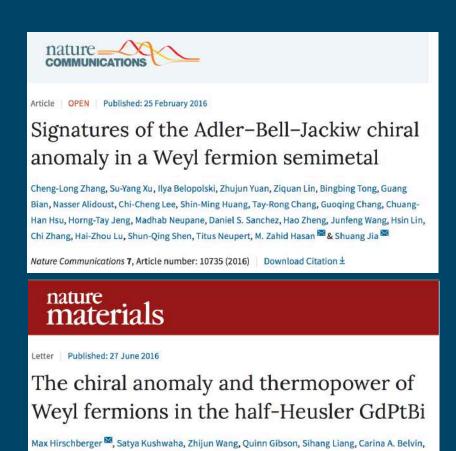
Nature Physics 14, 1119 (2018)

- Many pairs of Weyl nodes (12)
- Very anisotropic cones
- Surface states (Fermi arcs)
- E_F not at the Dirac point
- Other trivial bands cross E_F



Experimental observation?

Science 23 Oct 2015:

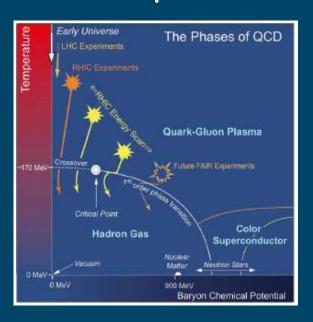

Evidence for the chiral anomaly in the Dirac semimetal Na₃Bi

Jun Xiong¹, Satya K. Kushwaha², Tian Liang¹, Jason W. Krizan², Max Hirschberger¹, Wudi Wang¹, R. J. Cava², N. P. Ong^{1,*}

PHYSICAL REVIEW X

Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs, Xiaochun Huang, et al, PRX5, 031023 (2015)

Download Citation ±


B. A. Bernevig, R. J. Cava & N. P. Ong

Nature Materials 15, 1161–1165 (2016)

A good discussion on the experimental situation in the review **Review of experiments on the chiral anomaly in Dirac-Weyl semimetals** N. P. Ong, Sihang Liang, arXiv2010.08564

Anomaly related transport

In the presence of a chiral imbalance μ_5 or an axial field B5

- Chiral magnetic effect: $\vec{J} = \frac{\mu_5}{2\pi^2} \vec{B}$
- Axial magnetic effect: $\vec{J}_{\varepsilon} = \frac{\mu^2 + \mu^2}{4\pi^2} \vec{B}_5$
- Chiral vortical effect: $\vec{J} = \frac{\mu_5 \mu}{\pi^2} \vec{\omega}$

Coefficients (conductivities) determined by the anomaly.

Topologically protected.

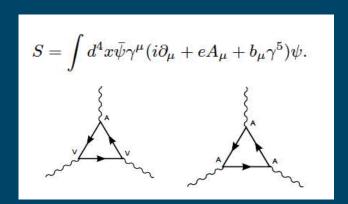
Difficult to observe.

No axial magnetic fields in HEP.

LETTERS

PUBLISHED ONLINE: 8 FEBRUARY 2016 | DOI: 10.1038/NPHYS3648

physics



Chiral magnetic effect in ZrTe₅

Qlang Li^{1*}, Dmitri E. Kharzeev^{2,3*}, Cheng Zhang¹, Yuan Huang⁴, I. Pletikosić^{1,5}, A. V. Fedorov⁶, R. D. Zhong¹, J. A. Schneeloch¹, G. D. Gu¹ and T. Valla^{1*}

3. New effects arising in matter: Axial gauge fields

Chiral anomaly with axial gauge fields*

The AAA triangle anomaly

$$\partial_{\mu}J_5^{\mu}=\frac{1}{2\pi^2}\left(\vec{E}\vec{B}+\vec{E}_5\vec{B}_5\right)$$

No axial fields in particle physics

The nodes separation b in WSMs acts as a (constant) axial gauge field

How to promote b to a dynamical field?

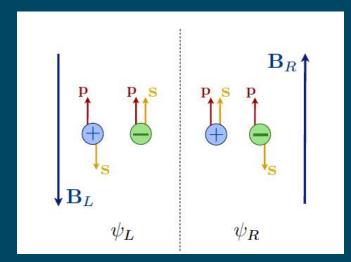
- 1. Elastic deformations of the lattice
- 2. Boundaries
- 3. Non-uniform magnetization

2104.06382 1003.11088

*K. Landsteiner, Y. Liu, arXiv:1703.01944

Axial magnetic effect

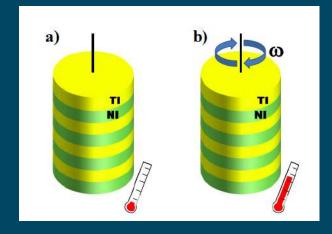
Generation of an energy current in the direction of an axial magnetic field.


$$S = \int d^4k \overline{\Psi}_k (\gamma^{\mu} k_{\mu} - b_{\mu} \gamma^{\mu} \gamma^5) \Psi_k$$

b₀: Energy separation

 b_i : k separation. $b(x) \rightarrow B_5(x)$.

$$\mathbf{b} = \hat{z}b_z\Theta(a-|r|). \ B_{\theta} \sim b_z\delta(|r|-a).$$


(B₅From boundaries)

$$T^{0i} = J^i_\epsilon = \sigma_{AME} B^i_5.$$

$$\sigma_{AME} = \frac{\mu^2 + \mu_5^2}{4\pi^2} + \frac{T^2}{12},$$

$$L_z = \frac{N_f}{6} T^2 b_z \mathcal{V},$$

Experimental confirmation of the gravitational anomaly?

Axial gauge fields from strain

(Effective action approach)

Totalitarian principle: "Everything not forbidden is compulsory"

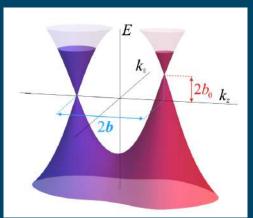


Fig. from M. Chernodub

Elasticity: Strain tensor

$$u_{ij} = \frac{1}{2} (\partial_i u_j + \partial_j u_i)$$

Building blocks

$$\sigma_i, k_j, u_{ij}$$

Elastic axial gauge field

$$A_i^5(x) \approx u_{ij}(x)b_j \ A_0^5(x) \sim \beta b_0 tr(u(x))$$

Fluctuations of the axial vector b induced by:

Static inhomogeneous deformations
Time dependent deformations

A tight binding derivation provides values for the coupling¹ In the presence of b_0 get an A_0 component²

- 1. A. Cortijo, Y. Ferreiros, K. Landsteiner, MAHV, Elastic gauge fields in Weyl semimetals PRL (2015).
- 2. A. Cortijo, D. Kharzeev, K. Landsteiner, MAHV. *Strain-induced CME in Weyl semimetals*, PRR (2016).

Mixed axial-em gauge fields

$$S = \int d^4k \overline{\Psi}_k \gamma^{\mu} (\partial_{\mu} - ib_{\mu} \gamma^5 - ieA_{\mu}) \Psi_k$$

Effective action:

$$S_{CS} = \frac{e^2}{16\pi^2} \int d^4x \ b_{\mu} \varepsilon_{\mu\nu\rho\sigma} A_{\nu} \, \partial_{\rho} A_{\sigma}$$

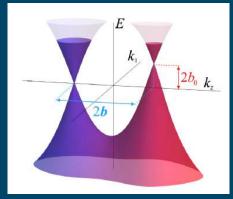
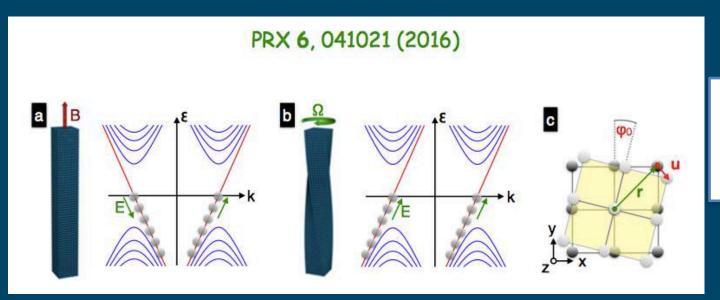


Fig. from M. Chernodub

- Elastic contribution to all anomaly related responses!
- New response functions.
- Mixed em-elastic responses (piezoelectric-like).



Hall viscosity from Hall conductivity
Chiral magnetic effect in equilibrium

1. A. Cortijo, Y. Ferreiros, K. Landsteiner, MAHV, Elastic gauge fields in Weyl semimetals PRL (2015).

2. A. Cortijo, D. Kharzeev, K. Landsteiner, MAHV. *Strain-induced CME in Weyl semimetals*, PRR (2016).

WSM straintronics (theory)

$$\vec{B}^5 = \vec{\nabla} \wedge \vec{A}^5$$

$$\vec{E}^5 = \partial_t \vec{A}^5 + \vec{\nabla} A_0^5$$

Pikulin, D. I., Chen, A. & Franz, M. Chiral anomaly from strain-induced gauge fields in dirac and weyl semimetals. *Phys. Rev. X* 6, 041021 (2016).

Grushin, A. G., Venderbos, J. W. F., Vishwanath, A. & Ilan, R. Inhomogeneous weyl and dirac semimetals: Transport in axial magnetic fields and fermi arc surface states from pseudo-landau levels. *Phys. Rev. X* 6, 041046 (2016).

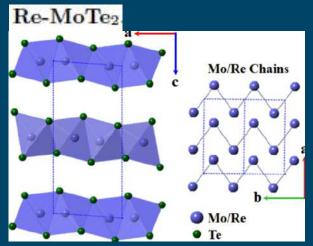
Liu, T., Pikulin, D. I. & Franz, M. Quantum oscillations without magnetic field. Phys. Rev. B 95, 041201 (2017).

Arjona, V., Castro, E. V. & Vozmediano, M. A. H. Collapse of landau levels in weyl semimetals. *Phys. Rev. B* **96**, 081110 (2017). arXiv:1703.05399.

Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Pseudomagnetic lens as chirality spectrometer in weyl materials. *Phys. Rev. B* **95**, 241114(R) (2017).

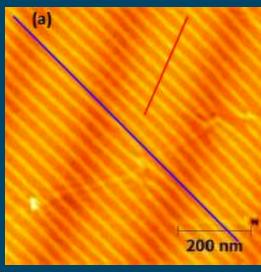
Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Pseudomagnetic helicons. *Phys. Rev. B* **95**, 115422 (2017).

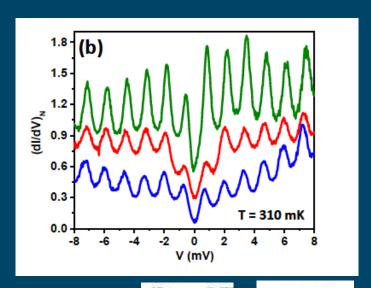
Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Chiral response in lattice models of weyl materials. arXiv:1706.04919 (2017).


Zabolotskiy, A. D. & Lozovik, Y. E. Strain-induced pseudomagnetic and scalar fields in symmetry-enforced dirac nodes. arXiv:1707.02781 (2017).

Gao, Kaushik, Kharzeev, Philip, Chiral kinetic theory of anomalous transport induced by torsion, arXiv: 2010.07123.

Experimental evidence?

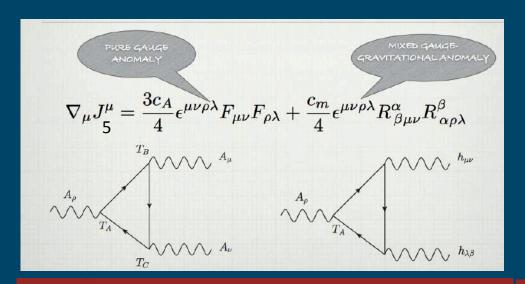

Generation of strain-induced pseudo-magnetic field in a doped type-II Weyl semimetal


Suman Kamboj¹, Partha Sarathi Rana², Anshu Sirohi¹, Aastha Vasdev¹, Manasi arXiv:1903.06224

Landau levels from strain

$$\vec{B}_5 = \vec{\nabla} \times \vec{A}_5$$

4. Heat and geometry: Geometrical anomalies



Thermal transport, geometry, and anomalies

Maxim N. Chernodub, 1, 2 Yago Ferreiros, 3 Adolfo G. Grushin, 4 Karl Landsteiner, 5 and María A. H. Vozmediano 6

27

Gravitational anomalies

QFT in curved space Contribution to the axial current from curvature.

$$S = \int d^4x \sqrt{g} \overline{\Psi} \gamma^{\mu} (\partial_{\mu} + \Gamma_{\mu} + ieA_{\mu}) \Psi$$

nature International journal of science

Letter

Published: 20 July 2017

Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP

Johannes Gooth [™], Anna C. Niemann, Tobias Meng, Adolfo G. Grushin, Karl Landsteiner, Bernd Gotsmann, Fabian Menges, Marcus Schmidt, Chandra Shekhar, Vicky Süß, Ruben Hühne, Bemd Rellinghaus, Claudia Felser, Binghai Yan & Kornelius Nielsch

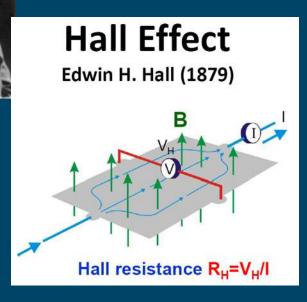
Thermoelectrical transport in a magnetic field: positive-magnetothermoelectric conductance

nature materials

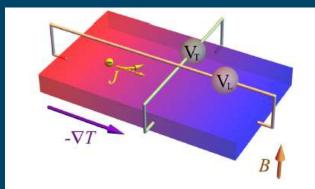
Article

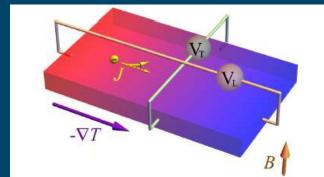
Published: 07 June 2021

Thermal chiral anomaly in the magnetic-field-induced ideal Weyl phase of Bi1-xSb


Dung Vu, Wenjuan Zhang, Cüneyt Şahin, Michael E Flatté, Nandini Trivedi & Joseph P. Heremans

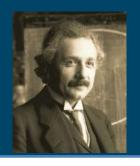
Curvature, thermal? What the hell?



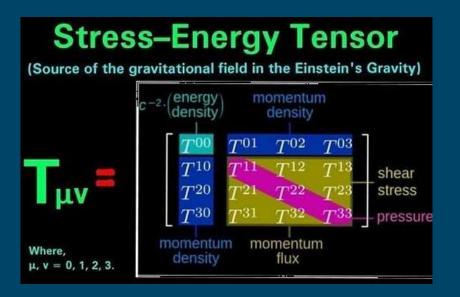

Thermoelectric responses

General: $\vec{J} = \hat{\sigma}\vec{E} - \hat{\alpha} \vec{\nabla}T$

$$J^i = \sigma_H^{ij} \nabla_j V$$


$$\sigma^{ij} \sim \langle J^i J^j
angle$$

$$J^i = \alpha^{ij} \nabla_j T$$


??

How can we get Kubo formulas for thermal transport coefficients?

Relating gravity to thermal transport

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

In a curved space formalism, variations of the metric generates variations in the energy-momentum tensor.

$$S = S_{flat} - rac{1}{2} \int d^d x \, h_{\mu
u} T^{\mu
u}$$

$$T^{\mu\nu} = -2\frac{\delta S}{\delta h_{\mu\nu}}$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

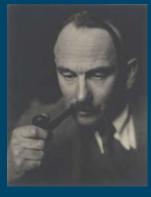
Tolman-Ehrenfest effect

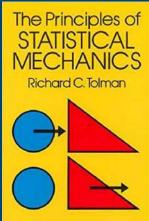
Precursors

APRIL 15, 1930 PHYSICAL REVIEW VOLUME 35
ON THE WEIGHT OF HEAT AND THERMAL EQUILIBRIUM
IN GENERAL RELATIVITY

BY RICHARD C. TOLMAN

DECEMBER 15, 1930


PHYSICAL REVIEW


VOLUME 36

TEMPERATURE EQUILIBRIUM IN A STATIC GRAVITATIONAL FIELD

By RICHARD C. TOLMAN AND PAUL EHRENFEST

The problem: thermodynamic equilibrium in gravitational fields.

heat has weight

$$\frac{1}{T}\nabla T = -\frac{1}{c^2}\nabla\Phi,$$

Variations of gravitational potentials induce variations of temperature

Theory of Thermal Transport Coefficients*

J. M. LUTTINGER

Just as the space- and time-varying external electric potential produced electric currents and density variations, so a varying gravitational field will produce, in principle, energy flows and temperature fluctuations.

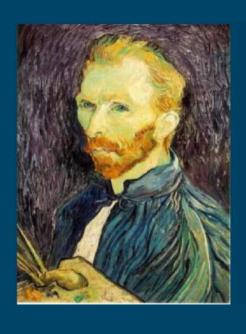
Gravitational potential Φ as a local source of thermal (energy) currents

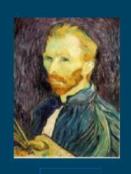
$$\frac{1}{T}\nabla T = -\frac{1}{c^2}\nabla \Phi,$$

Kubo formulas for thermal transport coefficients

Calling these interesting references to my attention.) Although the effect is very small, in practice we are only interested in questions of principle, and an arbitrarily small effect is just as good as a large one. In fact, if the gravitational field didn't exist, one could invent one for the purposes of this paper.

Conformal anomaly


Scale invariance*:


$$x \to \lambda^{-1} x$$

Noether:

$$j_D^\mu = T^{\mu\nu} x_\nu$$

$$(T^{\mu}_{\mu})_{\rm cl} \equiv 0.$$

Dirac action is scale invariant

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} i \mathcal{D} \psi,$$

And has an anomaly when coupled to A

$$\langle T^{\alpha}_{\ \alpha}(x)\rangle = \frac{\beta(e)}{2e}F^{\mu\nu}(x)F_{\mu\nu}(x),$$

Which gives rise to a Scale Magnetic effect:**

Scale transformation (Weyl)

$$g_{\mu\nu}(x) = (2\tau(x))\eta_{\mu\nu},$$

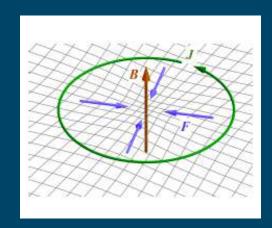
$$g_{\mu
u}(x) = S_{\tau}(x) = S_{\tau}(x) = S_{\tau}(x) = S_{\tau}(x) + \int d^4x \, \tau(x) \, T_{\alpha}^{\alpha}(x)$$

Conformal factor

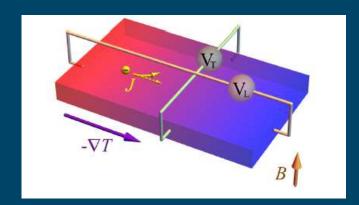
$$\boldsymbol{J} = -\frac{2\beta(e)}{e} \boldsymbol{\nabla} \tau(x) \times \boldsymbol{B}(x).$$

^{*} Scale+Lorentz = conformal

M. N. Chernodub, Anomalous Transport due to the Conformal Anomaly, Phys. Rev. Lett. 117, 141601 (2016).



Generation of a Nernst Current from the Conformal Anomaly in Dirac and Weyl Semimetals


M. N. Chernodub, 1,2 Alberto Cortijo, 3 and María A. H. Vozmediano 3 PHYSICAL REVIEW LETTERS 120, 206601 (2018)

Scale magnetic effect

$$\boldsymbol{J} = -\frac{2\beta(e)}{e} \boldsymbol{\nabla} \tau(x) \times \boldsymbol{B}(x).$$

Nernst effect

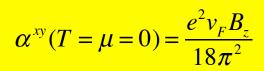
$$\nabla \phi \leftrightarrow \frac{\nabla T}{T}$$

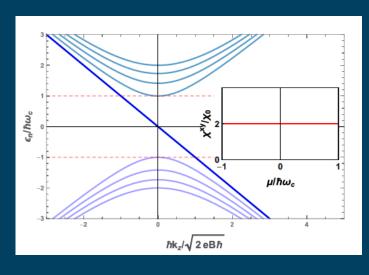
$$\boldsymbol{J} = \frac{e^2 v_F}{18\pi^2 T \hbar} \boldsymbol{B} \times \boldsymbol{\nabla} T.$$

$$\beta_{\text{QED}}^{1\text{loop}} = \frac{e^3}{12\pi^2}.$$

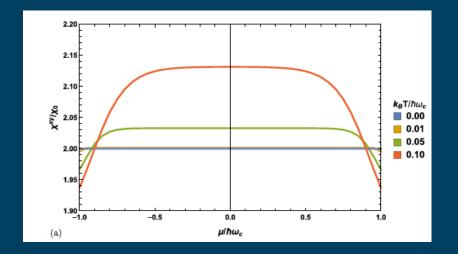
Newtonian limit: $\Phi \sim g_{00} \sim \tau$

Fingerprints of the conformal anomaly in the thermoelectric transport in Dirac and Weyl semimetals


Vicente Arjona, 1,* Maxim N. Chernodub, 2,3,† and María A. H. Vozmediano 1,‡


PRB99,235123(2019)

Kubo calculation:

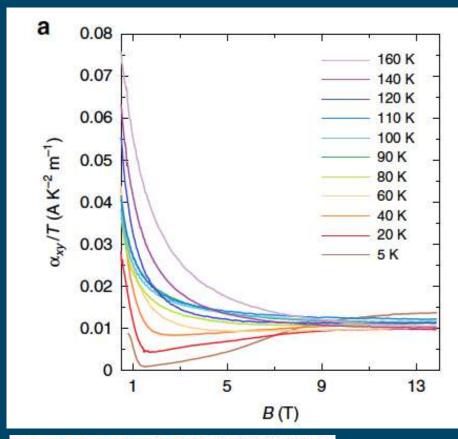

$$J^{x} = \sigma^{xy} E_{y} - \alpha^{xy} \nabla_{i} T$$

$$\chi^{ij}(\mathbf{r} - \mathbf{r}', \tau) = -i\Theta(\tau)\langle [\hat{J}^i(\mathbf{r}, \tau), \hat{T}^{0j}(\mathbf{r}')] \rangle_0$$

LL structure

Finite μ

$$\chi^{xy} = \frac{\alpha^{xy}}{T}$$


Experimental situation?

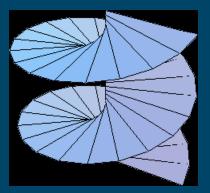
Observation of a thermoelectric Hall plateau in the extreme quantum limit

Wenjie Zhang^{1,9}, Peipei Wang^{2,9}, Brian Skinner ^{3,4,9}, Ran Bi¹, Vladyslav Kozii ^{3,5,6}, Chang-Woo Cho², Ruidan Zhong⁷, John Schneeloch⁷, Dapeng Yu ², Genda Gu⁷, Liang Fu^{3⊠}, Xiaosong Wu ^{1,8™} & Liyuan Zhang ^{2™}

Thermoelectric Hall conductivity:

$$\mathbf{J} = \hat{\sigma}\mathbf{E} - \hat{\alpha}\nabla T$$

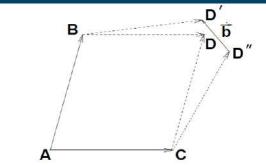
5. Torsional fields in matter



Thermal transport, geometry, and anomalies

Maxim N. Chernodub, 1, 2 Yago Ferreiros, 3 Adolfo G. Grushin, 4 Karl Landsteiner, 5 and María A. H. Vozmediano 6

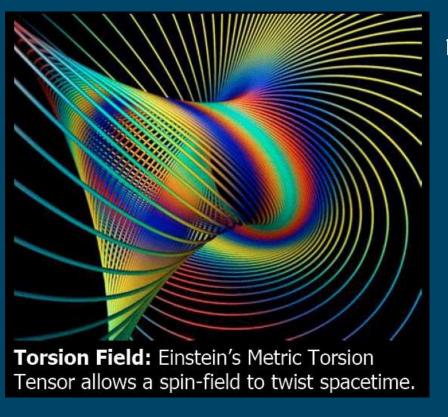
THE PART OF THE PA


Torsion in differential geometry

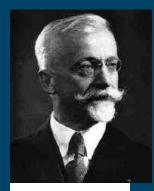
Basic buildings of geometry in manifolds: Metric tensor & Covariant derivative (connection)

$$D_{\mu}\mathbf{v}^{\nu} = (\partial_{\mu} + \Gamma_{\mu\rho}^{\nu})\mathbf{v}^{\rho}$$

$$\Gamma^{\rho}_{\mu\nu} = \left\{ \begin{smallmatrix} \rho \\ \mu\nu \end{smallmatrix} \right\} + \Theta^{\rho}_{\mu\nu}$$


In spaces with torsion infinitesimal parallelograms do not close. Parallel transport in different directions do not commute:

$$[\nabla_{\mu}, \nabla_{\nu}] V^{\rho} = R^{\rho}_{\ \sigma \mu \nu} V^{\sigma} + \theta^{\sigma}_{\mu \nu} \nabla_{\sigma} V^{\rho}.$$


Curvature (Riemann) tensor
Rotation

Torsion tensor Displacement

Torsion in General relativity

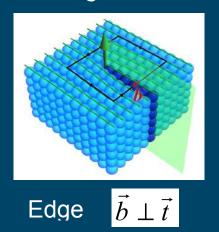
Einstein-Cartan relativity

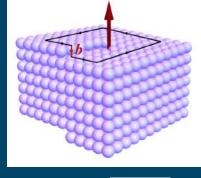
E. Cartan

$$G^{ij} = R^{ij} - \frac{1}{2}g^{ij}R_k^k = \kappa \Sigma^{ij},$$

[1]

The energy-momentum tensor of a spinor field has an antisymmetric part


$$\Sigma^{ij} = -\frac{\hbar c}{2} [(\nabla^i \bar{\Psi}) \gamma^j \Psi - \bar{\Psi} \gamma^j \nabla^i \Psi],$$


and can not be included in [1]

Include a general connection with antisymmetric part (torsion). Curvature couples to mass and torsion to spin.

Dislocations in crystals

Characterized by the Burgers vector **b**

Screw

Images from M. Chernodub

Geometrical description:

Gauge theory of linear defecs in solids: metric approach to elasticity M.O. Katanaev and I.V. Volovich, Ann. Phys. (N.Y.) 216 (1992) 1

Elastic deformations	$R_{\mu\nu}^{ij} = 0$	$T_{\mu\nu}^{i} = 0$
Dislocations	$R_{\mu\nu}^{ij} = 0$	$T_{\mu\nu}{}^i \neq 0$
Disclinations	$R_{\mu\nu}^{ij} \neq 0$	$T_{\mu\nu}^{i} = 0$
Dislocations and disclinations	$R_{\mu\nu}^{ij} \neq 0$	$T_{\mu\nu}{}^i \neq 0$

H. Kleinert, Gauge fields in condensed matter, vol 2.

Dislocations can be described in the covariant formalism by adding torsion to the spacetime connection.

Weyl fermions in curved space with torsion

$$L = \overline{\Psi} \gamma^{\mu} \Big(\partial_{\mu} - \Omega_{\mu}(x)) \Psi \Big) + i g_{\nu} \overline{\Psi} \gamma^{\mu} T_{\mu} \Psi + g_{A} \overline{\Psi} \gamma_{5} \gamma^{\mu} S_{\mu} \Psi$$

$$\Omega_{\mu} = \frac{1}{4} \gamma^a \gamma^b e^{\nu}_{a;\mu} e_{b\nu}$$

$$T_{\rho} = g_{\mu}^{\nu} \theta^{\mu}_{\nu\rho}$$
 , $S_{\sigma} = \varepsilon_{\mu\nu\rho\sigma} \theta^{\mu\nu\rho}$

The trace part of the torsion is associated to edge dislocations —change in volume element — and couples as a usual vector gauge field.

The axial part couples as an axial vector field and generates a contribution to the axial anomaly:

The Nieh-Yan term

$$\nabla_{\mu}J_{5}^{\mu} - \theta_{\lambda\mu}^{\lambda}J_{5}^{\mu} = \mathsf{C}_{\mathsf{N}} \ \epsilon^{\mu\nu\rho\lambda}(\eta_{ab}\theta_{\mu\nu}^{a}\theta_{\rho\lambda}^{b} - R_{ab\mu\nu}e_{\rho}^{a}e_{\lambda}^{b}).$$

The coefficient C_N has dimensions of ℓ^{-2}

Torsional anomaly? New anomaly-induced transport?

- Huang, Li, Zhou, Zhang, "Torsional response and liouville anomaly in Weyl semimetals with dislocations," PRB 2019.
- Huang, Han, Stone, "Nieh-Yan anomaly: Torsional Landau levels, central charge, and anomalous thermal Hall effect," arXiv:1911.00174.
- Nissinen ,Volovik, "On thermal Nieh-Yan anomaly in topological Weyl materials," arXiv:1911.03382, 1909.08936.
- Huang, Han, "Torsional Anomalies and Bulk-Dislocation Correspondence in Weyl Systems," arXiv:2003.04853; 2003.04853.
- Laurila, Nissinen, "Torsional Landau levels and geometric anomalies in condensed matter Weyl systems," arXiv: 2007.10682; 2007.10682.
- Huang, Han, Stone, "Hamiltonian approach to the torsional anomalies and its dimensional ladder," PRB 2020.
- Liang, Ojanen, "Topological magnetotorsional effect in Weyl semimetals," PRR 2020.
- Khaidukov, Zubkov, "Chiral torsional effect," Jetp Lett. 2018.
- Imaki , Yamamoto, "Lattice field theory with torsion," PRD 2019.
- Imaki, Qiu, "Chiral torsional effect with finite temperature, density, and curvature," PRD2020.

.

The Nieh-Yan term is a total derivative.

It can be removed by a local counterterm

Physics Letters B Volume 819, 10 August 2021, 136419

On chiral responses to geometric torsion

Yago Ferreiros ^a ♣ , Karl Landsteiner ^b

$$S_{eff}^{NY} = \mathsf{C_N} \int d^4x \, e \, \epsilon^{\mu
u
ho\lambda} \eta_{ab} A_\mu^5 e_
u^a heta_{
ho\lambda}^b,$$

No dissipationless chiral electric transport as a response to torsion. Manifestation of the chiral vortical effect.

Open, debated question.

Other interesting developments

Hydro aspects of Dirac matter

 $\tau_{ee} >> \tau_{any}$ | Fermi liquids in ultrapure crystals

Negative magnetoresistivity in chiral fluids and holography Karl Landsteiner, Yan Liu and Ya-Wen Sun

Negative local resistance caused by viscous electron backflow in graphene SCIENCE 4 MARCH 2016

D. A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom, A. Tomadin, 5 A. Principi, ⁶ G. H. Auton, ⁴ E. Khestanova, ^{1,4} K. S. Novoselov, ⁴ I. V. Grigorieva, ¹ L. A. Ponomarenko, 1,3 A. K. Geim, 1* M. Polini7*

ELECTRON TRANSPORT

Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene 4 MARCH 2016

Jesse Crossno, 1,2 Jing K. Shi, Ke Wang, Xiaomeng Liu, Achim Harzheim, Andrew Lucas, 1 Subir Sachdev, 1,3 Philip Kim, 1,2+ Takashi Taniguchi, 4 Kenji Watanabe, 4 Thomas A. Ohki,5 Kin Chung Fong5*

Evidence for hydrodynamic electron flow in PdCoO₂

Philip J. W. Moll, 1,2,3 Pallavi Kushwaha, Nabhanila Nandi, 3 Burkhard Schmidt, 3 Andrew P. Mackenzie 3,4*

SCIENCE

4 MARCH 2016

ARTICLE

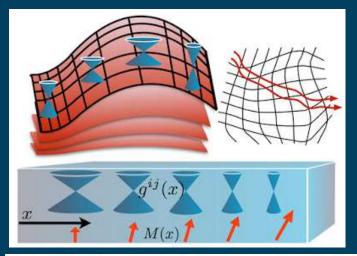
DOI: 10.1038/s41467-018-06688-

NATURE COMMUNICATIONS (2018)

Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide

J. Gooth^{1,2}, F. Menges^{1,4}, N. Kumar², V. Süβ², C. Shekhar ¹⁰, Y. Sun ¹⁰, U. Drechsler¹, R. Zierold³, C. Felser 0 2 & B. Gotsmann 1

Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals


Andrew Lucas a,1, Richard A. Davisona,1, and Subir Sachdeva,b,1

August 23, 2016

The holographic Weyl semi-metal

Karl Landsteiner Yan Liu

May 2015 · Physics Letters B 753(C)

Designer Curved-Space Geometry for Relativistic Fermions in Weyl Metamaterials Alex Westström and Teemu Ojanen PHYSICAL REVIEW X 7, 041026 (2017)

Featured in Physics

Open Access

Hear the Sound of Weyl Fermions

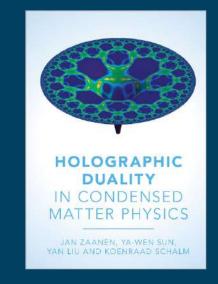
Zhida Song and Xi Dai Phys. Rev. X 9, 021053 - Published 17 June 2019

nature

TOPOLOGICAL SEMIMETALS

Physics Sound of Weyl Nature Physics 15, 522 (2019) Yun Li

PHYSICAL REVIEW LETTERS


Signatures of the Chiral Anomaly in Phonon Dynamics

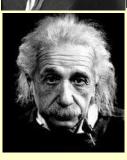
P. Rinkel, P. L. S. Lopes, and Ion Garate Phys. Rev. Lett. 119, 107401 - Published 8 September 2017

arXiv:1903.07133

Quantum information

DIRAC MATTER

The big picture


grand unification

Quantum field theory particle physics

Condensed matter solid state+stat. physics

Plasma physics

Elasticity

Hydrodynamics

Relativity and cosmology

String theory (holography) ADS/CMT