
  

Hazed and Confused:  

The Effect of Air Pollution On Dementia*  

KELLY C. BISHOP 

Arizona State University 

 

JONATHAN D. KETCHAM  

Arizona State University 

 

and 

 

NICOLAI V. KUMINOFF 

Arizona State University and NBER 

 

 

We study whether long-term cumulative exposure to airborne small particulate mat-

ter (PM2.5) affects the probability that an individual receives a new diagnosis of 

Alzheimer’s disease or related dementias. We track the health, residential location, 

and PM2.5 exposures of Americans aged 65 and above from 2001 through 2013. 

The expansion of Clean Air Act regulations led to quasi-random variation in indi-

viduals’ subsequent exposures to PM2.5. We leverage these regulations to construct 

instrumental variables for individual-level decadal PM2.5 that we use within flexible 

probit models that also account for any potential sample selection based on survival. 

We find that a 1 μg/m3 increase in decadal PM2.5 increases the probability of a new 

dementia diagnosis by an average of 2.15 percentage points. All else equal, we find 

larger effects for women, older people, and people with more clinical risk factors 

for dementia. These effects persist below current regulatory thresholds.  
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Research shows that airborne particulate matter increases mortality. This effect 

persists around the world and over time, from the historically high exposures in 

London in the 1960s (McMillan and Murphy 2017) and China in the 2000s (Li et 

al. 2019) to the historically low exposures in the US in the 2000s (Deryugina et al. 

2019). Research also shows that air pollution constrains the production and the 

productivity of human capital (Graff-Zivin and Neidell 2013). For instance, daily 

pollution spikes have been found to reduce students’ scores on high-stakes exams 

(Ebenstein, Lavy, and Roth 2016). Among working-age adults, daily pollution 

spikes have been found to reduce performance of both manual and cognitive tasks 

(Chang et al. 2016, Archsmith, Heyes, and Saberian 2017). However, prior research 

has not applied causal methods to evaluate whether airborne particulate matter de-

grades human capital later in life apart from mortality. 

Our study is the first to use a causal research design to evaluate whether long-

term, later-in-life exposure to airborne small particulates (i.e., PM2.5, particulates 

smaller than 2.5 microns in diameter) plays a role in causing dementia. Medical 

research has documented associations between long-term, later-in-life exposure to 

PM2.5 specifically and the probability of individuals receiving a new dementia di-

agnosis, although as with other suspected causes of dementia, the precise mecha-

nisms remain unknown (Peters et al. 2019, Underwood 2017, Block et al. 2012). 

Further, these associations may not be causal due to omitted variables, errors in 

measuring individuals’ pollution exposures, or selection bias.  

We develop a research design to account for potential biases due to prior resi-

dential sorting (driven by pollution, health, and/or preferences), measurement error 

in pollution, and selection on survival. Specifically, we estimate the effects of indi-

viduals’ later-in-life exposure to PM2.5 for up to a decade, the longest duration of 

quasi-random variation available to us. This conditionally exogenous variation re-

sulted from the Environmental Protection Agency’s (EPA) expansion of the Clean 
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Air Act (CAA). Based on air quality monitor readings from 2001-2003, the EPA 

began to enforce a maximum threshold on PM2.5, prompting local regulators to 

clean up polluted areas beginning in 2004. The regulatory incentives for cleanup 

were larger in nonattainment counties that exceeded the maximum threshold on 

PM2.5. The incentives caused differences within counties as well. As a result, indi-

viduals with the same PM2.5 exposures from 2001-2003 experienced different PM2.5 

exposures over the next decade.  

We use this individual-level variation from the EPA’s nonattainment designa-

tions as instruments to identify how cumulative PM2.5 exposure from 2004-2013 

affected the probability of receiving a new diagnosis of dementia during this period 

among Medicare beneficiaries age 65 and above who did not have dementia in 

2004. Specifically, we use county nonattainment status flexibly interacted with in-

dividual-level PM2.5 from 2001-2003 as instruments for the individual’s cumulative 

PM2.5 exposure from 2004-2013. In addition to addressing bias from omitted vari-

ables, including genetics, earlier-in-life exposure, and other latent risk factors for 

dementia, our estimators also address the inevitable error in measuring an individ-

ual’s pollution exposure. 

We apply this design to thirteen years of individual-level data on a random sam-

ple of millions of Americans age 65 and above. These data track their diagnosis 

dates for many illnesses including Alzheimer’s disease and related dementias, their 

demographics, and their sequence of residential addresses from 2001 through 2013. 

We use these residential addresses to link to measures of individual-level PM2.5 

exposure using data from EPA air quality monitors. 

We estimate year-specific probit models that allow for heterogeneity in the ef-

fects of PM2.5 across individuals and across exposure duration while flexibly con-

trolling for individual characteristics associated with dementia risk, including race, 

gender-by-integer-age interactions, baseline medical expenditures, baseline expo-
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sure to PM2.5, fully interacted sets of baseline medical conditions, and the socioec-

onomic composition of individuals’ baseline neighborhoods (defined as a US Cen-

sus block group). Further, we include Core-Based Statistical Area fixed effects to 

absorb spatial variation in diagnostic standards, health care quality and access, and 

latent environmental quality. Finally, we account for the fact that our main estima-

tion sample is limited to individuals who survived through the model year following 

Heckman (1979). Specifically, we estimate the probability of survival in a separate 

first stage, using additional instruments constructed from data on individuals’ diag-

noses of cancers that, based on medical literature, are unrelated to dementia.  

We find that a 1 μg/m3 increase in average PM2.5 concentrations increases the 

probability of receiving a new dementia diagnosis by the end of the decade by an 

average of 2.15 percentage points (pp). For reference, a 1 μg/m3 increase in average 

PM2.5 was 9.1% of the decadal mean and 59% of the decadal standard deviation 

during the period 2004-2013. The estimated marginal effects are larger at lower 

levels of PM2.5. We also find that the estimated marginal effects of PM2.5 increase 

with age, illness and duration of exposure, and that they are larger for women rela-

tive to men and larger for Black or African-American individuals relative to non-

Hispanic White individuals.  

We conduct additional analyses to explore the possibility that nonattainment 

designations are conditionally associated with unobserved earlier-in-life factors 

that cause dementia, which would violate the exclusion restriction assumption of 

our instrumental variables. First, we estimate a model with dementia in 2004 as the 

outcome. The point estimate is negative, small in absolute value, and statistically 

indistinguishable from zero. This suggests that our model is unlikely to be con-

founded by unobserved differences in earlier-in-life or other factors that contribute 

to differences in dementia diagnoses and are conditionally associated with our in-

struments. Second, we evaluate other placebo health outcomes that may be linked 
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to earlier-in-life factors but have no known link to PM2.5. We do not find a relation-

ship between these placebo outcomes and individuals’ cumulative PM2.5 expo-

sures.1 Third, our results persist across a wide range of alternative modeling deci-

sions including controlling for ancillary measures of air pollution exposure.  

These findings indicate that air pollution’s effects on dementia make its detri-

ments to health and human capital substantially larger than previously realized. In-

corporating these effects will be important for comprehensively evaluating the on-

going efforts to improve air quality worldwide.  

I. Later-in-Life PM2.5 Exposure and New Dementia Diagnoses 

A. Existing Knowledge from the Medical Literature 

Recent research has documented a positive association between long-term cu-

mulative exposure to fine-particulate air pollution later in life and dementia (Peters 

et al. 2019, Underwood 2017, Block et al. 2012). In addition, the literature has 

identified a number of potential pathways to explain this association, even if the 

details of the accumulation process remain yet unknown. Two physiological hall-

marks of Alzheimer’s disease specifically are the accumulation of tau protein and 

amyloid beta (Iaccarino et al. 2021), and recent research has established a link be-

tween this accumulation and PM2.5 exposure (Park et al. 2021). Research has also 

found relationships consistent with other potential neurological mechanisms under-

lying the link between PM2.5 and dementia and/or Alzheimer’s disease (Alemany 

et al. 2021), including neuroinflammation caused by accumulation of PM2.5 in brain 

tissue (Kang et al. 2021, Maher et al. 2016), and associations between long-term, 

later-in-life exposure to PM2.5 and accumulated PM2.5 in the brain, smaller brain 

volume, and higher rates of brain infarcts or areas of necrosis and accelerated rates 

of brain atrophy, which is predictive of Alzheimer’s disease (Younan et al. 2020, 

                                                 
1In contrast, we find statistically significant positive effects for two outcomes with known links to PM2.5 (chronic obstructive 

pulmonary disease and chronic kidney disorder).   



5 

 

Wilker et al. 2015).  

Each of these potential pathways between cumulative PM2.5 exposure and a di-

agnosis of dementia are potentially moderated by a number of factors. These factors 

may include differences in PM2.5 chemical composition (Li et al. 2021), earlier-in-

life exposure, cardiovascular risk (Grande et al. 2020), and genetics. While less 

than half of the genetic factors that contribute to late-onset dementia have been 

identified (Ridge et al. 2016), recent research has found that genes play a role in 

moderating environmental factors’ relationship to cognitive decline and dementia, 

including moderating the relationship between PM2.5 and dementia, specifically 

(Alemany et al. 2021, Kulick et al. 2020, Cacciottolo et al. 2017).2  

B. An Overview of our Research Design 

The medical literature described above, along with our data and policy setting, 

described in Sections II and III, respectively, inform several aspects of our research 

design. We preview this research design here.   

We follow prior medical studies and assess the role of later-in-life, long-term 

exposure to PM2.5 as measured by single- or multiple-year annual average ambient 

concentrations in explaining new diagnoses of dementia (Wang et al. 2022, Li et 

al. 2022, Mortimais et al. 2021, Ran et al. 2021, Shi et al. 2021, Shi et al. 2020, 

Grande 2020, Cacciottolo et al. 2017).3 Specifically, we observe the timing of in-

dividuals’ initial diagnosis (or lack thereof) and how it relates to thirteen years 

(2001-2013) of annual average exposure to PM2.5 for them individually based on 

their precise residential locations each year, allowing us to measure individual-spe-

cific exposure histories.4  

                                                 
2 These issues make it difficult to allocate the shares of dementia cases due to genetic risk factors for dementia itself and due 

to environmental factors directly. Earlier research (e.g., Gatz et al. 1997) provided such shares under the strong assumption 

of additive separability between environmental factors and genetics.  
3 Like nearly all of the large-scale studies using secondary data, we cannot observe progression or severity of dementia over 

time. Clinical research commonly refers to this as “incident dementia” or “incidence of dementia”. Peters et al. (2019) pro-

vides a review.  
4 Dementia is an absorbing state. Therefore, we model the occurrence of the initial diagnosis and exclude from our sample 

those who had been diagnosed previously. 
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We depart from the prior medical literature by employing a causal research de-

sign to account for potential sources of confounding. Specifically, we observe 

quasi-random variation in individuals’ PM2.5 exposures beginning in 2004. As a 

result, we are able to model the effects of PM2.5 exposure across a full decade (2004-

2013), conditional on baseline levels of PM2.5 (2001-2003).  

In Section IV, we present a flexible probit model of how cumulative exposure 

to PM2.5 affects the probability of an individual receiving a new dementia diagnosis. 

We allow for heterogeneity by letting this effect vary flexibly with the level of cu-

mulative PM2.5 exposure over the sample and with the levels of the other controls. 

We feature models using increasing durations of PM2.5 exposure. Finally, we in-

clude an extensive set of individual and neighborhood characteristics that may be 

correlated with new dementia diagnoses. These controls are described in detail in 

Section II.  

Even with this extensive set of controls, identifying the effect of cumulative 

PM2.5 exposure on a new diagnosis of dementia presents several challenges. These 

include scope for measurement error in PM2.5 exposure, the potential for sorting on 

latent health, genetics, and earlier-in-life pollution exposures, and selection on sur-

vival. Our econometric approach, described in Section IV, is designed to account 

for each of these challenges. 

First, to address measurement error in PM2.5 exposure and any geographic dif-

ferentials in unobserved factors, we follow prior work (Chay and Greenstone 2005, 

Auffhammer, Bento, and Lowe 2009) and develop instrumental variables from the 

quasi-random variation in PM2.5 exposures (conditional on baseline) that was in-

duced by the CAA regulations. Our control-function approach (Rivers and Vuong 

1988) relies on the familiar assumptions of relevance and exogeneity for two-stage 

least squares. The policy environment and the variation-inducing CAA regulations 

are described in detail in Section III.  



7 

 

Second, to address selection based on survival, we employ a selection-correc-

tion approach (Heckman 1979, Heckman and Robb 1986). To implement this ap-

proach, we use a set of additional instruments from the medical literature that are 

correlated with survival, but independent of the unobserved determinants of demen-

tia. We also present a Lee (2009)-style bounds approach in Appendix H that does 

not rely on this additional set of instruments.  

In addition, we consider the potential for sorting on genetics and omitted ear-

lier-in-life factors. Prior research found that individuals’ residential exposures to 

PM2.5 do not differ by APOE genotypes (Cacciotolo et al. 2017). In addition, Shin, 

Lillard, and Bhattacharya (2019) find “no correlation between Alzheimer’s Disease 

polygenic risk score and net worth, housing assets and nonfinancial assets.” This 

indicates that dementia-related genetics are not associated with sorting into neigh-

borhoods based on economic status. These studies provide evidence that genetic 

factors are unlikely to be correlated with our instrument. To test this directly, we 

examine the estimates of instrumented PM2.5 exposure on the presence of a demen-

tia diagnosis by 2004. In addition to genetics, this assesses whether our results are 

likely to be explained by association between our instruments and any omitted ear-

lier-in-life factors including other clinical risk factors, prior exposure to PM2.5, or 

different chemical compositions of PM2.5.  

II. Data and Measures 

A. Medicare Data and Sample 

The US Medicare program provides universal health insurance for citizens over 

age 65.5 The US Centers for Medicare and Medicaid Services (CMS) maintains a 

comprehensive national database on beneficiaries, including their addresses at each 

                                                 
5 We analyze “traditional” Medicare (TM) administrative records from CMS. CMS manages and pays claims for services 

provided to TM enrollees. Beneficiaries can opt out of TM and enroll in a private Medicare Advantage (MA) managed care 
plan. MA enrollees are left out of most studies of Medicare because MA plans historically did not report claims to CMS. We 

are able to overcome these limitations and include MA enrollees in some specifications described in Appendix J2. 
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point in time, medical claims and diagnoses, and demographics. We track individ-

uals from as early as 1999 through the end of 2013.6 Our featured estimation sample 

starts with a random 20% sample of all traditional Medicare beneficiaries who were 

65 and older on January 1, 2004. We then limit our sample to those who lived in 

counties with PM2.5 monitors, and for whom we can observe their health and resi-

dential locations.7  

B. Measuring dementia and its risk factors 

CMS’s Chronic Conditions Data Warehouse (CCW) files use codes on Medi-

care insurance claims to track if and when each individual is diagnosed with spe-

cific chronic medical conditions. A dementia diagnosis is based on the presence of 

multiple symptoms of cognitive impairment that significantly impact daily func-

tioning.8 Examples include memory loss, impaired judgement, loss of spatial 

awareness, depression, and behavioral changes. Alzheimer’s Disease is the primary 

type of dementia, accounting for 60% to 80% of all cases. Our claims-based ap-

proach to identifying dementia diagnoses is well validated (Lee et al. 2019). 

Figure I shows how the fraction of individuals diagnosed with dementia in Med-

icare data varies with age and gender in 2013. Diagnosis rates increase gradually 

with age through the mid-seventies before accelerating in the late seventies and 

beyond. The diagnosis rate is higher for women, and this gender gap widens with 

age. Conditional on age, diagnosis rates also differ by race. Diagnosis rates are 

generally higher for people denoted by CMS as “Black or African-American” and 

lower for “Asian/Pacific Islander” relative to “Hispanic” or “non-Hispanic White”. 

                                                 
6 Due to the provenance of our data, we complement the random 20% sample with an independent, random 20% sample of 

those also age 65 by January 1, 2004 who purchased standalone prescription drug insurance plans through Medicare Part D 

at any point between 2006 and 2010 without the aid of low-income subsidies.  
7 We provide additional details about sample cuts and data definitions in Appendix A.  
8 The ICD-10 defines Alzheimer’s disease (G30) as “A degenerative disease of the brain characterized by the insidious onset 

of dementia. Impairment of memory, judgment, attention span, and problem solving skills are followed by severe apraxias 
and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe 

cortical atrophy and the triad of senile plaques; neurofibrillary tangles; and neuropil threads.” 
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We account for this heterogeneity by creating a vector of demographics, denoted 

𝑋𝑖. This vector includes race code indicators and indicators for each of the 52 pos-

sible sex-by-integer-age combinations from age 75 through 100 in 2013.9  

FIGURE I: DEMENTIA DIAGNOSIS BY AGE AND GENDER IN 2013 

 

We further utilize the administrative CCW files to measure clinical risk factors. 

Specifically, we create a vector of health characteristics, denoted 𝐻𝑖. This includes 

indicators for whether the individual in 2004 had each one of the 32 possible com-

binations of hypertension, diabetes, congestive heart failure, ischemic heart disease, 

and stroke. These are the known diagnostic risks for dementia (Alzheimer’s Asso-

ciation 2019). We further measure baseline health by including in 𝐻𝑖 a fourth-order 

polynomial function of total expenditures on all services covered by Medicare Parts 

A and B in 2004.10  

US Census data provide socioeconomic characteristics of the Census block 

                                                 
9 75 is the minimum age in 2013 within our estimation sample because that sample is limited to people who were 65 or older 
on January 1, 2004. Centenarians are grouped into two gender-specific bins because their small numbers prevent us from 

precisely estimating age-specific coefficients. Our results are unaffected by adding age-specific bins beyond age 100. 
10 Medicare Parts A and B cover virtually all medical services aside from prescription drugs and long-term care. This includes 
doctors’ services, preventive care, durable medical equipment, hospital outpatient services, laboratory tests, imaging, hospital 

inpatient services, nursing facilities, and hospice care. 
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group where the individual lived in 2004 according to CMS records.11 We define 

neighborhood as the individual’s Census block group and create a vector of neigh-

borhood characteristics, denoted 𝑊𝑖. This vector includes median household in-

come, per-capita income, mean and median house value, median rent, median house 

age, fractions of the housing stock that are owner occupied, renter occupied, and 

vacant, fraction of residents over age 65, fractions of residents who report being 

white, black, and Hispanic, and the fractions of residents in each of seven educa-

tional-attainment bins. These variables account for non-clinical factors associated 

with different risks of dementia. Appendix Table A1 provides summary statistics 

for each of the variables represented in 𝑋𝑖, 𝐻𝑖 and 𝑊𝑖. 

Finally, we create indicators (denoted 𝐶𝑖,𝑡) for the geographic regions where 

individuals lived in each year of our model. Specifically, we include 977 indicators 

for the US Census Bureau’s Core-Based Statistical Areas (CBSAs) and the non-

CBSA rural areas of each state.12 In our model, these indicators will absorb the 

effects of otherwise unobserved factors. First, they help to absorb any effects of 

residential sorting across CBSAs on the basis of latent risk factors for dementia. 

Second, they help to absorb the effects of environmental factors that could be spa-

tially correlated with both PM2.5 and dementia, e.g., the presence of lead pipes or 

extreme temperatures which may cause morbidities that are risk factors for demen-

tia. Third, they absorb all differences between geographic areas in health care de-

livery that might contribute to differences in diagnostic decisions, including pa-

tients’ access to medical care and physicians’ treatment styles. 

C. Measuring PM2.5 Exposure 

In 1997, the EPA established monitoring protocols for PM2.5, and by 1999, an 

                                                 
11 A block group contains 600 to 3,000 residents on average (US Census). 
12 There are 927 CBSAs in the US, which are defined by the Office of Management and Budget as of one or more counties 
anchored by an urban center of at least 10,000 people plus adjacent counties that are socioeconomically tied to the urban 

center by commuting. For people living outside of CBSAs, we create an additional 50 state-specific, rural dummy variables. 
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initial national network of regulatory-grade PM2.5 monitors was put into place. We 

use annual average PM2.5 concentrations recorded at each of these monitors from 

2001 through 2013. We use data from a balanced panel of 485 monitors that oper-

ated continuously through our study period to avoid measurement error that could 

be introduced if new monitors tend to be located in more or less polluted areas 

(Grainger and Schreiber, 2019).13 In a sensitivity check, we instead use data from 

all 1,722 monitors. 

We measure an individual’s exposure to PM2.5 in year t, 𝑃𝑀2.5𝑖,𝑡, based on 

concentrations at their residential address in that year. The CMS data include ZIP+4 

Codes for each individual’s sequence of addresses from 2004 to 2013.14 We use 

this information to measure the individual’s cumulative exposure to PM2.5 incorpo-

rating changes in PM2.5 experienced as a result of moving.15 Individuals in our data 

live in 2.7 million distinct ZIP+4 Codes during 2004-2013. We use the latitude and 

longitude coordinates of each monitor and each ZIP+4 to assign the annual average 

concentration at each residence.16 Specifically, we calculate the geographical dis-

tance between each ZIP+4 centroid and each monitor. Then, for each centroid-year 

combination, we calculate a weighted average of concentrations recorded at all 

monitors with the weights given by the square of the inverse distance.17 Thus, as 

the distance from a ZIP+4 centroid to a monitor increases, the weight assigned to 

that monitor decreases.  

                                                 
13 Following the literature, we drop individuals living in unmonitored counties.  See Appendix A for details. 
14 ZIP+4 Codes are close to street addresses in terms of spatial precision: each code corresponds to a single mail delivery 

point such as a house, one floor of an apartment building, or one side of a street on a city block. 
15 31% of individuals in our data move at least once, 17% move between counties and 10% move between states. These rates 
are similar to those reported by the Census Bureau for individuals aged 65 and above. We are unable to observe seasonal 

migration by people with more than one residence because we only observe the residential address on record with CMS. 

Fortunately, the scope for measurement error is small. Jeffery (2015) estimates that seasonal migrators only account for 2% 
to 4.1% of the Medicare population based on addresses on Medicare claims for primary care and emergency room visits.  
16 Geographic coordinates of ZIP+4 centroids were purchased from GeoLytics, which created them from the Census Bureau’s 

TIGER/line Shapefiles and US Postal Service records. 
17 This method of interpolation, with weights given by the distance raised to a negative exponent, is a predominant method 

in the environmental economics literature.  
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FIGURE II: AVERAGE RESIDENTIAL CONCENTRATION OF PM2.5 BY YEAR 

 
Note: The figure reports the annual average concentrations of fine particulate matter based on place of residence for people 

age 65 and above on Medicare.  

Figure II shows that annual average concentrations of PM2.5 at the residences 

of the US Medicare population declined substantially during the 2000s, from over 

13 μg/m3 (micrograms per cubic meter of air) in 2001 to about 9 μg/m3 in 2013. 

This is true regardless of whether we measure exposure using the balanced panel 

of monitors (the dashed line) or the full set of monitors (solid line). 

We denote our measure of interest, the individual’s average cumulative expo-

sure to PM2.5 from 2004 to year t, as 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡. We construct it by combining the 

described ZIP+4-specific annual PM2.5 concentrations with individuals’ residential 

ZIP+4 histories from 2004 to t according to: 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡 =  ∑
𝑃𝑀2.5𝑖,𝑠

𝑡−2004

𝑡
𝑠=2004 . Finally, 

we create a measure of the baseline PM2.5 concentrations at the locations where 

individuals lived in 2004. We denote this measure as 𝑏𝑎𝑠𝑒𝑃𝑀𝑖 and construct it as 

the average concentration over the three years 2001 to 2003. These three years are 

the years that the EPA based its nonattainment designations on, as discussed in the 

next section. 
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III. Clean Air Act Regulation of PM2.5 

The Clean Air Act (CAA) of 1970 established national standards for concentra-

tions of regulated air pollutants. The EPA designated counties containing monitors 

that exceeded these standards as nonattainment. States with nonattainment counties 

were required to coordinate with local regulators to bring those counties into com-

pliance with the standards. States that failed to bring their counties into attainment 

faced penalties including loss of federal highway funds. 

Due to its pernicious effects on human health, particulate matter has been sub-

ject to sustained and evolving federal regulation (US EPA 2005). Beginning in 

1971, the EPA regulated total suspended particulates (TSP). In light of evidence 

that health effects were driven by the smallest particulates, the EPA replaced the 

TSP standard with a standard on PM10 (particulates smaller than 10 microns in di-

ameter) in 1987 and a standard on PM2.5 in 1997. Each new standard was followed 

by new nonattainment designations. These designations have the ability to affect 

pollution in both nonattainment and attainment counties because pollution travels 

across county boundaries. However, the designations for particulate matter have 

induced relatively larger pollution reductions in nonattainment counties. Prior re-

search used the TSP standard (Chay and Greenstone 2005, Isen, Rossin-Slater, and 

Walker 2017) and the PM10 standard (Bento, Friedman, and Lang 2015) to create 

instruments for TSP and PM10 exposures, respectively. In this paper, we use the 

PM2.5 standard to develop instruments for PM2.5 exposures. 

In 1997, the EPA set the regulatory standard for average annual PM2.5 concen-

trations at 15.05 μg/m3. In April 2003, state and local regulators were given a Feb-

ruary 2004 deadline to provide PM2.5 monitor data from the years 2001-2003, and 

to self-report any nonattainment monitors to the EPA, where nonattainment was 

defined by the monitor’s three-year average PM2.5 concentrations from 2001-2003. 

Based on these reports, the EPA formally defined each monitored county to be in 
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attainment or nonattainment in January 2005.18 For counties with multiple moni-

tors, the designations were based on the monitor with the highest three-year average 

from 2001-2003.  

We define 2004 as the start of the regulatory period because local regulators 

learned which counties would be nonattainment between April 2003, when they 

received the EPA’s request for data, and February 2004, when they were required 

to submit their status. EPA monitor data show PM2.5 concentrations declining at a 

similar rate in both attainment and nonattainment counties prior to 2004, and then 

declining at a faster rate in nonattainment counties after 2004. These trends, shown 

in Appendix Figure C1, are analogous to the evidence that Chay and Greenstone 

(2005) first presented on the validity of using CAA regulation of PM as a quasi-

experiment.  

Figure III provides the intuition for how we use county nonattainment designa-

tions to isolate quasi-random variation in individuals’ average PM2.5 exposures 

from 2004-2013, conditional on baseline concentrations from 2001-2003.19 The 

nonattainment and attainment lines plot the coefficients obtained by regressing the 

individual-level measure of decadal PM2.5 exposure, 𝑑𝑢𝑟𝑃𝑀𝑖,2013, on indicators for 

0.1 µg/m3 bins of 𝑏𝑎𝑠𝑒𝑃𝑀𝑖 interacted with county attainment status, after absorb-

ing CBSA dummies. Comparing the nonattainment and attainment lines with the 

45-degree line shows that post-regulatory reductions in PM2.5 were larger, on aver-

age, for individuals with larger baseline concentrations. This pattern is consistent 

with prior studies that used CAA regulatory standards to develop instruments for 

particulate matter exposures.   

                                                 
18 Appendix Figure B1 shows the locations of attainment and nonattainment counties with air quality monitors. In 2005, 132 

of the monitored counties containing approximately 27% of the US population were classified as nonattainment. Another 

528 counties containing 43% of the US population were classified as attainment. The remaining counties lacked monitoring 
data and were designated “unclassifiable” and not subjected to additional regulation. Appendix Figure B2 shows the location 

of the monitors. 
19 As noted in Chay and Greenstone (2005), attainment status doesn’t induce quasi-random variation in pollution levels, but 
rather quasi-random variation in changes in pollution. Equivalently, in our case, attainment status induces quasi-random 

variation in decadal pollution exposure, conditional on pre-regulatory baseline pollution. 
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FIGURE III: POST-REGULATORY PM2.5 EXPOSURE 2004-2013, BY COUNTY ATTAIN-

MENT STATUS AND PRE-REGULATORY EXPOSURE 2001-2003 

  
Note: The nonattainment and attainment lines represent estimates from regressing individual exposure from 2004-2013 on 

indicators for 0.10 µg/m3 bins of baseline exposure from 2001-2003 interacted with county attainment status. Additional 

covariates include CBSA dummies.  

The key insight from Figure III is that the nonattainment line lies below the 

attainment line for all levels of average PM2.5 from 2001-2003. This difference is 

statistically significant at the 1% level. This shows that when we compare individ-

uals in the same CBSA who were in the same residential PM2.5 bin for pre-regula-

tory exposure (2001-2003), those who lived in nonattainment counties were subse-

quently exposed to lower PM2.5 during 2004-2013 than those in attainment coun-

ties. This follows from the incentives that regulators faced to target their mitigation 

efforts at nonattainment counties (Chay and Greenstone’s 2005, Isen, Rossin-

Slater, and Walker 2017). In addition, the vertical distance between the nonattain-

ment and attainment lines decreases with baseline PM2.5 concentrations from 2001-
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2003.20 This follows from the EPA policy in which a county’s attainment status is 

linked to its dirtiest monitor, thus incentivizing local regulators to target pollution 

“hot spots” (Auffhammer, Bento, and Lowe 2009, Bento, Freedman, and Lang 

2015).  

IV. Estimating the Causal Impact of Decadal PM2.5 on Dementia 

We model how cumulative exposure to PM2.5 over the decade from 2004 to 

2013 affects the probability of an individual receiving a new dementia diagnosis. 

First, we consider a contemporaneous, decadal model where the decade is treated 

as a single time period. Second, we extend this framework to instead aggregate 

cumulative, year-specific impacts over the decade. 

A. A Decadal Model of New Dementia Diagnoses 

Let 𝑦𝑖,𝑡 indicate whether individual i has received a dementia diagnosis by the 

end of year t and let ∆𝑦𝑖 = 𝑦𝑖,2013 − 𝑦𝑖,2004 denote the change in dementia status 

between 2004 and 2013. Because dementia has no cure, it is an absorbing state and, 

by definition, ∆𝑦𝑖 is equal to zero for anyone with dementia in 2004. Therefore, we 

model whether individual i is newly diagnosed with dementia by the end of 2013, 

conditional on having not received a dementia diagnosis before the end of 2004.21  

We model a new dementia diagnosis using a probit model where Δ𝑦𝑖
∗ denotes 

the latent propensity to become newly diagnosed with dementia,  

 ∆𝑦𝑖
∗ = ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,2013; 𝛼𝑖) + 𝜂𝑖 , 

and where an individual is diagnosed with dementia if their latent propensity is 

                                                 
20 The scaling of the vertical axis in Figure III makes this trend hard to discern. It is easier to discern in Figure IV.  Fitting a 

linear trend to the vertical distance between the nonattainment and attainment lines in Figure III reveals that a 1 μg/m3 
increase in baseline exposure is associated with a 0.02 μg/m3 reduction in the vertical distance between the lines. 
21 We begin with a model of new diagnosis of dementia, which is standard in clinical research on dementia. In principle, we 

could instead begin with a model describing an individual’s dementia status in both 2004 and 2013 to derive Equation (1) 
below. Such a model is shown in Appendix G. Our discussion of identification below explicitly accounts for the fact that the 

error in Equation (1) captures changes in unobserved dementia determinants, conditional on not having dementia in 2004. 
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positive, i.e., Δ𝑦𝑖 = 1[Δ𝑦𝑖
∗ > 0].   

The parameter of interest, α𝑖, represents the causal effect of decadal exposure 

to PM2.5 on ∆𝑦𝑖
∗, holding all other factors constant.22 All other factors that determine 

 ∆𝑦𝑖
∗ are denoted by the error 𝜂𝑖. Following Angrist and Pischke (2009), we decom-

pose 𝜂𝑖 into a linear function of observable controls, 𝑋𝑖, 𝐻𝑖 , 𝑊𝑖, 𝐶𝑖,  𝑏𝑎𝑠𝑒𝑃𝑀𝑖, and 

an error, 𝑒𝑖: 

𝜂𝑖 =  𝛽𝑥𝑋𝑖 + 𝛽𝐻𝐻𝑖 + 𝛽𝑊𝑊𝑖 + 𝛽𝐶𝐶𝑖,2013 + 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝛽𝑏𝑎𝑠𝑒𝑃𝑀) + 𝑒𝑖. 

Combining the two previous equations yields our equation of interest: 

(1)  ∆𝑦𝑖
∗ = ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,2013; 𝛼𝑖) + 𝛽𝑥𝑋𝑖 + 𝛽𝐻𝐻𝑖 + 𝛽𝑊𝑊𝑖 + 𝛽𝐶𝐶𝑖,2013 +

                                                                                𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝛽𝑏𝑎𝑠𝑒𝑃𝑀) + 𝑒𝑖  

In the simplest specification of this model, we specify ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,2013; 𝛼𝑖) =

𝛼 𝑑𝑢𝑟𝑃𝑀𝑖,2013. In a more flexible specification of the decadal model, discussed in 

Section IV.B, we allow for non-linearities and heterogeneity along observable di-

mensions in the impact of 𝑑𝑢𝑟𝑃𝑀𝑖,2013 on the probability of a new diagnosis of 

dementia. In Section IV.C, we present a model that allows for additional non-line-

arity and heterogeneity with respect to the duration of exposure to PM2.5. 

We use 𝛼 together with the other model parameters to recover the average mar-

ginal effect (AME) of changes in 𝑑𝑢𝑟𝑃𝑀𝑖,2013 on the probability of a new diagno-

sis, 𝑃𝑟𝑜𝑏(Δ𝑦𝑖 = 1). We discuss the controls, 𝑋, 𝐻, 𝑊, 𝐶, 𝑏𝑎𝑠𝑒𝑃𝑀, and the error, e, 

in the following paragraphs. 

In Section II, we defined the vectors of controls 𝑋, 𝐻, 𝑊, and 𝐶. The vector 𝑋𝑖 

includes indicators for race and gender specific indicators for each integer age. 𝐻𝑖 

includes indicators for each unique combination of pre-existing clinical risk-factors 

for dementia (hypertension, diabetes, congestive heart failure, ischemic heart dis-

ease, and stroke) and a fourth-order polynomial function of individual medical 

                                                 
22 Epidemiological “stress” models that consider life histories are discussed in Deaton and Paxson (1998). 
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spending in 2004. 𝑊𝑖 includes Census block group variables describing the socio-

economic characteristics of individuals living in individual i’s neighborhood in 

2004. Finally, 𝐶𝑖,2013 is a vector of indicators for each individual’s 2013 CBSA. 

The final control is a fourth-order polynomial function, 𝑓(∙), of 𝑏𝑎𝑠𝑒𝑃𝑀𝑖. This 

controls for any residual effects of pre-regulatory sorting into more polluted neigh-

borhoods by individuals who are more likely to receive a future dementia diagnosis. 

In addition, the inclusion of 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖) means that α specifically measures how 

cumulative PM2.5 exposure from 2004 to 2013 affects the probability of a new de-

mentia diagnosis, conditional on pre-regulatory, baseline concentrations. 

Finally, 𝑒𝑖, is an error term that represents any other determinants of a new de-

mentia diagnosis that are not controlled for by a linear function of 𝑋𝑖, 𝐻𝑖, 𝑊𝑖, 𝐶𝑖,2013, 

and 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖). The model imposes no assumption about the relationship be-

tween our variable of interest, 𝑑𝑢𝑟𝑃𝑀𝑖,2013, and 𝑒𝑖.
23 In fact, 𝑒𝑖 most likely contains 

factors that would lead it to be correlated with 𝑑𝑢𝑟𝑃𝑀𝑖,2013, coming from (i) omit-

ted variables, (ii) measurement error, and (iii) factors related to selection.  

One example of an omitted variable in 𝑒𝑖 that may be correlated with 

𝑑𝑢𝑟𝑃𝑀𝑖,2013 is earlier-in-life exposure. While we don’t specify the direct impact 

of earlier-in-life PM2.5 exposure, we allow for earlier-in-life exposure to affect new 

dementia diagnoses and to be correlated with 𝑑𝑢𝑟𝑃𝑀𝑖,2013.24 Another example is 

latent health. If individuals had sorted on unobserved health factors, including ge-

netics, the error term and 𝑑𝑢𝑟𝑃𝑀𝑖,2013 may be correlated. Like earlier-in-life expo-

sure, we will not specify the direct impacts of these latent health measures, but we 

do not rule out their presence in 𝑒𝑖.  

Measurement error in 𝑑𝑢𝑟𝑃𝑀𝑖,2013 could also be present in 𝑒𝑖. All large-scale 

                                                 
23 We make an assumption in Section IV.B regarding the independence of 𝑒𝑖 and the vector of controls and instruments. 
24 Because we allow prior exposure to be an element of the error term, rather than explicitly model its impact, we cannot 

answer questions directly related to lifetime exposure. In our model, 𝛼 captures the causal effect of later-in-life decadal 

pollution on the probability of a new dementia diagnosis, holding all else constant, including earlier-in-life exposure. 
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data on air pollution are based on ambient measures, such as satellite imaging or 

government monitors. While the regulatory-grade monitors that we use are well-

validated, each one only measures pollution at a single place.25 As a result, all avail-

able measures of pollution likely differ from what individuals actually breathe. This 

can arise from individual differences in indoor air, daily mobility, and activities, or 

from the interpolation between geography-based measures required to develop in-

dividual-level measures.  

Finally, new dementia diagnoses are only measured for those individuals who 

survive until the end of the model’s time period. This could induce a correlation 

between 𝑑𝑢𝑟𝑃𝑀𝑖,2013 and 𝑒𝑖 among survivors if latent health that determines sur-

vival is (conditionally) correlated with latent health that affects the probability of a 

new dementia diagnosis.  

B. Identification and Estimation 

Relevant omitted variables, measurement error, and sample selection mean that 

estimating Equation (1) under the assumption that 𝑑𝑢𝑟𝑃𝑀𝑖,2013 and 𝑒𝑖 are inde-

pendent is unlikely to yield a consistent estimate of 𝛼. We use a two-pronged ap-

proach to overcome these challenges. First, to address omitted variables and meas-

urement error in 𝑑𝑢𝑟𝑃𝑀𝑖,2013, we leverage the conditional variation in 

𝑑𝑢𝑟𝑃𝑀𝑖,2013 across individuals that was induced by Clean Air Act regulations as 

described above. Second, to address selection based on survival, we employ a se-

lection-correction approach. 

 

i. Instrumenting for Pollution  

As discussed in Section III, PM2.5 regulations led to lower levels of PM2.5 over 

                                                 
25 The federal regulatory-grade monitors that we use for our analysis represent the best available information on ambient 

PM2.5 in the US. Appendix B provides further information on EPA’s approach to validating PM2.5 measurements.  
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2004-2013 for people living in nonattainment counties relative to people in attain-

ment counties in the same CBSA and the same levels of PM2.5 over 2001-2003. The 

EPA solely relied on 2001-2003 to make its nonattainment designations. This is the 

essence of the quasi-experiment that we rely on to isolate conditionally exogenous 

variation in 𝑑𝑢𝑟𝑃𝑀𝑖,2013. More formally, we isolate this variation using a control-

function approach with a vector of instruments, 𝑍𝑖. The five elements of 𝑍𝑖 include 

an indicator for residing in a nonattainment county in 2004 and interactions be-

tween this indicator and 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖). This set of instruments is designed to capture 

the between- and the within-county variation in decadal PM2.5 induced by the CAA, 

as discussed in Section III. Our “first-stage equation” is given by: 

(2) 𝑑𝑢𝑟𝑃𝑀𝑖,2013

= 𝛿𝑍𝑍𝑖 + 𝛿𝑋𝑋𝑖 + 𝛿𝐻𝐻𝑖 + 𝛿𝑊𝑊𝑖 + 𝛿𝐶𝐶𝑖,2013 + 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖;  𝛿𝑏𝑎𝑠𝑒𝑃𝑀) + 휀𝑖, 

where the covariates other than 𝑍𝑖 are the same as in Equation (1). 

We assume that (𝑒𝑖, 휀𝑖) is distributed jointly normal with mean zero and var(𝑒𝑖) 

normalized to one, and is independent of the instruments, 𝑍𝑖 , and controls, 

𝑋𝑖, 𝐻𝑖, 𝑊𝑖, 𝐶𝑖,2013, and 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖).26 Under this assumption, the order condition 

is satisfied, as the controls are exogenous and can serve as instruments for them-

selves, while the scalar 𝑑𝑢𝑟𝑃𝑀𝑖,2013 is treated as endogenous and is instrumented 

with 𝑍𝑖.  

We denote the residuals from an estimation of Equation (2) via OLS as 휀�̂�. Fol-

lowing Rivers and Vuong (1988), these residuals are then added as an additional 

control to Equation (1), which is then treated as a standard probit model and esti-

mated using Maximum Likelihood.27  

                                                 
26 While assuming joint normality is standard in this class of models, Rivers and Vuong (1988) note that it is actually stronger 

than the sufficient condition that 𝑒𝑖 is normal and homoscedastic given 휀𝑖, the instruments, 𝑍𝑖, and controls, 

𝑋𝑖 , 𝐻𝑖 , 𝑊𝑖 , 𝐶𝑖,2013, 𝑏𝑎𝑠𝑒𝑃𝑀𝑖. We also assume that the technical assumptions of Rivers and Vuong hold, namely that the data 

are i.i.d. and the parameter vector lies in the interior of a compact, convex subset of Euclidean space. 
27 The Rivers and Vuong (1988) approach estimates a scaled version of the parameters in Equation (1) where the scaling 
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The equivalence of control-function estimation in linear models and two-stage 

least squares (2SLS) is well established (e.g., Hausman 1978). In non-linear models 

like ours, the estimators are not equivalent, but the intuition of 2SLS remains ap-

plicable. This gives rise to the term Two-Stage Conditional Maximum Likelihood 

(2SCML) that Rivers and Vuong (1988) use to describe the approach that we rely 

on. Our 2SCML approach requires the standard conditions for consistency of the 

2SLS estimator, i.e., that the controls are exogenous, that the instruments, 𝑍𝑖 , are 

partially correlated with 𝑑𝑢𝑟𝑃𝑀𝑖,2013, and that the instruments, 𝑍𝑖 , are exogenous.28  

The mean-independence assumption that guarantees exogeneity of the controls, 

i.e., 𝐸[𝑒𝑖|𝑋𝑖, 𝐻𝑖, 𝑊𝑖 , 𝐶𝑖,2013, 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖)] = 𝐸[휀𝑖|𝑋𝑖 , 𝐻𝑖, 𝑊𝑖, 𝐶𝑖,2013, 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖)] = 0, 

is equivalent to the assumption that the functional forms specified in the decompo-

sition of 𝜂 and in Equation (2) are sufficiently flexible to capture the relationships 

between the controls and 𝜂𝑖 and the controls and 𝑑𝑢𝑟𝑃𝑀𝑖,2013.29 Three features of 

our research design support the credibility of this functional-form assumption. First, 

as discussed in Section II, our controls are extensive. Second, our model is saturated 

within some control vectors (e.g., integer-age-by-gender dummies and the full-fac-

torial of baseline health conditions) and flexible in other control vectors (e.g., fourth 

order polynomial functions of medical spending and baseline pollution). Third, the 

estimated AMEs are relatively insensitive to adding additional interactions and ad-

ditional flexibility in unsaturated control vectors.30  

The first condition on the instruments, 𝑍𝑖 , (relevance) can be directly validated 

                                                 
factor depends on the variance of 휀𝑖 and the covariance between 휀𝑖 and 𝑒𝑖. While the unscaled coefficients can be recovered, 

this isn’t necessary. As discussed in Wooldridge (2015), the scaled coefficients are sufficient for estimating the average 

structural function (Blundell and Powell 2013) and the AME of 𝑑𝑢𝑟𝑃𝑀𝑖,2013 on Prob(∆𝑦𝑖 = 1). 
28 In a linear model, consistency requires that the controls and instruments are uncorrelated with the error. We are estimating 
a Probit model which requires the stronger assumptions of independence and normality. 
29 A necessary condition for 𝑍𝑖 to be a valid instrument for 𝑑𝑢𝑟𝑃𝑀𝑖,2013 is conditional independence, i.e., that 𝑍𝑖 , is inde-

pendent of 𝜂𝑖 , conditional on the controls. Combining this conditional independence assumption with the additional assump-

tion that (𝑒𝑖 , 휀𝑖) is mean independent of the controls is then sufficient for (𝑒𝑖 , 휀𝑖) to be mean independent of both 𝑍𝑖 and the 
controls.  
30 See, for example, the discussions in Sections IV.C, IV.D, VI.B, and Appendix J. 
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with empirical testing, while the second condition (exogeneity) cannot be. A viola-

tion of the key identifying assumption of exogeneity would mean that some unob-

served factor remaining in 𝑒𝑖 causes individuals of the same age, race, sex, and 

baseline health who experienced the same residential PM2.5 concentrations across 

2001-2003 and lived in neighborhoods with the same socioeconomic conditions, 

nevertheless sorted into attainment versus nonattainment counties within the same 

CBSA on the basis of factors associated with different probabilities of receiving a 

new dementia diagnosis from 2005-2013 and yet did not have dementia prior to 

2005. We follow prior studies and assume that nonattainment status is independent 

of measurement error in PM2.5 exposure in counties that contain air pollution mon-

itors (Chay and Greenstone 2005, Isen et al. 2017).  

We consider the earlier-in-life exposure that, as previously discussed, is an el-

ement of 𝑒𝑖. The EPA nonattainment designations relied only on 2001-2003 con-

centrations and we include a flexible (fourth-order polynomial) function of 

𝑏𝑎𝑠𝑒𝑃𝑀𝑖  (created using data from 2001-2003) in our empirical models. Thus, ear-

lier-in-life exposure would bias our estimate of 𝛼 only in the unlikely event that 

earlier-in-life exposure is not independent of nonattainment status conditional on 

baseline pollution and other controls. We provide support for the exclusion re-

striction assumption in Section VI by estimating a model that includes a measure 

of earlier-in-life exposure. While the coefficient on earlier-in-life exposure itself is 

uninformative for evaluating the 2SCML assumptions, the fact that the estimates of 

the AMEs are invariant to its inclusion suggests that the omission of earlier expo-

sure is not biasing our estimated effect of interest.  

To conclude, like 2SLS estimators, our key identifying assumption is that the 

error in Equation (1) is independent of our instrument, 𝑍𝑖. This is likely to hold 

given our extensive set of controls and the sharply defined timeframe used by the 

EPA to make regulatory designations. We provide support for this assumption in 

Section VI. 
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ii. Addressing Selection on Mortality 

Prior work has found that PM2.5 causes mortality among seniors in the US (Di 

et al. 2017, Deryugina et al. 2019). For example, Deryugina et al. uses an instru-

mental-variables estimator to conclude that a one-day 1 μg/m3 increase in PM2.5 

causes a 0.18% increase in mortality over three days. When we estimate the speci-

fication shown in Equations (1)-(2) but with decadal mortality as the dependent 

variable, we find that a 1 µg/m3 increase in average PM2.5 from 2004 through 2013 

increases mortality by 2.47 pp, equivalent to 6% of the decadal mortality rate.31  

These results, combined with the concern that unobserved aspects of health that 

determine survival may be correlated with unobserved aspects of health that deter-

mine dementia, suggest that sample selection may bias the estimates of Equations 

(1) and (2) when not accounting for selection on mortality. For example, suppose 

that unobserved aspects of health that determine survival are negatively correlated 

with unobserved aspects of health that determine dementia, i.e., sicker people who 

are more likely to die are also more likely to be diagnosed with dementia if they 

live. In this case, selection would bias downward the estimate of PM2.5’s direct 

effect on dementia in the selected sample.32 This would mean that our estimate of 

𝛼 when ignoring selection would capture both the causal effect of PM2.5 on demen-

tia (our object of interest) plus a compositional effect based on the set of survivors 

at the end of the decade.33 

To address this selection issue, we obtain a selection-corrected estimate using 

a control-function approach (Heckman 1979, Heckman and Robb 1986). To imple-

ment this approach, we require an additional set of instruments.34 In particular, the 

                                                 
31 Appendix Table I1 provides the estimated effects of decadal PM2.5 on mortality, i.e., an estimation of Equations (1) and 

(2) with mortality as the outcome in Equation (1). 
32 A less intuitive, but nonetheless possible, concern would be that the unobserved health determining survival was positively 
correlated with the unobserved health determining dementia, causing an upward bias in our estimate. 
33 Lee (2009) discusses this concept in detail in the context of a randomly assigned job-training program that affects whether 

individuals work and the level of their subsequent wages. 
34 In Appendix H, we show a Lee (2009) bounds approach that does not require these additional instruments, 𝑀𝑖, but does 

employ the CAA ones, 𝑍𝑖, as described above. 
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relevance and validity conditions require that the additional instruments are corre-

lated with decadal survival but are independent of the unobserved determinants of 

dementia. The medical literature provides such a set of diagnoses that affect sur-

vival but do not affect dementia: prior diagnoses of a subset of non-smoking related 

cancers, which are found to be unrelated to dementia outcomes (Driver et al. 2012, 

Ganguli 2015). To form the selection-correcting control function, we begin by es-

timating via Maximum Likelihood a probit model of decadal survival, Si, with the 

same covariates as Equation (2) plus the vector of additional instruments, 𝑀𝑖. We 

do this by specifying a latent survival propensity 

(3) 𝑆𝑖
∗=𝛾𝑍𝑍𝑖 + 𝛾𝑋𝑋𝑖 + 𝛾𝐻𝐻𝑖 + 𝛾𝑊𝑊𝑖 + 𝛾𝐶𝐶𝑖,2013 + 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝛾𝑏𝑎𝑠𝑒𝑃𝑀)

+ 𝛾𝑀𝑀𝑖 + 𝑢𝑖 

such that 𝑆𝑖 = 1[𝑆𝑖
∗ > 0].  

In addition to the functional-form assumptions in Equation (3), we now assume 

that (𝑒𝑖, 휀𝑖, 𝑢𝑖) is distributed jointly normal and is independent of the instruments, 

𝑍𝑖 , the instruments, 𝑀𝑖, and controls, 𝑋𝑖, 𝐻𝑖, 𝑊𝑖 , 𝐶𝑖,2013, and 𝑏𝑎𝑠𝑒𝑃𝑀𝑖 . We define 

𝑀𝑖 to include indicators for baseline diagnoses of non-smoking-related cancers 

(leukemia, lymphoma, and cancers of the breast, prostrate, colon, rectum, and en-

dometrium) from the CMS’s Chronic Conditions Data Warehouse file. These seven 

cancers, which affect decadal survival, are assumed to be independent of latent fea-

tures of health that affect the probability of a dementia diagnosis.35 We then use the 

generalized residuals of Equation (3), denoted 𝜐𝑖, to define an additional control 

                                                 
35 A potential concern is that non-smoking related cancers, while not causing dementia, could be correlated with dementia 

through other omitted factors. For example, a competing-risks framework could lead to a negative correlation between non-
smoking related cancers and latent health affecting dementia and lead to an upward-biased estimate of α in our selection-

correction model. Such a framework would likewise suggest that estimating Equation (1) adding only the CAA-based control 

function would provide a downward-biased estimate. On this basis, one could interpret non-smoking related cancers as “im-
perfect instruments,” as defined by Nevo and Rosen (2012), and use them to partially identify α. The estimated identification 

region would then simply be the interval between the two estimates. 
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that we include in Equations (1) and (2).36  

To summarize, our estimation proceeds in three steps. The first step is to esti-

mate Equation (3) via Maximum Likelihood and create the generalized residuals, 

𝜐𝑖 . The second step is to include 𝜐𝑖 as an additional control in Equation (2), estimate 

Equation (2) via OLS, and recover the residuals, 휀�̂�. The final step is to include 

functions of 휀�̂� and �̂�𝑖  as additional controls in Equation (1). We show this version 

of Equation (1) that includes the additional controls in Equation (4), which we es-

timate via Maximum Likelihood:  

(4)   ∆𝑦𝑖
∗ = ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,2013; 𝛼𝑖) + 𝛽𝑋𝑋𝑖 + 𝛽𝐻𝐻𝑖 + 𝛽𝑊𝑊𝑖 + 𝛽𝐶𝐶𝑖,2013

+ 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝛽𝑏𝑎𝑠𝑒𝑃𝑀) + 𝛽𝐶𝐹𝐶𝐹𝑖 + �̃�𝑖 

where �̃�𝑖 = 𝑒𝑖 − 𝛽𝐶𝐹𝐶𝐹𝑖 .   𝐶𝐹𝑖 denotes the control-function vector created with the 

generalized residuals from the estimation of Equation (3) and the residuals from the 

estimation of Equation (2). We set  𝐶𝐹𝑖 =  [휀�̂� 휀�̂�
2 𝜐𝑖 �̂�𝑖

2].37 Because we estimate 휀�̂� 

and �̂�𝑖 in prior stages, we bootstrap standard errors over all three regressions, clus-

tering at the Census block-group level to allow for spatial correlation in diagnoses.38 

C. Allowing for Heterogeneity in Covariates 

In the simplest specification of the decadal model, we specify 

ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,2013; 𝛼𝑖) = 𝛼 𝑑𝑢𝑟𝑃𝑀𝑖,2013. However, we also estimate specifications 

that allow 𝑑𝑢𝑟𝑃𝑀𝑖,2013 to enter flexibly as a fourth-order polynomial and that allow 

                                                 
36 Generalized residuals are defined as 𝜐𝑖 = 𝑆𝑖𝜆( 𝑆∗̂) − (1 − 𝑆𝑖)𝜆(− 𝑆∗̂), where 𝜆(⋅) =  𝜙(⋅)/Φ(⋅), 𝜙 and Φ are the standard 

normal density and CDF, respectively, and 𝑆 ∗̂ = 𝛾𝑍𝑍𝑖 + 𝛾𝑋𝑋𝑖 + 𝛾𝐻𝐻𝑖 + 𝛾𝑊𝑊𝑖 + 𝛾𝐶𝐶𝑖,2013 + 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝛾𝑏𝑎𝑠𝑒𝑃𝑀) + 𝛾𝑀𝑀𝑖. 

By construction, 𝑆𝑖  = 1 for all observations used in the estimation of Equations (1) and (2), therefore, for these observations, 

𝜐𝑖 = 𝜆( 𝑆 ∗̂), simplifying to the familiar inverse Mills ratio used in Heckman (1979). 
37 In alternative specifications, e.g., Columns (3) and (2) of Table I, we consider a less flexible control function that only 

includes 휀�̂� and 𝜐𝑖, without their squares, as well as a version with only 휀�̂�, which controls for the type of endogeneity de-

scribed in Section IV.B.i, but not selection on mortality. 
38 Our instruments vary within Census blocks across ZIP+4 codes. We alternatively cluster at the courser county level and 

find almost no impact on our results. 



26 

 

for interactions between 𝑑𝑢𝑟𝑃𝑀𝑖,2013 and the vectors Xi, Hi, Wi, and 𝐶𝐹𝑖 by speci-

fying:39  

(5) ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,2013; 𝛼𝑖) = α1 𝑑𝑢𝑟𝑃𝑀𝑖,2013 + α2𝑑𝑢𝑟𝑃𝑀𝑖,2013
2 + α3 𝑑𝑢𝑟𝑃𝑀𝑖,2013

3  

                +α4 𝑑𝑢𝑟𝑃𝑀𝑖,2013
4 + α𝑋 𝑋𝑖 𝑑𝑢𝑟𝑃𝑀𝑖,2013  + α𝐻  𝐻𝑖 𝑑𝑢𝑟𝑃𝑀𝑖,2013 

                                                              +α𝑊 𝑊𝑖  𝑑𝑢𝑟𝑃𝑀𝑖,2013 + αCF 𝐶𝐹𝑖  𝑑𝑢𝑟𝑃𝑀𝑖,2013 .  

 

In this approach, the effect of 𝑑𝑢𝑟𝑃𝑀𝑖,2013 on the latent propensity to be newly 

diagnosed with dementia is allowed to vary flexibly with both the level of 

𝑑𝑢𝑟𝑃𝑀𝑖,2013, and the levels of individual characteristics, neighborhood character-

istics, and control function variables.40,41 

D. Allowing PM2.5’s Effect to Vary with Exposure Duration 

The contemporaneous model described in Section IV.A and IV.B is both parsi-

monious and comparable to the existing literature on the impacts of pollution ex-

posure on health outcomes. However, as the treatment is measured as the average 

PM2.5 exposure from 2004-2013, and a dementia diagnosis can happen at any point 

between 2005 and 2013, there could be an aggregation bias if the data were sys-

tematically misaligned; for example, if the AME were driven by spatial correlation 

between dementia diagnoses in 2010 and pollution levels in 2013. The potential for 

misalignment due to temporal aggregation is a universal feature of research on pol-

                                                 
39 See Blundell and Powell (2003, 2004) for a discussion of estimating non-parametric, binary-response models with endog-
enous regressors. 
40 The fact that the effect of 𝑑𝑢𝑟𝑃𝑀𝑖,2013 on new dementia diagnosis is allowed to vary with 𝐶𝐹𝑖 =  [휀�̂�  휀�̂�

2 𝜐𝑖 �̂�𝑖
2]  means that 

this approach nests the correlated random-coefficients model of Garen (1984) with additional assumptions. Specifically, if 
there exist random coefficients that satisfy the linear conditional expectation assumption of Garen (1984), they will be ac-

counted for in our analysis. Under these assumptions, we do not find evidence of bias coming from correlated random coef-

ficients in one’s sensitivity to pollution exposure.  
41 Following Rivers and Vuong (1988) and Wooldridge (2015), once the control function, 𝐶𝐹𝑖, is included in Equation (4),  

𝑑𝑢𝑟𝑃𝑀𝑖,2013 is independent of �̃�𝑖 and, therefore, the non-linear functions of 𝑑𝑢𝑟𝑃𝑀𝑖,2013 in Equation (5) are also independent 

of �̃�𝑖. And, as we had assumed that the controls are independent of �̃�𝑖, the interaction terms in (5) are also independent of �̃�𝑖. 

Adding the 115 additional functions of the single endogenous economic variable, 𝑑𝑢𝑟𝑃𝑀𝑖,2013, has little impact on the results 

as shown in Columns (4) and (5) of Table I. 
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lution and health due to the inability to measure pollution and health instantane-

ously. 

In this section, we extend the analysis in three ways. First, we define the out-

come measure to be a new dementia diagnosis during a single year 𝑡 =

[2005,2013], thus avoiding the aggregation bias that could be introduced by mis-

alignment of the data at the decadal level. Second, we only condition on surviving 

until the end of year t, thus incorporating the effects of PM2.5 exposure on dementia 

for individuals who die prior to 2013. Finally, by estimating the model separately 

for each year, we allow for year-specific variation in all model coefficients. This 

additional flexibility allows the effect of nonattainment status on PM2.5 exposure to 

evolve during the years after nonattainment designations were made. Moreover, it 

allows the effect of PM2.5 exposure on the probability of a new dementia diagnosis 

to evolve with the duration of exposure. In principle, such differences could arise 

from biological mechanisms linking PM2.5 to dementia, or from changes in the com-

position of people surviving from one year to the next.  

Equations (6) and (7) describe the analogues to Equations (4) and (5), respec-

tively, where Δ𝑦𝑖,𝑡
∗  now denotes the latent propensity to become newly diagnosed 

with dementia during year t. We estimate Equation (6) separately for each year 

2005 to 2013 via Maximum Likelihood. 

(6)       ∆𝑦𝑖,𝑡
∗  = ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,𝑡; 𝛼𝑖,𝑡) + 𝛽𝑋,𝑡𝑋𝑖 + 𝛽𝐻,𝑡𝐻𝑖 + 𝛽𝑊,𝑡𝑊𝑖 + 𝛽𝐶,𝑡𝐶𝑖,𝑡

+ 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝛽𝑏𝑎𝑠𝑒𝑃𝑀,𝑡) + 𝛽𝐶𝐹,𝑡𝐶𝐹𝑖,𝑡 + �̃�𝑖,𝑡 

where    �̃�𝑖,𝑡 = 𝑒𝑖,𝑡 − 𝛽
𝐶𝐹,𝑡

𝐶𝐹𝑖,𝑡, 

(7)  ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,𝑡; 𝛼𝑖,𝑡)=α1,t 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡 + α2,𝑡𝑑𝑢𝑟𝑃𝑀𝑖,𝑡
2 +  α3,𝑡 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡

3

+ α4,𝑡 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡
4 + α𝑋.𝑡 𝑋𝑖 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡  + α𝐻,𝑡 𝐻𝑖  𝑑𝑢𝑟𝑃𝑀𝑖,𝑡 

 +α𝑊,𝑡 𝑊𝑖 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡 + α𝐶𝐹,𝑡 𝐶𝐹𝑖,𝑡 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡, 
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and 𝐶𝐹𝑖,𝑡 denotes a control-function vector, [휀�̂�,𝑡 휀�̂�,𝑡
2  �̂�𝑖,𝑡 �̂�𝑖,𝑡

2 ], created with the gen-

eralized residuals from the estimation of Equation (8) (the analogue to Equation 

(3)) and the residuals from the estimation of Equation (9) (the analogue to Equation 

(2)):  

(8)     𝑆𝑖,𝑡=1(𝛾𝑍,𝑡𝑍𝑖 + 𝛾𝑋,𝑡𝑋𝑖 + 𝛾𝐻,𝑡𝐻𝑖 + 𝛾𝑊,𝑡𝑊𝑖 + 𝛾𝐶,𝑡𝐶𝑖,𝑡

+ 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝛾𝑏𝑎𝑠𝑒𝑃𝑀,𝑡) + 𝛾𝑀,𝑡𝑀𝑖 + 𝑢𝑖,𝑡 > 0), 

(9)     𝑑𝑢𝑟𝑃𝑀𝑖,𝑡=𝛿𝑍,𝑡𝑍𝑖 + 𝛿𝑋,𝑡𝑋𝑖 + 𝛿𝐻,𝑡𝐻𝑖 + 𝛿𝑊,𝑡𝑊𝑖 + 𝛿𝐶,𝑡𝐶𝑖,𝑡

+ 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝛿𝑏𝑎𝑠𝑒𝑃𝑀,𝑡) + �̂�𝑡,𝑖 + 휀𝑡,𝑖. 

We begin by estimating Equation (8) via Maximum Likelihood on the full sam-

ple of individuals. The survival outcome, 𝑆𝑖,𝑡, now indicates whether individual i is 

still alive through the end of year t and has not previously received a dementia 

diagnosis. We then estimate the year-t-specific pollution Equation (9) via OLS. 

This equation includes the generalized residuals from the survival function, �̂�𝑖,𝑡. 

Equations (9) and (6) are estimated using the subset of people who are still alive 

through the end of year t and had not been diagnosed with dementia prior to year t.   

We then use the year-t-specific parameter vector, �̂�𝑡 , to calculate 𝐴𝑀𝐸𝑡, the 

average effect of a marginal increase in PM2.5 exposure from 2004 through year t 

on the probability of receiving a new dementia diagnosis during year t. We addi-

tionally calculate the cumulative effect of PM2.5 exposure from 2004 through year 

t on new dementia diagnoses during that period according to,  

(10)     𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝐴𝑀𝐸𝑡 =  ∑ (
𝑝𝑜𝑝𝑠

𝑝𝑜𝑝2005
) 𝐴𝑀𝐸𝑠

𝑡
𝑠=2005 , 

by summing the year-specific average marginal effects, after weighting them by 

their corresponding shares of the original population to account for attrition due to 



29 

 

dementia and death.42  Finally, we bootstrap standard errors on 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝐴𝑀𝐸𝑡 

by repeating estimation of Equations (6)-(10) after resampling from the original 

population one thousand times with replacement and clustering at the Census block-

group level. 

 

V. Results 

A. PM2.5 Regulations Created Conditional Differences in Subsequent PM2.5  

The identifying variation for our estimator comes from the fact that the EPA’s 

nonattainment designations created quasi-random differences in 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡 for 𝑡 =

[2005,2013], conditional on 𝑏𝑎𝑠𝑒𝑃𝑀𝑖 and the additional controls in Equations (2) 

and (9). Figure IV shows this identifying variation for the year 2013. Specifically, 

it uses the coefficients on the instruments from the year-2013 version of Equation 

(9) to plot the estimated partial effect of nonattainment on 𝑑𝑢𝑟𝑃𝑀𝑖,2013 across lev-

els of 𝑏𝑎𝑠𝑒𝑃𝑀𝑖. Similar figures plotting the estimated partial effect for 𝑡 =

[2005,2012] versions of Equation (9), as well as the decadal version in Equation 

(2), are shown in Appendix I1. Intuitively, the partial effects are negative, showing 

that nonattainment status reduced pollution. In addition, as permitted (but not de-

termined) by our construction of 𝑍𝑖, the partial effects vary with baseline PM2.5. 

This yields within-county identifying variation in 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡 in all years.43 The first-

stage partial R2 of the identifying instruments is 0.047 and the F statistic is 489 for 

the regression underlying Figure IV, suggesting that any finite sample bias is neg-

ligible. The size of the F statistic reflects the number of observations (approxi-

mately 1 million) and number of Census block group clusters (approximately 140 

thousand). 

                                                 
42 For example, we multiply the estimated AME in 2009 by 0.65 because 65% of the original year-2005 sample survives to 
the end of 2009. This adjusts for the progressive decline in sample size due to dementia and mortality.  
43 While nonattainment status caused reductions in dur𝑃𝑀𝑖,𝑡 at all levels of base𝑃𝑀𝑖, these reductions are larger at lower 

baseline levels.  
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FIGURE IV: ESTIMATED PARTIAL EFFECT OF NONATTAINMENT ON PM2.5 EXPOSURE 

2004-2013, BY BASELINE CONCENTRATIONS 2001-2003 

 
Note: The figure shows the average effect of the county-level nonattainment designation on the average individual-level 
conditional change in PM2.5 concentrations over the period 2004-2013. The zero line represents individuals living in attain-

ment counties at the same baseline PM2.5 concentration and holding all else in Equation (9) constant. The dotted lines denote 

95% confidence bands constructed from 1,000 bootstrap replications, with clustering at the Census block group. 

B. The Effect of PM2.5 on Dementia 

We find that a 1 μg/m3 increase in average PM2.5 concentrations starting in 2004 

increases the probability of receiving a new dementia diagnosis before the end of 

2013 by an average of 2.15 percentage points (pp). To illustrate the importance of 

various aspects of our identification strategy, we present the AME of cumulative 

PM2.5 exposure over the decade on new dementia diagnoses from six specifications 

described in Section IV.  

The first column of Table I begins with a simple, associative model of decadal 

PM2.5 and dementia diagnosis over the decade. The next four columns retain the 
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contemporaneous, decadal specification and incrementally address potential con-

founders that may underlie this association, as previously discussed. The final col-

umn presents our preferred specification that aggregates year-by-year marginal ef-

fects over the decade while addressing all of the potential confounders described in 

Section IV. In all cases, the AMEs are scaled to represent percentage point (pp) 

changes in the probability of receiving a new dementia diagnosis by the end of 

2013.  

 

TABLE I—AVERAGE MARGINAL EFFECT OF CUMULATIVE PM2.5 ON THE PROBABIL-

ITY OF A NEW DEMENTIA DIAGNOSIS 

 
Note: The outcome is scaled to equal 100 if an individual was diagnosed with dementia and 0 otherwise. By 2013, 20% of 

the individuals in our sample who were alive in that year had been diagnosed with dementia. In Column (1) the covariates 
are PM2.5 and CBSA dummies. Column (2) adds covariates for baseline health in 2004, individual demographics, de-

mographics for the individual’s Census block group, and pre-regulatory (2001-2003) PM2.5 levels at their residence. Column 

(3) adds a control function for PM2.5. Column (4) adds a control function for survival. Column (5) adds additional polynomial 
functions of covariates. Column (6) reports a cumulative decadal AME that aggregates year-specific AMEs, along with 

ranges for the year-specific F-statistics, Chi-square statistics, and sample sizes. Year-specific estimates are reported in Table 

I5. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clus-

tered at the block group. Standard errors in Columns (3) through (6) are bootstrapped using 1,000 repetitions. 

Column (1) in Table I shows the result from a simple associative model of de-

cadal PM2.5 and dementia diagnosis over the decade. The only covariates are CBSA 

 (1) (2) (3) (4) (5) (6)

(1 μg/m3 increase in decadal PM2.5) 0.629*** 0.124 1.545*** 2.283*** 2.384*** 2.151***

(0.058) (0.105) (0.536) (0.565) (0.568) (0.846)

individual & neighborhood covariates  x x x x x

PM2.5 control function x x x x

survival control function    x x x

polynomial functions and interactions x x

heterogeneity by exposure duration  x

F-statistic on PM2.5 instruments   496 498 498 165  to  489

number of individuals:                         

dementia function
1,179,094 1,179,094 1,179,094 1,179,094 1,179,094

989,751  to 

2,293,270

Chi-square statistic on survival 

instruments
3,813 3,813

1,166  to 

2,274

number of individuals:                            

survival function
   2,439,904 2,439,904 2,439,904
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dummies. The result indicates that a 1 µg/m3 increase in average decadal PM2.5 is 

associated with a 0.63 pp higher probability of receiving a dementia diagnosis be-

tween 2005 and 2013.  

Column (2) then additionally includes the observed characteristics represented 

by 𝑋𝑖, 𝐻𝑖, 𝑊𝑖 and 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖) in Equation (1). Adding these covariates reduces the 

conditional association between measured decadal PM2.5 and dementia over the 

decade to 0.12 pp. Thus, most of the within-CBSA association between measured 

PM2.5 and new dementia diagnoses can be explained by people with observably 

higher baseline risks of dementia living in more polluted neighborhoods. Notably, 

99% of the decline that occurs as we move from Column (1) to Column (2) can be 

explained by the inclusion of 𝑋𝑖, 𝐻𝑖, and 𝑊𝑖. When all of these covariates are in-

cluded, adding 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖) only reduces the AME for PM2.5 exposure from 2004-

2013 by 1%. This shows that our extensive measures of individual demographics, 

baseline health, and neighborhood characteristics explain almost all of the hetero-

geneity that contributes to any association between neighborhood PM2.5 in 2001-

2003 and new dementia diagnoses. 

Column (3) adds the PM2.5 control function to address measurement error in 

pollution exposure, or any residual differences driven by sorting. The resulting or-

der-of-magnitude increase in the AME relative to Column (2) is unsurprising. First, 

our extensive set of geographic controls could potentially exacerbate the effect of 

any measurement error in pollution. Second, while the bias introduced by measure-

ment error is ambiguous in general, prior studies have consistently found that in-

strumenting for (shorter-term) measures of air pollution exposure results in order-

of-magnitude increases in estimates for its effects on other morbidities and mortal-

ity among older adults (see, for example, Schlenker and Walker 2016, Deschênes, 
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Greenstone, and Shapiro 2017, and Deryugina et al. 2019).44  

Column (4) adds the survival control function to address selection on mortal-

ity.45 Controlling for selection on survival increases the AME to 2.28 pp, a 48% 

increase relative to Column (3). This increase is consistent with classic selection 

bias caused by positively correlated latent health: individuals who were more likely 

to die were also more likely to develop dementia.46  

Column (5) shows the AME from our specification shown in Equations (4)-(5) 

that allows for additional parametric flexibility in the covariates.47 This only in-

creases the AME to 2.38 pp, which is about a 4% increase relative to Column (4).48  

The final AME shown in Column (6) shows the cumulative AME at the end of 

the decade as shown in Equations (6) through (10). This model differs from the 

model underlying the AME in Column (5) in three potentially important ways. 

First, it limits aggregation bias that could be introduced by the misalignment of the 

data at the decadal level. Second, it incorporates the effects of PM2.5 exposure on 

dementia for people who die during the decade, almost doubling the number of 

observations used in estimation. Finally, it allows the effect of PM2.5 exposure on 

the probability of a new dementia diagnosis to evolve with the duration of exposure, 

as shown in Equation (6).  

This cumulative AME indicates that a 1 µg/m3 increase in average PM2.5 in-

creases the cumulative probability of a new dementia diagnosis by the end of 2013 

by 2.15 pp. Comparing this cumulative AME against the results from the more par-

simonious model in Column (5) indicates that the three notable differences between 

                                                 
44 These studies find that instrumenting for air pollution increases their estimates for its effects on morbidity and mortality 

by factors ranging from 6 to 20. The twelve-fold increase in our Table I estimates sits near the middle of this range.  
45 The average marginal effects of the survival instruments are reported in Appendix Table I2. 
46 We build on this result and develop a partial-identification approach to exploring the role of selection on survival in 

Appendix H.  
47 Appendix Table I3 reports the full results from this specification. Appendix Table I4 compares the AME for PM2.5 from 

this specification to the AMEs that we estimate for other dementia risk factors that were included as covariates in the model. 

Note that we do not consider the coefficients on risk factors other than decadal PM2.5 to reflect a causal relationship.  
48 When we run this specification using a linear-probability model, we find an AME of 2.16 pp that is statistically significant 

the 1% level. 
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the two approaches yields only a small difference in the economic magnitude of 

their estimated effects (0.23 pp).  

To provide context for the AME of 2.15pp, a 1 μg/m3 change is equivalent to 

9.1% of the average person’s exposure between 2004 and 2013 and 59% of a stand-

ard deviation. A 2.15 pp change in the dementia diagnosis rate is a 11% increase 

relative to the diagnosis rate among people in our sample who survive to the end of 

2013. To provide an age-based comparison to this statistic, the dementia diagnosis 

rate in 2013 was 2.2 pp higher among 80-year-old women compared with 79-year-

old women (Figure I).49  

FIGURE V: ESTIMATED EFFECTS OF PM2.5 ON DEMENTIA BY EXPOSURE DURATION 

 
 

Figure V shows how our estimates of the cumulative AME evolve over time, 

                                                 
49 To compare these results to earlier medical literature, Gatz et al. (1997) finds that approximately 74% of Alzheimer’s 

disease cases are heritable using twin pairs. We impose the additive separability assumption underlying that statistic and 
perform a back-of-the-envelope calculation to see how much variation in new dementia diagnoses could be explained by 

decadal PM2.5 exposures after age 65 in our sample. Specifically, we use a linearized and additively separable version of our 

decadal model to calculate ((AME2 Var(durPM))/(Var(Δy)) ≈ 1%, where AME=0.0238 (this number is multiplied by 100 
when discussed in the text), Var(durPM)=2.8812, and Var(Δy)=0.1572. We thank an anonymous referee for this suggestion.  
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along with 95% bootstrapped confidence intervals. The underlying year-specific 

AMEs are presented in Appendix Table I5. While the year-specific AMEs are im-

precisely estimated, the AME for 2005 is close to zero and, starting in 2008, the 

year-specific AMEs are positive in each year, which is reflected in the increasing 

cumulative AME shown in Figure V. In addition, the year-specific AMEs are gen-

erally increasing in the duration of exposure. When we weight the year-specific 

AMEs by the surviving share of the baseline population to account for attrition, as 

shown in Equation (10), the resulting weighted year-specific AMEs become similar 

in magnitude. This similarity is reflected in the approximately-linear trend in cu-

mulative AME point estimates shown in Figure V, although visual inspection of 

the confidence intervals suggests that we lack the statistical power to rule out a 

nonlinear function. 

C. Heterogeneity in Effects 

The results shown in Column (6) of Table 1 average over considerable hetero-

geneity in the marginal effects of PM2.5 exposure. Interestingly, the cumulative 

AME’s tend to be larger among individuals who experienced lower levels of PM2.5. 

To illustrate this, we divide individuals into terciles by their baseline residential 

exposures during 2001-2003. Individuals in the top tercile of baseline exposure 

(above 14.2 μg/m3) experienced a cumulative AME of 1.91 pp. In comparison, in-

dividuals in the middle tercile (whose baseline exposures were between 12.4 and 

14.2 μg/m3) experienced an AME of 2.10 pp. Individuals with baseline exposures 

below 12.4 μg/m3 experienced an AME of 2.45 pp. For those in the top, middle and 

bottom terciles who survived through 2013, average exposures from 2004-2013 

were 12.46, 11.14 and 9.24 μg/m3, respectively. These results highlight that the 

effects of PM2.5 on dementia persist well below the current US regulatory threshold 

of 12 μg/m3 of annual average concentrations.  
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The estimates also show heterogeneity across individual characteristics. For ex-

ample, the cumulative AME is larger for individuals whose exposures we observe 

at older ages (e.g., 1.13 pp for people born in 1938 for whom we observe quasi-

random variation in exposure from age 66 up to age 75, compared with 2.34 pp for 

people born in 1928 for whom we observe variation in exposure from age 76 up to 

age 85). Conditional on age at exposure, the AME is higher for women compared 

with men (e.g., 2.57 pp for women born in 1928 compared with 2.03 pp for men 

born in 1928). Conditional on age and sex, the AME is higher for individuals with 

more clinical risk factors for dementia at the start of the decade (e.g., 2.24 pp for 

women born in 1928 with no baseline clinical risk factors compared with 2.61 pp 

for women born in 1928 who had been diagnosed with ischemic heart disease and 

hypertension at baseline). Finally, when we condition on PM2.5 exposure, the AME 

is higher among individuals denoted by CMS as “Black or African-American” com-

pared with “non-Hispanic White” (e.g., 0.21 pp higher among women born in 1928 

whose baseline exposure to PM2.5 was within a one-unit window of the sample me-

dian of 13.4 μg/m3).50  

 

VI. Main Validation Tests and Additional Sensitivity Analysis 

A. Main Validation Tests 

Table II presents three validation tests of our estimator. First, we assess the 

assumption that our nonattainment instrument is independent of earlier-in-life 

measures of PM2.5, conditional on baseline PM2.5 exposure and the other covariates. 

Specifically, we examine whether the AME shown in Table I, Column (6) changes 

when we add measures of earlier-in-life exposures, specifically average annual 

PM2.5 in 1999 and 2000.51 These are the first two years that the US EPA had a 

                                                 
50 Average decadal PM2.5 exposures in our estimation sample were 6% higher for Black or African-American individuals 
compared with non-Hispanic White individuals who survived through 2013. 
51 In the years of 1999 and 2000, 86% of our balanced panel of monitors were in operation. 
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national network of PM2.5 monitors and the first two years that researchers can ob-

tain administrative data describing the Medicare population. Thus, this validation 

test exhausts the available data. For the 23% of our sample that were under age 65 

in those years and not yet enrolled in Medicare, we assign 1999 and 2000 PM2.5 

exposures based on the location where we first observe these individuals living 

upon enrolling in Medicare. While this assignment is imperfect, low short-term mi-

gration rates among this age group limit the scope for error. For example, the year 

2000 Census of Population reports that 77% of people aged 65-69 lived in the same 

residence as they did five years ago.  

TABLE II—VALIDATION TESTS  

 
Note: The first column repeats our main result from Table I, Column (6) for comparison. The next three columns report 

results from alternative specifications that are designed to test the identifying assumptions that underlie our main specifica-
tion. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels based on robust standard errors 

clustered at the Census block group. See the note to Table I and main text for further details. 

If the exclusion restrictions on 𝑍𝑖 are valid, then adding controls for earlier-in-

life PM2.5 should not change the estimated AME of cumulative exposure over the 

decade. Column (2) shows that this augmented specification yields an AME of 2.25 

pp. This is similar to the AME of 2.15 pp from our main specification (repeated in 

Column (1) for convenience). This similarity reinforces the validity of the instru-

ment and is consistent with the EPA’s nonattainment designation criteria, which 

relied solely on PM2.5 concentrations in 2001-2003. 

The specification in Column (3) tests whether our results are confounded by the 

 (1) (2) (3) (4)

2.151*** 2.246*** 1.754** -0.167

(0.846) (0.929) (0.704) (0.283)

modification to main specification

control for PM2.5 in 1999 and 2000 x

control for other regulated air pollutants x

placebo outcome = dementia in 2004 x

F-statistic on PM2.5 instruments 165  to  489 147  to  492 146  to  350 620

number of individuals: dementia function 989,751  to 2,293,270 989,751  to 2,293,270 989,751  to 2,293,270 2,734,032

Chi-square statistic on survival instruments 1,166  to 2,274 1,166  to 2,274 1,168  to 2,277

number of individuals: survival function 2,439,904 2,439,904 2,439,904

Probit model average marginal effect                                                           

(1 μg/m3 increase in decadal PM2.5)
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model’s omission of air pollutants that may be co-generated with PM2.5. Specifi-

cally, we add measures of exposure to PM10, ozone, nitrogen dioxide, sulfur diox-

ide, and carbon monoxide. Each measure is constructed following the same proce-

dures that we used to construct measures of cumulative PM2.5. When we control for 

these ancillary pollutants, the cumulative AME for PM2.5 remains large and pre-

cisely estimated.  

Additionally, we test for sorting based on unobserved risk factors, such as ge-

netics, that may contribute to dementia and be correlated with PM2.5. In principle, 

sorting on unobserved risk factors could bias the estimator if, prior to our study 

period, people at a lower unobserved risk for dementia sorted themselves into 

neighborhoods that were more or less likely to be designated as nonattainment in 

the future, even conditional on baseline neighborhood PM2.5 and the other controls. 

While we cannot directly test this sorting hypothesis in our main estimation sample, 

we can test it indirectly by extending the sample to include the people who were 

excluded because they were diagnosed with dementia prior to 2005. In other words, 

if individuals sorted themselves into future nonattainment areas based on unob-

served dementia risk then we would expect to see a conditional relationship be-

tween dementia rates in 2004 and PM2.5 exposure over the subsequent decade.52 We 

test this hypothesis using a placebo specification that replaces the outcome in Equa-

tion (4) with an indicator for a dementia diagnosis in 2004. Including everyone alive 

in 2004, with or without dementia, increases our sample size to 2.7 million. Column 

(4) shows that the estimated AME is negative, close to zero, and estimated rela-

tively precisely. This provides supporting evidence that the exclusion restriction is 

unlikely to be violated by initial differences in unobserved dementia risk, including 

unobserved genetic factors. 

                                                 
52 Intuitively, under the hypothesis that people sorted into future nonattainment areas based on unobserved dementia risk, 
some people would have been diagnosed with dementia prior to 2005 and been dropped from our estimation sample, while 

others would have been diagnosed after 2005 and been included in our estimation sample. 
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B. Additional Sensitivity Analysis 

The effect of PM2.5 on dementia persists when we use (1) different measures of 

dementia such as the use of prescription drugs for the symptoms of Alzheimer’s 

disease rather than claims-based diagnosis codes; (2) different samples that include 

people who select into managed care plans known as Medicare Advantage; (3) 

monitor-level attainment indicators rather than county-level indicators; (4) different 

approaches to measuring PM2.5 exposure including expanding the set of monitors 

to include those not present for the entire study period, (5) a limited sample of in-

dividuals who live close to a monitor, and (6) controls for baseline pollution expo-

sure that are even more flexible than the fourth-order polynomial function described 

above. We present and discuss these results in Appendix J. 

Finally, we estimate models for placebo health outcomes. We examine five 

chronic conditions that are not known or suspected to be caused by air pollution but 

share similarities with dementia in terms of how they affect the body, how they are 

diagnosed, and how diagnosis rates are correlated with age, race, and gender. These 

are glaucoma, fibromyalgia, breast cancer, prostate cancer, and peripheral vascular 

disease.53 Appendix Table J5 shows that we fail to reject the null hypothesis of zero 

effect at the 10% significance level for each of these placebos. We elaborate on 

these models and results in the appendix. 

Our criteria for selecting placebos excluded illnesses that have previously been 

linked to air pollution. When we instead ignore these criteria and repeat estimation 

for each of the 15 most common chronic conditions among the Medicare population 

including those linked to pollution exposure, we find positive effects of PM2.5 at 

the 5% level for two diseases besides dementia: chronic obstructive pulmonary dis-

ease (COPD) [AME = 1.79, p=0.002] and chronic kidney disease [AME = 1.15, 

                                                 
53 Glaucoma is a progressive disorder with nerve degeneration that is strongly associated with age; fibromyalgia affects mood 
and behavior and can be difficult to diagnose; breast cancer and prostate cancer can be slow to progress and have gender-

specific diagnosis rates; and peripheral vascular disease is associated with reduced blood circulation.  
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p=0.038].54 These results could be interpreted as “reverse placebo tests” in the sense 

that positive findings may be expected based on prior cohort studies that found that 

long-term exposure to PM2.5 is associated with these diseases (e.g., Guo et al. 2018). 

VII. Conclusion 

Dementia’s global social costs continue to grow with the aging populations of 

many countries, causing the World Health Organization to label it a “public health 

priority” and the US Centers for Disease Control to describe it as a “public health 

crisis.” Because no medical preventions or cures exist, policy discussions have fo-

cused on investment in research and health infrastructure and modifying behaviors 

related to smoking, diet, and exercise. Our findings reveal that air quality regula-

tions provide another lever to policy makers to reduce the prevalence of dementia.  

Beyond these policy implications, our results provide guidance for additional 

research on the causes and consequences of dementia. Our study establishes a 

causal link between long-term, later-in-life exposure to PM2.5 and dementia, yet the 

precise mechanisms and causal pathways remain unknown. Research can investi-

gate how the presence of small particulates in the brain alters cognitive function 

and relates to Alzheimer’s disease specifically, and whether the effects differ across 

chemical composition, genotypes, comorbidities, stages of life, or other factors. 

Likewise our results can help guide efforts to study the broader link between air 

pollution, cognitive decline and financial decision making. Such insights can shed 

light on the economic costs of impaired cognition as well as the value of various 

approaches to mitigate these costs, whether through the provision of long-term care 

and long-term care insurance, support for family caregivers, financial decision sup-

port, and medical technologies. 

 

                                                 
54 According to the Centers for Medicare and Medicaid Services (2012) the top 15 conditions ranked from most prevalent to 
least prevalent are high blood pressure, high cholesterol, ischemic heart disease, arthritis, diabetes, heart failure, chronic 

kidney disease, depression, COPD, Alzheimer’s disease, atrial fibrillation, cancer, osteoporosis, asthma, and stroke. 
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Data Availability Statement. The Medicare data used in this study are available 

through the Centers for Medicare and Medicaid Services but restrictions apply to 

the availability of these data, which were used under license for the current study, 

and so are not publicly available. The code and other data underlying this research 

is available on Zenodo at https://doi.org/10.5281/zenodo.7196076. 
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A. Sample Construction and Summary Statistics 

We start with all traditional Medicare enrollees who were 65 or older on January 1, 2004 (6.6 

million people). Then we make four sample cuts for our main analysis. First, we drop 2.7 million 

individuals for whom we could not precisely measure air pollution exposure because they lived in 

“unclassifiable” counties that lacked PM2.5 monitors at the time regulation began or because we 

were unable to observe their residential location (e.g., because their mailing address was a post 

office box). This data cut is standard in air pollution studies due to the increased scope for meas-

urement error. While our estimation approach addresses measurement error in general, the error 

could be greater in unmonitored counties and thus undermine our identification because such coun-

ties were treated as de facto in attainment. There are some moderate differences between individ-

uals living in monitored counties and individuals living in unmonitored counties, as shown in Ta-

ble A1. In particular, we note that those living in unmonitored counties were slightly less likely to 

receive a new diagnosis of dementia over the decade and slightly more likely to die. Next, we 

restrict the sample to individuals enrolled in traditional Medicare (TM) in 2004 by dropping 0.8 

million who enrolled in Medicare Advantage (MA) that year. This is because CMS lacks data on 

dementia diagnoses of MA enrollees. However, for some analyses, we expand the sample to in-

clude MA enrollees and evaluate the use of ADRD medications as the outcome of interest. These 

results are described in Appendix J.2. 

Our third exclusion is to drop 0.3 million individuals who had already been diagnosed with 

dementia in 2004 because the disease is currently irreversible, leaving no scope for change.1 Fi-

nally, we drop 0.3 million individuals whose CMS records are missing claims in 2004 or who lived 

in Census block groups that were missing information on neighborhood demographics, or that we 

could not assign to a single Census block group in 2004 because they moved during that year. 

These sample cuts are unlikely to compromise external validity. Table A1 shows that the excluded 

groups are similar to our main estimation sample in terms of average demographics, longevity, 

and, when observable, medical conditions, health expenditures, pollution exposure, and Census 

block-group demographics.  

The resulting sample consists of 2,439,904 individuals in 2004. We use this sample to estimate 

the survival functions in Equations (3) and (8). Figure A1 illustrates how between 2004 and 2013, 

 
1 In Table II of the main text, we report the results of a validation test using a sample that includes those with dementia in 2004.  
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some of these individuals move outside of the continental US or to unknown locations, move out 

of TM into MA and perhaps back again, or die. Our primary sample for estimating Equation (2) 

and Equation (4) is limited to people who survive through the end of 2013. This sample is com-

prised of 1,179,094 individuals who were enrolled in traditional Medicare in 2013 and survive 

through the end of that year (1,112,159 individuals who were continuously enrolled in TM from 

2004 to 2013 plus 67,244 who moved from TM to MA and then back to TM, less 309 individuals 

who are dropped during estimation because there is no variation in dementia outcomes among 

people in their CBSAs).  

For the year-specific version of the model discussed in Section IV.D and summarized in Figure 

V we follow an analogous approach in which the primary sample for estimating Equation (6) and 

Equation (9) is limited to people who had not been previously diagnosed with dementia at the 

beginning of year t and who are alive through the end of year t. Table I5 reports the year-specific 

sample sizes and dementia diagnosis rates.  

FIGURE A1: SAMPLE SIZES AND TRANSITIONS FROM 2004-2013 
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TABLE A1: SUMMARY STATISTICS FOR MEDICARE BENEFICIARY SAMPLES  

 
Note: Columns (1) and (2) report variable means for our main estimation samples. Column (1) is a balanced panel of individuals who were in 

traditional Medicare (TM) in 2004 and survived through the end of 2013, at which point they were still enrolled in TM. Column (2) adds individuals 
who were in TM in 2004 but died or switched to Medicare Advantage (MA) before 2013. All but one of differences in means between the samples 

in columns (1) and (2) are statistically significant with p-values below 0.01. The exception is “education: associate degree (%)” (p=0.5). Column 

(3) describes individuals who were in TM in 2004 but not used in estimation because they lived in known locations in counties that were designated 
by EPA as “unclassifiable” for regulatory purposes due to a lack of pollution monitors (1,523,641) or because their residential location could not 

be determined (1,159,406) in which case they are excluded when calculating mean values of neighborhood characteristics. Column (4) describes 

individuals not used in estimation because they were enrolled in MA in 2004, leaving us unable to observe their dementia diagnoses and medical 
expenditures. Column (5) describes individuals who were in TM in 2004 but not used in estimation (aside from placebo regressions) because they 

had been diagnosed with dementia by 2004. Column (6) describes individuals who were in TM in 2004 but not used in estimation because they 

were missing data on medical expenditures, their residential address could not be matched to a Census block group, or they changed addresses in 
2004 complicating assignment to a block group and attainment/nonattainment area. 

(1) (2) (3) (4) (5) (6)

EXCLUDED EXCLUDED EXCLUDED EXCLUDED

survived 

through 2013

traditional 

Medicare 

enrollees in 

2004

lived in county 

without pollution 

monitors or at 

unknown location

enrolled in 

Medicare 

Advantage in 

2004

had dementia in 

2004

missing data or 

moved in 2004

# people 1,179,094 2,439,904 2,683,047 783,911 335,436 328,735

Individual demographics

mean age at sample entry 69.3 71.1 71.2 71.4 77.3 68.9

mean age in 2013 82.5 84.5 84.7 85.0 91.2 81.7

male (%) 38 41 43 40 32 50

white (%) 84 83 87 75 80 75

black (%) 8 9 6 10 11 11

asian (%) 3 3 1 4 2 4

hispanic (%) 5 5 6 10 6 9

alive at end of 2013 (%) 100 61 56 58 17 69

dementia at end of 2013 (%) 20 25 30 11 100 18

ever moved (%) 32 32 38 36 52 58

ever moved county (%) 15 15 16 17 25 34

ever moved state (%) 8 8 8 8 12 21

2013 gross Medicare expenditures ($) 4,685 6,701 7,131  16,246

Medical diagnoses as of 2004

dementia (%) 0 0 10  100

stroke (%) 7 10 11  34

congestive heart failure (%) 12 20 21  45

diabetes (%) 21 25 24  34

ischemic heart disease (%) 35 42 38  61

hypertension (%) 66 70 64  84

Neighborhood characteristics

PM2.5 (hourly μg/m3) 2001-2003 13.23 13.28  13.57 13.40

Nonattainment county (%) 39.91 39.40  42.43 42.37

household income (median) 65,912 62,026 52,722 60,330 59,800

income per capita 33,755 31,817 26,808 29,934 31,095

year built (median) 1970 1969 1973 1967 1968

house value (median) 267,992 246,628 170,354 278,066 244,766

house value (average) 138,293 124,492 88,424 131,762 119,107

gross rent (median) 2,845 2,544 1,722 2,276 2,361

population over 65 (%) 18 18 19 18 19

population white not hispanic (%) 69 67 83 58 64

population black (%) 12 13 7 12 15

population hispanic (%) 13 13 6 20 14

education: 9th to 12th (%) 7 8 9 8 8

education: high school grad (%) 26 27 34 27 27

education: some college (%) 21 21 21 21 21

education: associate degree (%) 8 8 8 8 7

education: bachelor's degree (%) 20 19 15 18 19

education: graduate degree (%) 13 12 9 11 12

owner occupied (%) 64 62 64 60 58

renter occupied (%) 26 28 23 31 32

ESTIMATION SAMPLES
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B. Locations of Air Pollution Monitors and Nonattainment counties 
 

Figure B1 shows the attainment status for US counties that had PM2.5 monitors in place 

throughout the 2001-2003 evaluation period. There were 132 nonattainment counties located in 21 

states and 528 attainment counties located in 50 states.  

FIGURE B1: INITIAL COUNTY (NON)ATTAINMENT DESIGNATIONS FOR PM2.5 

 

Figure B2 shows the locations of PM2.5 monitors. This figure was generated using the Envi-

ronmental Protection Agency’s AirData Air Quality Monitor app: https://www.epa.gov/outdoor-

air-quality-data/interactive-map-air-quality-monitors. 

FIGURE B2: LOCATIONS OF EPA MONITORING STATIONS FOR PM2.5 

     

https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
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 The US had 1,772 federal regulatory-grade monitors reporting PM2.5 at some point during our 

study period, and 485 reporting data every year from 2001 through 2013. These data represent the 

best available information on ambient air quality in the United States. They are used by the EPA 

and other researchers as the benchmark for calibrating and evaluating the accuracy of novel ap-

proaches to predicting air quality, such as inexpensive consumer-grade sensors 

(https://www.epa.gov/air-sensor-toolbox/evaluation-emerging-air-sensor-performance) and satel-

lite images of aerosol optical depth to predict PM2.5 concentrations (e.g., Fowlie, Rubin and Walker 

(2019)). The EPA provides information about air quality monitoring technology and its accuracy 

here: https://www.epa.gov/amtic/air-monitoring-methods-criteria-pollutants. 

C. Annual PM2.5 Concentrations by County Attainment Status 

Figure C1 mirrors the analysis that Chay and Greenstone (2005) used to motivate their use of 

the 1975 nonattainment designations for total suspended particulates (TSP) as instrumental varia-

bles to isolate exogenous between-county variation in TSP changes (see Figure 2 in that paper). 

Here, the nonattainment and attainment lines show annual average concentrations in counties that 

were designated as nonattainment and attainment for PM2.5, respectively.2 The difference line 

shows that the difference between the trend lines for attainment and nonattainment counties was 

fairly stable from 1999 through 2003 with between 4.4 and 4.8 higher μg/m3 in nonattainment 

counties.  

Starting in 2004, PM2.5 concentrations declined at a noticeably faster rate in nonattainment 

counties so that by 2013 the gap was only 1.9 μg/m3. This differential is 1.5 μg/m3 smaller than 

the gap that would be predicted by projecting the pre-regulatory trend from 1999-2003 forward to 

2013 (3.4 μg/m3). The cumulative difference between these two trends reveals that the average 

concentrations from 2004 to 2013 in nonattainment counties was 0.97 μg/m3 lower than projected 

from the pre-regulatory trend. 

 

 
2 The figure is based on a balanced panel of 485 PM2.5 monitors in operation continuously from 2001-2013. The figure looks virtually identical if 

we reconstruct it using an unbalanced panel of all monitors ever in operation from 1999-2013. 

https://www.epa.gov/air-sensor-toolbox/evaluation-emerging-air-sensor-performance
https://www.epa.gov/amtic/air-monitoring-methods-criteria-pollutants
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FIGURE C1: ANNUAL PM2.5 CONCENTRATIONS BY COUNTY ATTAINMENT STATUS 

 
Note: The figure reports annual average concentrations of PM2.5. Measurements are taken from air quality monitors in counties designated in 2005 

as attainment or nonattainment with the federal standard based on monitor readings from 2001-2003. The nonattainment line is a simple average 

over monitors in nonattainment counties that were in operation from 2001-2013. The attainment county line is defined similarly. The difference 
line shows the difference between the nonattainment and attainment lines. The pre-regulatory trend line is a projection of the difference in the pre-

regulatory period, as state and local regulators were notified of the impending nonattainment designations in 2004. In 2010 the Census Bureau 

recorded 41% of the US population age 65 and over as living in attainment counties and 27% as living in nonattainment counties. 

D. Within-CBSA Variation in Nonattainment Status by Baseline PM2.5 

Figure D1 provides an example of the within-county and between-county variation in attain-

ment status, conditional on baseline residential PM2.5 concentrations within a CBSA. The horizon-

tal axis describes baseline PM2.5 concentrations (in 0.33 microgram per cubic meter bins) for two 

adjacent counties within the New York-Northern New Jersey-Long Island CBSA. The vertical axis 

reports the fraction of residents in each bin. The considerable overlap in baseline concentrations 

between an attainment county (Ocean) and a nonattainment county (Union) may be seen.  
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FIGURE D1: WITHIN-CBSA VARIATION IN NONATTAINMENT STATUS BY BASELINE PM2.5 LEVELS 

 

 

E. Trends in New Dementia Diagnoses Prior to 2005 

Figure E1 shows that the difference in annual dementia diagnosis rates between attainment and 

nonattainment counties was stable between 1999 and 2004. While parallel pre-trends is neither 

necessary nor sufficient for drawing causal inference from our research design, the absence of pre-

regulatory differences may assuage concerns that the estimated differences during the subsequent 

decade are due to other factors such as differential rates of change in doctors’ diagnostic and pre-

scribing decisions.   
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FIGURE E1: NEW DEMENTIA DIAGNOSIS PRIOR TO 2005 BY COUNTY ATTAINMENT STATUS 

 

 

F. PM2.5 Exposure and Migration 

We estimate the effects of PM2.5 exposure from 2004 through year t on the probability of mov-

ing to a new address in year t. The outcome of interest, 𝑀𝑖,𝑡, is an indicator for whether person i’s 

residential address on file at CMS has a different ZIP+4 code in year t+1 relative to year t. This 

effectively measures whether the person moved to a new residential address because ZIP+4 codes 

are close to street address in terms of spatial precision. 

Equations (F1) and (F2) show how we specify the second-stage and first-stage regressions. 

(F1) 𝑀𝑖,𝑡
∗ = ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,𝑡; 𝜋𝑖,𝑡) + 휃𝑋,𝑡𝑋𝑖 + 휃𝐻,𝑡𝐻𝑖 + 휃𝑊,𝑡𝑊𝑖 + 휃𝐶,𝑡𝐶𝑖 +

                                                                                                              𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 휃𝑏𝑎𝑠𝑒𝑃𝑀,𝑡) + 휂𝑖,𝑡,  

                where  𝑀𝑖,𝑡 =1[𝑀𝑖,𝑡
∗ > 0]. 

(F2)   𝑑𝑢𝑟𝑃𝑀𝑖,𝑡 = 𝜅𝑍,𝑡𝑍𝑖 + 𝜅𝑋,𝑡𝑋𝑖 + 𝜅𝐻,𝑡𝐻𝑖 + 𝜅𝑊,𝑡𝑊𝑖 + 𝜅𝐶,𝑡𝐶𝑖,𝑡 + 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝜅𝑏𝑎𝑠𝑒𝑃𝑀,𝑡) + 𝑢𝑖,𝑡. 

We instrument for 𝑑𝑢𝑟𝑃𝑀𝑖,𝑡 using a vector of instruments, 𝑍𝑖, that is comprised of an indicator 

for residing in a nonattainment county in 2004 and interactions between this indicator and a fourth-

order polynomial of 𝑏𝑎𝑠𝑒𝑃𝑀𝑖. The coefficient of interest, 𝜋, measures the effect of PM2.5 exposure 

from 2004 through year t on the probability of moving in year t.  
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FIGURE F1: ESTIMATED EFFECTS OF PM2.5 EXPOSURE ON THE PROBABILITY OF MOVING 

 

Figure F1 shows our 2SCML estimates for π and 95% confidence bands. The point estimates 

range from -0.52 pp to 0.38 pp and the confidence bands include zero in all years. For reference, 

the share of people moving each year ranges from a low of 3.97 pp in 2007 to a high of 5.23 pp in 

2005.   

FIGURE F2: ANNUAL AVERAGE CHANGES IN PM2.5 BY AGE, MIGRATORY STATUS, AND DEMENTIA 
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Next, we analyze the changes in PM2.5 experienced by movers with dementia compared to non-

movers of the same age (who may or may not have dementia). Specifically, we regress the year-

to-year change in individuals’ PM2.5 exposures on indicators for their integer age and an interaction 

term comprised of indicators for (i) integer age, (ii) whether the individual has dementia (𝑦𝑖,𝑡), and 

(iii) whether the year-to-year change in PM2.5 exposure straddled a move (𝑀𝑖,𝑡−1).  

               Δ𝑃𝑀2.5 =  𝑃𝑀2.5𝑖,𝑡 − 𝑃𝑀2.5𝑖,𝑡−1 = 𝜇0 + 𝜇1𝑎𝑔𝑒𝑖,𝑡 + 𝜇2𝑎𝑔𝑒𝑖,𝑡 ∗ 𝑀𝑖,𝑡−1 ∗ 𝑦𝑖,𝑡 + 𝜗𝑖,𝑡. 

All individuals age 100 and over are grouped into a single age bin at 100. Because the model 

includes 9 observations per individual and the errors may exhibit autocorrelation, the confidence 

bands are constructed from robust standard errors clustered at the individual level.  

Figure F2 plots our estimates for 𝜇2 and 95% confidence bands. The solid line shows that 

younger movers with dementia tend to experience relatively larger year-to-year reductions in their 

PM2.5 exposures as a result of moving compared to non-movers of the same age (who may or may 

not have dementia). The differential diminishes with age and the confidence bands include zero 

for most ages beyond 80. 
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G. A Model of a Dementia-Diagnosis Production Function 

We illustrate how our decadal model for new dementia diagnoses can be linked to a more 

primitive “production function” for dementia diagnoses. We start by writing the latent propensity 

to be diagnosed with dementia by the end of year 𝑡 as a function of the lifetime history of PM2.5 

exposure (from an initial year B to year t), a vector of time-varying determinants, 휁𝑖,𝑡 (which in-

cludes both observable factors and unobservable factors), and a vector of time-invariant determi-

nants, 𝜉𝑖 (which includes both observable factors and unobservable factors). While some factors, 

such as genetics, are time-invariant, they may have time-varying impacts on the latent propensity 

to be diagnosed with dementia, and would, in that case, be included in 휁𝑖,𝑡.  

(G1) 𝑦𝑖,𝑡
∗ = 𝑘(𝑃𝑀𝑖,𝑡−9, 𝑃𝑀𝑖,𝑡−8, … , 𝑃𝑀𝑖,𝑡−1, 𝑃𝑀𝑖,𝑡) + 𝑔(𝑃𝑀𝑖,𝐵 , 𝑃𝑀𝑖,𝐵+1, … , 𝑃𝑀𝑖,𝑡−11, 𝑃𝑀𝑖,𝑡−10) + 휁𝑖,𝑡 + 𝜉𝑖 

In Equation (G1), we specify the impact of the most recent decade of PM2.5 exposure via the non-

parametric function 𝑘(∙). We allow all previous exposure to enter via the nonparametric function 

𝑔(∙). The 𝑘(∙) and 𝑔(∙) functions place no restrictions on the importance of more recent exposures 

relative to more distant exposures, or on how they differ from individual to individual. The reason 

we distinguish between the most recent decade and earlier exposures in (G1) is because the most 

recent decade is the longest period over which we can observe exogenous variation in PM2.5 expo-

sures given the existing data and the institutional features of our application (summarized in Sec-

tion I of the main text). Differencing yields: 

(G2)  Δ𝑦𝑖,2013
∗ ≡  𝑦𝑖,2013

∗ − 𝑦𝑖,2004
∗   

        = 𝑘(𝑃𝑀𝑖,2004, … , 𝑃𝑀𝑖,2013) − 𝑘(𝑃𝑀𝑖,1995, … , 𝑃𝑀𝑖,2004) + Δ𝑔𝑖,2013(𝑃𝑀𝑖,𝐵, … , 𝑃𝑀𝑖,2003) +  ∆휁𝑖,2013,    

where   Δ𝑔𝑖,2013(𝑃𝑀𝑖,𝐵, … , 𝑃𝑀𝑖,2003) = 𝑔(𝑃𝑀𝑖,𝐵, … , 𝑃𝑀𝑖,2003) − 𝑔(𝑃𝑀𝑖,𝐵, … , 𝑃𝑀𝑖,1994)  

and   Δ휁𝑖,2013 = 휁𝑖,2013 − 휁𝑖,2004.  Note that 𝜉𝑖 has dropped out. 

To illustrate how this specification relates to our decadal model of new dementia diagnoses in 

the text, consider the following rewrite of Equation (G2), 

(G3)  Δ𝑦𝑖,2013
∗ = ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,2013; 𝛼𝑖) + 휂𝑖 , 

where    휂𝑖 =  𝑘(𝑃𝑀𝑖,2004, … , 𝑃𝑀𝑖,2013) − ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,2013; 𝛼𝑖) − 𝑘(𝑃𝑀𝑖,1995, … , 𝑃𝑀𝑖,2004) +

Δ𝑔𝑖,2013(𝑃𝑀𝑖,𝐵, … , 𝑃𝑀𝑖,2003) + ∆휁𝑖,2013. 
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In the text we follow Angrist and Pischke (2009) in decomposing 휂𝑖 into a linear function of ob-

servable controls, 𝑋𝑖, 𝐻𝑖, 𝑊𝑖, 𝐶𝑖,  𝑏𝑎𝑠𝑒𝑃𝑀𝑖, and an error term, 𝑒𝑖: 

(G4)  휂𝑖 =  𝛽𝑥𝑋𝑖 + 𝛽𝐻𝐻𝑖 + 𝛽𝑊𝑊𝑖 + 𝛽𝐶𝐶𝑖,2013 + 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝛽𝑏𝑎𝑠𝑒𝑃𝑀) + 𝑒𝑖.  

The controls, 𝑋𝑖, 𝐻𝑖 , 𝑊𝑖 , 𝐶𝑖,  𝑏𝑎𝑠𝑒𝑃𝑀𝑖, are natural choices to include in Equation (G4) as they 

contain risk factors (i.e., demographic, health, and location characteristics) that are likely to be 

associated with new dementia diagnoses as discussed in Section II. By directly conditioning on 

these controls in Equation (G4), we effectively remove them from 휂𝑖. However, we do not assume 

that 𝑑𝑢𝑟𝑃𝑀𝑖,2013 is exogenous with respect to the residual unobserved factors, 𝑒𝑖, and we address 

the endogeneity of 𝑑𝑢𝑟𝑃𝑀𝑖,2013 using the instrument, 𝑍𝑖. 

Combining equations (G2), (G3), and (G4) yields the following equation, which is identical to 

Equation (1) in the text: 

(G5)Δ𝑦𝑖,2013
∗ = ℎ(𝑑𝑢𝑟𝑃𝑀𝑖,2013; 𝛼𝑖) + 𝛽𝑋𝑋𝑖 + 𝛽𝐻𝐻𝑖 + 𝛽𝑊𝑊𝑖 + 𝛽𝐶𝐶𝑖,2013 + 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖; 𝛽𝑏𝑎𝑠𝑒𝑃𝑀) + 𝑒𝑖 

The parameter of interest in Equation (G5) is 𝛼, which describes the causal effect of the most 

recent decade’s PM2.5 exposure on a new dementia diagnosis, holding all else constant. A neces-

sary condition to identify 𝛼 is that 𝑍𝑖 is conditionally independent of 휂𝑖, where 𝑍𝑖 are the instru-

ments for PM2.5 described in Section IV.A. We assume that the model controls for potential con-

founding factors that determine a new dementia diagnosis, such that 𝑒𝑖 is independent of the non-

attainment instruments, 𝑍𝑖. Thus, we treat 𝑑𝑢𝑟𝑃𝑀𝑖,2013 as endogenous with respect to 𝑒𝑖 and we 

assume that 𝑍𝑖 and the controls 𝑋𝑖, 𝐻𝑖 , 𝑊𝑖, 𝐶𝑖,2013, and 𝑓(𝑏𝑎𝑠𝑒𝑃𝑀𝑖), are exogenous with respect to 

𝑒𝑖.
3 Analogs to our conditional independence assumption on 𝑍𝑖 and our exogeneity assumption on 

the controls are ubiquitous in the economic literature linking pollution to health outcomes (e.g., 

Schlenker and Walker 2016, Isen, Rossin-Slater, and Walker 2017, and Deryugina et al. 2019).  

This instrumental-variables based approach will address measurement error in PM2.5. This 

measurement error may arise from unobserved variation in indoor air, daily mobility, and activities 

that create differences between observable measures of ambient pollution and what individuals 

 
3 As discussed in the main text, exogeneity of the controls is established by a mean-independence assumption that is equivalent to the assumption 

that the functional form specified in the population regression Equation (G4) is sufficiently flexible to capture the relationship between the controls 

and 휂𝑖 (Angrist and Pischke, 2009). Then, exogeneity of Z is established by making the additional assumption that 𝑍𝑖 is independent of 휂𝑖 conditional 

on the controls. Three features of our research design support the credibility of the functional-form assumption in (G4). First, as discussed in Section 

II, our controls are extensive. Second, our model is saturated within some control vectors (e.g., integer-age-by-gender dummies and the full-factorial 

of baseline health conditions) and flexible in other control vectors (e.g., fourth order polynomial functions of medical spending and baseline pollu-
tion). Third, the estimated AMEs are relatively insensitive to adding additional interactions and additional flexibility in unsaturated control vectors. 

See, for example, the discussions in Sections IV.C, IV.D, VI.B, and Appendix J.   
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actually breathe or from our interpolation between geography-based measures of ambient pollution 

(i.e., monitors) required to develop individual-level measures of exposure. 

To address any threats to identification from mis-specification, we rely on a series of robust-

ness checks. While our preferred simple average of PM2.5 exposure is consistent with the medical 

literature’s accumulation hypothesis, there could be relevant forms of depreciation that cause more 

distant PM2.5 exposures to have smaller or larger effects than more recent exposures, for example, 

unknown biological mechanisms, temporal variation in the chemical composition of PM2.5, and 

zero marginal effects of further exposures after an individual is diagnosed with dementia. Several 

sensitivity checks indicate robustness of our results. First, Tables J1 and J4 show that our results 

persist across several alternative specifications, i.e., specifications where we modify the spatial 

scale of the nonattainment instruments, increase size of the geographic area where exposure is 

assumed to occur, reduce minimum allowable distance from the nearest monitor, increase the de-

gree of flexibility in our controls for baseline pollution exposure during 2001-2003, and add con-

trols for other measures of air pollution. Second, the results of our featured specification, the year-

by-year model underlying the results shown in Column (6), Table I, shows little impact on the 

AME of interest when we reduce the scope for specification error due to temporal aggregation of 

both the treatment and outcome measures (relative to the decadal model). As a final sensitivity 

check, we repeat the estimation of the decadal model using a depreciation parameter, 𝛿, where we 

re-define exposure as 𝑑𝑢𝑟𝑃𝑀𝑖,2013
̃ = (∑ 𝑃𝑀𝑖,𝑠

2013
𝑠=2004 (1 − 𝛿)2013−𝑠)/(∑ (1 − 𝛿)2013−𝑠2013

𝑠=2004 ).  

We estimate the model for both 𝛿 = 0.05 and 𝛿 = −0.05 and note that our corresponding speci-

fication that has no depreciation parameter is equivalent to setting 𝛿= 0.  The resulting estimates 

for 𝛼 are not directly comparable with estimates from our corresponding specification (i.e., setting 

𝛿= 0) because 𝑑𝑢𝑟𝑃𝑀𝑖,2013
̃  and 𝑑𝑢𝑟𝑃𝑀𝑖,2013 weight annual exposures differently; however, the 

AMEs are again similar (2.12 pp for 𝛿 = 0.05 and 2.63 pp for 𝛿 = −0.05 versus 2.38 for 𝛿 = 0).  

Finally, we consider the threat to identification posed by omitted variables. After instrumenting 

for PM2.5, the key identifying assumption required for consistent estimation is that individuals 

living in 2004 in counties that differ in their likelihood of being designated nonattainment do not 

systematically differ in their likelihood of a new dementia diagnosis post-attainment due to omitted 

variables after conditioning on an extensive set of covariates. These covariates are given by (1) the 

CBSAs where individuals live in 2013; (2) their observed individual demographics; (3) their ob-

served measures of individual health in 2004; (4) the observed measures of socioeconomic status 
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among the individuals living in their neighborhood in 2004; and (5) the baseline PM2.5 concentra-

tion in their 2004 location (average concentrations from 2001-2003). We view this last covariate 

as essential for the plausibility of the identifying assumption, because the EPA solely relied on 

average concentrations from 2001-2003 to make nonattainment designations. As shown in Figure 

II.i, these designations led to lower levels of PM2.5 over 2004-2013 for people living in nonattain-

ment counties relative to people in attainment counties, conditional on the measure of baseline 

PM2.5 and all other covariates.  

Several robustness checks and placebo tests support our assumption that PM2.5 exposures prior 

to 2001 and other omitted variables are uncorrelated with our instruments. First, there is no mean-

ingful change in our estimate of 𝛼 when we add controls for PM2.5 concentrations in 1999 and 

2000 (2.35 pp versus 2.38 pp).4 Second, Table II also shows that our decadal model is unable to 

reject the hypothesis of no relationship between dementia rates in 2004 and PM2.5 exposure over 

the subsequent decade. This suggests that, conditional on the covariates, people at a lower unob-

served risk for dementia were not more or less likely to live in areas that were subsequently des-

ignated as nonattainment. Finally, Table J5 shows that when we estimate our decadal model for 

several other placebo outcomes the estimated average marginal effects are relatively small and 

statistically indistinguishable from zero at the 10% level.   

  

 
4 Column (2) of Table II in the main text shows that results from our featured year-by-year model are also robust to this addition. 
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H. Using Partial Identification to Address Selection on Mortality 

In the case of sample selection based on survival, the total effect of PM2.5 on the dementia rate 

would combine both the causal effect of PM2.5 on dementia (our object of interest) plus a compo-

sitional effect. In other words, if individuals were exposed to a change in PM2.5, the dementia rate 

would change for two reasons. First, the change in PM2.5 would have a causal effect on dementia. 

Second, the change in PM2.5 would have a causal effect on survival and, if the underlying propen-

sity to be diagnosed with dementia for the marginal individuals (i.e., those individuals who are 

induced to die by the change in PM2.5) differs from the propensity for the inframarginal individuals, 

the estimated effect of PM2.5 on dementia would incorporate the effects of this compositional 

change.5 

As outlined in Honoré and Lleras-Muney (2006), the prior literature has developed several 

approaches to addressing the role of selection-driven compositional change. We apply them to our 

decadal model, taking a bottom-up approach. First, we use a partial-identification approach to es-

timate bounds without making assumptions about the relationship between the propensity to be 

diagnosed with dementia and the propensity to survive (e.g., Manski 1990, Horowitz and Manski 

2000, Lee 2009). Next, we sharpen the bounds by adding plausible assumptions about the rela-

tionship between the propensity to be diagnosed with dementia and the propensity to survive (e.g., 

Manski and Pepper 2000, Honoré and Lleras-Muney 2006, and Bhattacharya, Shaikh, and Vytlacil 

2012). Finally, we return to the decadal specification shown in Column (5) of Table I, which se-

cures point identification by adding an additional set of instruments and additional distributional 

assumptions (e.g., Heckman 1979).  

The bounds approach follows Lee (2009) and is modified for our application. For notational 

simplicity, we suppress right-hand side variables other than 𝑑𝑢𝑟𝑃𝑀2013, including the residuals 

from our first stage, Equation (2), 휀̂.6 S is the binary variable denoting decadal survival. We con-

sider changes in the expected value of Δ𝑌 for a marginal increase in 𝑑𝑢𝑟𝑃𝑀2013, denoted h.   

We are interested in the causal, marginal effect of 𝑑𝑢𝑟𝑃𝑀2013 on Δ𝑌, holding selection on 

survival constant. We denote this causal effect 𝛼𝑃𝑀. For any given 𝑑𝑢𝑟𝑃𝑀2013, 𝛼𝑃𝑀 is defined as 

the change in the expected value of Δ𝑌 among those who would survive under both 𝑑𝑢𝑟𝑃𝑀2013 

and 𝑑𝑢𝑟𝑃𝑀2013 + ℎ exposures, i.e., inframarginal individuals: 

 
5 See also Blundell, Gosling, Ichimura, and Meghir (2007), which analyzes changes in wage distributions in the presence of compositional changes. 
6 That is, absent selection, we are treating 𝑑𝑢𝑟𝑃𝑀2013 as exogenous. 
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𝛼𝑃𝑀 =  lim
ℎ→0

𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013 + ℎ, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1] − 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1] 

ℎ
. 

We note that the conditioning statement in the second term in the numerator describes a counter-

factual set not directly observed in the data. That is, for any given 𝑑𝑢𝑟𝑃𝑀2013, we observe the 

dementia status of survivors who were exposed to 𝑑𝑢𝑟𝑃𝑀2013, but do not observe whether they 

would have survived had they been exposed to ℎ more units of 𝑑𝑢𝑟𝑃𝑀2013. 

We denote the total marginal effect of 𝑑𝑢𝑟𝑃𝑀2013 on Δ𝑌 as Α𝑃𝑀. 

 (H1)         Α𝑃𝑀 =  lim
ℎ→0

𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013 + ℎ, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1] − 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1] 

ℎ
. 

This term captures the fact that individuals exposed to 𝑑𝑢𝑟𝑃𝑀2013 +h will have a different survival 

rate compared with individuals exposed to only 𝑑𝑢𝑟𝑃𝑀2013. In contrast to 𝛼𝑃𝑀, we note that the 

conditioning statements in the conditional expectations in (H1) describe sets directly observed in 

the data. Denoting the share of marginal individuals as 𝜌𝑃𝑀,ℎ allows us to rewrite the second term 

in the numerator of Equation (H1) as:  

(H2)      𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1] =

                                    𝜌𝑃𝑀,ℎ𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 0] 

+(1 − 𝜌𝑃𝑀,ℎ)𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1]. 

After gathering like terms, this allows us to write the numerator in Equation (H1) as: 

𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013 + ℎ, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1]

−  𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1]

−  𝜌𝑃𝑀,ℎ(𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 0]

− 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1]). 

We assume monotonicity, such that S is weakly decreasing in 𝑑𝑢𝑟𝑃𝑀2013, implying that 

𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1 → 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, and that: 

𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1]   =  𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1]. 

This allows us to write: 

(H3)         Α𝑃𝑀 = 𝛼𝑃𝑀 + lim
ℎ→0

𝜌𝑃𝑀,ℎ

ℎ
(𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1] −

                                𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 0]). 

This equation shows that the total difference in the expected value of Δ𝑌 under the marginal 

change in 𝑑𝑢𝑟𝑃𝑀2013 is comprised of two terms. The first term reflects the effect of the marginal 
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increase in 𝑑𝑢𝑟𝑃𝑀2013 on the expected value of Δ𝑌 for inframarginal individuals. The second 

term reflects the underlying difference in the expected value of  Δ𝑌 between inframarginal and 

marginal individuals, scaled by 𝜌𝑋ℎ. In other words, the total marginal effect is comprised of a 

causal marginal effect of 𝑑𝑢𝑟𝑃𝑀2013 on expected  Δ𝑌 and a compositional effect. As 𝛼𝑃𝑀 is the 

object of interest, we rearrange Equation (H3) to get: 

(H4)        𝛼𝑃𝑀 = Α𝑃𝑀 + 𝑙𝑖𝑚
ℎ→0

𝜌𝑃𝑀,ℎ

ℎ
(𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 0] −

                                   𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1]). 

Given the assumptions maintained in the main text regarding Equations (1) and (2), Α𝑃𝑀 and 𝜌𝑃𝑀,ℎ 

are estimable using the data. However, the remaining two conditional expectations in Equation 

(H4) rely on conditions not observed in the data. In contrast, the conditioning statement in the 

conditional expectation, 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1], describes a set observed in the 

data. If Α𝑃𝑀, 𝜌𝑃𝑀,ℎ, and 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1] were known, we could construct 

lower and upper bounds for the difference in the two unknown conditional expectations in (H4), 

using the fact that 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 0] is naturally 

bounded between 0 and 100 in our application. This allows us to construct bounds for 𝛼𝑃𝑀. Spe-

cifically, for the lower bound, we set 

𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 0] to 0 and solve for 

𝐸[Δ𝑌|𝑑𝑒𝑐𝑃𝑀, 𝑆(𝑑𝑒𝑐𝑃𝑀) = 1, 𝑆(𝑑𝑒𝑐𝑃𝑀 + ℎ) = 1]  using:   

𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1]

= (
𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1] − 𝜌𝑃𝑀,ℎ𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 0]

1 − 𝜌𝑃𝑀,ℎ

) 

which follows from Equation (H2). We then use these values, along with Α𝑃𝑀 and 𝜌𝑃𝑀,ℎ, in Equa-

tion (H4) to recover the lower bound for 𝛼𝑃𝑀. The upper bound is constructed analogously by 

setting 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 0] to 100.  

The construction of these bounds is quite intuitive; while we do not know which specific indi-

viduals are marginal and which individuals are inframarginal, we can estimate the share of mar-

ginal individuals, 𝜌𝑃𝑀,ℎ, and use this, along with the restriction that probabilities must lie between 

0 and 1, to inform the bounds. 

Thus, the inputs to calculating bounds are Α𝑃𝑀, 𝜌𝑃𝑀,ℎ, and 

𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1], which are the total marginal effect of 𝑑𝑢𝑟𝑃𝑀2013 on Δ𝑌, 
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the share of marginal individuals, and the mean Δ𝑌 among survivors, respectively. Each of these 

terms is allowed to vary with 𝑑𝑢𝑟𝑃𝑀2013 (and the other suppressed right-hand side variables). 

Therefore, we can calculate individual-specific values of 𝛼𝑃𝑀 using individual-specific values of 

Α𝑃𝑀, 𝜌𝑃𝑀,ℎ, and 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1]. Bounds for the average value of 𝛼𝑃𝑀, 

i.e., our AME of interest, are constructed as the average lower bound and average upper bound of 

𝛼𝑃𝑀. 

Because Α𝑃𝑀 is the total marginal effect of 𝑑𝑢𝑟𝑃𝑀2013 on Δ𝑌, we estimate it using the 

marginal effects from a specification that uses the attainment-based control function, 휀̂, but not the 

survival-based control function, �̂�. In particular, we estimate a version of the specification shown 

in Column (5) of Table 1 where we omit any terms that include �̂�. The individual-specific marginal 

effects yield estimates of Α𝑃𝑀 at different values of  𝑑𝑢𝑟𝑃𝑀2013. From this same estimation, which 

only uses data describing survivors, the individual-specific fitted values of Δ𝑌 given 𝑑𝑢𝑟𝑃𝑀2013 

provide estimates of 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1]. We note that estimating Α𝑃𝑀 and 

𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1] relies on the functional form and distributional 

assumptions maintained in Equations (1) and (2), but does not require us to estimate Equation (3) 

or employ the additional survival instruments, 𝑀𝑖. 

Finally, to estimate the share of marginal individuals, 𝜌𝑃𝑀,ℎ, we estimate a specification that 

replaces Δ𝑌 with S as the dependent variable in the specification shown in Column (5) of Table I. 

We continue to use the attainment-based control function, 휀̂. The survival control function, �̂�, is 

not relevant because we use all the data and do not condition on survival. We then calculate 𝜌𝑃𝑀,ℎ 

as the ratio of two terms. The numerator is the individual-specific marginal effect of  𝑑𝑢𝑟𝑃𝑀2013 

on S, and the denominator is the individual-specific fitted value of S given  𝑑𝑢𝑟𝑃𝑀2013. Analagous 

to the estimation of Α𝑃𝑀 and 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1], the estimation of 

𝜌𝑃𝑀,ℎ  relies on the functional form and distributional assumptions maintained in Equations (1) 

and (2) (as applied when Equation (1) replaces Δ𝑌 with S as the dependent variable) but does not 

require us to estimate Equation (3) or employ the additional survival instruments, 𝑀𝑖. 

We sharpen these bounds by assuming a plausible form of monotone treatment selection (Man-

ski and Pepper 2000) in which individuals who would be induced to die if they were exposed to 

𝑑𝑢𝑟𝑃𝑀2013+h versus 𝑑𝑢𝑟𝑃𝑀2013 were, on average, no less likely to develop dementia than those 

whose survival was unaffected by the increase in exposure. In other words, we assume that 

𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) = 1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 0] ≥ 𝐸[Δ𝑌|𝑑𝑢𝑟𝑃𝑀2013, 𝑆(𝑑𝑢𝑟𝑃𝑀2013) =
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1, 𝑆(𝑑𝑢𝑟𝑃𝑀2013 + ℎ) = 1]. Intuitively, this assumes that the latent health driving mortality is weakly 

positively correlated with the latent health driving dementia. Under this assumption, the construc-

tion of the upper bound remains the same as before, and the lower bound is set to Α𝑃𝑀. 

We note that the specification shown in Column (5) of Table I is point identified and that point 

identification relies on the additional instruments, 𝑀𝑖 , and additional model parameterizations. 

Specifically, we rely on the functional form specification in Equation (3), the assumption of joint 

normality between the errors that determine the latent propensities for survival and dementia, and 

the existence of instruments, 𝑀𝑖, that affect survival but not dementia, conditional on the controls.  

Results 

 

TABLE H1—AVERAGE MARGINAL EFFECTS ALLOWING FOR SELECTION ON SURVIVAL 

 
Note: The dependent variable equals 100 if an individual was diagnosed with dementia prior to the end of 2013 and 0 otherwise. Column (1) reports 
the identification region in brackets from a simple, worst-case bounding approach. Column (2) reports the identification region in brackets after 

imposing an additional assumption of positive correlation between the latent health of survival and the latent health of cognition to sharpen the 

bounds. Finally, Column (3) reports results from the decadal specification shown in Column (5) of Table I that uses exclusion restrictions to arrive 
at a point estimate. Underneath the identification regions in Columns (1)-(2), we report in parentheses the 95% confidence intervals using the 

method described in Imbens and Manski (2004). Underneath the point estimate in Column (3), we report a standard error. The standard errors 

underlying the confidence intervals in Columns (1)-(2) and the standard error in Column (3) are calculated using a bootstrap with 1,000 repetitions, 

clustered at initial Census block group. Asterisks indicate statistical significance for Column (3) at the 10% (*), 5% (**), and 1% (***) levels.  

 

We first calculate bounds that do not rely on assumptions regarding the correlation between 

the unobserved factors that determine the propensity to be diagnosed with dementia and the pro-

pensity to survive. The estimated identification region for the average causal marginal effect of 

decadal PM2.5 on new dementia diagnoses is shown in brackets in the Column (1) of Table H1. 

The lower bound of the identification region (shown in brackets) is 0.69, despite embedding the 

extreme assumption that individuals who are induced to die by an increase in PM2.5 would have a 

zero probability of being diagnosed with dementia had they survived. When we compare this with 

our estimate of the average total marginal effect, Α̅𝑝𝑚 =1.71, we conclude that even in this worst-

case scenario, only 59% of the total effect would be attributed to a compositional effect. A 95% 

 (1) (2) (3)

[0.693, 4.839] [1.707, 4.839] 2.384***

(-0.118, 6.222) (0.836, 6.222) (0.568)

number of individuals:  survival outcome 2,439,904 2,439,904 2,439,904

number of individuals:  dementia function 1,179,094 1,179,094 1,179,094

share with dementia in 2013 20 20 20

share who survive through 2013 61 61 61

1 μg/m3 increase in decadal PM2.5
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confidence interval for the AME, is shown below the identification region (in parentheses) and is 

calculated following Imbens and Manski (2004). Overall, our lower-bound results show that a zero 

causal effect of PM2.5 on dementia is unlikely, and our upper-bound results do not rule out causal 

effects much larger than what we find in Table I, Column (5).  

We then sharpen the bounds by assuming a plausible form of monotone treatment selection 

(Manski and Pepper 2000) in which individuals who are induced to die when exposed to an in-

crease in PM2.5 are no less likely to be diagnosed with dementia than those whose survival was 

unaffected by an increase in exposure. Table H1, Column (2) shows that under this assumption the 

lower bound of the identification region increases to our estimate of the average total marginal 

effect, 1.71. For completeness, Column (3) of Table H1 repeats the point estimate from our main 

decadal specification (Column (5) of Table I), which relies on estimating the correlation between 

the propensity to develop dementia and the propensity to survive. 

Because our model allows us to calculate heterogeneity in the average causal marginal effects 

of PM2.5, we are able to calculate bounds separately for three subsamples with average decadal 

PM2.5 within 1 μg/m3 windows centered around 10, 11, and 12 μg/m3. The identification regions 

of the average marginal effects for these three subsamples are [1.47, 4.91], [0.51, 4.88], and [-0.29, 

4.82], respectively. Intuitively, the lower bounds are decreasing in PM2.5 because the magnitude 

of the estimated total effect is decreasing across the three bins. In addition, the width of the iden-

tification regions are increasing in PM2.5 as a result of mortality increasing in PM2.5. The lower 

bounds reflect the extreme assumption that those who suffered from PM2.5-driven mortality would 

have been immune to dementia diagnoses had they survived. Applying the assumption that these 

individuals were merely no less sensitive than the survivors in terms of dementia sharpens the 

bounds. Under this assumption, the identification regions become [2.30, 4.91], [1.59, 4.88], and 

[0.99, 4.82], respectively. 
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I. Additional results referenced in Sections III and IV 

1. Effect of PM2.5 Exposure on Mortality 

TABLE I1—AVERAGE MARGINAL EFFECTS OF DECADAL EXPOSURE TO PM2.5 ON MORTALITY  

  
Note: The dependent variable equals 100 if an individual died on or before December 31, 2013 and 0 otherwise. The columns are numbered to 
correspond to the specifications in the corresponding columns of Table I in the main text.  Col (1) is a probit model with CBSA-specific intercepts. 

Col (2) adds all covariates for baseline health in 2004, individual demographics, demographics for the individual’s Census block group, and pre-

regulatory PM2.5 levels at their residence from 2001-2003. Col (3) or (4) is the 2SCML analogue to Col (2) and Col (5) adds polynomial functions 
of covariates as shown in Equation (5) of the main text. The first row presents the average marginal effect of decadal PM2.5 on mortality. Asterisks 

indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered at the block group. Standard 

errors in Columns (3) or (4) and (5) are bootstrapped using 1,000 repetitions. 

Table I1 shows results from repeating estimation of the decadal models shown in Columns (1) 

through (5) of Table I using mortality as the outcome. The models and covariates are otherwise 

the same as in Table I, except that Columns (3) or (4), and (5) of Table I1 exclude the mortality 

control function. The Column “(3) or (4)” label highlights that the results in that column can be 

viewed as an analog to the results in either Column (3) or Column (4) of Table I because the only 

difference between those two columns is the mortality control function that we exclude here. The 

flexible 2SCML specification in Column (5) implies that a 1 µg/m3 increase in average PM2.5 

exposure from 2004 through 2013 increased the probability of a death by the end of 2013 by 2.48 

percentage points. This AME is six times larger than the AME shown in Column (2). Column (3) 

or (4) shows that the six-fold increase in the AME is almost entirely due to using the nonattainment 

instruments for PM2.5 exposure. Comparing Columns (3) or (4) and (5) shows that adding polyno-

mial functions of covariates has very little effect on the resulting AME.   

 

 

 (1) (2) (3) or (4) (5)

0.542*** 0.390*** 2.430*** 2.475***

(0.056) (0.083) (0.485) (0.476)

ind. & neigh. covariates  x x x

PM2.5 control function   x x

polynomial functions of covariates    x

first-stage F statistic 611 611

number of individuals 2,439,904 2,439,904 2,439,904 2,439,904

share who die before Jan 1, 2014 39 39 39 39

1 μg/m3 increase in decadal PM2.5
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2. Duration-Specific Partial Effects of Nonattainment on PM2.5 Exposure 

The EPA’s nonattainment designations created quasi-random differences in pollution exposure 

conditional on 𝑏𝑎𝑠𝑒𝑃𝑀𝑖 and the additional controls in Equation (2) and Equation (9). Figure I1 

shows this identifying variation for the decade using Equation (2) in Panel (i) and for each year 

𝑡 = [2005,2012] using Equation (9) in Panels (ii)-(ix). Each panel plots the coefficients on the 

instruments from the relevant regression equation to show the estimated partial effect of nonat-

tainment across different levels of 𝑏𝑎𝑠𝑒𝑃𝑀𝑖 . Intuitively, the partial effects are negative (with the 

exception of low baseline concentrations in the first year of the policy), showing that nonattain-

ment status reduced pollution. 

 

FIGURE I1— ESTIMATED PARTIAL EFFECTS OF NONATTAINMENT (NA) ON PM2.5 EXPOSURE 

 
Panel i: Estimated Partial Effect of NA on Decadal PM2.5 Exposure, 2004-2013 
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Panel ii: Estimated Partial Effect of NA on PM2.5 Exposure, 2004-2005 

 

 

 

 
Panel iii: Estimated Partial Effect of NA on PM2.5 Exposure, 2004-2006 
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Panel iv: Estimated Partial Effect of NA on PM2.5 Exposure, 2004-2007 

 

 

 

 
Panel v: Estimated Partial Effect of NA on PM2.5 Exposure, 2004-2008 
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Panel vi: Estimated Partial Effect of NA on PM2.5 Exposure, 2004-2009 

 

 

 

 
Panel vii: Estimated Partial Effect of NA on PM2.5 Exposure, 2004-2010 
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Panel viii: Estimated Partial Effect of NA on PM2.5 Exposure, 2004-2011 

 

 

 

 
Panel ix: Estimated Partial Effect of NA on PM2.5 Exposure, 2004-2012 
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3. Average Marginal Effects of Cancer Instruments in Equation (3) 

TABLE I2—AVERAGE MARGINAL EFFECTS FOR CANCER INSTRUMENTS IN THE                                       

SURVIVAL FUNCTION 

 
Note: The dependent variable equals 100 if an individual survived through the end of 2013. Asterisks indicate statistical significance at the 10% 

(*), 5% (**), and 1% (***) levels using robust standard errors clustered at the Census block group.  

Table I2 shows average marginal effects of the cancer instruments from the survival function. 

The AMEs are reported as percentage point changes in the probability of survival. For example, a 

pre-existing diagnosis of colorectal cancer in 2004 reduced the probability of survival through the 

end of 2013 by 3.57pp.   

 

4. Coefficient Estimates for Equations (4) and (5) 

 

Table I3 shows estimates for the decadal specification of the outcome equation reported in 

Column (5) of Table I, followed by the estimates of the first-stage PM2.5 function and survival 

function. In the interest of brevity, we report results from the decadal model and suppress results 

for the 900+ CBSA indicators. Additional coefficients from the models with varying durations of 

exposure are available upon request (as are the CBSA coefficients for this model). In the table of 

results, we use the following abbreviations for chronic conditions in 2004: hypertension (H), stroke 

(S), diabetes (D), ischemic heart disease (I), and congestive heart failure (C). We use “cf_pm2.5” 

and “cf_survival” to represent the control functions for PM2.5 and survival. The excluded reference 

categories are: age (75); CMS race code (“other”), Census block group education attainment (% 

 

-3.87***

(0.13)

-0.47***

(0.13)

-3.57***

(0.17)

-4.81***

(0.35)

-11.73***

(0.25)

number of individuals 2,439,904

share who survive through 2013 61

Breast cancer in 2004

Prostate cancer in 2004

Colorectal cancer in 2004

Endometrial cancer in 2004

Leukemia/Lymphoma in 2004
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with 8th grade or less); Census block group housing stock (% vacant). Confidence intervals are 

based on 1,000 bootstrap repetitions, clustered at the Census block group level. 

TABLE I3: RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: NEW DEMENTIA DIAGNOSIS  

  

probit 

coefficient               

(x 100)

Robust bootstrap 

standard error

PM2.5 (1 μg/m3) (Decadal, 2004-2013) 39.484 25.849 -12.319 90.670

(PM2.5)2 4.680 2.932 -0.485 10.526

(PM2.5)3 -0.443 0.169 -0.785 -0.149

(PM2.5)4 0.012 0.004 0.005 0.019

PM2.5 (1 μg/m3) interacted with:

2004 Gross Medicare Expenditures ($10,000)

expenditures 1.422 0.968 -0.460 3.307

expenditures2 -0.825 0.375 -1.569 -0.116

expenditures3 0.110 0.048 0.018 0.204

expenditures4 -0.004 0.002 -0.008 0.000

2004 Census Block Group Demographics

median household income / 1000 -0.003 0.007 -0.015 0.011

per capita income / 1000 0.005 0.011 -0.016 0.026

median year built -0.010 0.006 -0.023 0.002

median house value / 1000 -0.001 0.001 -0.003 0.000

average house value / 1000 0.000 0.000 -0.001 0.001

median gross rent / 1000 -0.005 0.019 -0.044 0.031

% over 65 -2.129 0.932 -3.948 -0.289

% white 1.009 0.933 -0.715 2.931

% black -0.255 1.146 -2.374 2.016

% hispanic -4.659 1.030 -6.661 -2.544

% 9th through 12th -2.922 2.514 -7.542 1.940

% high school graduate -4.996 1.863 -8.708 -1.250

% some college -4.735 1.841 -8.414 -1.409

% associate degree -2.661 2.374 -7.167 2.445

% bachelor's degree -7.192 1.907 -11.229 -3.296

% graduate degree -7.006 2.114 -11.090 -2.992

% owner occupied -2.534 1.011 -4.495 -0.543

% renter occupied -1.245 1.083 -3.457 0.763

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: NEW DEMENTIA DIAGNOSIS   

 

  

probit 

coefficient               

(x 100)

Robust bootstrap 

standard error

PM2.5 (1 μg/m3) interacted with:

Chronic conditions in 2004

H 0.243 0.261 -0.279 0.745

S 0.659 1.201 -1.591 3.203

S, H 0.561 0.734 -0.853 2.064

D 1.449 0.691 0.156 2.837

D, H 1.308 0.481 0.336 2.231

D, S 1.222 3.301 -5.412 7.599

D, S, H 4.250 1.318 1.788 6.811

I 0.555 0.459 -0.365 1.411

I, H 1.181 0.338 0.543 1.785

I, S 1.950 1.540 -0.894 5.132

I, S, H 1.643 0.786 0.155 3.128

I, D 2.729 1.086 0.673 4.798

I, D, H 1.949 0.544 0.840 3.033

I, D, S 7.245 3.878 -0.828 15.051

I, D, S, H 2.749 1.137 0.495 5.005

C 4.532 1.520 1.770 7.546

C, H 2.438 0.923 0.619 4.157

C, S 0.334 5.631 -10.370 11.557

C, S, H 1.522 1.959 -2.669 5.234

C, D 5.325 3.179 -0.322 11.770

C, D, H 3.731 1.290 1.139 6.253

C, D, S -14.273 14.365 -39.912 17.850

C, D, S, H 4.367 2.823 -1.022 10.229

C, I 3.374 1.333 0.687 5.861

C, I, H 3.310 0.858 1.617 5.004

C, I, S 2.938 3.168 -3.593 9.318

C, I, S, H 3.442 1.266 0.937 5.960

C, I, D 4.838 2.609 -0.188 9.968

C, I, D, H 4.815 1.161 2.355 7.138

C, I, D, S 2.502 6.684 -10.026 15.451

C, I, D, S, H 4.525 1.584 1.203 7.558

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION  

OUTCOME: NEW DEMENTIA DIAGNOSIS  

 

  

probit 

coefficient               

(x 100)

Robust bootstrap 

standard error

PM2.5 (1 μg/m3) interacted with:

Age

76 -0.228 0.700 -1.641 1.182

77 0.488 0.663 -0.844 1.803

78 0.347 0.672 -1.008 1.645

79 0.967 0.685 -0.455 2.197

80 1.109 0.688 -0.236 2.382

81 0.620 0.707 -0.898 1.949

82 0.629 0.753 -0.890 2.106

83 0.346 0.770 -1.333 1.779

84 0.650 0.828 -1.070 2.173

85 1.698 0.875 -0.144 3.389

86 1.828 0.925 -0.157 3.613

87 2.424 0.998 0.348 4.318

88 2.826 1.115 0.569 4.847

89 1.798 1.224 -0.755 4.044

90 3.597 1.361 0.828 6.265

91 4.834 1.500 1.740 7.719

92 3.909 1.626 0.391 6.940

93 5.231 1.808 1.449 8.681

94 6.661 1.982 2.513 10.393

95 4.594 2.132 0.227 8.305

96 5.789 2.350 0.650 10.188

97 7.989 2.579 2.766 12.553

98 4.890 2.831 -1.017 10.233

99 7.660 3.038 1.315 13.517

100 and over 8.984 3.274 1.805 15.021

control functions

cf_pm2.5 1.267 0.367 0.534 1.962

(cf_pm2.5)2 -0.168 0.093 -0.334 0.030

cf_survival -11.117 3.412 -17.540 -3.984

(cf_survival)2 2.403 0.878 0.540 4.042

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: NEW DEMENTIA DIAGNOSIS  

 

  

probit 

coefficient               

(x 100)

Robust bootstrap 

standard error

PM2.5 (1 μg/m3) interacted with:

Age x male

76 -0.109 1.110 -2.218 2.034

77 -0.918 1.033 -2.901 1.112

78 -0.479 1.039 -2.510 1.492

79 -1.991 1.049 -3.995 0.207

80 -2.531 1.044 -4.611 -0.440

81 -0.416 1.028 -2.385 1.768

82 -1.294 1.065 -3.293 0.757

83 0.312 1.043 -1.700 2.494

84 -0.764 1.045 -2.848 1.282

85 -1.030 1.041 -2.975 1.019

86 0.327 1.073 -1.688 2.435

87 -0.084 1.080 -2.239 2.177

88 -0.720 1.100 -2.972 1.499

89 0.408 1.168 -2.013 2.639

90 -0.227 1.198 -2.585 2.051

91 -0.515 1.279 -2.963 2.065

92 -1.124 1.325 -3.798 1.404

93 -0.657 1.465 -3.533 2.147

94 -0.705 1.678 -3.937 2.478

95 2.402 1.822 -1.191 5.974

96 -0.632 2.200 -4.909 3.764

97 -1.789 2.615 -6.992 3.343

98 2.141 3.329 -4.198 8.830

99 2.470 4.055 -5.530 10.321

100 and over -2.415 3.005 -8.430 3.353

individual demographics

male 1.645 0.808 -0.058 3.128

White -1.077 0.737 -2.510 0.338

Black or African American -0.975 0.866 -2.697 0.677

Asian -1.023 0.787 -2.563 0.513

Hispanic -2.852 0.782 -4.502 -1.330

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: NEW DEMENTIA DIAGNOSIS  

 

  

probit 

coefficient               

(x 100)

Robust bootstrap 

standard error

cf_survival 74.934 38.070 -6.040 146.613

(cf_survival)2 -32.118 9.822 -50.539 -11.592

cf_pm2.5 -22.404 4.816 -32.406 -13.454

(cf_pm2.5)2 3.888 1.129 1.623 6.061

Chronic conditions in 2004

H 1.006 2.872 -4.556 6.641

S 25.583 13.155 -2.052 49.909

S, H 30.668 8.086 14.282 46.116

D 0.793 7.647 -14.363 15.759

D, H 3.220 5.291 -7.071 14.309

D, S 46.609 36.678 -24.743 119.243

D, S, H 6.776 14.671 -21.305 34.500

I 2.247 5.075 -7.195 12.233

I, H -1.926 3.761 -8.770 5.195

I, S 18.031 17.179 -16.960 49.854

I, S, H 23.884 8.773 6.994 41.027

I, D -8.003 12.063 -31.620 14.825

I, D, H 3.651 6.048 -8.165 16.141

I, D, S -41.323 43.638 -132.063 46.768

I, D, S, H 27.623 12.761 2.537 52.483

C -20.615 16.852 -54.720 11.104

C, H 0.132 10.286 -19.045 20.810

C, S 44.545 63.352 -84.456 163.363

C, S, H 40.346 21.784 -1.952 86.917

C, D -9.535 35.429 -81.698 52.420

C, D, H 4.764 14.389 -23.253 33.639

C, D, S 235.527 162.408 -124.224 527.102

C, D, S, H 31.650 32.111 -36.656 93.936

C, I -6.339 14.881 -34.375 23.194

C, I, H -4.033 9.580 -22.052 14.570

C, I, S 19.125 34.838 -47.472 89.692

C, I, S, H 24.788 14.238 -2.820 52.601

C, I, D -4.186 28.891 -59.831 52.782

C, I, D, H -1.275 12.918 -26.061 25.325

C, I, D, S 64.062 73.935 -79.146 202.917

C, I, D, S, H 39.926 17.723 5.197 76.292

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: NEW DEMENTIA DIAGNOSIS  

 

  

probit 

coefficient               

(x 100)

Robust bootstrap 

standard error

2004 Gross Medicare Expenditures ($10,000)

expenditures -8.341 10.659 -29.167 12.259

expenditures2 5.482 4.131 -2.187 13.784

expenditures3 -0.748 0.523 -1.803 0.232

expenditures4 0.033 0.022 -0.009 0.075

Age

76 8.930 7.770 -6.168 24.592

77 7.297 7.326 -7.101 22.315

78 15.123 7.483 0.466 29.949

79 15.648 7.597 1.726 30.990

80 22.663 7.598 9.035 37.284

81 33.472 7.874 18.559 50.206

82 41.253 8.319 24.868 57.412

83 53.219 8.542 37.905 71.564

84 55.971 9.212 38.384 75.077

85 54.606 9.699 36.112 75.018

86 62.368 10.215 43.225 83.703

87 63.677 11.032 42.569 86.685

88 68.490 12.357 45.467 92.894

89 89.353 13.592 64.143 117.638

90 77.938 15.127 47.727 108.520

91 72.873 16.613 42.018 108.464

92 90.433 18.024 56.684 128.590

93 84.583 20.067 47.948 126.895

94 80.763 21.952 39.800 127.324

95 112.809 23.698 70.727 161.665

96 111.373 26.117 62.279 167.530

97 95.170 28.771 42.532 155.848

98 139.612 31.415 82.014 203.274

99 119.898 34.031 55.085 187.834

100 and over 118.523 36.441 50.700 194.638

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: NEW DEMENTIA DIAGNOSIS  

 

  

probit 

coefficient               

(x 100)

Robust bootstrap 

standard error

Age x male

76 0.030 12.290 -24.162 22.733

77 9.217 11.410 -13.508 31.248

78 4.558 11.630 -18.078 27.070

79 19.901 11.707 -3.474 42.810

80 24.186 11.628 1.334 47.623

81 -0.170 11.492 -24.485 21.816

82 11.756 11.755 -10.489 34.176

83 -7.170 11.617 -31.609 14.877

84 5.771 11.691 -16.046 29.412

85 7.740 11.560 -14.559 30.072

86 -7.441 11.886 -31.957 14.554

87 -4.438 12.058 -29.330 19.385

88 2.303 12.239 -21.791 26.867

89 -9.780 13.018 -34.658 17.078

90 -3.227 13.295 -29.142 23.396

91 -3.664 14.169 -32.538 23.925

92 7.056 14.648 -22.047 36.095

93 0.372 16.258 -32.113 32.857

94 -1.296 18.393 -35.859 33.604

95 -36.027 20.098 -75.501 2.717

96 -2.124 24.304 -49.600 46.066

97 16.116 29.169 -41.674 72.660

98 -36.966 36.434 -110.867 32.419

99 -40.442 44.344 -126.756 46.923

100 and over 9.610 33.451 -53.474 75.826

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: NEW DEMENTIA DIAGNOSIS  

 

  

probit 

coefficient               

(x 100)

Robust bootstrap 

standard error

individual demographics

male -19.128 8.986 -35.928 -0.288

White 15.615 7.915 0.607 31.268

Black or African American 23.995 9.475 5.794 43.434

Asian 9.355 8.418 -7.172 26.376

Hispanic 40.919 8.409 25.348 58.641

2004 Census Block Group Demographics

median household income / 1000 0.003 0.074 -0.148 0.148

per capita income / 1000 -0.069 0.120 -0.297 0.164

median year built 0.089 0.070 -0.050 0.222

median house value / 1000 0.001 0.010 -0.018 0.022

average house value / 1000 0.001 0.004 -0.008 0.010

median gross rent / 1000 0.121 0.213 -0.260 0.555

% over 65 15.774 10.136 -3.654 36.214

% white -4.145 10.315 -24.675 15.135

% black 13.415 12.939 -13.480 37.991

% hispanic 54.232 11.384 29.783 76.231

% 9th through 12th 36.212 28.489 -20.266 89.031

% high school graduate 39.746 20.932 -2.056 80.630

% some college 28.153 20.694 -9.611 68.211

% associate degree -3.357 26.527 -61.196 47.685

% bachelor's degree 50.085 21.488 5.327 93.467

% graduate degree 49.560 23.686 2.762 94.380

% owner occupied 15.949 11.045 -4.658 37.178

% renter occupied 20.582 11.842 -1.127 45.274

PM2.5 (1 μg/m3) baseline (2001-2003) -36.492 8.987 -54.736 -18.638
(PM2.5)2 2.556 0.912 0.681 4.275

(PM2.5)3 -0.094 0.040 -0.168 -0.012

(PM2.5)4 0.001 0.001 0.000 0.003

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: DECADAL PM2.5 (2004-2013)  

 

  

Coefficient               

(x 100)

Robust bootstrap 

standard error

nonattainment -2324.333 135.876 -2601.440 -2050.451

nonattainment x PM2.5 (1 μg/m3) (2001-2003) 490.520 34.381 422.867 560.052

nonattainment x (PM2.5)2 -35.879 3.390 -42.638 -29.210

nonattainment x (PM2.5)3 0.967 0.156 0.657 1.273

nonattainment x (PM2.5)4 -0.005 0.003 -0.010 0.001

PM2.5 (1 μg/m3) (2001-2003) 84.926 15.027 54.034 114.135

(PM2.5)2 -6.773 2.008 -10.648 -2.600

(PM2.5)3 0.556 0.115 0.315 0.773

(PM2.5)4 -0.016 0.002 -0.020 -0.011

cf_survival -2.481 0.811 -4.077 -0.804

2004 Gross Medicare Expenditures ($10,000)

expenditures 0.161 0.359 -0.540 0.877

expenditures2 -0.039 0.139 -0.312 0.228

expenditures3 -0.004 0.018 -0.039 0.033

expenditures4 0.001 0.001 -0.001 0.002

individual demographics

male 0.463 0.246 -0.061 0.903

White -1.102 0.379 -1.892 -0.359

Black or African American -0.396 0.416 -1.247 0.436

Asian 0.738 0.511 -0.246 1.729

Hispanic 1.414 0.440 0.564 2.247

Chronic conditions in 2004

H -0.133 0.096 -0.330 0.058

S 0.153 0.517 -0.860 1.147

S, H 0.670 0.296 0.067 1.265

D -0.422 0.267 -0.953 0.097

D, H -0.162 0.158 -0.475 0.152

D, S -0.044 1.324 -2.492 2.704

D, S, H 0.402 0.517 -0.600 1.361

I -0.169 0.183 -0.532 0.176

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: DECADAL PM2.5 (2004-2013)  

 

  

Coefficient               

(x 100)

Robust bootstrap 

standard error

I, H -0.105 0.123 -0.348 0.128

I, S -0.067 0.705 -1.530 1.291

I, S, H 0.397 0.299 -0.210 0.969

I, D -0.238 0.420 -1.045 0.581

I, D, H 0.005 0.193 -0.381 0.382

I, D, S -3.051 1.829 -6.544 0.720

I, D, S, H 0.287 0.447 -0.563 1.141

C 0.466 0.584 -0.764 1.584

C, H 0.425 0.329 -0.210 1.069

C, S -1.697 2.060 -5.654 2.347

C, S, H 0.053 0.904 -1.677 1.850

C, D 0.813 1.416 -2.094 3.451

C, D, H 0.944 0.499 -0.061 1.945

C, D, S -3.764 3.370 -10.680 2.823

C, D, S, H 0.838 1.153 -1.388 3.080

C, I 1.335 0.530 0.298 2.307

C, I, H 0.861 0.310 0.209 1.474

C, I, S 0.290 1.593 -2.925 3.237

C, I, S, H 1.148 0.545 0.054 2.178

C, I, D 1.394 0.955 -0.501 3.162

C, I, D, H 1.431 0.425 0.594 2.281

C, I, D, S 4.375 3.808 -3.142 11.797

C, I, D, S, H 1.576 0.655 0.331 2.779

Age

76 0.390 0.215 -0.029 0.796

77 0.223 0.215 -0.191 0.653

78 0.330 0.216 -0.092 0.748

79 0.125 0.221 -0.301 0.560

80 0.577 0.221 0.113 0.993

81 0.439 0.222 0.017 0.869

82 0.933 0.245 0.445 1.391

83 0.785 0.247 0.243 1.258

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: DECADAL PM2.5 (2004-2013)  

 

 

  

Coefficient               

(x 100)

Robust bootstrap 

standard error

84 0.818 0.268 0.252 1.333

85 1.031 0.289 0.436 1.554

86 1.126 0.303 0.496 1.681

87 1.252 0.340 0.559 1.893

88 1.337 0.371 0.585 2.066

89 1.624 0.410 0.804 2.420

90 1.624 0.439 0.670 2.425

91 1.643 0.509 0.601 2.600

92 2.277 0.541 1.146 3.325

93 1.938 0.619 0.683 3.204

94 1.940 0.716 0.453 3.361

95 2.533 0.801 0.913 4.122

96 2.078 0.889 0.363 3.832

97 2.552 0.992 0.621 4.535

98 3.798 1.079 1.723 5.783

99 3.794 1.287 1.085 6.170

100 and over 3.432 1.307 0.643 5.871

Age x male

76 -0.338 0.320 -0.946 0.299

77 -0.150 0.325 -0.779 0.487

78 -0.272 0.343 -0.929 0.413

79 -0.244 0.345 -0.893 0.489

80 -0.168 0.342 -0.809 0.534

81 0.029 0.338 -0.612 0.706

82 -0.452 0.333 -1.073 0.235

83 -0.313 0.340 -0.937 0.372

84 -0.400 0.355 -1.052 0.327

85 -0.078 0.363 -0.796 0.652

86 -0.239 0.367 -0.922 0.500

87 -0.759 0.396 -1.522 0.069

88 -0.067 0.420 -0.921 0.776

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: DECADAL PM2.5 (2004-2013)  

 

  

Coefficient               

(x 100)

Robust bootstrap 

standard error

89 -0.135 0.421 -0.909 0.721

90 -0.284 0.458 -1.165 0.620

91 -0.149 0.475 -1.031 0.782

92 -0.320 0.520 -1.413 0.687

93 0.921 0.624 -0.255 2.148

94 1.050 0.722 -0.330 2.490

95 0.263 0.840 -1.374 2.032

96 0.905 0.970 -0.949 2.872

97 0.932 1.178 -1.479 3.138

98 -0.257 1.679 -3.585 3.077

99 -2.440 1.995 -6.061 1.778

100 and over 0.447 1.365 -2.265 3.142

2004 Census Block Group Demographics

median household income / 1000 -0.054 0.006 -0.067 -0.041

per capita income / 1000 0.174 0.012 0.152 0.200

median year built -0.015 0.006 -0.027 -0.004

median house value / 1000 -0.014 0.001 -0.016 -0.011

average house value / 1000 0.000 0.000 -0.001 0.001

median gross rent / 1000 -0.005 0.017 -0.040 0.028

% over 65 -7.735 1.184 -10.059 -5.404

% white 7.929 1.151 5.639 10.231

% black 6.325 1.201 3.910 8.735

% hispanic 9.512 1.312 6.917 12.037

% 9th through 12th -10.908 2.539 -15.935 -6.218

% high school graduate -8.834 2.105 -13.070 -4.943

% some college -13.446 2.130 -17.751 -9.342

% associate degree -22.898 2.500 -28.012 -18.185

% bachelor's degree -4.590 2.123 -8.765 -0.491

% graduate degree -4.788 2.307 -9.348 -0.515

% owner occupied -5.385 0.985 -7.284 -3.461

% renter occupied -0.389 1.060 -2.406 1.749

R2 = 0.961

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: SURVIVAL TO 2013 

 

  

Probit 

Coefficient               

(x 100)

Robust bootstrap 

standard error

Breast cancer in 2004 -12.697 0.442 -13.556 -11.890

Prostate cancer in 2004 -1.561 0.427 -2.382 -0.753

Colorectal cancer in 2004 -11.709 0.559 -12.792 -10.481

Endometrial cancer in 2004 -15.767 1.112 -18.137 -13.617

Leukemia / Lymphoma in 2004 -38.477 0.812 -40.070 -36.914

nonattainment -15.349 63.663 -135.858 111.910

nonattainment x PM2.5 (1 μg/m3) (2001-2003) -5.513 18.127 -42.814 29.810

nonattainment x (PM2.5)2 1.799 2.037 -2.335 5.905

nonattainment x (PM2.5)3 -0.139 0.106 -0.349 0.070

nonattainment x (PM2.5)4 0.003 0.002 -0.001 0.007

PM2.5 (1 μg/m3) (2001-2003) 33.157 11.683 10.298 55.951

(PM2.5)2 -4.288 1.575 -7.296 -1.212

(PM2.5)3 0.238 0.092 0.056 0.413

(PM2.5)4 -0.005 0.002 -0.008 -0.001

2004 Gross Medicare Expenditures ($10,000)

expenditures -8.665 0.931 -10.452 -6.796

expenditures2 5.269 0.357 4.570 5.958

expenditures3 -0.521 0.045 -0.609 -0.430

expenditures4 0.007 0.002 0.004 0.011

individual demographics

male -24.434 0.775 -25.922 -22.872

White -7.181 1.046 -9.254 -5.202

Black or African American 0.235 1.114 -1.914 2.397

Asian 17.681 1.206 15.400 20.035

Hispanic 13.367 1.146 11.077 15.694

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: SURVIVAL TO 2013 

 

Probit 

Coefficient               

(x 100)

Robust bootstrap 

standard error

Chronic conditions in 2004

H -5.186 0.285 -5.752 -4.631

S -19.657 1.319 -22.120 -16.884

S, H -28.957 0.751 -30.381 -27.528

D -19.291 0.764 -20.852 -17.832

D, H -23.838 0.427 -24.671 -23.000

D, S -47.745 3.633 -55.019 -40.486

D, S, H -50.400 1.196 -52.787 -48.019

I -5.818 0.518 -6.802 -4.836

I, H -11.837 0.349 -12.528 -11.126

I, S -22.623 1.754 -26.193 -19.302

I, S, H -33.503 0.670 -34.803 -32.219

I, D -25.042 1.124 -27.204 -22.900

I, D, H -29.753 0.435 -30.618 -28.902

I, D, S -45.910 3.941 -53.422 -38.189

I, D, S, H -52.484 0.866 -54.123 -50.831

C -52.963 1.239 -55.348 -50.486

C, H -47.658 0.638 -48.969 -46.447

C, S -57.695 4.542 -66.941 -48.908

C, S, H -65.111 1.730 -68.518 -61.841

C, D -72.426 2.742 -77.685 -67.065

C, D, H -68.047 0.820 -69.715 -66.496

C, D, S -62.014 10.448 -82.033 -42.348

C, D, S, H -87.598 2.244 -92.094 -83.143

C, I -56.837 1.047 -58.922 -54.797

C, I, H -54.559 0.427 -55.408 -53.727

C, I, S -66.272 3.382 -73.165 -59.906

C, I, S, H -71.862 0.785 -73.561 -70.408

C, I, D -75.280 2.021 -79.305 -71.223

C, I, D, H -78.345 0.482 -79.266 -77.397

C, I, D, S -97.338 5.907 -110.268 -87.213

C, I, D, S, H -96.245 0.797 -97.849 -94.700

Age

76 -2.633 0.776 -4.151 -1.102

77 -6.820 0.792 -8.380 -5.270

78 -11.029 0.779 -12.686 -9.478

79 -15.091 0.766 -16.645 -13.668

80 -19.029 0.754 -20.601 -17.638

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: SURVIVAL TO 2013 

 

  

Probit 

Coefficient               

(x 100)

Robust bootstrap 

standard error

81 -25.744 0.790 -27.362 -24.193

82 -32.994 0.763 -34.493 -31.399

83 -37.152 0.756 -38.708 -35.701

84 -43.227 0.784 -44.712 -41.627

85 -50.962 0.730 -52.360 -49.544

86 -58.346 0.770 -60.015 -56.975

87 -66.066 0.781 -67.605 -64.586

88 -73.374 0.759 -74.904 -71.913

89 -82.584 0.789 -84.114 -81.144

90 -92.259 0.795 -93.799 -90.766

91 -100.974 0.809 -102.579 -99.327

92 -110.871 0.834 -112.514 -109.270

93 -121.799 0.863 -123.583 -120.135

94 -133.690 0.939 -135.686 -132.011

95 -143.847 0.947 -145.848 -142.181

96 -156.420 1.045 -158.544 -154.518

97 -169.733 1.146 -172.152 -167.548

98 -182.185 1.238 -184.734 -179.840

99 -191.265 1.436 -194.146 -188.390

100 and over -225.657 1.018 -227.855 -223.850

Age x male

76 0.830 1.108 -1.328 3.002

77 0.871 1.091 -1.306 2.940

78 -0.136 1.125 -2.284 2.121

79 0.691 1.095 -1.434 2.793

80 -0.947 1.059 -2.916 1.186

81 0.039 1.102 -2.117 2.225

82 -0.429 1.085 -2.626 1.711

83 -1.472 1.090 -3.566 0.819

84 -2.349 1.113 -4.607 -0.168

85 -4.045 1.099 -6.246 -1.902

86 -3.013 1.099 -5.028 -0.768

87 -3.429 1.140 -5.709 -1.273

88 -5.611 1.147 -8.072 -3.388

95% Confidence Interval
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TABLE I3 (CONT’D): RESULTS FROM THE DECADAL 2SCML SPECIFICATION 

OUTCOME: SURVIVAL TO 2013 

 

  

Probit 

Coefficient               

(x 100)

Robust bootstrap 

standard error

89 -5.321 1.163 -7.539 -3.093

90 -5.190 1.213 -7.737 -3.006

91 -5.049 1.277 -7.512 -2.527

92 -6.132 1.246 -8.640 -3.753

93 -6.286 1.356 -9.039 -3.686

94 -8.466 1.485 -11.408 -5.666

95 -9.352 1.628 -12.556 -5.974

96 -8.992 1.793 -12.556 -5.479

97 -11.002 2.102 -15.096 -6.846

98 -7.557 2.363 -12.305 -3.011

99 -17.041 2.774 -22.431 -11.889

100 and over -6.048 2.106 -10.139 -2.070

2004 Census Block Group Demographics

median household income / 1000 0.031 0.007 0.017 0.045

per capita income / 1000 -0.018 0.012 -0.042 0.004

median year built 0.080 0.007 0.067 0.093

median house value / 1000 0.017 0.001 0.015 0.019

average house value / 1000 0.001 0.000 0.000 0.002

median gross rent / 1000 -0.036 0.021 -0.081 0.005

% over 65 26.877 0.955 24.996 28.678

% white -5.126 1.139 -7.352 -2.848

% black -5.640 1.218 -8.105 -3.300

% hispanic 1.797 1.271 -0.548 4.342

% 9th through 12th -19.179 2.833 -24.631 -13.462

% high school graduate 1.457 2.230 -2.992 6.093

% some college 12.496 2.225 8.134 16.981

% associate degree 17.347 2.851 11.810 22.960

% bachelor's degree 24.928 2.274 20.438 29.347

% graduate degree 32.224 2.454 27.359 36.972

% owner occupied 11.978 1.065 9.867 14.005

% renter occupied 0.151 1.163 -2.168 2.296

95% Confidence Interval
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5. Association between Dementia and its Clinical Risk Factors 

 

Table I4 shows that the estimated AME of a 1 μg/m3 increase in decadal PM2.5 in Column (5) 

of Table I is about three times as large as the estimated increase in dementia risk associated with 

having been diagnosed with hypertension at the beginning of the decade but not diagnosed with 

any of the other health risk factors (0.8 pp) using the same decadal model. Our estimate is similar 

in size to the increase in risk associated with a pre-existing diagnosis of ischemic heart disease 

alone. Our estimate is smaller than the risks associated with pre-existing diagnoses of the other 

chronic conditions individually, which range from a 4.1 pp increase for ischemic heart disease 

alone to an 8.5 pp increase for stroke alone. We estimate that someone diagnosed with all five risk 

factors by 2004 had a 27.6 pp higher probability of being diagnosed with dementia by the end of 

2013, all else equal. Aging provides another opportunity for comparison. All else constant, aging 

from 75 to 80 is associated with an AME of 5.8 pp and aging from 75 to 85 is associated with an 

AME of 15.5 pp. 

TABLE I4—COMPARING RELATIVE RISKS FOR PM2.5 AND OTHER RISK FACTORS  

  
Note: The table reports average marginal effects and 95% confidence intervals for dementia risk factors based on the model in Table I, Column (5). 

Model coefficients are reported in Table J4. 

 

 

 

 

Risk Factor

Percentage point 

increase in dementia 

diagnosis probability

hypertension in 2004 0.8 0.6 1.1

ischemic heart disease in 2004 2.0 1.6 2.3

decadal PM2.5 (1 μg/m3) 2.4 1.3 3.5

diabetes in 2004 4.1 3.4 4.6

aging from 75 to 80 5.8 5.5 6.1

congestive heart failure in 2004 7.5 6.1 8.9

stroke in 2004 8.5 7.4 9.7

aging from 75 to 85 15.5 14.9 16.0

All five chronic conditions in 2004 27.6 25.4 29.4

95% confidence 

interval
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6. Year-specific average marginal effects from Equations (6) and (7) 

 

Table I5 reports the year specific AMEs from Equations (6) and (7) in the main text, as refer-

enced in Section V.B. 

TABLE I5—AVERAGE MARGINAL EFFECT OF CUMULATIVE PM2.5 SINCE 2004 ON THE  

PROBABILITY OF A NEW DEMENTIA DIAGNOSIS WITHIN THE YEAR 

 
Note: The outcome is scaled to equal 100 if an individual was diagnosed with dementia during the year and 0 otherwise. Asterisks indicate statistical 

significance at the 10% (*) and 5% (**) levels using robust standard errors clustered at the block group. Standard errors are bootstrapped using 

1,000 repetitions. 

 

J. Sensitivity analyses referenced in Section VI 

Table II in the main text present tests of model validation for our main specification (Column 

(6) of Table I). In this section we present results from a series of specifications that include alter-

native measures of pollution, alternative measures of dementia, varying the sample based on dis-

tance from the nearest air-quality monitor, and alternative outcomes.    

Estimates from our decadal model (Column (5) of Table I) show that a 1 μg/m3 increase in 

average decadal PM2.5 increases the probability of a new dementia diagnosis by an average of 2.38 

pp. This specification is comparable to the existing economic literature on the impacts of pollution 

exposure on health outcomes, and it is parsimonious compared to the more computationally inten-

sive, year-specific model in Column (6) of Table I that yields an aggregated AME of 2.15 pp. The 

similarity in results between the two models suggests that, in our setting, the decadal model is not 

substantially biased by aggregating exposure over the decade. For these reasons, the following 

tests are performed using the decadal model described by Equations (2)-(5) in the main text. 

 

1. Sensitivity Analysis: Alternative Measures of Pollution Exposure 

 

Table J1 reports the sensitivity of the decadal specification shown in Column (5) of Table I to 

replacing our preferred measure of air pollution exposure with five alternatives. For convenience, 

Column (1) repeats Column (5) of Table I. In Column (2) we utilize within-county variation in 

 2005 2006 2007 2008 2009 2010 2011 2012 2013

0.063 0.630 -0.140 0.309 0.285 0.430 0.504* 1.07** 0.427

(0.430) (0.417) (0.322) (0.272) (0.247) (0.324) (0.280) (0.315) (0.306)

F-statistic on instruments for PM2.5 164.6 236.6 255.9 309.7 349.9 438.6 462.0 489.0 488.9

number of individuals:  dementia function 2,293,270 2,051,489 1,844,045 1,650,175 1,490,142 1,362,545 1,236,493 1,109,628 989,751

Chi-square statistic on instruments for survival 1166.0 1337.8 1717.5 1953.6 2204.5 2228.5 2274.3 2244.8 2153.3

number of individuals:  survival function 2,439,904 2,439,904 2,439,904 2,439,904 2,439,904 2,439,904 2,439,904 2,439,904 2,439,904

share of survivors diagnosed with dementia 2.9 3.0 3.2 3.4 3.7 3.8 4.0 4.3 4.4

Probit model average marginal effect                                                           

(1 μg/m3 increase in decadal PM2.5)
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monitor readings, similar to Bento, Freedman, and Lang (2015). Specifically, we replace the 

CBSA dummy variables with county dummy variables, and we stratify the nonattainment indicator 

according to whether the average PM2.5 concentration from 2001 to 2003 at the air quality monitor 

closest to an individual’s residence exceeded the federal standard. This generates three indicators 

that vary across individuals within counties: (i) nonattainment county with the individual’s nearest 

monitor exceeding the standard, (ii) nonattainment county without the individual’s nearest monitor 

exceeding the standard, and (iii) attainment county with the individual’s nearest monitor exceeding 

the standard. Each indicator is interacted with the fourth-order polynomial function of baseline 

exposure. 

TABLE J1—AVERAGE MARGINAL EFFECTS USING ALTERNATIVE MEASURES OF PM2.5 EXPOSURE 

 
Note: Column (1) repeats Column (5) of Table I. Column (2) modifies this specification by stratifying the nonattainment county instrument accord-

ing to whether the monitor closest to an individual’s residence was in attainment while replacing CBSA dummies with county dummies. Column 

(3) adds measures of decadal exposure to other federally regulated air pollutants. Column (4) replaces our preferred measure of decadal pollution 
exposure (based on a balanced panel of continuously operating monitors) with data from an unbalanced panel of all monitors in operation each 

year. Column (5) measures pollution at the coarser 5-digit ZIP code level. Column (6) replaces the fourth-order polynomial function of baseline 

pollution exposure with a “spline” function based on dummies for 72 baseline exposure bins, each of which has a width of 0.33 micrograms per 
cubic meter. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered at the 

block group. Standard errors are bootstrapped using 1,000 repetitions. 

 (1) (2) (3) (4) (5) (6)

2.384*** 1.685*** 1.738*** 1.163*** 2.524*** 2.380***

(0.568) (0.479) (0.548) (0.400) (0.580) (0.571)

  0.035    

  (0.038)    

  -0.055    

  (0.046)    

  -0.083    

  (0.050)    

  0.182    

  (0.182)    

  0.727    

  (2.024)    

modification to main specification  

IV = county x monitor attainment  x     

control for other air pollutants x

unbalanced monitor panel   x   

5-digit ZIP assignment of PM2.5 x

spline function of baseline PM2.5   x

F-statistic on instruments for PM2.5 498 399 345 759 521 119

number of individuals:  dementia function 1,179,094 1,179,094 1,179,094 1,179,094 1,179,094 1,179,094

Chi-square statistic on instruments for survival 3,813 3,812 3,815 3,812 3,813 3,811

number of individuals:  survival function 2,439,904 2,439,904 2,439,904 2,439,904 2,439,904 2,439,904

share of survivors with dementia in 2013 20 20 20 20 20 20

1 μg/m3 increase in decadal PM2.5

1 μg/m3 increase in decadal PM10

1 ppb increase in decadal O3

1 ppb increase in decadal NO2

1 ppb increase in decadal SO2

1 ppm increase in decadal CO
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Column (3) adds measures of decadal exposure to five other federally regulated air pollutants 

with extensive monitoring networks: coarse particulate matter (particulates smaller than 10 mi-

crons in diameter), ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide. Each measure 

is constructed following the same procedures that we used to construct decadal PM2.5.  

Column (4) replaces our “balanced monitor panel” measure of exposure with a measure con-

structed from an unbalanced panel of all monitors in operation each year (between 871 and 1,137 

monitors per year). The unbalanced panel may improve efficiency by using all available ground-

level information on pollutant concentrations, but it also may introduce additional measurement 

error, as explained by Muller and Rudd (2017), Grainger, Schreiber, and Chang (2018), and Grain-

ger and Schreiber (2019).  

In Column (5), we measure PM2.5 at the centroids of individuals’ 5-digit ZIP code areas instead 

of their 9-digit ZIP mail delivery points. This coarser approach recognizes that exposures may 

occur over larger areas as individuals travel outside their immediate neighborhoods for activities 

such as shopping and recreation.  

Column (6) replaces the fourth-order polynomial function of baseline (2001-2003) residential 

PM2.5 concentrations with a more flexible spline function. We partition neighborhoods into 72 bins 

by baseline concentrations (in 0.33 µg/m3 increments) and add an indicator variable for each bin.  

In summary, we find that a variety of different measures for decadal PM2.5 exposure reinforce 

the conclusion that decadal exposure to PM2.5 increases the probability of receiving a new demen-

tia diagnosis. 

 

2. Sensitivity Analysis: Medicare Advantage 

The claims-based approach to identifying dementia cases has been well validated, with tradi-

tional Medicare (TM) claims from 2007-2012 correctly identifying 85 percent of patients diag-

nosed with dementia by clinician researchers using in-person assessments (Lee et al. 2019, Taylor 

et al. 2002). The overall dementia rate in our traditional Medicare data for 2012 is 12.8 percentage 

points, compared with 10.5 percentage points determined by a panel of clinicians using an in-

person set of cognitive tests given to 888 individuals age 65 and above in the Health and Retire-

ment Study (HRS) (Hudiomet et al. 2018). The higher cross-sectional rate in the traditional Med-

icare sample may be due to several factors, including sampling error in the HRS, underdiagnosis 

in the HRS (Agarwal et al. 2009), non-representativeness of the HRS (Hudiomet et al. 2018), or 
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selection of healthier individuals out of TM and into Medicare Advantage (MA) during our study 

period (Newhouse et al. 2016).  

We assess whether the use of claims-based diagnosis for the TM sample influences our con-

clusions by also evaluating whether PM2.5 affects the probability that individuals fill a prescription 

for drugs used to treat the symptoms of Alzheimer’s disease. In the CMS data, we observe if and 

when each individual, including those on MA plans, began taking one of these five drugs: 

donepezil, galantimine, rivastigmine, memantine, and donepezil and memantine in combination. 

Beginning in 2006, there were approximately 1.1 million individuals in our sample who had drug 

coverage through Medicare, and 12% of them initiated one of these medications between 2006 and 

2013. Among the TM enrollees for whom we can observe both drug use and dementia diagnoses, 

we see that 90% of those prescribed these drugs also received a dementia diagnosis by 2013. Figure 

J1 contrasts the share of people having ever taken an Alzheimer’s drug with the share of people 

having ever been diagnosed with dementia by age and gender. 

FIGURE J1: DEMENTIA DIAGNOSIS AND PRESCRIPTION DRUG USE BY AGE AND GENDER IN 2013 

 

 

Table J2 contrasts the results shown in Column (5) of Table I that we reported for the TM 

population with ancillary estimates that include people from the MA population on drug plans. As 
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a benchmark for comparison, Column (1) repeats the result from Column (5) of Table I. This is 

based on 2SCML estimation of Equations (2)-(5) in the main text. We use this same specification 

to estimate models that incorporate the MA population in the following two columns.  

Column (2) reports the AME from adding MA enrollees with prescription drug coverage while 

simultaneously redefining the dementia indicator to be either a claims-based diagnosis at any point 

from 2005 through 2013 or a claim for a prescription drug to treat symptoms of Alzheimer’s dis-

ease at any point from 2006 through 2013. This specification expands the sample to include indi-

viduals who exited TM at some point after 2004 to enroll in a MA plan that included prescription 

drug coverage. On net, this expands the sample by 287 thousand individuals (accounting for 94% 

of the sample who switched to MA and survived through 2013, as shown in Figure A1). The re-

sulting AME is similar to that shown in Column (1).  

TABLE J2—AVERAGE MARGINAL EFFECTS INCLUDING MEDICARE ADVANTAGE ENROLLEES 

 

Note: Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered at the block 

group. Standard errors are bootstrapped using 1,000 repetitions. 

 

Column (3) reports the AME from a model that measures a new dementia diagnosis based 

solely on whether an individual filled a prescription for an Alzheimer’s drug. This specification 

limits the sample to 1,074,596 people in TM and MA who enrolled in Medicare prescription drug 

plans. The results indicate that a 1 µg/m3 increase in average PM2.5 over the decade increases the 

 (1) (2) (3)

2.384*** 2.449*** 1.476***

(0.568) (0.528) (0.578)

approach to measuring dementia

Diagnoses from 

Traditional 

Medicare claims

Diagnoses from 

Traditional 

Medicare claims 

or dementia drugs

dementia drugs

F-statistic on instruments for PM2.5 498 562 420

number of individuals:  dementia function 1,179,094 1,466,475 1,074,596

Chi-square statistic on instruments for survival 3,813 3,949 3,813

number of individuals:  survival function 2,439,904 2,439,904 2,439,904

dependent variable mean 20 19 12

1 μg/m3 increase in decadal PM2.5
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probability of taking an Alzheimer’s drug by 12.3%, slightly larger than the percent effect ob-

served for diagnosis rates. 

In summary, the results in Table J2 demonstrate that the results we find for our decadal model 

are not dependent on either the use of claims-based diagnoses or the exclusion of MA.  

 

3. Sensitivity Analysis: Alzheimer’s and Other Dementias 

Table J3 reports results from modifying the specification shown in Column (5) of Table I to 

focus on the specific types of dementia that are directly or indirectly measurable in CMS data. 

Column (1) repeats the specification shown in Column (5) of Table I for convenience. Columns 

(2) and (3) repeat estimation of the same specification after stratifying the “Alzheimer’s and related 

dementias” variable from CMS’s chronic conditions warehouse file into dementia cases with and 

without an associated diagnosis of “Alzheimer’s disease”. The sample size declines slightly in 

Columns (2) and (3) relative to Column (1) because the Alzheimer’s disease variable is missing 

for a small number of individuals and because changing the outcome measure results in a small 

number of individuals being dropped during estimation due to lack of within-CBSA variation in 

the outcome measure. Our estimated AMEs reveal that diagnoses of Alzheimer’s disease can ac-

count for 77% of the overall dementia AME that our decadal model attributes to long-term PM2.5 

exposure. A caveat to this interpretation is that it is difficult for doctors to distinguish between 

Alzheimer’s disease and other forms of dementia without an autopsy or extensive brain imaging, 

leaving some doctors reluctant to diagnose living patients with Alzheimer’s disease specifically, 

as opposed to dementia generally.  
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TABLE J3—AVERAGE MARGINAL EFFECTS FOR ALZHEIMER’S AND OTHER DEMENTIAS  

 

Note: Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered at the block 

group. Standard errors are bootstrapped using 1,000 repetitions. 

 

Column (4) reports results from repeating estimation of the model in Column (1) after adding 

a dummy for whether the individual had a stroke by the end of 2013. Strokes cause vascular de-

mentia, the second most common form of dementia behind Alzheimer’s disease, and may be 

caused by short-term spikes in air pollution. Hence, the stroke variable absorbs any effects of PM2.5 

on dementia that occur due to observed strokes (although many smaller strokes are clinically un-

observed). Our results suggest that the probability of being diagnosed with dementia is 19.1 pp 

higher for those who had a prior stroke. However, controlling for stroke has virtually no effect on 

the PM2.5 coefficient, as shown in Column (4). This suggests that long-term exposure to PM2.5 

increases the risk of Alzheimer’s disease, specifically. Overall, the results in Table J3 are con-

sistent with the hypothesis that long-term exposure to PM2.5 increases the risk of being diagnosed 

with Alzheimer’s disease specifically. 

 

4. Sensitivity Analysis: Distance to Nearest Monitoring Station 

Table J4 reports results from modifying the decadal specification shown in Column (5) of Ta-

ble I to limit the estimation sample to people who never live more than a fixed distance from a 

PM2.5 monitoring station. The results from this specification, with no limit on distance to the near-

est monitoring station, is shown in Column (4) for convenience. Column (5) shows results from 

 (1) (2) (3) (4)

2.384*** 0.616 1.831*** 2.432***

(0.568) (0.430) (0.478) (0.570)

dependent variable

claim-     

based 

diagnosis

claim-        

based 

diagnosis 

without 

Alzheimer's

claim-       

based 

diagnosis 

with 

Alzheimer's

claim-     

based 

diagnosis 

with stroke 

control

F-statistic on instruments for PM2.5 498 497 497 498

number of individuals:  dementia function 1,179,094 1,178,490 1,178,616 1,179,094

Chi-square statistic on instruments for survival 3,813 3,813 3,813 3,932

number of individuals:  survival function 2,439,904 2,439,904 2,439,904 2,439,904

dependent variable mean 20 11 9 20

1 μg/m3 increase in decadal PM2.5
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repeating estimation after dropping everyone who lived more than 20 km from the nearest moni-

toring station at any point during our study period. Column (6) shows results from repeating esti-

mation after dropping everyone who lived more than 10 km from the nearest monitoring station at 

any point during our study period. Our sample size for the dementia function declines by 20% as 

we move from Column (4) to Column (5), and it declines by 47% as we move from Column (4) to 

Column (6). However, even as we reduce the size of the estimation sample, the AME for PM2.5 

remains precisely estimated and similar in magnitude. 

TABLE J4—AVERAGE MARGINAL EFFECTS CONDITIONAL ON DISTANCE TO MONITOR 

 

Note: Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered at the block 

group. Standard errors are bootstrapped using 1,000 repetitions. 

The first three columns in the table show results from performing similar estimations to those 

shown in Columns (4), (5), and (6), but without instrumenting for PM2.5. Because we reduce the 

scope for measurement error in PM2.5 by reducing the maximum distance to the nearest monitoring 

station, the AME for PM2.5 increases by 28% and 44% respectively. 

5. Placebo Outcomes 

Table J5 presents results for five placebo diagnoses: glaucoma, fibromyalgia, breast cancer, 

prostate cancer, and peripheral vascular disease. As explained in the main text, these five chronic 

conditions that are not known or suspected to be caused by air pollution, but they share similarities 

with dementia in terms of how they affect the body, how they are diagnosed, and how diagnosis 

rates are correlated with age, race, and gender. Our placebo models use the same 2SCML estimator 

from the decadal specification in Column 5 of Table I with one modification: we omit the selection 

correction for mortality. The reason that we omit the selection correction is that while the medical 

 (1) (2) (3) (4) (5) (6)

0.170 0.218* 0.245 2.384*** 2.012*** 2.031***

(0.108) (0.126) (0.157) (0.568) (0.618) (0.726)

Maximum distance from nearest monitor no limit 20 km 10 km no limit 20 km 10 km

PM2.5 control function x x x

survival control function x x x x x x

heterogeneity in effects x x x x x x

F-statistic on instruments for PM2.5    498 231 115

number of individuals:  dementia function 1,179,094 947,797 637,370 1,179,094 947,797 637,370

Chi-square statistic on instruments for survival 3,813 3,230 2,189 3,813 3,230 2,189

number of individuals:  survival function 2,439,904 1,963,293 1,339,634 2,439,904 1,963,293 1,339,634

dependent variable mean 19.5 19.4 19.1 19.5 19.4 19.1

1 μg/m3 increase in decadal PM2.5
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literature suggests that our cancer-based instruments for mortality are unrelated to dementia, these 

same instruments are known or suspected to increase the likelihood of being diagnosed with each 

of the placebo outcomes. Despite this caveat, the placebo tests are still informative in the sense 

that our estimate for the AME of PM2.5 on dementia remains large and precisely estimated (1.707, 

p=0.002) when we modify our the specification in Table I, Column (5) to omit the selection cor-

rection. This benchmark result is shown in the first column of Table J10. 

The placebo model sample sizes in the remaining columns of the table are slightly smaller than 

the one underlying Column (1). This is because the placebo models parallel our dementia specifi-

cation in excluding people who had been diagnosed with the placebos by 2004. While the placebo 

models also add people who had been diagnosed with dementia in 2004, but not the placebos, this 

addition is more than offset by the prior-diagnosis-with-placebo exclusions because the 10-year 

survival rate for people with dementia in 2004 is low (16%). None of AMEs on the placebos are 

statistically distinguishable from zero at the 10% level.  

TABLE J5—AVERAGE MARGINAL EFFECTS FOR PLACEBO SPECIFICATIONS 

 

Note: Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered at the block 

group. Standard errors are bootstrapped using 1,000 repetitions. 
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