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Abstract

Age is one of the major known risk factors for
Alzheimer’s Disease (AD). Detecting AD early is crucial
for effective treatment and preventing irreversible brain
damage. Brain age, a measure derived from brain imag-
ing reflecting structural changes due to aging, may have
the potential to identify AD onset, assess disease risk, and
plan targeted interventions. Deep learning-based regres-
sion techniques to predict brain age from magnetic res-
onance imaging (MRI) scans have shown great accuracy
recently. However, these methods are subject to an in-
herent regression to the mean effect, which causes a sys-
tematic bias resulting in an overestimation of brain age in
young subjects and underestimation in old subjects. This
weakens the reliability of predicted brain age as a valid
biomarker for downstream clinical applications. Here, we
reformulate the brain age prediction task from regression to
classification to address the issue of systematic bias. Rec-
ognizing the importance of preserving ordinal information
from ages to understand aging trajectory and monitor ag-
ing longitudinally, we propose a novel ORdinal Distance
Encoded Regularization (ORDER) loss that incorporates
the order of age labels, enhancing the model’s ability to
capture age-related patterns. Extensive experiments and
ablation studies demonstrate that this framework reduces
systematic bias, outperforms state-of-art methods by sta-
tistically significant margins, and can better capture sub-
tle differences between clinical groups in an independent
AD dataset. Our implementation is publicly available at
https://github.com/jaygshah/Robust-Brain-Age-Prediction.

1. Introduction

Normal aging causes structural changes in the human

brain across the adult lifespan, a major risk factor for the

decline in physical health and cognitive ability [10]. Ag-

ing also exposes an individual to an increased risk of cancer

[31] and various neurological disorders such as Parkinson’s

Disease [4], vascular dementia [20], mild cognitive impair-

Figure 1. Standard cross-entropy vs. cross-entropy with ORDER

loss: Cross entropy loss (left) encourages the model to learn high

entropy feature representations where embeddings are spread out.

However, it fails to capture ordinal information from labels. Our

proposed ORDER loss with cross entropy (right, Eq. 5) preserves

ordinality by spreading the features proportional to Manhattan dis-

tance between normalized features weighted by absolute age dif-

ference. The illustrated example (right) shows embedding space

where learned representations of MRI scans with ages 20, 40, and

80 are distributed apart from one another, with distances propor-

tional to absolute age differences.

ment (MCI) and Alzheimer’s Disease (AD) [15]. How-

ever, aging in humans is a complex and heterogeneous

phenomenon. Even though each individual ages at the

same rate chronologically, their biological age does not

follow the same trajectory due to genetic factors, envi-

ronmental influences, underlying neurological conditions,

and other unknown factors [31]. Measuring this devia-

tion from normal aging can allow a better understanding

of associations between cognitive impairment and aging

[14, 18] and identify patients at risk for clinical trials [10].

Hence, there is a growing interest in predicting biological

age, most commonly derived from an individual’s structural
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MRI data. The difference between predicted biological age

and chronological age, also known as Brain Age Gap Esti-

mate (BrainAGE) [16], can be used to monitor accelerated

or decelerated brain aging.

Measuring deviation from normal aging relies heavily on

the base model’s performance to predict normal aging, i.e.,

accurately predicting the biological age of healthy subjects.

A model’s performance on a healthy cohort is often as-

sessed using mean absolute error (MAE), which calculates

the mean of absolute BrainAGE. Existing deep learning-

based regression approaches [23, 9, 21] have limited clinical

applications because the models have reported MAE 4 − 5
years in healthy cohorts, suggesting the lack of discrimi-

native power to interrogate BrainAGEs of different clinical

groups [18]. Moreover, a common challenge in brain pre-

diction models is the issue of systematic bias [5, 27, 47],

where there is an overestimation in the predicted age of

young subjects and an underestimation of old subjects. If

BrainAGE were to be used as a reliable imaging biomarker

for measuring brain health, the effect of systematic bias is

of concern. For example, Alzheimer’s disease patients are

often of age 50+, and age underestimates will impact early

detection. Studies have investigated whether this bias is in-

duced due to model or data selection used for training [27].

We argue that systematic bias is inherent to brain age pre-

diction due to its formulation as regression analysis. This

study has two primary objectives: (1) addressing system-

atic bias to enhance the robustness of brain age prediction

and (2) enhancing the model’s performance in predicting

normal aging in healthy cohorts, thereby facilitating more

accurate disease detection in downstream tasks.

Traditionally, brain age estimation is formulated as a re-

gression task since the problem of interest is understanding

which bio-signatures from imaging data have a statistically

significant effect on age. More importantly, it is clinically

relevant to study how these signatures change across differ-

ent age groups and track their progression. To accomplish

this, capturing ordinal information from the ground-truth

age is critical; hence, regression is preferable. However, it is

known that regression models suffer from systematic bias.

To address this issue, we propose reformulating the task of

brain age prediction as a multi-class classification. How-

ever, in classification, each class is treated independently

of the other and hence cannot capture the ordinality of tar-

get labels [48]. To counter this, we propose a novel OR-
dinal Distance Encoded Regularization (ORDER) loss in

conjunction with cross-entropy loss for multi-class ordinal

classification. ORDER loss is calculated based on the Man-

hattan distance between samples in the training mini-batch

within both feature space and target space. As depicted

in Fig. 1, it scales the distance between learned features

in high-dimensional space by a weighted magnitude of the

chronological age difference (see Sec. 3.1). A new ordinal-

ity metric is proposed here to quantify the relative ordering

of feature representations compared to their actual target la-

bel ordering. Results show that our proposed framework

preserves ordinality in feature space and improves brain age

prediction by a statistically significant amount compared to

existing deep learning approaches [23, 9, 21].

One challenge in medical imaging is heterogeneity in the

quality of MRI scans due to different scanners and acquisi-

tion protocols. Several studies have confined themselves

to a single cohort to train and evaluate model performance

[23], which could affect multi-site studies or generaliza-

tion performance. Contrary to that, it is shown that deep

learning [34] and machine learning models [16, 15, 24] are

not only robust to scanner differences, but diversity in data

due to heterogeneous sources can improve model general-

ization. In this study, we decide to combine cohorts from

5 public data sources to train and validate our model col-

lected from (1) National Alzheimer’s Coordinating Cen-

ter’s (NACC), (2) Open Access Series of Imaging Studies

(OASIS) [33, 32], (3) International Consortium for Brain

Mapping (ICBM), (4) Information eXtraction from Im-

ages (IXI), and (5) Autism Brain Imaging Data Exchange-I

(ABIDE) [12]. Additionally, disease detection performance

is evaluated on an independent dataset. In summary, the

main contributions of this research are the following:

1. We formulate Brain Age prediction as an ordinal clas-

sification task that outperforms existing regression-

based methods by a significant margin.

2. A novel ORDER loss is introduced for classification

that preserves the ordinality in the learned feature

space from target labels, which here is Age.

3. Proposed framework addresses the well-observed is-

sue of systematic bias in predicted biological age from

neuroimaging data.

4. Developed model detected subtle differences between

clinical groups of Alzheimer’s disease, which were not

accurately captured by the regression model or other

approaches.

2. Related Work
2.1. Neuroimaging based Brain Age prediction

Prior studies on brain age prediction from neuroimag-

ing data [16, 10, 18, 46, 2, 28, 8, 15, 4] use regression

techniques such as gaussian process regression, support

vector regression, and relevance vector regression. These

approaches involve extensive pre-processing of raw struc-

tural MRI data and extracting imaging features such as

cortical thickness, regional volumes, or surface area using

tools such as FreeSurfer or Statistical Parametric Mapping
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(SPM). Input to the machine learning models are these pre-

processed brain morphological features, and chronological

age is the target variable.

More recent studies have also explored deep neural net-

works to predict brain age using raw neuroimaging data

[9, 23, 37, 22, 42, 43, 3] and results demonstrate that deep

neural networks outperform traditional machine learning

approaches given sufficient training data [3, 9, 21]. Since

deep learning methods perform automatic feature extrac-

tion from raw structural MRI data, it allows capturing pre-

viously unseen imaging signatures related to aging in the

brain and makes the model less prone to any biases from

pre-processing steps, making it more generalizable.

2.2. Systematic Bias in Predicted Brain Age

In brain age prediction, predicted biological age is of-

ten observed to be systematically biased towards the co-

hort’s mean age [27, 26, 44, 45, 5] affected by regression

to the mean (RTM) effect, limiting its potential clinical util-

ity. This causes an unexpected overestimation of predicted

brain age in young subjects and underestimation among old

subjects. Historically, the RTM effect has been attributed

to within-subject and between-subject variability [17]. This

systematic bias in predicted brain age is not specific to the

choice of learning algorithm, data sample imbalance across

age groups, or imaging data heterogeneity due to different

scanners [27]. Since brain age prediction is traditionally

formulated as a regression problem, RTM is a characteristic

phenomenon of regression analysis.

Studies that aim to mitigate this systematic bias propose

post-hoc correction methods where predicted age is scaled

by slope and intercept derived from regression of predicted

age or BrainAGE [10, 11, 5] on chronological age. Le et
al. [26] used chronological age as a covariate when ana-

lyzing group-level differences in BrainAGE, whereas Cole

et al. [10] did not include chronological age in the final

adjustment scheme. However, it increased the variance in

predicted BrainAGE [5]. Other studies [5, 11] included

chronological age in the final age adjustment, but these

methods are likely to be inaccurate when the age range of

the independent testing dataset differs from the age range of

the model’s training data. Recently, Zhang et al. [47] found

that these correction methods do not properly address the

systematic bias in predictions. Experiments from that study

also show that even though linear [5, 10] and quadratic [44]

correction methods push average BrainAGE close to zero,

bias in BrainAGE for same-age subjects gets worse.

More fundamentally, correcting the predicted BrainAGE

in a two-step process by explicitly controlling for age would

make downstream analysis questionable. This highlights

the need to develop a direct method that addresses system-

atic bias in brain age prediction and is more accurate in pre-

dicting normal aging.

2.3. Regression as Ordinal Classification

Predicting brain age from imaging data is an ordinal clas-

sification task (also known as ordinal regression) since the

labels exhibit a natural order. et al. [19] conducted a com-

prehensive exploration of ordinal classification methodolo-

gies, categorizing them into three main groups: naive ap-

proaches using regression or nominal classification meth-

ods, ordinal binary decomposition, and threshold models.

However, the efficacy of ordinal decomposition approaches

relies heavily on task-specific decomposition strategies,

while threshold models demand meticulous calibration of

hyperparameters to achieve optimal convergence [39]. In

this study, we compare our approach with the nominal clas-

sification and regression techniques previously documented

in the literature.

In computer vision, it is shown that classification can

outperform regression in many tasks, such as age estima-

tion from face images [36, 25, 40], object counting [29],

and depth estimation [7]. The target space is discretized

into same-size intervals, and surprisingly, models are more

accurate in predicting a range of values rather than estimat-

ing actual values on a continuous scale. The exact reason

for classification outperforming regression has been less ex-

plored before. Zhang et al. [48] suggest that classification

benefits from its ability to learn high entropy feature repre-

sentations compared to regression, which accounts for the

performance gap. Inspired by these insights, we transform

the task of brain age prediction from regression to multi-

class classification. In brain age prediction, the target out-

put follows a continuous scale consisting of the human life

age span. Despite the performance improvement, classifica-

tion models treat each class label independently from each

other, where each wrong prediction is penalized equally.

For instance, given a sample with a true age of 53, cross-

entropy (CE) penalizes the model by the same magnitude if

the wrong prediction was 21 or 52. Hence, the ordinal rela-

tionship between target labels is not accurately captured in

learned representations of brain age using CE or other loss

functions proposed in previous studies [36, 48] ( Sec. 4).

One of the initial works that proposed deep learning-

based classification for age estimation from facial images

was by Rothe et al. [40], where they used the expected mean

of softmax weights as the estimated age. Pan et al. [36]

also used softmax expected value for age estimation with

an additional mean-variance loss used in training. Mean

loss minimizes the difference between the mean of the es-

timated distribution and the ground truth, while the vari-

ance loss minimizes the variance of the estimated distri-

bution, resulting in a concentrated distribution. Different

from these approaches, Zhang et al. [48] observed that clas-

sification allows learning high entropy feature representa-

tion with a more diverse feature set compared to regres-

sion. They introduce an Euclidean distance-based loss with
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mean squared error (MSE) loss for regression to increase

the marginal entropy such that learned features are spread

out while preserving target ordinality. The latter two studies

[36, 48] also highlight preserved ordinality in learned fea-

ture space from their proposed approaches. However, for

brain age prediction, results show that this is not the case

when compared to a regression model ( Sec. 4).

3. Methods
Fig. 2 gives an overview of our framework for robust

brain age prediction. In this section, we first describe our

proposed ORDER loss that encodes ordinal information

within target labels into learned feature space. Then, in

addition to MAE, we define two metrics to measure our

model’s performance in preserving ordinality and minimiz-

ing systematic bias compared to established methods.

3.1. ORDER Loss

To better understand the intuition behind the proposed

ORDER loss, we first review the original cross-entropy loss

(LCE), which is formulated as:

LCE = − 1

N

N∑

i=1

log(ŷi)

= − 1

N

N∑

i=1

log
eW

T
yi

xi

∑C
j=1 e

WT
yj

xi

(1)

where xi is input to the last fully connected layer corre-

sponding to i-th sample from training data N , yi is the

hot encoding of the true label, ŷi is the predicted proba-

bility, and WT
yj

is j-th column of last fully connected layer

(j ∈ [1, C], C is number of classes). WT
yi
xi often denoted

as zi, is the target logit of i-th sample [38].

LCE = − 1

N

N∑

i=1

log
ezi

∑C
j=1 e

zj
(2)

In brain age prediction, our main aim is to understand

how the dependent variable (age) changes with variations

in independent variables (imaging features). Given a sam-

ple from class i, cross-entropy loss forces zi > zj(∀j �= i).
However, when the class labels are ordered, it does not

guarantee that learned feature representation follows the

same order, i.e., zi < zi+1 < zi+2 < ... < zC and

zi > zi−1 > zi−2 > ... > z1. Even though LCE increases

the marginal entropy of feature space, resulting in a diverse

feature set, the marginal ordering between class labels is not

correctly captured. Keeping the diversity of features from

LCE intact, we adjust the target logit zi with correspond-

ing feature vector xi’s distance to other features xj(∀j �= i)
in a batch of samples, weighted by distance between class

labels.
z′ = WT

yi
xi + ϕ(xi) (3)

where,

ϕ(xi) =
1

N − 1

N∑

j=1,i �=j

|i− j||x̄i − x̄j |manh (4)

x̄ is L2 normalized vector x̄ = x/max(||x||2). Substituting

Eq. 3 in Eq. 2 we get new loss LT , which can be decom-

posed into LCE and ORDER loss (LORDER)

LT = − 1

N

N∑

i=1

log
eW

T
yi

xi+ϕ(xi)

∑C
j=1 e

WT
yj

xi

= − 1

N
[

N∑

i=1

log
eW

T
yi

xi

∑C
j=1 e

WT
yj

xi
+

N∑

i=1

ϕ(xi)]

= − 1

N

N∑

i=1

log
eW

T
yi

xi

∑C
j=1 e

WT
yj

xi

− 1

N(N − 1)

N∑

j=1,i �=j

|i− j||x̄i − x̄j |manh

= LCE + LORDER

(5)

We use the Manhattan distance to calculate the distance

between two features xi and xj in high-dimensional space.

Euclidean distance is the most common metric to measure

similarity or distances between two data points. However,

Aggarwal et al. [1] found that, due to the curse of dimen-

sionality in high-dimensional space, the sparsity of features

is significantly high, making them almost equidistant from

each other. The ratio between the closest and farthest points

from a reference sample approaches 1 in high-dimension

space [13]. This further explains the inability of a classifi-

cation model to capture ordinal information. We explored

different orders of distance metrics for ORDER loss, but

Manhattan distance performed best (see Sec. 4.5).

3.2. Evaluation Metrics

3.2.1 Measuring Ordinality

To the best of our knowledge, there are no defined metrics

in the literature that measure the ordinality of feature repre-

sentations from a deep learning model with reference to the

order of ground truth. Given n images and c ordered classes,

we first obtain n features of 512 dimensions from the penul-

timate layer of a trained model {x1, x2, ..., xn}. From those

features, we calculate c feature centroids {f1, f2, ..., fc} us-

ing ground-truth labels corresponding to each class. After

that, Manhattan distances between f1 and other feature cen-

troids can be calculated as D = {d12, d13, ...d1c} where,

dij = |di − dj |manh (6)

Since class labels here are age values in a chronologi-

cally increasing order, we get C = {1, 2, ..., (c− 1)} as the
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Figure 2. Overview of proposed brain age prediction framework. (a) A 3D ResNet-18 model is trained using lifespan cohort with cross

entropy and ORDER losses. Age is calculated as the weighted average of class probabilities from the softmax classifier. (b) At inference,

the Brain Age Gap Estimate (BrainAGE) is calculated as the difference between predicted biological age and actual chronological age. (c)

The trajectory plot offers a visual interpretation of predicted BrainAGE and its associations with aging patterns. The preclinical AD stage

is when the patient behaves cognitively normal, but underlying changes in the brain due to accelerated aging happening at a subtle rate can

be captured using BrainAGE.

distance of the first class to others. We define the ordinality

metric as the Pearson correlation coefficient between D and

C. For a model that perfectly captures ordinal relationships

in feature representations, the ordinality score is close to 1.

Pearson correlation between two continuous variables mea-

sures how much change in one variable is associated with a

proportional change in the other variable. Using this met-

ric, our model’s performance in capturing age-related order

information from labels compared to other approaches is

evaluated (see Tab. 3). An ordinality score close to +1 indi-

cates that the learned features have a similar ranking order

as their corresponding ground-truth labels and a lower value

indicates otherwise.

3.2.2 Quantifying Systematic Bias

Previous approaches discussed in Sec. 3.2.2 that pro-

pose post-hoc correction methods use correlation of pre-

dicted BrainAGE and chronological age as a measure of

underlying systematic bias [26, 27]. Using chronological

age to adjust BrainAGE would reduce age dependence on

BrainAGE, i.e., r = 0. However, it does not address the

inherent systematic bias effect caused due to regression.

Additionally, this correction method would be questionable

when the test dataset does not have the same age range as

the training dataset.

To objectively quantify systematic bias caused by re-

gression to the mean effect, we compare the predicted

BrainAGE at one standard deviation away from mean [17],

i.e., for values less than (μ − σ) and greater than (μ + σ),
where μ and σ are mean and standard deviation of target

age values of the test set. We refer to these two groups as

Systematic Bias - Left and Right (SB-L, SB-R). Since there

is an overestimation of predicted biological age in young

subjects and an underestimation in old subjects, the bias

causes higher BrainAGE and lower BrainAGE values for

those respective sub-groups. These scores are compared for

different methods, and a value closer to 0 indicates better

performance in addressing systematic bias (see Tab. 3).

4. Experiments and Results

We evaluate our proposed brain age prediction frame-

work and other baseline methods on a combined healthy

cohort using three different metrics specific to this task.

Evaluation metrics include MAE, Ordinality, and System-

atic Bias scores.

A 3D ResNet-18 was adopted as the base deep-learning

model, and input to the model are 3-dimensional MRI scans

with a batch size of 4. Stratified oversampling was em-

ployed in classification models, and for regression, samples
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were stratified based on age groups (8−12, 12−16, ..., 92−
96) to perform oversampling. We used AdamW optimizer

with a 1e−3 learning rate and weight decay of 1e−2. Each

model was trained for 100 epochs and with early stopping

to avoid over-fitting. All experiments were performed on

NVIDIA’s A100 80GB GPUs to train, validate, and test the

models.

4.1. Datasets and Preprocessing

Since most medical imaging datasets are part of multi-

center studies, differences in scanners, imaging protocols,

variations in vendors, and their hardware account for het-

erogeneity in data. Deep learning models are known to be

robust against heterogeneity in data. In fact, including more

heterogeneous data in model training improves its general-

ization on out-of-distribution data [34]. With that consid-

eration, a combined lifespan cohort of 7, 377 T1-weighted

MRI scans of healthy participants collected from five differ-

ent public sources was used in model training.

Lifespan cohort: All the age prediction models were

trained, validated, and tested on a healthy cohort (age: 8-95

years) collected from (1) NACC Uniform Data Set (UDS)

from 1999 to March 2021 (2) OASIS (3) ICBM (4) IXI

(http://brain-development.org/ixidataset/) and (5) ABIDE.

These cohorts included both 1.5T and 3T scans with pre-

dominantly Caucasian participants but also included other

race/ethnic groups. The number of samples and age range

per cohort are summarized in Tab. 1.

All five cohorts were preprocessed using an in-house

data preprocessing pipeline. T1-weighted MR images were

first aligned to the MNI template with rigid transforma-

tion, and then intensity normalized and conformed using

FreeSurfer v7 to generate preprocessed images at 1 mm

isotropic voxels with a 256 x 256 x 256 matrix.

Discovery cohort: Additionally, 1, 584 MRI scans were

collected from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI; https://adni.loni.usc.edu/) database contain-

ing a mix of healthy, cognitively impaired, and AD patients.

This cohort was used as an independent testing and discov-

ery dataset to evaluate model performance in predicting age

and its ability to differentiate clinical groups in AD. Prior-

ity was given to scans with matching PET data and partici-

pants who had longitudinal follow-ups. For healthy controls

(HCs), a random subset was selected from the overall ADNI

set and included in this analysis. The diagnostic status was

determined based on ADNI clinical data. In this analysis,

HC (N=678) participants had normal cognition and did not

convert to MCI or AD in follow-up visits. HC to MCI con-

verters (HC-MCI, N=179) are participants who had normal

cognition at baseline but converted to MCI during follow-

up. MCI-stable (MCIs, N=432) participants had a baseline

diagnosis of MCI and stayed unchanged in follow-ups. MCI

to AD converters (MCI-AD, N=139) are those participants

with MCI diagnosis at baseline and subsequently converted

to AD. AD (N=156) patients are those who were diagnosed

with AD at baseline.

Dataset Count Age Range (yrs) Mean ± STD
NACC 4,132 18 - 95 67.5 ± 10.8

OASIS 1,432 8 - 94 27.9 ± 20.7

ICBM 1,101 18 - 80 37.6 ± 15.4

IXI 536 20 - 86 48.8 ± 16.5

ABIDE 176 18 - 56 26.1 ± 7.0

ADNI 1,584 55 - 98 73.3 ± 7.3
Table 1. Age range with distribution and number of samples

for each cohort. The lifespan cohort comprises NACC, OASIS,

ICBM, IXI, and ABIDE, whereas the Discovery cohort consists of

samples from the ADNI cohort.

4.2. BrainAGE prediction

We compare our proposed method’s performance in pre-

dicting the brain age of healthy individuals from lifespan

cohort to four baseline methods, including two regression

and two classification models (Tab. 2). For classification

models, age values were rounded off to the closest integer

and assigned respective class labels. Only 535(7.3%) sam-

ples from the lifespan cohort had non-integer age values.

Our model performed best on the healthy test set with

MAE 2.56, outperforming standard MSE and cross-entropy

loss models. Among other competing methods, the clas-

sification model with mean-variance loss performed best.

The model with cross-entropy loss outperforms the MSE

model due to its ability to learn high entropy features (Fig.

3), where inter-class features are spread out, and intra-class

features are compact [6]. Surprisingly, adding Euclidean

distance-based regularizer to MSE loss did not improve

the regression model’s performance. Our method’s perfor-

mance is also significantly better than MAE reported by

prior studies using regression analysis [21, 23, 9], however,

on different cohorts.

Method MAE
MSE 3.93

MSE + Distance [48] 4.57

CE [40] 3.33

CE + Mean-Variance [36] 2.65

CE + ORDER (Ours) 2.56
Table 2. Brain age prediction results on lifespan cohort. MAE

measures the difference between predicted and actual chronolog-

ical age on the same test set. Bold numbers represent the best

results, while underlined numbers represent second-best results.

4.3. Ordinality and Systematic Bias

We further evaluate our model’s ability to preserve ordi-

nality and address systematic bias in predicted BrainAGE

using metrics defined in Sec. 3.2.1 and Sec. 3.2.2. As ex-

7872

Authorized licensed use limited to: ASU Library. Downloaded on May 08,2024 at 22:17:05 UTC from IEEE Xplore.  Restrictions apply. 



Figure 3. t-SNE visualization of embeddings from models’ penultimate layer: (a) When using MSE loss, embeddings maintain ordinal

relationships but are tightly packed, resulting in a low-entropy feature space (b) MSE with Euclidean distance loss spreads out embeddings

but struggles to preserve ordinal relationships accurately (c) Cross-entropy (CE) further spreads embeddings, creating a high-entropy space,

but at the cost of losing ordinal information (d) Mean-variance loss combined with cross-entropy creates a high-entropy feature space and

slightly improves ordinality (Tab. 3). (e) ORDER loss combined with cross-entropy achieves the best balance: it accurately preserves

ordinality, maintains a high-entropy space, and improves overall performance. Embeddings are colored-coded based on their ground truth

age values [10− 95].

pected, the model with MSE loss had the highest ordinal-

ity score (Tab. 3). Our classification model with ORDER

loss had an ordinality score much closer to standard MSE

loss than other methods, demonstrating its effectiveness in

learning ordinal information. Fig. 3 offers a visual compar-

ison of learned feature space using different loss functions

to confirm this further.

Furthermore, the model with ORDER loss also per-

formed best in reducing systematic bias measured by aver-

age BrainAGE values at one standard deviation away from

the mean. The mean of the test set was 53.4 with a stan-

dard deviation of 22.2. Hence, the bias scores reported in

Tab. 3 are BrainAGE values for age < 31.2 (SB-L) and

age > 75.6 (SB-R). Values closer to zero reflect a better re-

duction in systematic bias. Both MSE-based models had a

higher systematic bias due to the inherent RTM effect. Due

to its ability to learn class-specific and diverse feature sets,

cross-entropy loss reduces bias effects for SB-L and SB-R

groups. Incorporating order information allows the model

to learn the relative ranking of labels, further improving or-

dinal classification performance.

Method Ordinality Systematic Bias
SB-L SB-R

MSE 0.99 3.4 -4.2

MSE + Distance 0.95 4.8 -4.1

CE 0.31 1.1 -3.6

CE + Mean-Variance 0.58 0.4 -4.2

CE + ORDER 0.98 0.1 -2.5
Table 3. Performance evaluation of all methods in preserving ordi-

nality and addressing systematic bias in brain age prediction using

metrics defined in Sec. 3.2.1 and Sec. 3.2.2.

4.4. Alzheimer’s Disease detection

AD has a prolonged preclinical phase where brain

changes manifest subtly as accelerated aging [30]. Fig. 2

illustrates this phase, showing accelerated aging diverging

slightly from normal aging. MCI, a pre-dementia stage,

involves greater cognitive decline than typical aging [41].

BrainAGE can help detect and monitor this stage early.

The discovery cohort (Sec. 4.1) obtained from ADNI

with five clinical groups was used to test BrainAGE predic-

tion using different methods. Trained models were applied

to this cohort using the abovementioned methods to calcu-

late BrainAGE. These five groups were ranked [1 − 5] in

an increasing order of disease severity as HC < HC-MCI

< MCI-stable < MCI-AD < AD. Since disease severity

is proportional to accelerated aging, we expect the aver-

age predicted BrainAGE to follow the same order. Pear-

son correlation is calculated between the model’s predicted

BrainAGE and rank of disease severity. A high correlation

would indicate the model’s ability to accurately character-

ize aging signatures along the AD continuum via estimated

BrainAGE. From Tab. 4, we see that only the model with

MSE and our proposed loss have a high correlation.

We further compare the ability of MSE and ORDER loss

models to detect subtle differences between these clinical

groups accurately. Fig. 4 shows the MSE model had a more

disruptive trend in predicted BrainAGEs between groups,

i.e., there was a higher difference between AD and MCI-AD

(p = 0.16) compared to AD and MCI-stable (p = 0.56).
Whereas the ORDER loss model had an overall consis-

tent trend in statistical significance between groups asso-

ciated with actual disease severity, highlighting its better

discriminative power. It was also able to better detect dif-

ferences between HC and HC-MCI subjects (p = 0.07)
compared to MSE (p = 0.34), which is crucial for early

AD detection. Although our model’s performance wasn’t

as strong as MSE in distinguishing between HC-MCI and

MCI-stable, we posit that this could be attributed to the def-

initions of clinical groups used here. The absence of clin-

ical tools to definitively differentiate HC-MCI from MCI-
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stable groups, given that subjects exhibit normal cognitive

behavior and no discernible symptoms despite age-related

brain changes, might contribute to this outcome. We plan

to work with clinicians to further investigate these observa-

tions from both groups.

Method HC HC-
MCI

MCIs MCI-
AD

AD Corr.

MSE -1.2 -0.8 -0.3 0.8 1.5 0.98

MSE +

Distance

-2.7 -1.9 -1.7 -0.9 0.9 0.94

CE -1.9 -1.5 -3.4 -2.3 -4.1 -0.75

CE +

MV

-1.6 -0.3 -0.5 0.8 2.8 0.94

CE +

ORDER

-1.5 -0.8 -0.3 1.2 2.0 0.98

Table 4. Average BrainAGE values across the five clinical groups

of AD. Last column is the Pearson correlation between average

BrainAGE values and disease severity of clinical groups in in-

creasing order from HC to AD. MV: Mean-Variance.

Figure 4. Heatmap of statistical significances between the five clin-

ical groups of AD calculated as p values from a t-test on predicted

BrainAGE from respective groups, for MSE and cross-entropy

with ORDER loss models.

4.5. Ablation studies

Distance Metric: We explored different Lk norm distance

metrics for ORDER loss and found Manhattan distance

best performing across all evaluation measures. Lk norm

distance between two points x and y in high-dimensional

space, given (x, y ∈ Rd), is be defined as:

Lk(x, y) =
d∑

i=1

[||xi − yi||k] 1k (7)

Aggarwal et al. [1] showed that Manhattan distance

(k = 1) is a more suitable distance metric than Euclidean

(k = 2) for high-dimensional data. They recommended

using k ≤ 1 to improve downstream classification perfor-

mance. Later studies showed that fractional distance met-

rics, i.e., (k < 1), do not systematically address the issue

of the curse of dimensionality [35] but should be a choice

depending on the training data distribution. For the high-

dimensional neuroimaging dataset used here, results indi-

cate that Manhattan distance is more accurate in preserving

ordinality and improving class separability compared to Eu-

clidean or fractional distance metrics (see Tab. 5).

ORDER loss with Classification vs. Regression: We ex-

perimented with the proposed ORDER loss using both clas-

sification and regression frameworks. As discussed in the

paragraph above, since Euclidean and Manhattan distances

performed significantly better than fractional distances, we

explored regression models with our loss for k = {1, 2}
(Tab. 5). Results show that distance-based regularization

does not work well in regression models. Our model with

cross-entropy loss and Manhattan distance-based ordinal

regularization performed best across the three metrics.

k Loss MAE Ordinality Systematic Bias
SB-L SB-R

1/2 CE 6.05 0.85 5.31 -5.19

2/3 CE 18.51 0.13 30.67 -28.27

1 CE 2.56 0.98 0.11 -2.5
1 MSE 4.66 0.95 2.19 -4.98

2 CE 2.90 0.10 0.93 -3.04

2 MSE 4.57 0.95 4.83 -4.13
Table 5. Ablation studies on the proposed framework components

evaluated by MAE, ordinality, and systematic bias scores. k de-

notes different Lk-norm distance metrics defined in Eq. 7

.

5. Conclusion
This paper proposes a novel ordinal-distance regulariza-

tion loss for robust brain age prediction using deep learn-

ing. ORDER loss in an ordinal classification framework

outperforms regression-based brain age prediction methods,

reduces systematic bias in predictions, and preserves or-

dinality in learned feature space. Improved performance

is attributed to ordering information encoded in the model

using ORDER loss and the ability of cross entropy loss

to learn high entropy feature representations. The pre-

dicted BrainAGE from this model is a more reliable imag-

ing biomarker for diagnosing AD and predicting its early

onset. We believe this framework can be generalized to

other regression tasks to improve prediction and address the

RTM effect if present, which we aim to investigate further

in future work.
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Gaser, Alzheimer’s Disease Neuroimaging Initiative, et al.

Estimating the age of healthy subjects from t1-weighted mri

scans using kernel methods: exploring the influence of vari-

ous parameters. Neuroimage, 50(3):883–892, 2010.

[17] MJ Gardner and JA Heady. Some effects of within-person

variability in epidemiological studies. Journal of Chronic
Diseases, 26(12):781–795, 1973.

[18] Christian Gaser, Katja Franke, Stefan Klöppel, Nikolaos
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[28] Franziskus Liem, Gaël Varoquaux, Jana Kynast, Frauke

Beyer, Shahrzad Kharabian Masouleh, Julia M Hunten-

burg, Leonie Lampe, Mehdi Rahim, Alexandre Abraham,

R Cameron Craddock, et al. Predicting brain-age from mul-

timodal imaging data captures cognitive impairment. Neu-
roimage, 148:179–188, 2017.

[29] Liang Liu, Hao Lu, Haipeng Xiong, Ke Xian, Zhiguo Cao,

and Chunhua Shen. Counting objects by blockwise classifi-

cation. IEEE Transactions on Circuits and Systems for Video
Technology, 30(10):3513–3527, 2019.

[30] Justin M Long and David M Holtzman. Alzheimer disease:

an update on pathobiology and treatment strategies. Cell,
179(2):312–339, 2019.
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