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TITLE: Deep Residual Inception Encoder-Decoder Network for Amyloid PET
Harmonization
INVENTORS: Fei Gao
Yi Su
Jay Shah
Teresa Wu

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to and the benefit of U.S. Provisional Patent
Application No. 63/285,002 filed on December 1, 2021, entitled “Deep Residual Inception
Encoder-Decoder Network for Amyloid PET Harmonization.” The disclosure of the
foregoing is incorporated herein by reference in its entirety, including but not limited to those
portions that specifically appear hereinafter, but except for any subject matter disclaimers or
disavowals, and except to the extent that the incorporated material is inconsistent with the

express disclosure herein, in which case the language in this disclosure shall control.

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support under grant Nos.
RO1AGO031581, RO1AG069453, P30AG019610, P50AG00561, PO1AG026276,
PO1AGO003991, R0O1AG043434, RO1IEB009352, and U19AG024904 awarded by the National

Institutes of Health. The government has certain rights in the invention.

TECHNICAL FIELD
[0003] The present disclosure relates to imaging, and in particular to techniques for

imaging brain structure and activity.

BACKGROUND

[0004] Amyloid and tau are the defining pathologies of Alzheimer’s disease (AD) and
their abnormality initiates long before clinical symptoms onset. While postmortem
neuropathological assessments are the gold standard for determining the existence and
severity of these pathologies, the development of radio-labelled tracers allows the in vivo
detection and quantification of amyloid and tau burdens using positron emission tomography
(PET). Since the development of these PET tracers, they have been adopted in many research
studies including the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Dominantly
Inherited Alzheimer’s Network (DIAN) and others. It is determined that amyloid plaques can

1



10

15

20

25

30

WO 2023/101959 PCT/US2022/051243

be detected at least 15 years prior to AD symptom onset and the prevalence of amyloid
positivity increases with age from approximately 10% at age 50 to 44% at age 90 in
cognitively normal populations. Imaging measurements of brain amyloid and tau pathology
help to define AD in its preclinical stage and allow the investigation of the genesis and
progression of AD. Many clinical trials have been designed to include amyloid and tau PET
imaging for the assessment of treatment efficacy and target engagement as surrogate
biomarkers. Human amyloid imaging started more than 15 years ago with the development of
the [C11]-Pittsburgh compound (PIB), and has since been widely adopted by many research
groups. Because of its short half-life (20 minutes), the use of PIB is limited to large research
centers with access to onsite cyclotron and experienced radiochemistry teams. A number of
F18 labeled amyloid tracers were later developed to address this limitation including
florbetapir (FBP), florbetaben (FBB), flutemetamol (FTE), and NAV4694 (NAV), with the
first three subsequently receiving FDA approval for amyloid imaging. With multiple PET
tracers designed for the same target pathology, each tracer has its own target binding affinity,
tracer kinetic behavior, non-specific binding, and tissue retention. Hence the imaging data
acquired display tracer-dependent characteristics. Recent cross-sectional comparison studies
demonstrated that the global amyloid burden measures derived from PIB and FBP have a
shared variance ranging from approximately 70% to 90% depending on the quantification
pipelines and cohorts. These tracers also show different levels of variability in the amyloid
burden measurements. Inter-tracer variability leads to inconsistent amyloid positivity
threshold and poses challenges for multi-center studies. A mean cortical FBP standard uptake
value ratio (SUVR) cutoff of 1.17 was determined to detect moderate to frequent brain
amyloid burden based on pathological assessment. This can be converted to a Centiloid cutoff
of 37.1 CL using published equations. A recent study based on PIB imaging found a
threshold of 20.1 CL to be optimal; and a FBB based study determined a threshold of 19 CL.
The Centiloid approach was proposed to define a common numerical scale hoping to unify
the global amyloid measures derived from different tracers and analysis pipelines. However,
the amyloid measurements still have the same level of correlation between tracers, and the
inherent signal to noise property also remains the same which is a main reason for the
discrepancies in amyloid positivity cutoff aforementioned.

[0005] Differences in amyloid measurements across tracers also pose problems for
longitudinal studies. The tracer difference results in different capabilities of tracking
longitudinal amyloid accumulation which is especially important in clinical trials. In our

recent study, we estimated that the sample size needed to detect a 20% reduction in the rate of
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amyloid accumulation was 305 per arm when PIB is used as the amyloid tracer while a
sample size of 2156 is needed for FBP. Furthermore, strategies enabling the detection of
focused changes and investigating the spatial patterns of pathological changes which require
regional and voxel level details are currently lacking. One viable solution may be the
emerging Artificial Intelligence technology: deep learning. Accordingly, improved systems

and methods utilizing the same are desirable.

SUMMARY

[0006] In various embodiments, methods for image harmonization of a brain are
disclosed. The method may include providing an original PET image of the brain using an
original PET tracer, providing a target PET tracer, and converting, using a deep leaming
neural network, the original PET image into a target PET image simulating the image that
would be obtained had the target PET tracer been used.

[0007] In various embodiments, the deep learning neural network may include a U-
Net like architecture. The deep learning neural network may include at least one residual
block. The deep leaming neural network may include nine residual blocks. The at least one
residual block may include one or more encoding blocks and one or more decoding blocks.
[0008] In various embodiments, each encoding block may receive a first input matrix,
and each encoding block may include a first convolutional path which may include a first
convolutional layer. The first convolutional layer may include a first kernel and a first filter
bank. The first convolutional layer may receive the input matrix and may generate a matrix as
an output. The first convolutional path may include a second convolutional layer. The second
convolutional layer may include a second kernel and a second filter bank. The second
convolutional layer may receive the output of the first convolutional layer as an input and
may generate a matrix as an output. Each encoding block may include a second convolutional
path which may include a third kernel. The second convolutional path may include a third
filter bank and may generate a matrix as an output. Each encoding block may sum together
the output of the first convolutional path and the output of the second convolutional path
resulting in a first summed matrix. Each encoding block may down-sample the first summed
matrix. Each encoding block may generate a matrix as an output.

[0009] In various embodiments, the first and second kernel may each include a 3 by 3
kernel. The third kernel may include a 1 by 1 kernel. The first, second, and third filter banks
may each include a 32-channel filter bank. The first input matrix may include a 2D slice of an

original PET image and may include a 256 by 256 matrix. The output of the first
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convolutional layer may include a 256 by 256 by 32 matrix. The output of the second
convolutional layer may include a 256 by 256 by 32 matrix. The output of the second
convolutional path may include a 256 by 256 by 32 matrix. The first summed matrix may
include a 256 by 256 by 32 matrix. The first summed matrix may be down-sampled using a
rectified linear unit (ReLu) function. The output of the encoding block may include a 128 by
128 by 32 matrix.

[0010] In various embodiments, each decoding block may receive a second input
matrix from a corresponding encoding block and a third input matrix from another decoding
block. Each decoding block may concatenate the second input matrix with the third input
matrix to form a concatenated input matrix. Each decoding block may include a third
convolutional path which may include a third convolutional layer. The third convolutional
layer may include a fourth kernel and a fourth filter bank. The third convolutional layer may
receive the concatenated input matrix and may generate a matrix as an output. The third
convolutional path may include a fourth convolutional layer. The fourth convolutional layer
may include a fifth kernel and a fifth filter bank. The fourth convolutional layer may receive
the output of the third convolutional layer and may generate a matrix as an output. Each
decoding block may include a fourth convolutional path which may include a sixth filter
bank. The fourth convolutional path may receive the concatenated input matrix and may
generate a matrix as an output. Each decoding block may include a sixth kemel. Each
decoding block may sum together the output of the third convolutional path and the output of
the fourth convolutional path resulting in a second summed matrix. Each decoding block may
process the second summed matrix using the sixth kemel and may generate a matrix as an
output.

[0011] In various embodiments, the fourth and fifth kernels may each include a 3 by 3
kernel. The sixth kernel may include a 1 by 1 kernel. The fourth, fifth, and sixth filter banks
may each include a 32-channel filter bank. The second input matrix may include a 256 by
256 by 32 matrix. The third input matrix may include a 256 by 256 by 32 matrix. The
concatenated input matrix may include a 256 by 256 by 64 matrix. The output of the third
convolutional layer may include a 256 by 256 by 32 matrix. The output of the fourth
convolutional layer may include a 256 by 256 by 32 matrix. The output of the fourth
convolutional path may include a 256 by 256 by 32 matrix. The second summed matrix by
include a 256 by 256 by 32 matrix. The output of the decoding block may include a 256 by
256 matrix and may include a 2D slice of the target PET image. The residual blocks may

include five encoding blocks and four decoding blocks.
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[0012] In various embodiments, the original PET tracer may include one of the
[C11]-Pittsburgh compound (PIB), florbetapir (FBP), florbetaben (FBB), flutemetamol
(FTE), and NAV4694 (NAV). The target PET tracer may include one of the [C11]-Pittsburgh
compound (PIB), florbetapir (FBP), florbetaben (FBB), flutemetamol (FTE), and NAV4694
(NAYV). The original PET image may include a two-dimensional image. The target PET
image may include a two-dimensional image. The original PET image may have a size of 256
pixels by 256 pixels. The target PET image may have a size of 256 pixels by 256 pixels. The
original PET image may include a three-dimensional image. The target PET image may
include a three-dimensional image. The original PET image may be converted into a series of
original two-dimensional images. Each original two-dimensional image may be converted
into a target two-dimensional image. The target two-dimensional images may be recombined
to form a target PET image. The series of original two-dimensional images may include
coronal, sagittal, and axial views. The series of target two-dimensional images may include
coronal, sagittal, and axial views.

[0013] The contents of this section are intended as a simplified introduction to the
disclosure and are not intended to limit the scope of any claim. The foregoing features and
elements may be combined in various combinations without exclusivity, unless expressly
indicated otherwise. These features and elements as well as the operation thereof will become
more apparent in light of the following description and the accompanying drawings. It should
be understood, however, the following description and drawings are intended to be exemplary

in nature and non-limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] With reference to the following description and accompanying drawings:
[0015] FIG. 1 illustrates the overall architecture of an exemplary residual inception
encoder-decoder network (RIED-Net) in accordance with an exemplary embodiment;

[0016] FIG. 2 illustrates a comparison between a traditional convolutional block in a
U-Net and a residual inception block in an exemplary RIED-Net in accordance with an
exemplary embodiment;

[0017] FIG. 3 illustrates details of an encoding block of an exemplary RIED-Net
model using the first residue inception block as an example in accordance with various

exemplary embodiments; and
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[0018] FIG. 4 illustrates details of a decoding block of an exemplary RIED-Net
model using the last block as an example in accordance with various exemplary

embodiments.

DETAILED DESCRIPTION

[0019] The following description is of various exemplary embodiments only, and is
not intended to limit the scope, applicability or configuration of the present disclosure in any
way. Rather, the following description is intended to provide a convenient illustration for
implementing various embodiments including the best mode. As will become apparent,
various changes may be made in the function and arrangement of the elements described in
these embodiments without departing from principles of the present disclosure. For example,
the steps recited in any of the method or process descriptions may be executed in any suitable
order and are not necessarily limited to the order presented. Furthermore, any reference to
singular includes plural embodiments, and any reference to more than one component or step
may include a singular embodiment or step

[0020] For the sake of brevity, conventional techniques and components for
mathematical processes, transforms, mapping, smoothing, and/or the like may not be
described in detail herein. Furthermore, the connecting lines shown in various figures
contained herein are intended to represent exemplary functional relationships and/or physical
couplings between various elements. It should be noted that many alternative or additional
functional relationships or physical connections may be present in exemplary methods and
systems for imaging and/or components thereof.

[0021] As used herein, “data,” “information,” or the like may include encompassing
information such as commands, queries, files, messages, data for storage, and/or the like in
digital or any other form.

2

[0022] As used herein, “satisfy,” “meet,” “‘match,” “associated with,” or similar

phrases may include an identical match, a partial match, meeting certain criteria, matching a
subset of data, a correlation, satisfying certain criteria, a correspondence, an association, an
algorithmic relationship, and/or the like. Similarly, as used herein, “authenticate™ or similar
terms may include an exact authentication, a partial authentication, authenticating a subset of
data, a correspondence, satisfying certain criteria, an association, an algorithmic relationship,
and/or the like.

[0023] Methods are provided. In the detailed description herein, references to

% ¢ % << % <<

“various embodiments,” “one embodiment,” “an embodiment,” “an example embodiment,”
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etc. indicate that the embodiment described may include a particular feature, structure, or
characteristic, but every embodiment may not necessarily include the particular feature,
structure, or characteristic. Moreover, such phrases are not necessarily referring to the same
embodiment. Further, when a particular feature, structure, or characteristic is described in
connection with an embodiment, it is submitted that it is within the knowledge of one skilled
in the art to affect such feature, structure, or characteristic in connection with other
embodiments whether or not explicitly described. After reading the description, it will be
apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative
embodiments.

[0024] Amyloid and tau are the defining pathologies of Alzheimer’s disease (AD) and
their abnormality initiates long before clinical symptoms onset. Positron emission
tomography (PET) makes it possible to detect and image brain amyloid and tau pathology for
an individual in vivo. However, due to the differences in chemical properties between
different PET tracers, including target binding affinity, tracer kinetic behavior, non-specific
binding, and tissue retention, the PET images have an inconsistent amyloid positivity
threshold and pose challenges for multi-center studies.

[0025] In particular, clinical trials include amyloid and tau PET imaging for the
assessment of treatment efficiency and target engagement as surrogate biomarkers. The
current amyloid and tau PET imaging methods with different PET tracers have a shared
variance ranging from approximately 70% to 90% depending on the quantification pipelines
and cohorts. To address these shortcomings of prior approaches, exemplary embodiments
provide methods using deep learning to produce harmonization of images between different
PET tracers.

[0026] With reference now to FIGS. 1, 2, 3, and 4, in accordance with an exemplary
embodiment, exemplary methods utilize concepts from PET image processing and provide
techniques related to image reconstruction, attenuation, and scatter correction. However, all
practical applications of principles of the present disclosure are contemplated herein.

[0027] In an exemplary embodiment, in an image conversion method, a method
comprises five encoding blocks and four decoding blocks, and comprises various convolution
operations within each encoding block, and comprises various deconvolution operations
within each decoding block, as illustrated in FIG. 1. This is an architecture similar to U-Net
(Ronneburger et al., U-net: Convolutional networks for biomedical image segmentation.
International Conference on Medical Image Computing and Computer-Assisted Intervention:

Springer; 2015, p. 234-41; the entire contents of which are hereby incorporated by reference)
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and with the addition of a residual inception short-cut path that has been shown to improve
training efficiency. Each block has a conventional convolution/deconvolution path with two 3
by 3 convolutional layers, and in parallel, a 1 by 1 convolution path. The output matrices
from these two parallel paths are summed together and down/up sampled by a factor of 2 to
serve as the input to the next block.

[0028] In an exemplary embodiment, in a convolution method, a method comprises
learning the difference (¥) between mapping and original input x, as illustrated in FIG. 2.
Usually, a deep network (like a U-Net) estimates an output by learning a mapping function H,
from input x to an output H(x). Instead of learning the direct mapping H, residual networks
(like a RIED-Net) attempt to learn the difference (F) between mapping and original input x.
A projection or estimation of x (labeled G(x)) can be used instead of direct input features.
Gix) is generated using a simple [1x1] convolution to match the dimensions of the input. It is
easier to learn the residual of output and input than the actual input, so the residual inception
block is better than the traditional convolution block. Further, the use of residual blocks can
address gradient vanishing issues from deep models.

[0029] In an exemplary embodiment, as illustrated in FIG. 3, in one or more encoding
blocks, the input can be a 2D slice of a PET image, for example as represented as a 256 by
256 matrix. The matrix can be processed in two parallel paths: a traditional convolutional
path with two layers of 3 by 3 kernels and a separate convolutional path with one layer of a 1
by 1 kemel (function G in FIG. 2). The traditional convolution path comprises a first
convolutional layer which uses a 32-channel filter bank and generates a 256 by 256 by 32
matrix (B) as an output. The traditional convolution path further comprises a second
convolutional layer which receives matrix B an input and uses another 32-channel filter bank
to generate another 256 by 256 by 32 matrix (C) as an output. The separate convolutional
path uses a 32-channel 1 by 1 filter bank and generates another 256 by 256 by 32 matrix (A)
as an output. Matrices A and C are summed together and then down-sampled by a factor of
two using a rectified linear unit (ReLu) function (or other suitable function) to generate a 128
by 128 by 32 matrix (D). Matrix D serves as the input for the next encoding block. Matrix C
serves as the partial input for the corresponding decoding block.

[0030] In an exemplary embodiment, as illustrated in FIG. 4, in one or more decoding
blocks, the input can comprise a 256 by 256 by 32 output matrix from the corresponding
encoding block and a 256 by 256 by 32 output matrix from the previous decoding block.
These two matrices are concatenated into a 256 by 256 by 64 matrix. This input matrix can be

processed in two parallel paths: a traditional convolutional path with two layers of 3 by 3
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kernels and a separate convolutional path with one layer of a 1 by 1 kernel. The traditional
convolution path comprises a first convolutional layer which uses a 32-channel filter bank
and generates a 256 by 256 by 32 matrix (B) as an output. The traditional convolution path
further comprises a second convolutional layer which receives matrix B an input and uses
another 32-channel filter bank to generate another 256 by 256 by 32 matrix (C) as an output.
The separate convolutional path uses a 32-channel 1 by 1 filter bank and generates another
256 by 256 by 32 matrix (A) as an output. Matrices A and C can be summed together and
processed by a 1 by 1 convolutional kerel to generate a target 2D output image slice.

[0031] Via application of principles of the present disclosure, an exemplary RIED-
Net model is able to harmonize amyloid PET images acquired using different tracers. Further,
an exemplary RIED-Net model is able to improve the agreement in amyloid measures from
two different tracers for both global indices and voxel-wise similarities. An exemplary RIED-
Net model can be generalized to external imaging data and achieve favorable performance
without additional tuning of the model. An exemplary RIED-Net model is robust to
variabilities in imaging acquisition protocols and scanner differences when standard scanner
harmonization protocols are implemented.

[0032] An exemplary RIED-Net model has two major advantages. First, RIED-Net
focuses on voxel mapping instead of using patch-based approaches. Compared to an
exemplary RIED-Net model, patch-based approaches sacrifice synthesis performance at the
voxel levels. Second, an exemplary RIED-Net model is computationally affordable. This
gives an exemplary RIED-Net model the potential to perform PET harmonization in 3D.
Because an exemplary RIED-Net model is trained on each of the three orthogonal views of

the input 3D images, RIED-Net avoids the unwanted noises across 2D slices that occur with

other 2D models.
[0033] WORKING EXAMPLE
[0034] Participants. From Open Access Series of Imaging Studies (OASIS), 92

participants aged 43-88 years were identified who had [C11]-Pittsburgh compound (PIB) and
florbetapir (FBP) PET scans within 3 months. This dataset was used for training and cross-
validation of the RIED-Net as a PET harmonization model. An independent dataset of 46
participants aged 21-89 years with paired PIB and FBP PET scans were downloaded from the
Centiloid Project website and served as the external validation (GAAIN) set. All studies were
approved by their corresponding institutional review board and written informed consent was

obtained for each participant.
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[0035] Imaging. For the OASIS dataset, dynamic PIB PET scan was acquired on a
Siemens Biograph 40 PET/CT or a Siemens/CTI EXACT HR+ scanner for 60 minutes after
tracer administration and reconstructed using standard iterative methods with attenuation and
scatter correction. Dynamic FBP PET was acquired on a Siemens Biograph mMR scanner for
70 minutes after FBP administration and reconstructed using an ordered subset expectation
maximization (OSEM) algorithm and attenuation/scatter corrected using a separately
acquired low dose CT scan. For each participant, a T1-weighted MRI scan was also acquired
using a 3T MR scanner. All imaging were acquired at the Washington University in St.
Louis, and individual scans for each participant were completed within 3 months. The
imaging acquisition information for the GAAIN dataset has been previously described in
Navitsky et al., Standardization of amyloid quantitation with florbetapir standardized uptake
value ratios to the Centiloid scale. Alzheimers Dement. 2018, the entire contents of which
are hereby incorporated by reference. Briefly, PIB PET was acquired between 50-70 minutes
post-injection, and FBP PET was acquired 50-60 minutes post-injection. The imaging pair
was obtained an average of 18 days apart, and a 3T T1 MRI was obtained for each subject
within 6 months of PET acquisition. One participant in the GAAIN cohort was excluded from
further analysis due to poor quality of the T1 MRI.

[0036] The T1 weighted MRI data was analyzed using FreeSurfer (Martinos Center
for Biomedical Imaging, Charlestown, Massachusetts, USA) to define anatomical regions.
Amyloid PET imaging quantification was then performed using our standard protocols that
included scanner harmonization, motion correction, target registration, and regional value
extraction using a PET unified pipeline (PUP). The output included a standard uptake value
ratio (SUVR) image using cerebellar cortex as the reference region and a mean cortical
SUVR (MCSUVR) as the global index of brain amyloid burden. For the OASIS cohort, the
PIB PET data were summed between 30-60 minutes and the FBP data were summed between
50-70 minutes post-injection to generate the SUVR images and the MCSUVR global indices.
For the GAAIN cohort, the PIB and FPB PET data were summed between the 50-70 minutes
and 50-60 minutes post-injection window for the quantification. The SUVR images were
transformed in to the MNI152 template space via affine transformation established based on
the T1 MRI image and served as the input to the RIED-Net model for training, internal
validation, and external validation. All MCSUVR measurements were also converted to the
Centiloid scale (CL) using pre-established equations and procedures to facilitate the cross-

tracer comparison and interpretation.
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[0037] Deep Learning Model for PET Harmonization. In an exemplary embodiment,
we used 10-fold Cross-Validation (CV) in the training. Specifically, for the OASIS dataset,
we shuffled the dataset randomly and created 10 different groups of the dataset, for an even
split, we decided to use 90 out of 92 total samples (excluding the last two participants
according to alphabetical order) and created 10 different folds of size 81:9 (total 90) where 81
was used for training and validation, and 9 was used for testing respectively. These folds are
generated such that there is no overlap among the training and testing samples and the test
dataset in each fold is always unique. We performed this 10-fold CV technique for all three
views: coronal, sagittal and axial. For each view and fold, individual FBP 2D slices (256 x
256) from the 81 patients were used as the input, and the PIB 2D slices with respect to the
same patients were taken as output to train and validate the RIED-Net model. Among the 2D
slices obtained from 81 patients, we used a 90:10 split for training and internal validation. For
each fold, we trained the model for a total of 40 epochs with batch-size of 16 (determined by
the computing resource) and mean absolute error (MAE) as the loss function optimized by
the model. We used Adam (Kingma et al., A method for stochastic optimization. arXiv
preprint arXiv:14126980. 2014; the entire contents of which are hereby incorporated by
reference) as the optimizer with a learning rate of 0.002 and a decay rate of 0.0005. For the
other parameters we used default settings of the Keras platform. The validated model for that
fold was then used to generate synthetic PIB SUVR images from FBP image for the
remaining 9 patients serving as testing. Using the 10-fold CV procedure, synthetic PIB
SUVR image was generated for each view and an average synthetic 3D PIB SUVR image
was then generated combining the three views which was used as the main target for
performance evaluation.

[0038] To obtain a single model from the OASIS dataset and test its performance on
the independent GAAIN dataset to further evaluate the generalizability of an exemplary
approach, we retrained the models using 80 out of the 92 OASIS samples that had the largest
field of view (FOV) coverage and applied the models to generate synthetic PIB SUVR
images for samples within the independent GAAIN dataset. Similar to the experiment on
OASIS dataset only, synthetic PIB SUVR images for GAAIN dataset were generated for each
view and the average 3D image across all three views was used as the main target for
performance evaluation.

[0039] Additional principles of the present disclosure may be set forth in this
publication: Shah J, Gao F, Li B, et al. Deep residual inception encoder-decoder network for

amyloid PET harmonization. Alzheimer's Dement. 2022;1-10.  Available at
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https://doi.org/10.1002/alz. 12564 as of November 2022.) The disclosure of the foregoing is

incorporated herein by reference in its entirety, including but not limited to those portions
that specifically appear hereinafter, but except for any subject matter disclaimers or
disavowals, and except to the extent that the incorporated material is inconsistent with the
express disclosure herein, in which case the language in this disclosure shall control .

[0040] While the principles of this disclosure have been shown in various
embodiments, many modifications of structure, arrangements, proportions, the elements,
materials and components, used in practice, which are particularly adapted for a specific
environment and operating requirements may be used without departing from the principles
and scope of this disclosure. These and other changes or modifications are intended to be
included within the scope of the present disclosure.

[0041] The present disclosure has been described with reference to various
embodiments. However, one of ordinary skill in the art appreciates that various modifications
and changes can be made without departing from the scope of the present disclosure.
Accordingly, the specification is to be regarded in an illustrative rather than a restrictive
sense, and all such modifications are intended to be included within the scope of the present
disclosure. Likewise, benefits, other advantages, and solutions to problems have been
described above with regard to various embodiments. However, benefits, advantages,
solutions to problems, and any element(s) that may cause any benefit, advantage, or solution
to occur or become more pronounced are not to be construed as a critical, required, or
essential feature or element.

[0042] As used herein, the terms "comprises,” "comprising," or any other variation
thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article,
or apparatus that comprises a list of elements does not include only those elements but may
include other elements not expressly listed or inherent to such process, method, article, or
apparatus. Also, as used herein, the terms "coupled." "coupling," or any other variation
thereof, are intended to cover a physical connection, an electrical connection, a magnetic
connection, an optical connection, a communicative connection, a functional connection,
and/or any other connection. When language similar to "at least one of A, B, or C" or "at least
one of A, B, and C" is used in the specification or claims, the phrase is intended to mean any
of the following: (1) at least one of A; (2) at least one of B; (3) at least one of C; (4) at least

one of A and at least one of B; (5) at least one of B and at least one of C; (6) at least one of A

and at least one of C; or (7) at least one of A, at least one of B, and at least one of C.
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[0043] Furthermore, no element, component, or method step in the present disclosure
is intended to be dedicated to the public regardless of whether the element, component, or
method step is explicitly recited in the claims. No claim element herein is to be construed
under the provisions of 35 U.S.C. 112(f) unless the element is expressly recited using the

2% ¢

phrase “means for.” As used herein, the terms “comprises,” “comprising,” or any other
variation thereof, are intended to cover a non-exclusive inclusion, such that a process,
method, article, or apparatus that comprises a list of elements does not include only those
elements but may include other elements not expressly listed or inherent to such process,

method, article, or apparatus.
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CLAIMS

What is claimed is:

1. An image harmonization method for a brain, the method comprising:
providing an original PET image of the brain using an original PET tracer;
providing a target PET tracer; and
converting, using a deep learning neural network, the original PET image into a target

PET image simulating an image that would be obtained had the target PET tracer been used.

2, The method of claim 1, wherein the deep learning neural network comprises a U-Net-

like architecture.

3. The method of claim 2, wherein the deep learning neural network comprises at least

one residual block.

4. The method of claim 3, wherein the deep learning neural network comprises nine

residual blocks.

5. The method of claim 3, wherein the at least one residual block comprises one or more

encoding blocks and one or more decoding blocks.

6. The method of claim 5, wherein each encoding block receives a first input matrix, and
each encoding block comprises:
a first convolutional path comprising:

a first convolutional layer comprising a first kernel and a first filter
bank, wherein the first convolutional layer receives the first input matrix and
generates a first output matrix, and

a second convolutional layer comprising a second kemel and a second
filter bank, wherein the second convolutional layer receives the first output
matrix as an input and generates a second output matrix; and

a second convolutional path comprising a third kernel, wherein the second

convolutional path comprises a third filter bank and generates a third output matrix,
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wherein each encoding block (i) sums together the second output matrix and the third
output matrix resulting in a first summed matrix, (ii) down-samples the first summed matrix,

and (iii) generates a fourth output matrix.

7. The method of claim 6, wherein:

the first kernel comprises a 3 by 3 kernel;

the second kernel comprises a 3 by 3 kernel;

the third kernel comprises a 1 by 1 kernel;

the first, second, and third filter banks each comprise a 32-channel filter bank;

the first input matrix comprises a 2D slice of the original PET image and comprises a
256 by 256 matrix;

the first output matrix comprises a 256 by 256 by 32 matrix;

the second output matrix comprises a 256 by 256 by 32 matrix;

the third output matrix comprises a 256 by 256 by 32 matrix;

the first summed matrix comprises a 256 by 256 by 32 matrix;

the first summed matrix is down-sampled using a rectified linear unit (ReLu)
function; and

the fourth output matrix comprises a 128 by 128 by 32 matrix.

8. The method of claim 5, wherein each decoding block receives a second input matrix
from a corresponding encoding block and a third input matrix from another decoding block,
concatenates the second input matrix with the third input matrix to form a concatenated input
matrix, each decoding block comprising:

a third convolutional path comprising:

a third convolutional layer comprising a fourth kemel and a fourth
filter bank, wherein the third convolutional layer receives the concatenated
input matrix and generates a fifth output matrix, and

a fourth convolutional layer comprising a fifth kernel and a fifth filter
bank, wherein the fourth convolutional layer receives the fifth output matrix
and generates a sixth output matrix;

a fourth convolutional path comprising a sixth filter bank, wherein the fourth
convolutional path receives the concatenated input matrix and generates seventh output
matrix; and

a sixth kernel,
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wherein each decoding block (i) sums together the sixth output matrix and the seventh
output matrix resulting in a second summed matrix, (ii) processes the second summed matrix

using the sixth kernel, and (iii) generates an eighth output matrix.

9. The method of claim 8, wherein:
the fourth kernel comprises a 3 by 3 kemnel;
the fifth kernel comprises a 3 by 3 kernel;
the sixth kernel comprises a 1 by 1 kernel;
the fourth, fifth, and sixth filter banks each comprise a 32-channel filter bank;
the second input matrix comprises a 256 by 256 by 32 matrix;
the third input matrix comprises a 256 by 256 by 32 matrix;
the concatenated input matrix comprises a 256 by 256 by 64 matrix;
the fifth output matrix comprises a 256 by 256 by 32 matrix;
the sixth output matrix comprises a 256 by 256 by 32 matrix;
the seventh output matrix comprises a 256 by 256 by 32 matrix;
the second summed matrix comprises 256 by 256 by 32 matrix; and
the eighth output matrix comprises a 256 by 256 matrix and comprises a 2D slice of

the target PET image.

10.  The method of claim 5, wherein the at least one residual block comprises five

encoding blocks and four decoding blocks.

11.  The method of claim 1, wherein the original PET tracer comprises one of the [C11]-
Pittsburgh compound (PIB), florbetapir (FBP), florbetaben (FBB), flutemetamol (FTE), or
NAV4694 (NAV).

12.  The method of claim 1, wherein the target PET tracer comprises one of the [C11]-
Pittsburgh compound (PIB), florbetapir (FBP), florbetaben (FBB), flutemetamol (FTE), or

NAV4694 (NAV).

13.  The method of claim 1, wherein the original PET image comprises a two-dimensional

image.
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14.  The method of claim 1, wherein the target PET image comprises a two-dimensional

image.

15.  The method of claim 13, wherein the original PET image has a size of 256 pixels by
256 pixels.

16.  The method of claim 14, wherein the target PET image has a size of 256 pixels by 256

pixels.

17.  The method of claim 1, wherein the original PET image comprises a three-

dimensional image.

18.  The method of claim 1, wherein the target PET image comprises a three-dimensional

image.

19.  The method of claim 17, wherein the original PET image is converted into a series of
original two-dimensional images, each original two-dimensional image being converted into
a target two-dimensional image, and the target two-dimensional images are recombined to

form the target PET image.

20.  The method of claim 19, wherein the series of original two-dimensional images and

the target two-dimensional images each comprise coronal, sagittal, and axial views.

17
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