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Abstract

In recent years, many papers in environmental economics have considered the house-

hold’s decision to invest in energy-efficient technologies for their home. The vast ma-

jority of these studies have concluded that investment levels in these technologies are

sub-optimal for a variety of reasons. In this paper, we synthesize the suggested drivers of

these investment wedges and propose a dynamic modeling framework of a housing choice

and an energy-efficient-investment choice that includes the proposed channels. We dis-

cuss the estimation challenges associated with this model and conclude with suggestions

for future research.
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1 Introduction

Investments in energy-efficient housing attributes, such as solar panels, heat pumps, and built-

in appliances, by households have attracted considerable attention by environmental economists

in recent years. These attributes, despite offering both private benefits to households in the

form of lower energy expenditures and public benefits in the form of decreased emissions

associated with energy production, are usually found to have sub-optimal levels of investment.

Under-investment in these housing attributes has been described as the “energy-efficiency

gap” and has been explained by myopia, information asymmetries, and a variety of fixed

and marginal costs (e.g., Jaffe and Stavins (1994)). Over-investment in these attributes is

also possible and could be explained by biased beliefs due to incorrect estimates reported by

engineers regarding the efficiency of the attributes (e.g., Fowlie et al. (2015)).

Unlike the revealed-preference literature describing the household’s choice of housing

amenities like square footage or local air quality, the literature describing investment decisions

regarding energy-efficient housing attributes have typically treated the installation choice as

a separate financial decision and has modeled the household’s consumption decision as being

independent of the household’s housing decision, even when the housing attribute fully conveys

with the house upon resale. In addition, while a growing literature has found that installed

energy-efficient housing attributes are not fully capitalized in a house’s sale price, these papers

typically do not model the magnitude of this financial cost’s impact on the household’s decision

to invest or the household’s decision to move in a given period.

We begin by summarizing the key implications from the literature about the many poten-

tial drivers of why a household might consume a sub-optimal quantity of energy-efficient hous-

ing attributes. We then seek to synthesize these drivers by providing a conceptual framework

that jointly models a household’s decision of which house to choose and which energy-efficient

housing attributes to invest in. Additionally complicating such an exercise is the fact that both

decisions are inherently dynamic decision processes. Households face high fixed costs associ-
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ated with both moving and with upgrading their current residence. The net utility flows are

enjoyed over a potentially long time horizon. Important factors such as energy prices are both

time-varying and not fully predictable. And, finally, a household may choose to re-optimize in

any given future period.

We describe a conceptual framework that specifies households making two decisions in

each period. The first decision is whether or not to move; a move allows the household to

choose an entirely new vector of housing attributes. The second decision is whether or not

to invest in a specific energy-efficient housing attribute at the household’s current residence.

This allows the household to reoptimize one particular housing attribute while maintaining

consumption of other attributes at their existing levels. The model starts with the dynamic

location-choice framework described in Bishop and Murphy (2023) and extends it by adding the

household’s investment decision of energy-efficient housing attributes. Within this framework,

we incorporate the literature’s explanations of the drivers of investment decisions, including

time preferences, risk aversity, and a complex set of costs, including the time and hassle

associated with investing, uncertainty (and mis-information) over annual returns on energy-

efficient investments, and information asymmetries that lead to less-than-full future market

capitalization of energy-efficient investments.

This paper proceeds as follows: Section 2 discusses the existing literature and describes

the factors known to drive investments in energy-efficient housing attributes, and Section 3

presents a conceptual framework that includes a secondary investment decision within a model

of housing choice. Section 4 describes case study of residential solar systems. Section 5 con-

cludes with a discussion of target areas for future research.

2 Known Factors Driving Investment Decisions

Many studies have examined various factors contributing to sub-optimal investments in energy-

efficiency for a wide number of housing attributes. See Gillingham et al. (2009), Allcott and
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Greenstone (2012), Gillingham and Palmer (2014), Gerarden et al. (2017), and Gillingham

et al. (2018) for comprehensive overviews.

One such factor is imperfect information about the attribute’s potential financial returns

(e.g., Allcott and Taubinsky (2015)). In a study of households’ decision to invest in Energy-

Star rated water heaters, Allcott and Sweeney (2017) finds that fifteen percent of the customers

who purchased conventional water heaters were unaware of the Energy-Star option altogether.

In addition, the provision of information regarding energy efficiency by sales representatives

in this context had no impact on the demand for Energy-Star rated water heaters, suggesting

that the sales representatives either did not properly convey the information or the consumers

did not fully process it. Likewise, Jacobsen (2015) finds no impact of energy prices on the

decision to invest in Energy-Star rated appliances.

Related to this, the information being disseminated about the energy efficiency of a

housing attribute may be incorrect (e.g., Davis and Metcalf (2016)). This could lead to sub-

optimal investment levels and/or discrepancies between households’ observed choices and what

the econometrician models as optimal. First, engineering estimates about the performance

of the energy-efficient investment may be biased. In a paper focusing on a program that

improves housing-based energy efficiency for low-income households through retrofits of things

like furnaces and insulation, Fowlie et al. (2018) finds that the realized energy savings were

only about 30 percent of the projected savings from engineering estimates. Similarly, Allcott

and Greenstone (2017) finds that the average realized energy savings were only 58 percent of

the predicted savings for similar energy-efficiency retrofits, while Giraudet et al. (2018) find

that the realized energy savings were only 60 percent of the predicted saving for attic insulation

and 32 percent for duct sealing. This bias in engineering estimates may be driven by the fact

that the household uses the energy-efficient attribute differently than does the representative

agent of the engineer’s model. It may also be due to the fact that the technology is simply not

as efficient once installed in the household’s home. For example, Giraudet et al. (2018) show
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that the ex-post gap between predicted savings and realized savings is smaller for investments

for which the quality of installation is easier to verify, implying that there in an important

quality dimension for installation services.

In addition, there remains considerable uncertainty over many of the variables that drive

investment decisions. A number of important demographic characteristics evolve stochastically,

like family size or work patterns (e.g., Hotz and Miller (1988)). Housing market descriptives,

like mortgage-interest rates and local appreciation rates, also evolve stochastically (e.g., Anen-

berg and Kung (2017)). Finally, the uncertainty surrounding parameters directly determining

the financial flows associated with energy-efficient investments, such as government subsidies

for investments and the price of electricity, will play an important role in the household’s in-

vestment decision (e.g., Anderson et al. (2011), Feger et al. (2022), Kiribrahim-Sarikaya and

Qiu (2023), and Davis (2023)). Thus, the household’s preferences for risk are likely to impact

their decision to invest in energy-efficient housing attributes. In survey-based settings, both

Qiu et al. (2014) and Heutel (2019) find inverse relationships between a household’s hetero-

geneous measure of risk and the probability that the household will invest in energy-efficient

technologies for their home or in other energy-efficient appliances.

In addition to heterogeneity in risk aversity, household-level heterogeneity will likely be

present in most, if not all, drivers of a household’s investment decisions (Houde and Myers

(2019)). This heterogeneity would enter both measures of benefits and costs. For example, in

a study of energy-efficient heat pump installation, Davis (2023) highlights the importance of

consumer heterogeneity in the technology’s efficacy along dimensions describing the household’s

local climate. Heat pumps simply work better in certain parts of the country.

Information frictions further complicate the problem as the household will consider how

much of the value of its investment will be capitalized into their house’s value, if they were

to sell the house in the future to a less-than-fully-informed buyer. The literature has found

evidence of this concern by forward-looking investing households and evidence of less-than-
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full capitalization of energy-efficient attributes likely driven by information asymmetries (e.g.,

Dastrup et al. (2012), Bardhan et al. (2014), Deng and Wu (2014), Kahn and Kok (2014),

Walls et al. (2017), Cassidy (2023), and Myers et al. (2022)). It has also found evidence

that households treat the decision to invest in housing attributes that convey with the house

upon sale differently than they treat housing attributes that do not convey with the house

upon sale. Schleich et al. (2020) find that investment rates are depressed by 8 percentage

points for appliances that convey with the house compared with appliances that do not convey.

Additionally, in a survey of homeowners in California and Arizona, Qiu et al. (2014) find

that the probability that the household invests in energy-efficient retrofits and appliances is

inversely related to the probability that the household plans on moving in the next five years,

again highlighting the joint decision processes of location choice and installation of energy-

efficient housing attributes. The discounted expected value of financial returns is not the

only factor that drives households’ decisions to invest in energy-efficient housing attributes.1

Another important factor is the multitude of non-monetary, heterogeneous benefits and costs

that are associated with investment. The household may receive positive utility flows from the

investment. For example, the household may enjoy being green, particularly if the consumption

of the attribute is conspicuous (e.g., Sexton and Sexton (2014)). Or, the household may enjoy

increased comfort in the form of indoor temperatures, commonly referred to as the “rebound

effect” of the household’s substitution toward consumption of energy when the price of energy

usage is reduced through energy-efficient housing attributes (e.g., Gillingham et al. (2016), Qiu

et al. (2019), Liang et al. (2018), and Deng and Newton (2017)). In addition, there are likely

large non-monetary costs associated with investments such as administrative costs, time costs,

and tolerating renovations in the houshold’s home that would be highly heterogeneous. Fowlie

et al. (2015) describe how these large non-monetary costs negatively impact the take-up rates

1In our model, presented in Section 3, we assume that households live in owner-occupied houses and,
therefore, reap any financial returns. However, in rented houses, there is an additional channel of split-incentive
problems between landlords and tenants. See Davis (2012), Gillingham et al. (2012), Myers (2020), and Cellini
(2021).
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for energy-efficient weatherization investments.

Finally, as the investment decision is an inherently dynamic one, the household will

discount future streams of net benefits with a heterogeneous discount factor representing their

preferences over time (e.g., Busse et al. (2013), Newell and Siikamäki (2015), Bradford et al.

(2017), Schleich et al. (2019)). Hausman (1979) and Leard et al. (2019) find evidence of

considerable heterogeneity in discount rates across households, in addition to evidence of high

discount rates, on average, speaking to a present bias. Hausman (1979) estimates an average

discount rate of twenty percent in an analysis of air conditioners. De Groote and Verboven

(2019) finds an average discount rate of 15 percent in an analysis of residential solar systems. In

separate analyses of vehicle choice, Allcott and Wozny (2014), Leard et al. (2023), and Grigolon

et al. (2018) also find that, on average, households employ discount rates above the average

cost of borrowed funds.2 Likewise, the cost of borrowed funds for energy-efficient investments

is likely heterogeneous and based on factors such as the household’s credit history, location,

and nature of the investment.

3 A Model of Energy-Efficient Investments

In this section, we outline a dual-choice, dynamic model of hedonic demand that incorporates

the key channels of energy-efficient housing investments identified by the literature: time pref-

erences, risk aversity, and a complex set of costs, including the time and hassle associated with

investing in a house, uncertainty over annual returns on energy-efficient investments, and infor-

mation asymmetries that lead to less-than-full future market capitalization of energy-efficient

investments.

This model specifies home-owning households as making a sequence of decisions that

maximize the expected discounted stream of per-period flow utilities. The model is closely

2Sallee et al. (2016) and Busse et al. (2013) find that households, on average, have discount rates roughly
equal to the interest rate.

7



related to the model of Bishop and Murphy (2023) and extends it by additionally including

the household’s decision of energy-efficient investments to their house in each period, along

with the decisions of whether to move and how much neighborhood and housing attributes

to consume. The purpose of outlining the model is to describe key features of the household

decision-making process. We defer any discussion of estimation, so do not distinguish here

whether attributes are observable to the econometrician, and revisit estimation of dynamic

models in Section 3.6.

3.1 Housing Attributes

We begin by specifying two groups of potentially time-varying attributes that are associated

with a household’s residence. The first group, which we denote x1, is the class of house and

neighborhood attributes for which consumption levels cannot be endogenously changed without

moving; if the household wishes to consume a different quantity of one of these attributes

in the current period, the household must change residence, incurring a large heterogeneous

adjustment cost associated with moving, and choose a new house with their desired bundle

of attribute levels. We assume that all neighborhood attributes (such as air quality, school

quality, and crime exposure) are included in x1.
3

The second group, which we denote x2, is the class of housing attributes for which con-

sumption levels can be changed in the current period without moving; if the household wishes

to consume more of one of these attributes, they simply incur a heterogeneous adjustment

cost associated with the new investment in the attribute. New investments in energy-efficient

housing attributes described in the preceding section (e.g., weatherization, conveying appli-

ances, residential solar systems, and heat pumps) are all included in x2.
4 This segmentation of

the vector of housing attributes is an important addition to the model of Bishop and Murphy

3Many housing attributes, such as square footage, could appear in both x1 and x2. Square footage at
the time of purchase would, by definition, be included in x1, while additions to square footage during the
household’s tenure in the house would be included in x2.

4Energy-efficient housing attributes at the time of purchase would be included in x1.
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(2023), as it will allow us to model the decision of the household to invest in a housing at-

tribute without changing residence. While our proposed framework is suitable to consider any

housing-related investments by the household, like increases to square footage with an addi-

tion to the current residence, we focus our language henceforth on energy-efficient investment

decisions.

Finally, we note that many housing attributes could be included in both x1 and x2. For

example, installed energy-efficient technologies at time of purchase would be, by definition,

included in x1, while any energy-efficient investments since that time would be included in x2.

3.2 Endowed Housing Attributes and Costs of Adjustment

We specify a dynamic framework with periods denoted t ∈ {1, . . . , T}. Households, denoted

i ∈ {1, . . . , N}, have heterogeneous preferences over the vector describing contemporaneous

housing-related attributes, xi,t = [x′
1,i,t x′

2,i,t]
′.5 Household i begins each period t in a house

that provides an endowment vector of attributes. This vector of attributes is determined by

the household’s current residence and is denoted xe
i,t = [xe′

1,i,t xe′
2,i,t]

′. The household chooses

how much of each attribute in the vector xi,t to consume. If the household chooses to consume

a vector of attributes that is different than xe
i,t, it must pay a non-zero adjustment cost to re-

optimize. When this adjustment cost is sufficiently high (relative to any potential gains from

re-optimizing), the household will forego re-optimizing and consume the endowed quantity of

attributes. In this case, the household’s realized adjustment cost will be zero.

If a household chooses to re-optimize its consumption of x2, i.e., change its consumption

of an energy-efficient housing attribute through a new installation, the household must pay

a non-zero, heterogeneous adjustment cost, AC2. As we will assume that the financial cost

of this investment is financed (discussed in the following subsection), AC2 captures all of the

non-pecuniary costs associated with the adjustment. Examples include the time costs, hassles

5One make treat the choice of housing attributes as continuous following Rosen (1974) or discrete following
McFadden (1973). The same conclusions may be derived is either case.
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and disruptions, and other psychological costs of investing in one’s current place of residence,

as described in Fowlie, Greenstone, and Wolfram (2015).

If a household chooses to re-optimize its consumption of x1, it must move to a new

house and incur a more substantial heterogeneous adjustment cost, AC1.
6 This adjustment

cost captures both the one-time psychological cost of moving to a new house and the one-time

financial cost of moving to a new house. The fixed financial costs associated with moving

include both the realtor fees (6% of the value of the current residence), the financial cost

of moving one’s belongings, and, importantly, any remaining gap between the household’s

balance on prior financed investments in x2 and the new buyer’s willingness to pay for such

attributes, directly addressing the investment wedge described by the literature that is created

by this gap. In the model, we specify the adjustment costs as functions, AC(xi,t, si,t) =

AC1(x1,i,t, si,t) + AC2(x2,i,t, si,t). These adjustment costs are specified to be function of the

household’s choice of attributes in period t and the vector of state variables in period t, si,t,

that is comprised of all variables that affect the household’s decisions at time t. We describe

si,t in more detail in the following section.

3.3 The State Vector and Transition Probabilities

The state vector, si,t, is comprised of all variables that would affect the household’s choice

of xi,t in period t, including many of which that vary through time. This includes, but is

not limited to, the household’s endowment attributes (xe
i,t), demographic characteristics (e.g.,

income, education, and age and number of children), market characteristics (e.g., interest rates

and energy prices), and characteristics describing the energy-efficient technologies (e.g., engi-

neering estimates of the technology’s lifespan). The state vector also includes the household’s

information set at time t.

When making a decision at time t, the household observes the current state si,t and has

6We note that the household would, of course, be able to re-optimize their level of energy-efficient technolo-
gies by moving, and these technologies would be included in x1 for a new residence.
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expectations over the future state si,t+1. The household’s beliefs about the transition probabil-

ity of the state from si,t to si,t+1 is assumed to be Markovian and is given by q(si,t+1|si,t, xi,t).
7

This transition is dictated by a variety of factors. First, it is endogenously determined by the

household’s period t decisions; the household’s choice of housing attributes in period t will

stochastically influence its endowment attributes in period t+1. Second, it is also determined

by factors beyond the household’s control. For example, the household takes the variation in

energy prices as given.

The household will integrate out over their beliefs governing the distribution of future

states of the world, dictated by q(si,t+1|si,t, xi,t). Thus, in the model, this function will capture

the uncertainty that the household faces. It will also capture the impact of forces such as

incorrect engineering estimates about energy-efficient investments or gaps in information sets.

3.4 Rental-Equivalent Costs of Housing Attributes

Investing in energy-efficient attributes for the current residence, x2, entails a variety of costs,

as detailed by the literature. Some one-time, fixed costs are non-pecuniary and are captured in

AC2, as previously discussed. Some ongoing, annual costs may also be non-pecuniary, e.g., the

installation of a residential solar system may negatively impact the household’s scenic view.

These costs will be captured in the utility function shown in Section 3.5. Many costs, however,

will be financial. One such financial cost, of the household not receiving the full market value

of the investment upon a possible future sale of the property, is captured in AC1 at the future

time of sale, as previously discussed. All other financial costs will be captured by an annual

rental-equivalent cost function. This function effectively smooths all housing-related costs into

a per-period measure. Specifically, in each period, the household must pay for its consumption

of housing attributes, both x1 and x2, at rental-equivalent prices. We specify the vector of

these costs as a function, r(xi,t, si,t) = r1(x1,i,t, si,t) + r2(x2,i,t, si,t). We partition this rental-

7In this theoretical model, we do not impose any structure on these beliefs, such as rational expectations.
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equivalent function into the costs driven by x1 and those driven by x2 for discussion purposes

regarding investment decisions.

The implicit rental-equivalent cost of consuming x1, r1(x1,i,t, si,t), is often referred to

as the user-cost of housing.8 This user-cost captures the true, economic cost of owning a

house in each period. It is a function of the attributes of the house at time t, excluding any

investments that the household has undertaken, and a function of the state vector at time t.

While market factors, such as appreciation, would offset costs within r1(x1,i,t, si,t) in a given

period, we assume that r1(x1,i,t, si,t) is positive (i.e., we assume that the household foregoes

numeraire consumption in order to pay for housing).

The rental-equivalent cost of consuming x2, r2(x2,i,t, si,t), includes all relevant costs as-

sociated with the investment of energy-efficient attributes. Like the purchase of x1 with a

mortgage, we assume that all investments in x2 are fully financed at the time of installation.

Thus, x2, r2(x2,i,t, si,t) may be interpreted as the net return on investment in period t and is

sensitive to the upfront cost of the attribute (net of subsidies/rebates) and to the depreciation

of the energy-efficient attribute, energy prices, and the financing rate. These are all contained

in si,t.

In the case of a purely financial investment, a natural comparison would be to compare

r2(x2,i,t, si,t) against zero, i.e., the net returns on the investment would be negative in that

period if r2(x2,i,t, si,t) were negative. In the case of energy-efficient housing attributes, there

may be per-period utility gains associated with investment, and these positive gains may vary

across attributes, e.g., according to the saliency of the attributes.

8Typically, the user cost is calculated as a simple percentage of the value of a house, such as 7.5%. See Bieri
et al. (2022) and Bishop et al. (2022) for examples where user costs vary over time and space.
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3.5 The Household’s Decision Problem

In each period, the household receives flow utility,

uf (xi,t, si,t) = u(xi,t, si,t)− r(xi,t, si,t)− AC(xi,t, si,t). (1)

The first component of this flow utility, u(xi,t, si,t), is concave in xi,t and captures the direct

effect of the housing attributes on utility. It is a function of the household’s consumed attributes

in period t, xi,t in addition to the state vector. The concavity of this function allows for risk

aversion with respect to the household’s choice of xi,t.

The second component is the annual rental-equivalence cost of housing-attribute con-

sumption. This component enters with a negative sign, illustrating that a higher consumption

of xi,t reduces the household’s consumption of numeraire goods and services.9 The third com-

ponent is the adjustment cost. This term takes a value of zero if the household consumes its

endowment level of housing attributes. It, too, enters with a negative sign, illustrating that

the choice to re-optimize in period t reduces the household’s utility.

We write the household’s problem as choosing x in each period to maximize the expected

discounted sum of per-period flow utilities, which is given by:10

uf (xi,t, si,t) + E
[ ∞∑
τ=t+1

βτ−t
i

(
uf (xi,τ , si,τ )

)]
(2)

where βi is the household-specific subjective discount factor and captures the household’s time

preference.

We denote the value function associated with the maximization of Equation (2) as V (si,t),

9If the household gets utility from the presence of an energy-efficient investment in their home (either
positive or negative), the net benefit in each period (ignoring adjustment costs) would come from a comparison
of u(xi,t, si,t) and r2(xi,t, si,t) versus the financial calculation of whether r2(xi,t, si,t) is negative.

10For ease of exposition, we specify this problem as an infinite-horizon problem. To write this problem with
a finite horizon, one would need to account for the non-stationarity of the problem by making the function
V (si,t) itself period-t specific.
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and write the Bellman equation as,

V (si,t) = maxxi,t
{uf (xi,t, si,t) + βi

∫
V (si,t+1)q(dsi,t+1|si,t, xi,t)}, (3)

integrating out over the transition probabilities of the state variables.

It is convenient to additionally define choice-specific value functions associated with any

given value of xi,t,

v(xi,t, si,t) = uf (xi,t, si,t) + βi

∫
V (si,t+1)q(dsi,t+1|si,t, xi,t). (4)

This function specifies the household’s expected lifetime utility associated with a given choice

of xi,t. Households choose xi,t to maximize v(xi,t, si,t), i.e.,

x∗
i,t(si,t) = argmaxxi,t

v(xi,t, si,t).

We can describe the choice separately by type of housing attribute. The household will

choose to invest in an energy-efficient attribute while remaining in the same house (i.e., to

adjust x2,i,t) if there exists an x2,i,t such that,

v(xe
1,i,t, x2,i,t, si,t) > v(xe

1,i,t, x
e
2,i,t, si,t).

Similarly, the household will choose to change their residence (i.e., to adjust x1,i,t) if there

exists an x1,i,t such that,

v(x1,i,t, 0, si,t) > v(xe
1,i,t, x

e
2,i,t, si,t).

This describes the case where the household would choose to move and update their consump-

tion of x1. In this case, any energy-efficient technologies would be included in x1 and the move

would reset the household’s new investments term, x2 to zero.
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3.6 Summary and Discussion of Estimation

In this section, we have presented a comprehensive conceptual framework that unifies the joint

decision processes of where (and when) to move and whether (and when) to invest in housing-

related energy-efficient technologies. In modeling these choices, we specify a flexible dynamic

framework with household-specific heterogeneity in preferences, discount rates, monetary and

non-monetary costs, and information sets.

We define a heterogeneous utility function where households receive flow utility (positive

or negative) from the presence of the energy-efficient housing attribute. This would capture

preferences for being “green” and non-monetary costs of living with an undesirable technology

in the home. The degree of concavity of the heterogeneous function allows for the household’s

risk aversion. Likewise, we define a heterogeneous rental-equivalent function where households

amortize the costs of housing attributes (at a household-specific cost of borrowed funds) and

reap the financial benefits of energy savings (at a household-specific rate of efficiency). The

heterogeneity in this function allows for many of the channels the literature has focused on in

describing the efficiency gap – financing rates and the realized efficiency of the technology. We

define heterogeneous adjustment costs associated with re-optimizing that include all fixed costs,

both monetary and non-monetary. This terms captures the costs in time and hassle associated

with installing energy-efficient technologies in the home, as well as any under-capitalization

losses upon sale of the house. Importantly, the household’s information set and expectations

over the transition of the state drives much of the household’s decision-making process.

The estimation of the full model as presented here would present a number of challenges.

First, the data requirements would be large, as the researcher would need to have access to

panel data accurately describing the household’s choice set of housing attributes in each period,

the household’s choice in each period including any investment decisions, and the household’s

demographic characteristics. In addition, the researcher would need to collect information

about the heterogeneous cost of borrowed funds separately for mortgages and investment de-
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cisions, information about the transitions of the state variables, as well as information about

the household’s beliefs.

Second, computational difficulties arise due to the fact that v(xi,t, si,t) is defined recur-

sively. As the state space in this application would be very large, the full model would be

computationally costly to solve and estimate using a full-solution, nested fixed-point solution

method as in Rust (1987). Modern developments in the dynamic literature, such as Hotz and

Miller (1993), Bajari et al. (2007), and Arcidiacono and Miller (2011) facilitate estimation by

using choice probabilities estimated directly from the data to circumvent the need to itera-

tively solve the model. There has been a recent literature in the urban and environmental

economics that incorporates these tools. See, for example, Bishop and Murphy (2011), Ryan

(2012), Bishop (2013), Bayer et al. (2016), Caetano (2019), Diamond et al. (2019), De Groote

and Verboven (2019), Davis et al. (2021), Almagro and Domı́nguez-Iino (2022), and Bishop

and Murphy (2023).

Finally, even with access to rich panel data, there would most likely exist a vast set of

descriptives that would remain unobserved to the econometrician. This could present identi-

fication challenges, as these unobservables could bias estimates. For example, certain housing

attributes may be unobservable leading to omitted variable bias in the estimation of the price

function, r(xi,t, si,t) or individual-specific determinants of utility may be unobserved leading to

bias in the estimation of uf (xi,t, si,t).
11

4 Case Study: Solar Panels in Arizona

An energy-efficient housing attribute that has received considerable attention in the literature

is the residential solar system (e.g., Hughes and Podolefsky (2015), Burr (2016), Gillingham

11For discussions of identification of utility parameters in the hedonic model, see Brown and Rosen (1982),
Mendelsohn (1985), Bartik (1987), Epple (1987), Ekeland et al. (2004), Heckman et al. (2010), and Bishop and
Timmins (2019). For discussions of identification of discount parameters in dynamic models, see Rust (1994)
and Magnac and Thesmar (2002).
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and Tsvetanov (2019), De Groote and Verboven (2019), Snashall-Woodhams (2019), Feger

et al. (2022), Langer and Lemoine (2022), and Kiribrahim-Sarikaya and Qiu (2023)). This is

a costly investment that is inextricably tied to the household’s residence, as it conveys upon

sale of the house. Nonetheless, the residential solar market has grown rapidly due to falling

prices and government-incentive programs like the Federal Residential Renewable Energy Tax

Credit over the past decade, as shown in Figure 1.

Figure 1: Cost and Investment Trends of Residential Solar Systems Between 2010-2021

Note: Data come from the Lawrence Berkeley National Laboratory’s Tracking the Sun Database. Cost is
measured as the median price per unit of capacity (watt-per-hour) of the system in dollars.

The majority of studies that investigate households’ demand for residential solar systems

model the decision process as a dynamic problem (e.g., De Groote and Verboven (2019)).

These studies assume that households are forward-looking and have rational expectations over

future financial returns. The dynamic feature of the decision process comes from high upfront

investment costs combined with the time variation in investment costs, government-incentive

policies, and energy prices.

Kiribrahim-Sarikaya and Qiu (2023) develops a dynamic discrete-choice model of house-

holds’ investment decisions and a key contribution of that paper is that it allows for household-
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level heterogeneity along the observable characteristic of household income. That model in-

cludes upfront financial costs and expected future electricity savings. An important distinction

from the model laid out in Section 3, is that the investment decision is treated as independent

of the location/housing decision. That model does, however, include many of the channels

previously discussed.

Using novel household-level data from the Phoenix Metropolitan Area, Kiribrahim-

Sarikaya and Qiu (2023) finds that households are responsive to the upfront investment cost,

and the effect is highly heterogeneous along the dimension of income. In that paper, the real-

ized value of government incentives is allowed to vary with household income. This allows the

authors to match the empirical evidence that low-income households are less likely to receive

the full benefits of the incentive. This is because the non-refundable tax credits depend on the

household’s total tax liability, which is decided by income level.

Kiribrahim-Sarikaya and Qiu (2023) also finds substantial heterogeneity in discount rates

along the dimension of household income. For example, high-income households value a $1

increase in future energy savings more than they value a $1 decrease in the upfront cost of

investment, implying a negative discount rate among this income group. In a more comprehen-

sive framework, these results could also speak to heterogeneous utility flows from the presence

of a residential solar system along observable dimensions, in line with the results in Dastrup

et al. (2012) that show the home-price premium for a residential solar system is higher in

locations with more registered hybrid vehicles, more registered members of the Green Party,

and more contributors to environmental organizations. Likewise, Kiribrahim-Sarikaya and Qiu

(2023) finds that households get negative utility from the installation of a residential solar

system, all else equal. This again suggests non-monetary utility costs, such as the time and

hassle costs described in Fowlie et al. (2015).
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5 Conclusion

Research in environmental economics has consistently revealed households’ sub-optimal lev-

els of investment in energy-efficient housing attributes. And, unlike many housing attributes

that only offer benefits privately to the household, these energy-efficient technologies poten-

tially offer environmental benefits publicly by reducing emissions through decreased energy

consumption. The presence of this externality channel makes understanding the household’s

attribute-choice decisions essential for devising appropriate policy measures.

The existing body of literature has provided empirical support for various factors that

drive sub-optimal investment in energy-efficient housing attributes, including information gaps,

time preferences, and a variety of fixed and marginal costs. In this paper, we aim to consolidate

and integrate the literature’s findings and present a comprehensive conceptual framework that

could be estimated and used to analyze counterfactual policy environments. Our model jointly

specifies the related choices of (1) when and where to move and (2) if and when to invest in

energy-efficient housing attributes, and could be applied to a number of housing investment

decisions.

This theoretical model would, however, present a number of challenges for the econo-

metrician. First, there are few available household-level panel datasets that are sufficiently

rich to describe the choice problems. Accessing data describing energy-investment investment

decisions and linking it to housing-transaction data is an important next step for the literature.

Second, future research is tasked with learning much more about households’ information sets

regarding energy-efficient housing attributes and households’ beliefs about future states of the

world, including what drives beliefs about the transitions of the state variables. These are

complicated tasks that require either a policy-induced change in information sets or survey

methods to elicit beliefs.

We present a case study of the investment in a residential solar system. This application

has been modeled by the literature as a dynamic decision process. We focus on Kiribrahim-
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Sarikaya and Qiu (2023) that includes household-level heterogeneity with respect to income.

The investment decision for a residential solar system, however, has yet not been jointly mod-

eled with the household’s housing decision. And, given the large upfront costs of both in-

vestment and moving, and the less-than-full housing-market capitalization of the investment

(Dastrup et al. (2012), Hoen et al. (2017)), this presents an important challenge for the em-

pirical literature to tackle.

20



References

Allcott, H. and M. Greenstone (2012). Is there an energy efficiency gap? Journal of Economic

perspectives 26 (1), 3–28.

Allcott, H. and M. Greenstone (2017). Measuring the welfare effects of residential energy efficiency

programs. Technical report, National Bureau of Economic Research.

Allcott, H. and R. L. Sweeney (2017). The role of sales agents in information disclosure: evidence

from a field experiment. Management Science 63 (1), 21–39.

Allcott, H. and D. Taubinsky (2015). Evaluating behaviorally motivated policy: Experimental evi-

dence from the lightbulb market. American Economic Review 105 (8), 2501–2538.

Allcott, H. and N. Wozny (2014). Gasoline prices, fuel economy, and the energy paradox. Review of

Economics and Statistics 96 (5), 779–795.

Almagro, M. and T. Domı́nguez-Iino (2022). Location sorting and endogenous amenities: Evidence

from amsterdam. Available at SSRN 4279562 .

Anderson, S., R. Kellogg, and J. Sallee (2011, 04). What do consumers believe about future gasoline

prices? Journal of Environmental Economics and Management 66.

Anenberg, E. and E. Kung (2017). Interest rates and housing market dynamics in a housing search

model. working paper .

Arcidiacono, P. and R. A. Miller (2011). Conditional choice probability estimation of dynamic discrete

choice models with unobserved heterogeneity. Econometrica 79 (6), 1823–1867.

Bajari, P., C. L. Benkard, and J. Levin (2007). Estimating dynamic models of imperfect competition.

Econometrica 75 (5), 1331–1370.

Bardhan, A., D. Jaffee, C. Kroll, and N. Wallace (2014). Energy efficiency retrofits for u.s. housing:

Removing the bottlenecks. Regional Science and Urban Economics 47, 45–60. SI: Tribute to John

Quigley.

21



Bartik, T. J. (1987). The Estimation of Demand Parameters in Hedonic Price Models. Journal of

Political Economy 95 (1), 81–88.

Bayer, P., R. McMillan, A. Murphy, and C. Timmins (2016). A dynamic model of demand for houses

and neighborhoods. Econometrica 84 (3), 893–942.

Bieri, D. S., N. V. Kuminoff, and J. C. Pope (2022). National expenditures on local amenities. Journal

of Environmental Economics and Management , 102717.

Bishop, K., J. Dowling, N. V. Kuminoff, and A. Murphy (2022). Subsidies and the cost of homeown-

ership: The distributional impacts of tax policy.

Bishop, K. C. (2013). A dynamic model of location choice and hedonic valuation. mimeo, Arizona

State University.

Bishop, K. C. and A. Murphy (2011). Estimating the Willingness-to-Pay to Avoid Violent Crime: A

Dynamic Approach. American Economic Review, Papers and Proceedings 101 (3), 625–629.

Bishop, K. C. and A. Murphy (2023). Neighborhood change and the valuation of urban amenities:

Incorporating dynamic behavior into the hedonic model. mimeo, Arizona State University.

Bishop, K. C. and C. Timmins (2019). Estimating the marginal willingness to pay function without

instrumental variables. Journal of Urban Economics 109, 66–83.

Bradford, D., C. Courtemanche, G. Heutel, P. McAlvanah, and C. Ruhm (2017). Time preferences

and consumer behavior. Journal of Risk and Uncertainty 55, 119–145.

Brown, J. N. and H. S. Rosen (1982). On the Estimation of Structural Hedonic Price Models.

Econometrica, 765–768.

Burr, C. (2016). Subsidies and investments in the solar power market. University of Colorado at

Boulder Working Paper .

Busse, M. R., C. R. Knittel, and F. Zettelmeyer (2013). Are consumers myopic? evidence from new

and used car purchases. American Economic Review 103 (1), 220–256.

22



Caetano, G. (2019). Neighborhood sorting and the value of public school quality. Journal of Urban

Economics 114 (103193).

Cassidy, A. (2023). How does mandatory energy efficiency disclosure affect housing prices? Journal

of the Association of Environmental and Resource Economists 10 (3), 655–686.

Cellini, S. (2021). Split incentives and endogenous inattention in home retrofits uptake: a story of

selection on unobservables? Energy Economics 104, 105656.

Dastrup, S. R., J. G. Zivin, D. L. Costa, and M. E. Kahn (2012). Understanding the solar home price

premium: Electricity generation and “green” social status. European Economic Review 56 (5),

961–973.

Davis, L. W. (2012). 19. evaluating the slow adoption of energy efficient investments: Are renters

less likely to have energy efficient appliances? In The Design and Implementation of US Climate

Policy, pp. 301–318. University of Chicago Press.

Davis, L. W. (2023). The economic determinants of heat pump adoption. Technical report, National

Bureau of Economic Research.

Davis, L. W. and G. E. Metcalf (2016). Does better information lead to better choices? evi-

dence from energy-efficiency labels. Journal of the Association of Environmental and Resource

Economists 3 (3), 589–625.

Davis, M. A., J. Gregory, D. A. Hartley, and K. T. K. Tan (2021). Neighborhood effects and housing

vouchers. Quantitative Economics 12 (4), 1307–1346.

De Groote, O. and F. Verboven (2019, June). Subsidies and time discounting in new technology

adoption: Evidence from solar photovoltaic systems. American Economic Review 109 (6), 2137–72.

Deng, G. and P. Newton (2017). Assessing the impact of solar pv on domestic electricity consumption:

Exploring the prospect of rebound effects. Energy Policy 110, 313–324.

23



Deng, Y. and J. Wu (2014). Economic returns to residential green building investment: The de-

velopers’ perspective. Regional Science and Urban Economics 47, 35–44. SI: Tribute to John

Quigley.

Diamond, R., T. McQuade, and F. Qian (2019, September). The effects of rent control expan-

sion on tenants, landlords, and inequality: Evidence from san francisco. American Economic

Review 109 (9), 3365–94.

Ekeland, I., J. J. Heckman, and L. Nesheim (2004). Identification and estimation of hedonic models.

Journal of Political Economy 112 (1), S60–S109.

Epple, D. (1987). Hedonic Prices and Implicit Markets: Estimating Demand and Supply Functions

for Differentiated Products. Journal of Political Economy 95 (1), 59–80.

Feger, F., N. Pavanini, and D. Radulescu (2022). Welfare and redistribution in residential electricity

markets with solar power. The Review of Economic Studies 89 (6), 3267–3302.

Fowlie, M., M. Greenstone, and C. Wolfram (2015). Are the non-monetary costs of energy efficiency

investments large? understanding low take-up of a free energy efficiency program. American

Economic Review 105 (5), 201–204.

Fowlie, M., M. Greenstone, and C. Wolfram (2018). Do energy efficiency investments deliver? evidence

from the weatherization assistance program. The Quarterly Journal of Economics 133 (3), 1597–

1644.

Gerarden, T. D., R. G. Newell, and R. N. Stavins (2017). Assessing the energy-efficiency gap. Journal

of economic literature 55 (4), 1486–1525.

Gillingham, K., M. Harding, and D. Rapson (2012). Split incentives in residential energy consumption.

The Energy Journal 33 (2).

Gillingham, K., A. Keyes, and K. Palmer (2018). Advances in evaluating energy efficiency policies

and programs. Annual Review of Resource Economics 10, 511–532.

24



Gillingham, K., R. G. Newell, and K. Palmer (2009). Energy efficiency economics and policy. Annu.

Rev. Resour. Econ. 1 (1), 597–620.

Gillingham, K. and K. Palmer (2014). Bridging the energy efficiency gap: Policy insights from

economic theory and empirical evidence. Review of Environmental Economics and Policy .

Gillingham, K., D. Rapson, and G. Wagner (2016). The rebound effect and energy efficiency policy.

Review of Environmental Economics and Policy .

Gillingham, K. and T. Tsvetanov (2019). Hurdles and steps: Estimating demand for solar photo-

voltaics. Quantitative Economics 10 (1), 275–310.

Giraudet, L.-G., S. Houde, and J. Maher (2018). Moral hazard and the energy efficiency gap: Theory

and evidence. Journal of the Association of Environmental and Resource Economists 5 (4), 755–790.

Grigolon, L., M. Reynaert, and F. Verboven (2018). Consumer valuation of fuel costs and tax policy:

Evidence from the european car market. American Economic Journal: Economic Policy 10 (3),

193–225.

Hausman, J. A. (1979). Individual discount rates and the purchase and utilization of energy-using

durables. The Bell Journal of Economics 10 (1), 33–54.

Heckman, J., R. Matzkin, and L. Nesheim (2010). Nonparametric identification and estimation of

nonadditive hedonic models. Econometrica 78 (5), 1569–1591.

Heutel, G. (2019). Prospect theory and energy efficiency. Journal of Environmental Economics and

Management 96, 236–254.

Hoen, B., S. Adomatis, T. Jackson, J. Graff-Zivin, M. Thayer, G. T. Klise, and R. Wiser (2017).

Multi-state residential transaction estimates of solar photovoltaic system premiums. Renewable

Energy Focus 19, 90–103.

Hotz, V. J. and R. A. Miller (1988). An empirical analyis of life cycle fertility and female labor supply.

Econometrica 56 (1), 91–118.

25



Hotz, V. J. and R. A. Miller (1993). Conditional choice probabilities and the estimation of dynamic

models. Review of Economic Studies 60, 497–529.

Houde, S. and E. Myers (2019, April). Heterogeneous (Mis-) Perceptions of Energy Costs: Implications

for Measurement and Policy Design. NBER Working Papers 25722, National Bureau of Economic

Research, Inc.

Hughes, J. E. and M. Podolefsky (2015). Getting green with solar subsidies: evidence from the cali-

fornia solar initiative. Journal of the Association of Environmental and Resource Economists 2 (2),

235–275.

Jacobsen, G. D. (2015). Do energy prices influence investment in energy efficiency? evidence from

energy star appliances. Journal of Environmental Economics and Management 74, 94–106.

Jaffe, A. B. and R. N. Stavins (1994). The energy-efficiency gap what does it mean? Energy

Policy 22 (10), 804–810. Markets for energy efficiency.

Kahn, M. E. and N. Kok (2014). The capitalization of green labels in the california housing market.

Regional Science and Urban Economics 47, 25–34.

Kiribrahim-Sarikaya, O. and Y. Qiu (2023). Distributional effects of residential solar subsidies. Work-

ing Paper .

Langer, A. and D. Lemoine (2022). Designing dynamic subsidies to spur adoption of new technologies.

Journal of the Association of Environmental and Resource Economists 9 (6), 1197–1234.

Lawrence Berkeley National Labratory (2023). Tracking the Sun Database. Technical report.

Leard, B., J. Linn, and K. Springel (2019). Pass-through and welfare effects of regulations that affect

product attributes. working paper .

Leard, B., J. Linn, and Y. C. Zhou (2023, 01). How Much Do Consumers Value Fuel Economy and Per-

formance? Evidence from Technology Adoption. The Review of Economics and Statistics 105 (1),

158–174.

26



Liang, J., Y. Qiu, T. James, B. L. Ruddell, M. Dalrymple, S. Earl, and A. Castelazo (2018). Do

energy retrofits work? evidence from commercial and residential buildings in phoenix. Journal of

Environmental Economics and Management 92, 726–743.

Magnac, T. and D. Thesmar (2002). Identifying dynamic discrete decision processes. Economet-

rica 70 (2), 801–816.

McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.),

Frontiers in Econometrics. New York: Academic Press.

Mendelsohn, R. (1985). Identifying Structural Equations with Single Market Data. Review of Eco-

nomics and Statistics 67 (3), 525–529.

Myers, E. (2020). Asymmetric information in residential rental markets: Implications for the energy

efficiency gap. Journal of Public Economics 190, 104251.

Myers, E., S. L. Puller, and J. West (2022). Mandatory energy efficiency disclosure in housing markets.

American Economic Journal: Economic Policy 14 (4), 453–487.
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