
Data-Efficient Graph Learning

by

Kaize Ding

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved February 2023 by the
Graduate Supervisory Committee:

Huan Liu, Chair
Guoliang Xue
Yezhou Yang

James Caverlee

ARIZONA STATE UNIVERSITY

May 2023

©2023 Kaize Ding

All Rights Reserved

ABSTRACT

Graph-structured data, ranging from social networks to financial transaction

networks, from citation networks to gene regulatory networks, have been widely used

for modeling a myriad of real-world systems. As a prevailing model architecture

to model graph-structured data, graph neural networks (GNNs) has drawn much

attention in both academic and industrial communities in the past decades. Despite

their success in different graph learning tasks, existing methods usually rely on

learning from “big” data, requiring a large amount of labeled data for model training.

However, it is common that real-world graphs are associated with “small” labeled data

as data annotation and labeling on graphs is always time and resource-consuming.

Therefore, it is imperative to investigate graph machine learning (GML) with minimal

human supervision for the low-resource settings where limited or even no labeled data

is available. In this proposal, we investigate a new research field – Data-Efficient

Graph Learning, which aims to push forward the performance boundary of graph

machine learning (GML) models with different kinds of low-cost supervision signals.

To achieve this goal, we conduct a series of research for solving different graph

minimally-supervised learning problems, including graph few-shot learning, graph

weakly-supervised learning, and graph self-supervised learning.

i

ACKNOWLEDGMENTS

Nearing the completion of my Ph.D. program, I reflect on how quickly time has

passed. Under the guidance of my advisor Prof. Huan Liu, I have grown from a

new graduate to an experienced researcher in the field of machine learning and data

mining. The experience in the last five years has not only shaped my career, but also

greatly impacted the way I think, see, and approach my work as a researcher. I am

grateful for not only the knowledge and skills I have gained, but also the memories

of my research experiences and the friendships I have made. I am deeply thankful

for the support and guidance of my professors, lab mates, and friends throughout my

Ph.D. journey. Without them, my accomplishments would not have been possible.

Firstly, I would like to express my heartfelt gratitude to my advisor, Prof. Huan

Liu, for his guidance and mentorship throughout my Ph.D. journey. The knowledge

and skills I have gained from his advising is only a small part of what I have learned

from him. His insights on high-level research directions, ideas about the intersection

of multiple disciplines and fields, and strategies for producing impactful research

have been great inspirations for me. Working in DMML led by Prof. Liu has been

an amazing experience and as I have grown more senior in the lab, I have had the

opportunity to teach with him, contribute to research grant proposals, and advise

junior students. Through his guidance, he has imparted the necessary skills for me to

become a successful researcher, and prepared me for the next step in my career.

I would also like to thank my committee members, Prof. James Caverlee, Prof.

Guoliang Xue, and Prof. Yezhou Yang. Their expertise and insights have greatly

contributed to the success of my dissertation and I am truly grateful for the time and

effort you have invested in me. I wanna give a special thanks to Prof. James Caverlee,

who provided invaluable help to me. I am honored to have had the opportunity to

ii

work with each of you and I am incredibly grateful for the knowledge and experience

I have gained through this process.

The journey of research is not without its challenges and difficulties. I faced many

setbacks in my experiments and paper writing, resulting in countless sleepless nights.

I know that I would not have been able to overcome these obstacles without the

support and encouragement of my brilliant mentors and collaborators. For the first

two years of my Ph.D., I was also honored to be mentored by Dr. Jundong Li, who is

one of the greatest researchers and professors in data mining. He provided me with

extensive assistance and helped me navigate many aspects of conducting research and

writing papers. I was also grateful to Dr. Kai Shu, Ruochen Guo, Liang Wu, and all

those successful previous DMMLers, who provided guidance during my Ph.D. and

motivated me to work hard and smart as them.

I would also like to express my gratitude to all the amazing people I met during

my internships at Amazon Alexa AI, Microsoft Research, and Google Brain. I would

like to thank them for the opportunity to work with them and I am thankful for their

mentorship, which has helped me to grow both personally and professionally.

Last but not least, I would like to thank my parents, who always give me uncondi-

tionally support and freedom to chase my dream. Despite being on opposite sides of

the world, my parents have consistently demonstrated their love for me. Our weekly

video chats have always been a source of happiness and comfort, erasing any negative

feelings I may have had.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation and Contributions . 1

1.2 Thesis Outline . 3

2 GRAPH FEW-SHOT LEARNING . 5

2.1 Few-Shot Node Classification . 6

2.1.1 Introduction . 6

2.1.2 Related Work . 10

2.1.3 Problem Definition . 11

2.1.4 Methodology and Model Design . 12

2.1.4.1 Episodic Training on Attributed Networks 13

2.1.4.2 Network Representation Learning 15

2.1.4.3 Node Importance Valuation . 16

2.1.4.4 Few-shot Node Classification . 18

2.1.5 Performance Evaluation . 19

2.1.5.1 Evaluation Settings . 19

2.1.5.2 General Comparisons . 21

2.1.5.3 Case Study. 24

2.2 Few-Shot Graph Anomaly Detection . 25

2.2.1 Introduction . 25

2.2.2 Related Work . 29

iv

CHAPTER Page

2.2.3 Problem Definition . 30

2.2.4 Meta-GDN. 31

2.2.4.1 Graph Deviation Networks . 31

2.2.4.2 Cross-network Meta-learning . 34

2.2.5 Performance Evaluation . 37

2.2.5.1 Evaluation Setting . 37

2.2.5.2 Effectiveness Results . 42

2.2.5.3 Sensitivity & Robustness Analysis 44

2.3 Conclusion . 45

3 GRAPH WEAKLY-SUPERVISED LEARNING . 47

3.1 Node Classification with Incomplete Supervision 48

3.1.1 Introduction . 48

3.1.2 Related Works . 51

3.1.3 Architecture Overview . 52

3.1.3.1 Adaptive Label Propagator (Meta Learner) 52

3.1.3.2 Feature-label Transformer (Target Model) 54

3.1.3.3 Learning to Propagate . 55

3.1.3.4 Model Learning via Bi-level Optimization 56

3.1.4 Performance Evaluation . 58

3.1.4.1 Evaluation Settings . 58

3.1.4.2 Performance Evaluation . 59

3.1.4.3 Parameter & Ablation Analysis. 62

3.2 Cross-domain Graph Anomaly Detection . 64

3.2.1 Introduction . 64

v

CHAPTER Page

3.2.2 Related Works . 67

3.2.3 Anomaly Analysis Across Domains. 69

3.2.4 Problem Definition . 70

3.2.5 Architecture Overview . 71

3.2.5.1 Domain Adaptation on Attributed Graphs 71

3.2.5.2 Cross-domain Anomaly Detection 75

3.2.5.3 Model Learning . 77

3.2.6 Performance Evaluation . 78

3.2.6.1 Experiment Settings . 78

3.2.6.2 Evaluation Results . 82

3.2.6.3 Ablation Study . 84

3.3 Conclusion . 87

4 GRAPH SELF-SUPERVISED LEARNING . 88

4.1 Unsupervised Graph Contrastive Learning . 89

4.1.1 Introduction . 89

4.1.2 Preliminaries – Graph Contrastive Learning 92

4.1.3 Architecture Overview . 93

4.1.3.1 Structural Contrastive Learning . 93

4.1.3.2 Semantic Contrastive Learning . 96

4.1.3.3 Model Learning . 100

4.1.4 Experiments . 101

4.1.4.1 Experimental Settings . 101

4.1.4.2 General Comparisons . 102

4.1.4.3 Representation Visualization. 107

vi

CHAPTER Page

4.2 Self-supervised Graph Anomaly Detection . 107

4.2.1 Introduction . 107

4.2.2 Problem Definition . 111

4.2.3 Architecture Overview . 111

4.2.3.1 Preliminary - Deep Autoencoder . 112

4.2.3.2 Attributed Network Encoder . 113

4.2.3.3 Structure Reconstruction Decoder 115

4.2.3.4 Attribute Reconstruction Decoder 116

4.2.3.5 Anomaly Detection . 116

4.2.4 Experiments . 117

4.2.4.1 Experimental Settings . 118

4.2.4.2 Experimental Results . 122

4.2.4.3 Parameter Analysis . 123

4.3 Conclusion . 124

5 CONCLUSION . 126

5.1 Future Directions . 128

REFERENCES . 130

vii

LIST OF TABLES

Table Page

1. Statistics of the Evaluation Datasets. 20

2. Averaged Few-shot Node Classification Results on Amazon-Clothing and

Amazon-Electronics (%). 22

3. Averaged Few-shot Node Classification Results on DBLP and Reddit (%). . . 23

4. Statistics of Evaluation Datasets. 38

5. Performance Comparison Results (10-shot) with AUC-ROC and AUC-PR . . 40

6. Few-shot Performance Evaluation of Meta-GDN . 42

7. Summary Statistics of the Evaluation Datasets. 58

8. Test Accuracy on Few-shot Semi-supervised Node Classification on Cora-ML

and CiteSeer. 61

9. Test Accuracy on Few-shot Semi-supervised Node Classification on PubMed

and MS-CS. 61

10. Statistics of the Real-world Datasets. 79

11. Results of Cross-domain Graph Anomaly Detection W.R.T. Precision@k on

YelpRes and YelpHotel. 81

12. Results of Cross-domain Graph Anomaly Detection W.R.T. Precision@k on

YelpNYC and Amazon. 82

13. Results of Cross-domain Graph Anomaly Detection W.R.T. Recall@K on

YelpRes and YelpHotel. 82

14. Results of Cross-domain Graph Anomaly Detection W.R.T. Recall@K on

YelpNYC and Amazon. 83

15. Ablation Results on Two Cross-domain Settings of YelpHotel and YelpRes. . 85

16. Ablation Results on Two Cross-domain Settings of YelpNYC and Amazon. . 86

viii

Table Page

17. Node Classification Performance Comparison on Benchmark Datasets. 103

18. Node Clustering Performance Comparison on Benchmark Datasets. 103

19. Ablation Study on Contrastive Components. 106

20. Details of the Three Attributed Network Datasets with Injected Anomalies. 118

21. Performance of Different Anomaly Detection Methods W.R.T. Precision

and Recall. 121

ix

LIST OF FIGURES

Figure Page

1. The Distribution of Labeled Nodes in the Real-world DBLP Dataset. 7

2. Episodic Training on Attributed Networks and the Architecture of GPN . . . 13

3. Architecture of the Node Valuator. 18

4. Similarity Matrix on DBLP Dataset (5-way 5-shot). 24

5. Anomalies Usually Have Distinct Patterns. 26

6. The Model Architecture of Graph Deviation Networks and the Illustration

of the Overall Framework Meta-GDN. 31

7. Precision@K Comparison Results (10-shot) with Precision@K. 41

8. Sensitivity and Robustness Analysis . 43

9. Comparison results on Open Graph Benchmark. 62

10. Few-shot Evaluation with Different Propagation Steps. 63

11. An Example of Cross-domain Graph Anomaly Detection. 65

12. Cross-domain Data Analysis. 70

13. Overview of the Commander Framework. 74

14. Results of Cross-domain Graph Anomaly Detection W.R.T. AUC Scores. . . 81

15. Illustration of the Overall Framework S3-CL. 94

16. Node Classification Results with Limited Training Labels. 104

17. Node Clustering Results of GCL Methods with Various Propagation Steps

(L). 106

18. Representation Visualization on the Citeseer Dataset. 107

19. The Overall Framework of Our Proposed Dominant for Deep Anomaly

Detection on Attributed Networks. 111

20. ROC Curves and AUC Scores of All Methods on Different Datasets. 123

x

Figure Page

21. Impact of Different α W.R.T. AUC Values. 124

xi

Chapter 1

INTRODUCTION

1.1 Motivation and Contributions

Recent years have witnessed a rapid growth in our ability to generate and gather

data from numerous platforms in the online world and various sensors in the physical

world. Graphs serve as a common language for modeling a plethora of structured and

relational systems, such as social networks, knowledge graphs, and academic graphs,

where entities are denoted as nodes while their relations are denoted as edges. More

recently, graph learning algorithms, especially those based on graph neural networks

(GNNs) (Shchur et al. 2018; Z. Wu et al. 2020) have received much research attention

due to their significant impacts in addressing real-world problems. To harness the

inherent structure among data, significant methodological advances have been made

in graph learning, which have produced promising results in applications from diverse

domains, ranging from cybersecurity (Zügner, Akbarnejad, and Günnemann 2018) to

natural language processing (Ding, Wang, Li, Li, et al. 2020).

In general, existing graph learning algorithms focus on the setting where abundant

human-annotated examples can be accessed during training. This assumption is often

infeasible since collecting such auxiliary knowledge is laborious and requires intensive

domain-knowledge, especially when considering the heterogeneity of graph-structured

data (Yao et al. 2020a; Ding, Wang, Li, Shu, et al. 2020). As such, it is challenging yet

imperative to study graph learning under different low-resource settings with limited

or no labeled training data. In particular, three fundamental problems have drawn

1

increasing research attention in the field of data-efficient graph learning: (1) Graph

Weakly-Supervised Learning (Graph WSL), which focuses on learning effective GNNs

for a specific down-stream task using either incomplete, or indirect, or inaccurate

supervision signals; (2) Graph Few-Shot Learning (Graph FSL), whose goal is to handle

unseen tasks (from novel label space) when only few labeled instances are available;

and (3) Graph Self-Supervised Learning (Graph SSL), which aims to either pre-train

task-agnostic GNNs or enhance GNNs on specific down-stream tasks without any

semantic annotations. To address each of the aforementioned fundamental problems,

we conduct a series of research to push forward the performance boundary of graph

machine learning (GML) models with different kinds of low-cost supervision signals.

In the meantime, we also investigate how to effectively adopt data-efficient GML

algorithms to advance applications in different domains, such as cybersecurity, natural

language processing, and recommendation.

In this dissertation, we attempt to learn effective GML models with minimal

human supervision under different low-resource scenarios where only scarce labeled

data is accessible. The main contributions of my research can be summarized as:

• Studying novel research problems in GML and define the formal formulation for

those problems.

• Proposing novel frameworks to push forward the performance boundaries of

GML models under the low-resource settings.

• Conducting extensive experiments on real-world datasets to demonstrate the

effectiveness of the proposed frameworks.

2

1.2 Thesis Outline

This thesis mainly consists of three parts — (1) Graph Few-Shot Learning, (2)

Graph Weakly-Supervised Learning, and (3) Graph Self-Supervised Learning.

Chapter 2 focuses on graph few-shot learning. For the problem of few-shot node

classification, we propose Graph Prototypical Networks (GPN), which are designed

to handle never-before-seen node classes in real-world graphs using only a handful

of labeled data samples. GPN extrapolates meta-knowledge from many-shot seen

node classes to few-shot unseen node classes using graph meta-learning. Next, I

introduce Meta Graph Deviation Networks (Meta-GDN) which perform few-shot

anomaly detection on a never-before-seen graph by learning from other auxiliary

graphs within the same domain. Based on the proposed Graph Deviation Networks

and Cross-network Meta Learning algorithm, Meta-GDN can transfer the knowledge

from auxiliary graphs and quickly adapt to the target graph with few labeled anomalies.

Chapter 3 centers around my research in graph weakly-supervised learning. Specifi-

cally, we propose Meta Propagation Networks (Meta-PN) for semi-supervised learning

with few labels. Meta-PN is able to adjust its label propagation strategy and leverage

large receptive fields for inferring accurate pseudo labels on unlabeled nodes. By

augmenting the scarce training data with the generated pseudo labels, one can learn a

label-efficient GNN with only few labels per class. We also investigate how to leverage

indirect supervision to solve the problem of graph anomaly detection. The proposed

model Commander first compresses the two attributed graphs from different domains

to low-dimensional space via a graph attentive encoder. In addition, we utilize a

domain discriminator and an anomaly classifier to detect anomalies that appear across

graphs from different domains. In order to further detect the anomalies that merely

3

appear in the target graph, we develop an attribute decoder to provide additional

signals for assessing node abnormality.

Chapter 4 focuses on graph self-supervised learning. I first investigate the bot-

tleneck of unsupervised graph contrastive learning methods for learning expressive

node representations without using any semantic labels. The proposed model S3-CL,

goes beyond the existing unsupervised graph contrastive methods and capture global

graph knowledge from both structural and semantic perspectives. For the problem of

graph anomaly detection, I developed a graph generative framework DOMINANT,

which models the input attributed graph by reconstructing the structure and attribute

information from the learned node representations. DOMINANT is based on the

intuition that anomalies usually cannot be well reconstructed due to their deviations

from the majority, thus the reconstruction errors are used to measure the abnormality

of each node.

We will finally conclude this thesis in Chapter 5.

4

Chapter 2

GRAPH FEW-SHOT LEARNING

Given the rapidly evolving nature of real-world graphs, many practical graph

applications require a Graph ML model to possess the capability of dealing with

never-before-seen node classes (e.g., newly created user interest group), relations (e.g.,

newly extracted relations in knowledge graph) or even graphs (e.g., a protein-protein

interaction graph from a new organism), using only a handful of labeled data samples.

Despite that humans are capable of learning new tasks rapidly by utilizing what

they learned in the past, current AI techniques cannot rapidly generalize from a few

examples.

To bridge this gap between Graph ML models and humans, I have developed

a series of graph few-shot learning algorithms, which show promising results and

can shed light on following research. In this chapter, I will discuss my efforts on (i)

the solution for handling the never-before-seen node classes in graphs. Specifically, I

proposed Graph Prototypical Networks (GPN) to extrapolate the meta-knowledge from

those many-shot seen node classes to the few-shot unseen node classes using graph

meta-learning. Different from the few-shot learning endeavors in the image or text

domain that simply assume all the labeled examples are of equal importance, GPN

supports estimating the informativeness of each labeled node, by leveraging the graph

property information (i.e., node centrality). In this way, GPN derives highly robust

and representative class prototypes for classifying those never-before-seen node classes

with even few labeled nodes; and (ii) the initial investigation on performing few-shot

anomaly detection on a never-before-seen graph by learning from other similar graphs

5

within the same domain. Specifically, I first designed a new family of graph neural

networks – Graph Deviation Networks (GDN) that can leverage a small number of

labeled anomalies for enforcing statistically significant deviations between abnormal

and normal nodes on an arbitrary graph. By equipping it with a new cross-network

meta-learning algorithm, the model is able to extract comprehensive meta-knowledge

of anomalies from multiple auxiliary graphs and quickly to a new graph with only few

labeled anomalies.

2.1 Few-Shot Node Classification

2.1.1 Introduction

Prevailing approaches for the node classification problem on attributed graph

usually follow a supervised or semi-supervised paradigm, which typically relies upon

the availability of sufficient labeled nodes for all the node classes (F. Zhou et al. 2019).

Nonetheless, in many real-world attributed networks, a large portion of node classes

only contain a limited number of labeled instances, rendering a long-tail distribution

of node class labels. As shown in Figure 1, DBLP (J. Tang et al. 2008) is a dataset

where nodes represent publications and node labels denote venues. Among all the node

classes, more than 30% of them have less than 10 labeled instances. In the meantime,

many practical applications require the learning models to possess the capability

of dealing with such few-shot classes. A typical example is the intrusion detection

problem (Northcutt and Novak 2002; Garcia-Teodoro et al. 2009) on traffic networks,

where new attacks and threats are continuously being developed by adversaries. Due

to the intensive labeling cost, for a specific type of attack, only a few examples can

6

0 500 1000 1500 2000 2500 3000
Number of Nodes

0

1000

2000

3000

4000

N
u
m

b
er

 o
f

C
la

ss
es

Figure 1. The Distribution of Labeled Nodes in the Real-world DBLP Dataset.

be accessed. Thus, understanding those attacks by type with limited labeled data is

crucial for providing effective countermeasures. The shortage of labeled training data

hinders existing node classification algorithms from learning an effective model with

those few-shot node classes (F. Zhou et al. 2019; Qiao et al. 2019; Yao et al. 2020b). As

such, it is challenging yet imperative to investigate the problem of node classification

on attributed networks under the few-shot setting.

Recently, much research progress has been made in few-shot learning (FSL), for

solving tasks (e.g., classification) with only a handful of labeled examples. In general,

an FSL model learns across diverse meta-training tasks sampled from those classes with

a large quantity of labeled data, and can be naturally generalized to a new task (i.e.,

meta-test task) from unseen classes during training. Such a meta-learning procedure

enables the model to adapt knowledge from previous experiences, and has led to

significant progress in FSL problems. Specifically, a major line of research such as

siamese networks (Koch, Zemel, and Salakhutdinov 2015), matching networks (Vinyals

et al. 2016), and relation networks (Sung et al. 2018) attempts to make the prediction

by comparing the query instances and labeled examples in a shared metric space.

7

These learning-to-compare approaches have come into fashion due to their simplicity

and effectiveness.

Despite their fruitful success, few-shot learning on attributed networks remains

largely unexplored, mainly because of the following two challenges: (i) The process

of constructing those meta-training tasks depends on the assumption that data is

independent and identically distributed (i.i.d.), which is invalid on attributed networks.

Apart from conventional text or image data, attributed networks lie in non-Euclidean

space and encode the inherent dependency between nodes. Directly grafting existing

methods is infeasible to capture the underlying data structure, making the embedded

node representations less expressive. Thus how to exert the power of meta-learning

on attributed networks is indispensable for extracting the meta-knowledge from data;

(ii) Most of the existing FSL approaches simply assume that all the labeled examples

are of equal importance for characterizing their belonged classes. However, neglecting

the individual informativeness of labeled nodes will inevitably restrict the model

performance on real-world attributed networks: On the one hand, it makes the FSL

model highly vulnerable to noises or outliers since labeled data is severely limited (Ren,

Triantafillou, et al. 2018; J. Zhang et al. 2019); on the other hand, it runs counter to the

fact that the significance of a node could largely deviate from another. Intuitively, those

central (core) nodes in a community are supposed to be more representative (Zhang

and Wu 2012). Hence, how to capture the informativeness of each labeled node is the

other challenge for building an effective few-shot classification model on attributed

networks.

To address the aforementioned challenges, we present Graph Prototypical Networks

(GPN), a graph meta-learning framework for solving the problem of few-shot node

classification on attributed networks. Instead of classifying nodes directly, GPN tries

8

to learn a transferable metric space in which the label of a node is predicted by

finding the nearest class prototype. The proposed framework consists of two essential

components that seamlessly work together for learning the prototype representation

of each class. Specifically, the network encoder in GPN first compresses the input

network to expressive node representations via graph neural networks (GNNs), in

order to capture the data heterogeneity of an attributed network. Concurrently,

another GNN-based node valuator is developed to estimate the informativeness of

each labeled instance, by leveraging additional information encoded in the network.

In this way, GPN derives highly robust and representative class prototypes. Moreover,

by performing meta-learning across a pool of semi-supervised node classification tasks,

GPN gradually extracts the meta-knowledge on an attributed network and further

achieves better generalization ability on the target few-shot classification task. In

summary, the main contributions of our work are as follows:

• Problem : We investigate the novel problem of few-shot node classification on

attributed networks. In particular, we emphasize its importance in real-world

applications and further provide a formal problem definition.

• Algorithm : We propose a principled framework GPN for the problem, which

exploits graph neural networks and meta-learning to learn a powerful few-shot node

classification model on attributed networks.

• Evaluation : We perform extensive experiments on various real-world datasets to

corroborate the effectiveness of our approach. The experimental results demonstrate

the superior performance of GPN for few-shot node classification on attributed

networks.

9

2.1.2 Related Work

Few-shot learning (FSL) aims to solve new tasks with a limited number of examples,

based on the knowledge obtained from previous experiences. Generally, existing FSL

models fall into two broad categories: (1) optimization-based approaches, which focus

on learning the optimization of model parameters given the gradients on few-shot

examples (Ravi and Larochelle 2017; Finn, Abbeel, and Levine 2017; Zhenguo Li et

al. 2017; Mishra et al. 2018). One example is the LSTM-based meta-learner (Ravi and

Larochelle 2017), which aims to learn efficient parameter updating rules for training

a neural classifier. MAML (Finn, Abbeel, and Levine 2017) learns the parameter

initialization that is suitable for different FSL tasks and is compatible with any model

trained with gradient descent. Meta-SGD (Zhenguo Li et al. 2017) goes further in

meta-learning by arguing to learn the weights initialization, gradient update direction

and learning rate within a single step. SNAIL (Mishra et al. 2018) is another model

which combines temporal convolution and soft attention to learn an optimal learning

strategy. However, this line of work usually suffers from the computational cost of

fine-tuning. (2) metric-based approaches, which try to learn generalizable matching

metrics between query and support set across different tasks (Vinyals et al. 2016; Snell,

Swersky, and Zemel 2017; Ren, Triantafillou, et al. 2018; Sung et al. 2018; Liu, Zhou,

Long, Jiang, and Zhang 2019). For instance, Matching Networks (Vinyals et al. 2016)

learn a weighted nearest-neighbor classifier with attention networks. Prototypical

Network (Snell, Swersky, and Zemel 2017) computes the prototype of each class

by taking the mean vector of support examples and classifies query instances by

calculating their Euclidean distances. An extension of Prototypical Networks proposed

by Ren et al. (Ren, Triantafillou, et al. 2018) considers both labeled and unlabeled data

10

for few-shot learning. Relation Network (Sung et al. 2018) trains an auxiliary network

to learn a non-linear metric between each query and the support set. It is worth

mentioning that our approach also follows this paradigm due to its simplicity and

effectiveness. Recently, few-shot learning on graphs has received increasing research

attention (F. Zhou et al. 2019; Bose et al. 2019). However, those methods treat

support examples equally, rendering the model unstable to noises or outliers (Deng

et al. 2020). In this work, we learn a robust and powerful few-shot learning model by

considering the individual importance of labeled support examples.

2.1.3 Problem Definition

Following the commonly used notations, we use calligraphic fonts to denote sets

(e.g., V), bold lowercase letters (e.g., x) to denote vectors and bold uppercase letters

for matrices (e.g., X). The ith row of a matrix X is denoted by xi and the (i, j)th

element of matrix X is denoted by Xi,j. Besides, we represent the identity matrix as

I, and the transpose of a matrix X is represented as XT. The ℓ2-norm of a vector is

denoted by || · ||2. The Frobenius norm of a matrix is represented by || · ||F . Accordingly,

we define the attributed network as follows:

Definition 1 Attributed Networks: An attributed network G = (V , E ,X) consists

of: (1) the set of nodes V = {v1, v2, ..., vn}, where |V| = n; (2) the set of edges E,

where |E| = m; and (3) the node attributes X ∈ Rn×d, where the ith row vector xi ∈ Rd

(i = 1, ..., n) is the attribute1 information for the ith node. The topological structure of

1Attribute and feature are used interchangeably.

11

attributed network G can be represented by an adjacency matrix A, where Ai,j = 1 if

there is a link between node vi and node vj. Otherwise, Ai,j = 0.

Note that the aforementioned notations and definition are also used throughout

the dissertation. And the studied problem in this section can be formulated as follows:

Problem Definition 1 Few-shot Node Classification on Attributed Net-

works: Given an attributed network G = {A,X}, suppose we have substantial labeled

nodes for a set of node classes Ctrain. After training on the labeled data from Ctrain,

the model is tasked to predict labels for the nodes (i.e., query set Q) from a disjoint

set of node classes Ctest, for which only a few labeled nodes of each class (i.e., support

set S) are available.

Following the common setting in FSL, if Ctest consists of N classes and the support

set S includes K labeled nodes per class, this problem is named N -way K-shot node

classification problem. In essence, the objective of this problem is to learn a meta-

classifier that can be adapted to new classes with only a few labeled nodes. Therefore,

how to extract transferable meta-knowledge from Ctrain is the key for solving the

studied problem.

2.1.4 Methodology and Model Design

As existing FSL models are not tailored for graph-structured data, it is infeasible

to apply them to solve the studied problem directly. In this section, we present the

details about the proposed Graph Prototypical Networks (GPN) for few-shot node

classification on attributed networks. Specifically, our framework is designed and built

to address three challenging research questions: (1) How to perform meta-learning on

12

`

Input Graph

Network Encoder

Node Valuator

…𝑓"

𝑔$

Query Node

…
…

𝑐&

𝑐'

𝑐(

𝒑𝟏

𝒑𝟑

𝒑𝟐

`

`

`

…

Meta-training

Meta-test

!"

!#

!$%&$

'"	:

'# :

)# :

)" :

'	:

) : ℒ

Figure 2. (Left) Episodic Training on Attributed Networks; (Right) The Architecture
of the Proposed Framework Graph Prototypical Networks (GPN).

attributed networks (non-i.i.d. data) for extracting the meta-knowledge? (2) How to

learn expressive node representations from the input attributed network by considering

both the node attributes and topological structure? and (3) How to identify the

informativeness of each labeled node for learning robust and discriminative class

representations?

An overview of the proposed Graph Prototypical Networks (GPN) is provided in

Figure 2. In Section 2.1.4.1, we introduce the backbone training mechanism of the

proposed model. In Section 2.1.4.2 and 2.1.4.3, we introduce how we design the two

essential modules in GPN. Then we discuss how to perform few-shot node classification

using the proposed framework in Section 2.1.4.4.

2.1.4.1 Episodic Training on Attributed Networks

Our approach is a meta-learning framework which follows the prevailing episodic

training paradigm (Vinyals et al. 2016). Specifically, GPN learns over diverse meta-

training tasks in a large number of episodes rather than only on the target meta-test

task. The key idea of episodic training is to mimic the real test environment by sampling

nodes from Ctrain. The consistency between training and test environment alleviates

13

the distribution gap and improves model generalization capability. Specifically, in

each episode, we construct a N -way K-shot meta-training task:

St = {(v1, y1), (v2, y2), ..., (vN×K , yN×K)},

Qt = {(v∗1, y∗1), (v∗2, y∗2), ..., (v∗N×M , y∗N×M)},

Tt = {St,Qt},

(2.1)

where both the support set St and query set Qt of the meta-training task Tt are

sampled from Ctrain. The support set St contains K nodes from each class, while the

query set Qt includes M query nodes sampled from the remainder of each of the N

classes.

The whole training process is based on a set of T meta-training tasks Ttrain =

{Tt}Tt=1. The model is trained to minimize the loss of its predictions for the query

set Qt in each meta-training task Tt, and goes episode by episode until convergence.

In this way, the model gradually collects meta-knowledge across those meta-training

tasks and then can be naturally generalized to the meta-test task Ttest = {S,Q} with

unseen classes Ctest.

Different from conventional episodic training that constructs a pool of supervised

meta-training tasks (Garcia and Bruna 2018), in each episode, we sample N -way

K-shot labeled nodes and mask the rest as unlabeled nodes. In this way, we can create

a semi-supervised meta-training task with the partially labeled attributed network.

By considering both labeled and unlabeled data and their dependencies, we are able

to learn more expressive node representations for few-shot node classification during

the meta-learning process.

14

2.1.4.2 Network Representation Learning

In order to learn expressive node representations from an attributed network, we

develop a network encoder to capture the data heterogeneity. Specifically, the network

encoder possesses a GNN backbone, which converts each node to a low-dimensional

latent representation. In general, GNNs follow the neighborhood aggregation scheme,

and compute the node representations by recursively aggregating and compressing

node features from local neighborhoods. Briefly, a GNN layer can be defined as:

hl
i = Combinel

(
hl−1
i ,hl

Ni

)
,

hl
Ni

= Aggregatel
(
{hl−1

j |∀j ∈ Ni ∪ vi}
)
,

(2.2)

where hl
i is the node representation of node i at layer l and Ni is the set of neighboring

nodes of vi. Combine and Aggregate are two key functions of GNNs and have a

series of possible implementations (Thomas N. Kipf and Welling 2017b; Hamilton,

Ying, and Leskovec 2017; Veličković, Cucurull, Casanova, Romero, Lio, et al. 2018a).

By stacking multiple GNN layers in the network encoder, the learned node repre-

sentations are able to capture the long-range node dependencies in the network:

H1 = GNN1(A,X),

. . .

Z = GNNL(A,HL−1),

(2.3)

where Z is the learned node representations from the network encoder. For simplicity,

we will use fθ(·) to denote the network encoder with L GNN layers.

Prototype Computation. With the learned node representations from the network

encoder, next, we aim to compute the representation of each class with the labeled

nodes from the support set. We follow the idea of Prototypical Networks (Snell,

15

Swersky, and Zemel 2017), which encourages nodes of each class cluster around a

specific prototype representation. Formally, the class prototypes can be computed by:

pc = Proto
(
{zi|∀i ∈ Sc}

)
, (2.4)

where Sc denotes the set of labeled examples from class c and Proto is the prototype

computation function. For instance, in the vanilla Prototypical Networks (Snell,

Swersky, and Zemel 2017), the prototype of each class is computed by taking the

average of all embedded nodes belonging to that class:

pc =
1

|Sc|
∑
i∈Sc

zi. (2.5)

2.1.4.3 Node Importance Valuation

Despite its simpleness, directly taking the mean vectors of the embedded support

instances as prototypes may not provide promising results for our problem. It not

only neglects the fact that each node has a different significance in a network, but also

makes the FSL model highly noise-sensitive since labeled data is severely limited (J.

Zhang et al. 2019). Therefore, refining those class prototypes becomes especially

essential for building a robust and effective FSL model.

To identify the informativeness of each labeled node, we adopt a view that the

importance of a node is highly correlated with its neighbors’ importance (N. Park

et al. 2019). Accordingly, we design a GNN-based node valuator gϕ(·) (as shown in

Figure 3) to estimate node importance scores through a score aggregation layer, which

can be defined as follows:

sli =
∑

j∈Ni∪vi

αl
ijs

l−1
j , (2.6)

16

where sli is the importance score of node vi in the l-th layer (l = 1, . . . , L). αl
ij is

the attention weight between nodes vi and vj, we compute it via a shared attention

mechanism:

αl
ij =

exp
(
LeakyReLU

(
aT[sl−1

i ||sl−1
j]

))∑
k∈Ni∪vi exp

(
LeakyReLU

(
aT[sl−1

j ||sl−1
k]

)) , (2.7)

where || is a concatenation operator and a is a weight vector.

To compute the initial importance score s0i , we employ a scoring layer to compress

the node features. Our scoring layer is a feed-forward layer with tanh non-linearity.

Specifically, the initial score of node vi is computed by:

s0i = tanh(wT
s xi + bs) (2.8)

where ws ∈ Rd is a learnable weight vector and bs ∈ R1 is the bias.

Centrality Adjustment. As suggested in previous research on node importance

estimation (Page et al. 1999; N. Park et al. 2019) , the importance of a node positively

correlates with its centrality in the graph. Given that the in-degree deg(i) of node vi

is a common proxy for its centrality and popularity, we define the initial centrality

C(i) of node vi as:

C(i) = log(deg(i) + ϵ), (2.9)

where ϵ is a small constant. To compute the final importance score, we apply centrality

adjustment to the estimated score sLi from the last layer, and apply a sigmoid non-

linearity as follows:

s̃i = sigmoid(C(i) · sLi). (2.10)

17

Score Aggregation Layer

Centrality Adjustment

Scoring Layer

Score Aggregation Layer

𝑠"#
$ 𝑠"%

$ 𝑠&$ 𝑠"'
$ 𝑠"(

$

𝑠&)

�̃�&

𝒙&
𝒙"' 𝒙"(

𝒙"%𝒙"#

Figure 3. Architecture of the Node Valuator.

2.1.4.4 Few-shot Node Classification

After we compute the importance score of each support node, we first normalize

those scores using the softmax function:

βi =
exp(s̃i)∑

k∈Sc
exp(s̃k)

, (2.11)

where βi represents the normalized weight of each support node vi, then the refined

prototypes can be directly computed by:

pc =
∑
i∈Sc

βizi. (2.12)

As such, our model can adjust the cluster locations to better represent the examples

in both the support and unlabeled sets. These learned prototypes define a predictor

for the class label of a query node v∗i , which assigns a probability over each class c

based on the distances between the query node v∗i and each prototype:

p(c|v∗i) =
exp(−d(z∗i ,pc))∑
c′ exp(−d(z∗i ,pc′))

, (2.13)

where d(·) is a distance metric function. Commonly, squared Euclidean distance is a

simple and effective choice (Snell, Swersky, and Zemel 2017).

18

Under the episodic training framework, the objective of each meta-training task is

to minimize the classification loss between the predictions of the query set and the

ground-truth. Specifically, the training loss can be defined as the average negative

log-likelihood probability of assigning correct class labels:

L = − 1

N ×M

N×M∑
i=1

log p(y∗i |v∗i). (2.14)

By minimizing the above loss function, GPN is able to learn a generic classifier for

a specific meta-training task. Training episodes are formed by randomly selecting a

subset of classes from the auxiliary class set Ctrain, then choosing a subset of nodes

within each class to act as the support set and a subset of the remainder to serve

as query set. After training on a considerable number of meta-training tasks, its

generalization performance will be measured on the test episodes, which contain

nodes sampled from Ctest instead of Ctrain. For each test episode, we use the predictor

produced by our GPN for the provided support set S to classify each query node in

Q into the most likely class: ŷ∗i = argmaxcp(c|v∗i).

2.1.5 Performance Evaluation

2.1.5.1 Evaluation Settings

Evaluation Datasets. Due to the fact that few-shot node classification on graph-

structured data remains an under-studied problem, it is worth mentioning that the

existing benchmark datasets (e.g., Cora, Pubmed) for conventional node classification

problem are not suitable for evaluating FSL models. The main reason is that FSL

models usually need to be tested on many different classification tasks, while those

datasets only contain limited node classes. To extensively evaluate the model per-

19

Table 1. Statistics of the Evaluation Datasets.

Datasets # nodes # edges # attributes # Train/Valid/Test

Amazon-Clothing 24,919 91,680 9,034 40/17/20
Amazon-Electronics 42,318 43,556 8,669 90/37/40
DBLP 40,672 288,270 7,202 80/27/30
Reddit 232,965 11,606,919 602 16/10/15

formance on few-shot node classification, in our experiments, we adopt four public

datasets with plenty of node classes and their statistics of can be found in Table 1.

Amazon-Clothing and Amazon-Electronics (McAuley, Pandey, and Leskovec

2015) are two product networks built with the products in “Clothing, Shoes and

Jewelry” and “Electronics” on Amazon respectively. In these networks, each product

is considered as a node and its description is used to construct the node attributes.

We use the substitutable and complementary relationship to create links between

products. The class label is defined as the low-level product category. DBLP (J. Tang

et al. 2008) is a citation network where each node represents a paper, and the links

are the citation relations among different papers. The paper abstracts are used to

construct node attributes. The class label of a node is defined as the paper venue.

Reddit (Hamilton, Ying, and Leskovec 2017) is a post-to-post graph constructed

with data sampled from Reddit, which is used to evaluate the performance of our

model on large-scale attributed networks. In this large-scale attributed network, posts

are represented by nodes and two posts are connected if they are commented by the

same user. Each post is labeled with it a community ID.

Compared Methods. In the experiments, we compare the proposed model GPN

with related baseline methods: DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) learns

node embeddings from a stream of truncated vanilla random walks on the input graph,

20

and node2vec (Grover and Leskovec 2016) extends it with biased random walks to

explore diverse neighborhoods. GCN (Thomas N. Kipf and Welling 2017b) learns

latent node representations based on the first-order approximation of spectral graph

convolutions. SGC (F. Wu et al. 2019) eliminates the non-linearity between GCN

layers and folding the convolution functions into a linear transformation. Prototypical

Network (PN) (Snell, Swersky, and Zemel 2017) is one of the widely used few-shot

learning methods for image classification. MAML (Finn, Abbeel, and Levine 2017)

is an optimization-based meta-learning method, which tries to learn a better model

initialization from a series of meta-training tasks. By using a GNN base model,

Meta-GNN (F. Zhou et al. 2019) extends MAML to graph data.

2.1.5.2 General Comparisons

For each dataset, we evaluate the performance of all the algorithms on four few-

shot node classification tasks, i.e., 5-way-3-shot, 5-way-5-shot, 10-way-3-shot, and

10-way-5-shot. We set the query size as same as the support size in our experiments.

We adopt two widely used metrics Accuracy (ACC) and Micro-F1 (F1) to evaluate

performance. Each model is evaluated on 50 meta-test tasks and each meta-test task

is randomly sampled from test node classes. We repeat the process 10 times and

the averaged results are presented in Table 8 and 9. Higher values are better for all

metrics. From the comprehensive views, we make the following observations:

• A general observation is that our approach GPN achieves the best performance

on all the few-shot tasks. For example, on the Amazon-Clothing dataset, GPN

outperforms the best performing baseline Meta-GNN by 5.9% (ACC) under the

21

Table 2. Averaged Few-shot Node Classification Results on Amazon-Clothing and
Amazon-Electronics (%).

Amazon-Clothing

Methods 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot
ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 36.7 36.3 46.5 46.6 21.3 19.1 35.3 32.9
node2vec 36.2 35.8 41.9 40.7 17.5 15.1 32.6 30.2
GCN 54.3 51.4 59.3 56.6 41.3 37.5 44.8 40.3
SGC 56.8 55.2 62.2 61.5 43.1 41.6 46.3 44.7

PN 53.7 53.6 63.5 63.7 41.5 41.9 44.8 46.2
MAML 55.2 54.5 66.1 67.8 45.6 43.3 46.8 45.6
Meta-GNN 74.1 73.6 77.3 77.5 61.4 59.7 64.2 62.9
GPN 75.4 74.7 78.6 79.0 65.0 66.1 67.7 68.9

Amazon-Electronics

Methods 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot
ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 23.5 22.2 26.1 25.7 14.7 12.9 16.0 14.7
node2vec 25.5 23.7 27.1 24.3 15.1 13.1 17.7 15.5
GCN 53.8 49.8 59.6 55.3 42.3 38.4 47.4 48.3
SGC 54.6 53.4 60.8 59.4 43.2 41.5 50.0 47.6

PN 53.5 55.6 59.7 61.5 39.9 40.0 45.0 44.8
MAML 53.3 52.1 59.0 58.3 37.4 36.1 43.4 41.3
Meta-GNN 63.2 61.5 67.9 66.8 58.2 55.8 60.8 60.1
GPN 64.6 62.8 70.9 70.6 60.3 60.7 62.4 63.7

10-way-3-shot task. The improvements are even more substantial on the larger

dataset Reddit. This result verifies that GPN is a powerful and reliable model to

tackle the problem of few-shot node classification on attributed networks.

• Overall, DeepWalk and node2vec largely fall behind other methods on few-shot

node classification tasks. Those random walk-based methods need to train a

supervised classifier (e.g., Logistic Regression) with learned node representations,

which typically rely on a large number of labeled data for good performance.

Similarly, GNN-based methods are unable to obtain competitive results on the

few-shot node classification problem. Conventional GNN models are developed for

22

Table 3. Averaged Few-shot Node Classification Results on DBLP and Reddit (%).

DBLP

Methods 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot
ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 44.7 43.1 62.4 60.4 33.8 30.8 45.1 43.0
node2vec 40.7 38.5 58.6 57.2 31.5 27.8 41.2 39.6
GCN 59.6 54.9 68.3 66.0 43.9 39.0 51.2 47.6
SGC 57.3 54.7 65.0 62.1 40.2 36.8 50.3 46.4

PN 37.2 36.7 43.4 44.3 26.2 26.0 32.6 32.8
MAML 39.7 39.7 45.5 43.7 30.8 25.3 34.7 31.2
Meta-GNN 70.9 70.3 78.2 78.2 60.7 60.4 68.1 67.2
GPN 74.5 73.9 80.1 79.8 62.6 62.6 69.0 69.4

Reddit

Methods 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot
ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 26.7 26.1 30.1 29.7 17.6 17.1 18.8 18.6
node2vec 27.1 25.6 31.2 29.8 19.8 18.6 23.4 22.6
GCN 38.8 38.1 45.5 44.1 29.0 27.0 35.7 32.4
SGC 44.4 42.1 46.8 42.5 29.7 26.8 31.6 27.7

PN 34.6 33.3 37.6 36.4 19.8 18.0 23.3 21.4
MAML 29.1 26.8 31.1 29.7 15.2 12.2 17.9 15.6
Meta-GNN 60.8 58.3 62.7 61.2 44.9 42.1 51.5 47.1
GPN 65.5 66.2 68.4 69.0 53.4 55.8 57.7 59.2

semi-supervised node classification, and could be easily overfitted with only a small

number of labeled instances.

• Despite the success of MAML and PN on few-shot image classification, however, both

of them perform poorly on our tasks. The main reason is that those methods cannot

capture the dependency between nodes for learning expressive node representations,

rendering unsatisfactory performance on few-shot node classification tasks.

• By integrating the idea of meta-learning into graph neural networks, Meta-GNN is

able to achieve considerable improvements over other baseline methods on few-shot

node classification in most cases. However, it is worth noting that its performance

suffers a catastrophic decline on the Reddit dataset. One reasonable explanation is

23

C4C1 C3 C5C2
Query

C2

C5

C3

C1

C4

Su
pp

or
t

−20

−15

−10

−5

(a) Meta-GNN

C4C1 C3 C5C2
Query

C2

C5

C3

C1

C4

Su
pp

or
t

−20

−15

−10

−5

(b) GPN

Figure 4. Similarity Matrix on DBLP Dataset (5-way 5-shot).

that optimization-based FSL approaches require extensive fine-tuning efforts for

the target task, especially on those large-scale datasets.

2.1.5.3 Case Study

Figure 4 shows the similarity matrix learned by the best performing baseline

Meta-GNN and our approach on the DBLP dataset, with the same network encoder

in a 5-way 5-shot task. Here we use the negative Euclidean distance as the similarity

metric. Specifically, each cell consists of 5× 5 grids illustrating the divergence between

two classes, as well as the intra-class similarities. To better visualize the results, for

GPN, we use the weighted embedding of each support node instead of computing

the class prototype. From the figure, we can observe that GPN can better capture

the similarities between the support nodes and query nodes from a same class, which

validates the robustness and effectiveness of our approach.

24

2.2 Few-Shot Graph Anomaly Detection

2.2.1 Introduction

Network-structured data, ranging from social networks (Zafarani, Abbasi, and

Liu 2014) to team collaboration networks (Zhou, Li, and Tong 2019), from citation

networks (J. Tang et al. 2008) to molecular graphs (J. You et al. 2018), has been widely

used in modeling a myriad of real-world systems. Nonetheless, real-world networks

are commonly contaminated with a small portion of nodes, namely, anomalies, whose

patterns significantly deviate from the vast majority of nodes (Ding, Li, and Liu

2019; Ding, J. Li, et al. 2020; Dawei Zhou et al. 2018). For instance, in a citation

network that represents citation relations between papers, there are some research

papers with a few spurious references (i.e., edges) which do not comply with the

content of the papers (Bandyopadhyay, Lokesh, and Murty 2019); In a social network

that represents friendship of users, there may exist camouflaged users who randomly

follow different users, rendering properties like homophily not applicable to this type

of relationships (Dou et al. 2020). As the existence of even few abnormal instances

could cause extremely detrimental effects, the problem of network anomaly detection

has received much attention in industry and academy alike.

Due to the fact that labeling anomalies is highly labor-intensive and takes spe-

cialized domain-knowledge, existing methods are predominately developed in an

unsupervised manner. As a prevailing paradigm, people try to measure the abnor-

mality of nodes with the reconstruction errors of autoencoder-based models (Ding

et al. 2019; Y. Li et al. 2019) or the residuals of matrix factorization-based meth-

ods (Tong and Lin 2011; Li, Dani, Hu, and Liu 2017; Bandyopadhyay, Lokesh, and

25

Labeled Anomaly
Unlabeled Anomaly
Normal Node

(a) Latent Representation Space

Anomaly Score

Labeled Anomaly
Unlabeled Anomaly
Normal Node

(b) Anomaly Score Space

Figure 5. Since anomalies usually have distinct patterns, (a) existing methods may
easily fail to distinguish them from normal nodes in the latent representation space
with only few labeled anomalies, (b) while they can be well separated in an anomaly
score space by enforcing statistically significant deviations between abnormal and
normal nodes.

Murty 2019). However, the anomalies they identify may turn out to be data noises

or uninteresting data instances due to the lack of prior knowledge on the anomalies

of interest. A potential solution to this problem is to leverage limited or few labeled

anomalies as the prior knowledge to learn anomaly-informed models, since it is rel-

atively low-cost in real-world scenarios – a small set of labeled anomalies could be

either from a deployed detection system or be provided by user feedback. In the

meantime, such valuable knowledge is usually scattered among other networks within

the same domain of the target one, which could be further exploited for distilling

supervised signal. For example, LinkedIn and Indeed have similar social networks that

represent user friendship in the job-search domain; ACM and DBLP can be treated as

citation networks that share similar citation relations in the computer science domain.

According to previous studies (X. Tang et al. 2020; F. Zhou et al. 2020; Q. Zhou

et al. 2019), because of the similarity of topological structure and nodal attributes, it

is feasible to transfer valuable knowledge from source network(s) to the target network

so that the performance on the target one is elevated. As such, in this work we propose

26

to investigate the novel problem of few-shot network anomaly detection under the

cross-network setting.

Nonetheless, solving this under-explored problem remains non-trivial, mainly

owing to the following reasons: (1) From the micro (intra-network) view, since we

only have limited knowledge of anomalies, it is hard to precisely characterize the

abnormal patterns. If we directly adopt existing semi-supervised (D. Wang et al. 2019)

or PU (M. Wu et al. 2019) learning techniques, those methods often fall short in

achieving satisfactory results as they might still require a relatively large percentage

of positive examples (Pang, Shen, and Hengel 2019). To handle such incomplete

supervision challenge (Z.-Y. Zhang et al. 2019) as illustrated in Figure 5a, instead

of focusing on abnormal nodes, how to leverage labeled anomalies as few as possible

to learn a high-level abstraction of normal patterns is necessary to be explored; (2)

From the macro (inter-network) view, though networks in the same domain might

share similar characteristics in general, anomalies exist in different networks may be

from very different manifolds. Previous studies on cross-network learning (M. Wu

et al. 2020; Shen et al. 2020) mostly focus on transferring the knowledge only from a

single network, which may cause unstable results and the risk of negative transfer. As

learning from multiple networks could provide more comprehensive knowledge about

the characteristics of anomalies, a cross-network learning algorithm that is capable of

adapting the knowledge is highly desirable.

To address the aforementioned challenges, in this work we first design a new

GNN architecture, namely Graph Deviation Networks (GDN), to enable network

anomaly detection with limited labeled data. Specifically, given an arbitrary network,

GDN first uses a GNN-backboned anomaly score learner to assign each node with

an anomaly score, and then defines the mean of the anomaly scores based on a prior

27

probability to serve as a reference score for guiding the subsequent anomaly score

learning. By leveraging a deviation loss (Pang, Shen, and Hengel 2019), GDN is

able to enforce statistically significant deviations of the anomaly scores of anomalies

from that of normal nodes in the anomaly score space (as shown in Figure 5b). To

further transfer this ability from multiple networks to the target one, we propose a

cross-network meta-learning algorithm to learn a well-generalized initialization of GDN

from multiple few-shot network anomaly detection tasks. The seamlessly integrated

framework Meta-GDN is capable of extracting comprehensive meta-knowledge for

detecting anomalies across multiple networks, which largely alleviates the limitations

of transferring from a single network. Subsequently, the initialization can be easily

adapted to a target network via fine-tuning with few or even one labeled anomaly,

improving the anomaly detection performance on the target network to a large extent.

To summarize, our main contributions is three-fold:

• Problem : To the best of knowledge, we are the first to investigate the novel

problem of few-shot network anomaly detection. Remarkably, we propose to solve

this problem by transferring the knowledge across multiple networks.

• Algorithms: We propose a principled framework Meta-GDN, which integrates a

new family of graph neural networks (i.e., GDN) and cross-network meta-learning

to detect anomalies with few labeled instances.

• Evaluations : We perform extensive experiments to corroborate the effectiveness

of Meta-GNN. The experimental results demonstrate its superior performance over

the state-of-the-art methods on network anomaly detection.

28

2.2.2 Related Work

Network anomaly detection methods have a specific focus on the network structured

data. Previous research mostly study the problem of anomaly detection on plain

networks. As network structure is the only available information modality in a plain

network, this category of anomaly detection methods try to exploit the network

structure information to spot anomalies from different perspectives (Akoglu, Tong,

and Koutra 2015; X. Xu et al. 2007). For instance, SCAN (X. Xu et al. 2007) is one

of the first methods that target to find structural anomalies in networks. In recent

days, attributed networks have been widely used to model a wide range of complex

systems due to their superior capacity for handling data heterogeneity. In addition

to the observed node-to-node interactions, attributed networks also encode a rich set

of features for each node. Therefore, anomaly detection on attributed networks has

drawn increasing research attention in the community, and various methods have been

proposed (Müller et al. 2013; Sánchez et al. 2014). Among them, ConOut (Sánchez

et al. 2014) identifies the local context for each node and performs anomaly ranking

within the local context. More recently, researchers also propose to solve the problem

of network anomaly detection using graph neural networks due to its strong modeling

power. DOMINANT (Ding et al. 2019) achieves superior performance over other

shallow methods by building a deep autoencoder architecture on top of the graph

convolutional networks. Semi-GNN (D. Wang et al. 2019) is a semi-supervised graph

neural model which adopts hierarchical attention to model the multi-view graph for

fraud detection. GAS (A. Li et al. 2019) is a GCN-based large-scale anti-spam method

for detecting spam advertisements. Zhao et al. propose a novel loss function to train

GNNs for anomaly-detectable node representations (Zhao et al. 2020). Apart from

29

the aforementioned methods, our approach focus on detecting anomalies on a target

network with few labels by learning from multiple auxiliary networks.

2.2.3 Problem Definition

Our notations and definition for attributed network are explained in Section 2.1.3.

Regarding few-shot cross-network anomaly detection, it aims to maximally improve

the detection performance on the target network through transferring very limited

supervised knowledge of ground-truth anomalies from the auxiliary network(s). In

addition to the target network Gt, in this work we assume there exist P auxiliary

networks Gs = {Gs
1,G

s
2, . . . ,G

s
P} sharing the same or similar domain with Gt. For an

attributed network, the set of labeled abnormal nodes is denoted as VL and the set of

unlabeled nodes is represented as VU . Note that V = {VL,VU} and in our problem

|VL| ≪ |VU | since only few-shot labeled data is given. As network anomaly detection

is commonly formulated as a ranking problem (Akoglu, Tong, and Koutra 2015), we

formally define the few-shot cross-network anomaly detection problem as follows:

Problem Definition 2 Few-shot Cross-network Anomaly Detection

Given: P auxiliary networks, i.e., Gs = {Gs
1 = (As

1,X
s
1),G

s
2 = (As

2,X
s
2), . . . ,G

s
P =

(As
P ,X

s
P)} and a target network Gt = (At,Xt), each of which contains a set of

few-shot labeled anomalies (i.e., VL
1 ,VL

2 , . . . ,VL
P and VL

t).

Goal: to learn an anomaly detection model, which is capable of leveraging the

knowledge of ground-truth anomalies from the multiple auxiliary networks, i.e.,

{Gs
1,G

s
2, . . . ,G

s
P}, to detect abnormal nodes in the target network Gt. Ideally,

anomalies that are detected should have higher ranking scores than that of the

normal nodes.

30

Input
Network

Network Encoder Abnormality Valuator

𝑓𝜽! 𝑓𝜽"

Prior Distribution

Deviation Loss

Reference Scores

𝜇!, 𝜎!

Anomaly Score

𝑠"

𝑟#, 𝑟$, … , 𝑟%	~	𝐹

Node Representation

𝒛" `

`

`

…

!!"

!#"

!$
Fine-tune

Train

Train

Train

Auxiliary
Networks

Target
Network

Labeled Anomaly

Unlabeled Anomaly

Normal Node

Cross-network
Meta-learning

" ℒ%!
ℒ%"ℒ%# "!&

"'&"(&

GDN

Figure 6. (Left) The model architecture of Graph Deviation Networks (GDN) for
network anomaly detection with limited labeled data. (Right) The illustration of
the overall framework Meta-GDN. Meta-GDN is trained across multiple auxiliary
networks and can be well adapted to the target network with few-shot labeled data.
Figure best viewed in color.

2.2.4 Meta-GDN

In this section, we introduce the details of the proposed framework – Meta-GDN for

few-shot network anomaly detection. Specifically, Meta-GDN addresses the discussed

challenges with the following two key contributions: (1) Graph Deviation Networks

(GDN), a new family of graph neural networks that enable anomaly detection on an

arbitrary individual network with limited labeled data; and (2) a cross-network meta-

learning algorithm, which empowers GDN to transfer meta-knowledge across multiple

auxiliary networks to enable few-shot anomaly detection on the target network. An

overview of the proposed Meta-GDN is provided in Figure 6.

2.2.4.1 Graph Deviation Networks

To enable anomaly detection on an arbitrary network with few-shot labeled data,

we first propose a new family of graph neural networks, called Graph Deviation

Network (GDN). In essence, GDN is composed of three key building blocks, including

(1) a network encoder for learning node representations; (2) an abnormality valuator for

31

estimating the anomaly score for each node; and (3) a deviation loss for optimizing the

model with few-shot labeled anomalies. We adopt the same structure as described in

Section 2.1.4.2 for the network encoder, which is compatible with arbitrary GNN-based

architecture (Thomas N. Kipf and Welling 2017b; Hamilton, Ying, and Leskovec 2017;

Veličković, Cucurull, Casanova, Romero, Lio, et al. 2018a; F. Wu et al. 2019). Here we

employ Simple Graph Convolution (SGC) (F. Wu et al. 2019) in our implementation.

The details for the other building blocks are as follows:

Abnormality Valuator. Afterwards, the learned node representations from the

network encoder will be passed to the abnormality valuator fθs(·) for further estimating

the abnormality of each node. Specifically, the abnormality valuator is built with two

feed-forward layers that transform the intermediate node representations to scalar

anomaly scores:

oi = ReLU(Wszi + bs),

si = uT
s oi + bs,

(2.15)

where si is the anomaly score of node vi and oi is the intermediate output. Ws and

us are the learnable weight matrix and weight vector, respectively. bs and bs are

corresponding bias terms.

To be more concrete, the whole GDN model fθ(·) can be formally represented as:

fθ(A,X) = fθs(fθe(A,X)), (2.16)

which directly maps the input network to scalar anomaly scores, and can be trained

in an end-to-end fashion.

Deviation Loss. In essence, the objective of GDN is to distinguish normal and

abnormal nodes according to the computed anomaly scores with few-shot labels. Here

we propose to adopt the deviation loss (Pang, Shen, and Hengel 2019) to enforce the

model to assign large anomaly scores to those nodes whose characteristics significantly

32

deviate from normal nodes. To guide the model learning, we first define a reference

score (i.e., µr) as the mean value of the anomaly scores of a set of randomly selected

normal nodes. It serves as the reference to quantify how much the scores of anomalies

deviate from those of normal nodes.

According to previous studies (Pang, Shen, and Hengel 2019; Kriegel et al. 2011),

Gaussian distribution is commonly a robust choice to fit the abnormality scores for a

wide range of datasets. Based on this assumption, we first sample a set of k anomaly

scores from the Gaussian prior distribution, i.e., R = {r1, r2, . . . , rk} ∼ N (µ, σ2), each

of which denotes the abnormality of a random normal node. The reference score is

computed as the mean value of all the sampled scores:

µr =
1

k

k∑
i=1

ri. (2.17)

With the reference score µr, the deviation between the anomaly score of node vi

and the reference score can be defined in the form of standard score:

dev(vi) =
si − µr

σr

, (2.18)

where σr is the standard deviation of the set of sampled anomaly scores R =

{r1, . . . , rk}. Then the final objective function can be derived from the contrastive

loss (Hadsell, Chopra, and LeCun 2006) by replacing the distance function with the

deviation in Eq. (2.18):

L = (1− yi) · |dev(vi)|+ yi ·max(0,m− dev(vi)), (2.19)

where yi is the ground-truth label of input node vi. If node vi is an abnormal node,

yi = 1, otherwise, yi = 0. Note that m is a confidence margin which defines a radius

around the deviation.

By minimizing the above loss function, GDN will push the anomaly scores of

normal nodes as close as possible to µr while enforcing a large positive deviation of at

33

least m between µr and the anomaly scores of abnormal nodes. This way GDN is able

to learn a high-level abstraction of normal patterns with substantially less labeled

anomalies, and empowers the node representation learning to discriminate normal

nodes from the rare anomalies. Accordingly, a large anomaly score will be assigned

to a node if its pattern significantly deviates from the learned abstraction of normal

patterns.

Our preliminary results show that GDN is not sensitive to the choices of µ and

σ as long as σ is not too large. Specifically, we set µ = 0 and σ = 1 in our

experiments, which helps GDN to achieve stable detection performance on different

datasets. It is also worth mentioning that, as we cannot access the labels of normal

nodes, we simply consider the unlabeled node in VU as normal. Note that this way the

remaining unlabeled anomalies and all the normal nodes will be treated as normal, thus

contamination is introduced to the training set (i.e., the ratio of unlabeled anomalies

to the total unlabeled training data VU). Remarkably, GDN performs very well by

using this simple strategy and is robust to different contamination levels. The effect

of different contamination levels to model performance is evaluated in Sec. 2.2.5.3.

2.2.4.2 Cross-network Meta-learning

Having the proposed Graph Deviation Networks (GDN), we are able to effectively

detect anomalies on an arbitrary network with limited labeled data. When auxiliary

networks from the same domain of the target network are available, how to transfer

such valuable knowledge is the key to enable few-shot anomaly detection on the target

network. Despite its feasibility, the performance would be rather limited if we directly

borrow the idea of existing cross-network learning methods. The main reason is

34

that those methods merely focus on transferring the knowledge from only a single

network (M. Wu et al. 2020; Shen et al. 2020), which may cause negative transfer

due to the divergent characteristics of anomalies on different networks. To this end,

we turn to exploit multiple auxiliary networks to distill comprehensive knowledge of

anomalies.

As an effective paradigm for extracting and transferring knowledge, meta-learning

has recently received increasing research attention because of the broad applications in

a variety of high-impact domains (Santoro et al. 2016; Vinyals et al. 2016; Ding, Wang,

Li, Shu, et al. 2020; N. Wang et al. 2020; Liu, Zhou, Long, Jiang, Yao, et al. 2019;

Liu et al. 2021). In essence, the goal of meta-learning is to train a model on a variety

of learning tasks, such that the learned model is capable of effectively adapting to

new tasks with very few or even one labeled data (Hochreiter, Younger, and Conwell

2001). In particular, Finn et al. (Finn, Abbeel, and Levine 2017) propose a model-

agnostic meta-learning algorithm to explicitly learn the model parameters such that

the model can achieve good generalization to a new task through a small number of

gradient steps with limited labeled data. Inspired by this work, we propose to learn a

meta-learner (i.e., Meta-GDN) as the initialization of GDN from multiple auxiliary

networks, which possesses the generalization ability to effectively identify anomalous

nodes on a new target network. Specifically, Meta-GDN extracts meta-knowledge

of ground-truth anomalies from different few-shot network anomaly detection tasks

on auxiliary networks during the training phase, and will be further fine-tuned for

the new task on the target network, such that the model can make fast and effective

adaptation.

We define each learning task as performing few-shot anomaly detection on an

individual network, whose objective is to enforce large anomaly scores to be assigned

35

to anomalies as defined in Eq. (2.19). Let Ti denote the few-shot network anomaly

detection task constructed from network Gs
i , then we have P learning tasks in each

epoch. We consider a GDN model represented by a parameterized function fθ with

parameters θ. Given P tasks, the optimization algorithm first adapts the initial model

parameters θ to θ′
i for each learning task Ti independently. Specifically, the updated

parameter θ′
i is computed using LTi on a batch of training data sampled from VL

i and

VU
i in Gs

i . Formally, the parameter update with one gradient step can be expressed

as:

θ′
i = θ − α∇θLTi(fθ), (2.20)

where α controls the meta-learning rate. Note that Eq. (2.20) only includes one-

step gradient update, while it is straightforward to extend to multiple gradient

updates (Finn, Abbeel, and Levine 2017).

The model parameters are trained by optimizing for the best performance of

fθ with respect to θ across all learning tasks. More concretely, the meta-objective

function is defined as follows:

min
θ

P∑
i=1

LTi(fθ′i) = min
θ

P∑
i=1

LTi(fθ−α∇θLTi (fθ)
). (2.21)

By optimizing the objective of GDN, the updated model parameter can preserve

the capability of detecting anomalies on each network. Since the meta-optimization

is performed over parameters θ with the objective computed using the updated

parameters (i.e., θ′
i) for all tasks, correspondingly, the model parameters are optimized

such that one or a small number of gradient steps on the target task (network) will

produce great effectiveness.

Formally, we leverage stochastic gradient descent (SGD) to update the model

parameters θ across all tasks, such that the model parameters θ are updated as

36

follows:

θ ← θ − β∇θ
P∑
i=1

LTi(fθ′i), (2.22)

where β is the meta step size. Specifically, for each batch, we randomly sample the

same number of nodes from unlabeled data (i.e., VU) and labeled anomalies (i.e., VL)

to represent normal and abnormal nodes.

2.2.5 Performance Evaluation

2.2.5.1 Evaluation Setting

Evaluation Datasets. In the experiment, we adopt three real-world datasets, which

are publicly available and have been widely used in previous research (Rayana and

Akoglu 2015; Sen et al. 2008a; Thomas N. Kipf and Welling 2017b; Hamilton, Ying,

and Leskovec 2017). Table 4 summarizes the statistics of each dataset. The detailed

description is as follows:

• Yelp (Rayana and Akoglu 2015) is collected from Yelp.com and contains reviews

for restaurants in several states of the U.S., where the restaurants are organized by

ZIP codes. The reviewers are classified into two classes, abnormal (reviewers with

only filtered reviews) and normal (reviewers with no filtered reviews) according to

the Yelp anti-fraud filtering algorithm. We select restaurants in the same location

according to ZIP codes to construct each network, where nodes represent reviewers

and there is a link between two reviewers if they have reviewed the same restaurant.

We apply the bag-of-words model (Zhang, Jin, and Zhou 2010) on top of the textual

contents to obtain the attributes of each node.

• PubMed (Sen et al. 2008a) is a citation network where nodes represent scientific

37

Table 4. Statistics of evaluation datasets. r1 denotes the ratio of labeled anomalies to
the total anomalies and r2 is the ratio of labeled anomalies to the total number of
nodes.

Datasets Yelp PubMed Reddit

nodes (avg.) 4, 872 3, 675 15, 860
edges (avg.) 43, 728 8, 895 136, 781
features 10, 000 500 602
anomalies (avg.) 223 201 796
r1 (avg.) 4.48% 4.97% 1.26%
r2 (avg.) 0.21% 0.27% 0.063%

articles related to diabetes and edges are citations relations. Node attribute is

represented by a TF/IDF weighted word vector from a dictionary which consists of

500 unique words. We randomly partition the large network into non-overlapping

sub-networks of similar size.

• Reddit (Hamilton, Ying, and Leskovec 2017) is collected from an online discussion

forum where nodes represent threads and an edge exits between two threads if they

are commented by the same user. The node attributes are constructed using averaged

word embedding vectors of the threads. Similarly, we extract non-overlapping sub-

networks from the original large network for our experiments.

Note that except the Yelp dataset, we are not able to access ground-truth anomalies

for PubMed and Reddit. Thus we refer to two anomaly injection methods (Song et

al. 2007; Ding, Li, and Liu 2019) to inject a combined set of anomalies (i.e., structural

anomalies and contextual anomalies) by perturbing the topological structure and node

attributes of the original network, respectively. To inject structural anomalies, we

adopt the approach used by (Ding, Li, and Liu 2019) to generate a set of small cliques

since small clique is a typical abnormal substructure in which a small set of nodes are

much more closely linked to each other than average (Skillicorn 2007). Accordingly,

38

we randomly select c nodes (i.e., clique size) in the network and then make these

nodes fully linked to each other. By repeating this process K times (i.e., K cliques),

we can obtain K × c structural anomalies. In our experiment, we set the clique size

c to 15. In addition, we leverage the method introduced by (Song et al. 2007) to

generate contextual anomalies. Specifically, we first randomly select a node i and then

randomly sample another 50 nodes from the network. We choose the node j whose

attributes have the largest Euclidean distance from node i among the 50 nodes. The

attributes of node i (i.e., xi) will then be replaced with the attributes of node j (i.e.,

xj). Note that we inject structural and contextual anomalies with the same quantity

and the total number of injected anomalies is around 5% of the network size.

Comparison Methods. We compare our proposed Meta-GDN framework and its

base model GDN with two categories of anomaly detection methods, including (1)

feature-based methods (i.e., LOF, Autoencoder and DeepSAD) where only the node

attributes are considered, and (2) network-based methods (i.e., SCAN, ConOut, Radar,

DOMINANT, and SemiGNN) where both topological information and node attributes

are involved. Details of these compared baseline methods are as follows:

• LOF (Breunig et al. 2000) is a feature-based approach which detects outliers at the

contextual level.

• Autoencoder (Zhou and Paffenroth 2017) is a feature-based unsupervised deep

autoencoder model which introduces an anomaly regularizing penalty based upon

L1 or L2 norms.

• DeepSAD (Ruff et al. 2020) is a state-of-the-art deep learning approach for general

semi-supervised anomaly detection. In our experiment, we leverage the node

attribute as the input feature.

39

Table 5. Performance comparison results (10-shot) w.r.t. AUC-ROC and AUC-PR on
three datasets.

Yelp PubMed Reddit

Methods AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

LOF 0.375 0.042 0.575 0.187 0.518 0.071
Autoencoder 0.365 0.041 0.584 0.236 0.722 0.347
DeepSAD 0.460 0.062 0.528 0.1154 0.503 0.066

SCAN 0.397 0.046 0.421 0.048 0.29 0.048
ConOut 0.4025 0.041 0.511 0.093 0.551 0.085
Radar 0.415 0.045 0.573 0.244 0.721 0.281
DOMINANT 0.578 0.109 0.636 0.337 0.735 0.357
SemiGNN 0.497 0.0583 0.523 0.065 0.610 0.1343

GDN (ours) 0.678 0.132 0.736 0.438 0.811 0.379
Meta-GDN (ours) 0.724 0.175 0.761 0.485 0.842 0.395

• SCAN (X. Xu et al. 2007) is an efficient algorithm for detecting network anomalies

based on a structural similarity measure.

• ConOut (Sánchez et al. 2014) identifies network anomalies according to the corre-

sponding subgraph and the relevant subset of attributes in the local context.

• Radar (Li, Dani, Hu, and Liu 2017) is an unsupervised method that detects anoma-

lies on attributed network by characterizing the residuals of attribute information

and its coherence with network structure.

• DOMINANT (Ding et al. 2019) is a GCN-based autoencoder framework which

computes anomaly scores using the reconstruction errors from both network structure

and node attributes.

• SemiGNN (D. Wang et al. 2019) is a semi-supervised GNN model, which leverages

the hierarchical attention mechanism to better correlate different neighbors and

different views.

40

25 50 75 100 125 150 175 200
K

5

10

15

20

Pr
ec

isi
on

 (%
)

Yelp

25 50 75 100 125 150 175 200
K

15

30

45

60

Pr
ec

isi
on

 (%
)

PubMed

25 50 75 100 125 150 175 200
K

12

24

36

48

Pr
ec

isi
on

 (%
)

Reddit
Meta-GDN GDN SemiGNN DOMINANT Radar ConOut SCAN DeepSAD Autoencoder LOF

Figure 7. Performance comparison results (10-shot) w.r.t. Precision@K on three
datasets. Figure best viewed in color.

Evaluation Metrics. In this work, we use the following metrics to have a compre-

hensive evaluation of the performance of different anomaly detection methods:

• AUC-ROC is widely used in previous anomaly detection research (Ding et al. 2019;

Li, Dani, Hu, and Liu 2017). Area under curve (AUC) is interpreted as the

probability that a randomly chosen anomaly receives a higher score than a randomly

chosen normal object.

• AUC-PR is the area under the curve of precision against recall at different thresh-

olds, and it only evaluates the performance on the positive class (i.e., abnormal

objects). AUC-PR is computed as the average precision as defined in (Manning,

Schütze, and Raghavan 2008) and is used as the evaluation metric in (Pang, Shen,

and Hengel 2019).

• Precision@K is defined as the proportion of true anomalies in a ranked list of K

objects. We obtain the ranking list in descending order according to the anomaly

scores that are computed from a specific anomaly detection algorithm.

41

Table 6. Few-shot performance evaluation of Meta-GDN w.r.t. AUC-ROC and AUC-
PR.

Yelp PubMed Reddit

Setting AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

1-shot 0.702 0.159 0.742 0.462 0.821 0.380
3-shot 0.709 0.164 0.748 0.468 0.828 0.386
5-shot 0.717 0.169 0.753 0.474 0.834 0.389
10-shot 0.724 0.175 0.761 0.485 0.842 0.395

2.2.5.2 Effectiveness Results

Overall Comparison. In the experiments, we evaluate the performance of the

proposed framework Meta-GDN along with its base model GDN by comparing with

the included baseline methods. We first present the evaluation results (10-shot) w.r.t.

AUC-ROC and AUC-PR in Table 5 and the results w.r.t. Precision@K are visualized

in Figure 7. Accordingly, we have the following observations, including: (1) in terms of

AUC-ROC and AUC-PR, our approach Meta-GDN outperforms all the other compared

methods by a significant margin. Meanwhile, the results w.r.t. Precision@K again

demonstrate that Meta-GDN can better rank abnormal nodes on higher positions

than other methods by estimating accurate anomaly scores; (2) unsupervised methods

(e.g., DOMINANT, Radar) are not able to leverage supervised knowledge of labeled

anomalies and therefore have limited performance. Semi-supervised methods (e.g.,

DeepSAD, SemiGNN) also fail to deliver satisfactory results. The possible explanation

is that DeepSAD cannot model network information and SemiGNN requires a relatively

large number of labeled data and multi-view data, which make them less effective in

our evaluation; and (3) compared to the base model GDN, Meta-GDN is capable of

extracting comprehensive meta-knowledge across multiple auxiliary networks by virtue

42

of the cross-network meta-learning algorithm, which further enhances the detection

performance on the target network.

Few-shot Evaluation. In order to verify the effectiveness of Meta-GDN in few-shot

as well as one-shot network anomaly detection, we evaluate the performance of Meta-

GDN with different numbers of labeled anomalies on the target network (i.e., 1-shot,

3-shot, 5-shot and 10-shot). Note that we respectively set the batch size b to 2, 4, 8,

and 16 to ensure that there is no duplication of labeled anomalies exist in a sampled

training batch. Also, we keep the number of labeled anomalies on auxiliary networks

as 10. Table 6 summarizes the AUC-ROC/AUC-PR performance of Meta-GDN under

different few-shot settings. By comparing the results in Table 5 and Table 6, we

can see that even with only one labeled anomaly on the target network (i.e., 1-shot),

Meta-GDN can still achieve good performance and significantly outperforms all the

baseline methods. In the meantime, we can clearly observe that the performance

of Meta-GDN increases with the growth of the number of labeled anomalies, which

demonstrates that Meta-GDN can be better fine-tuned on the target network with

more labeled examples.

2 3 4 5 6
p

0.5

0.6

0.7

0.8

0.9

AU
C-

RO
C

Yelp
PubMed
Reddit

(a)

0 2 5 10 20
rc (%)

0.5

0.6

0.7

0.8

0.9

1.0

AU
C-

RO
C

Reddit
Meta-GDN
GDN
SemiGNN

(b)

Figure 8. (a) Sensitivity analysis of Meta-GDN w.r.t. different number of auxiliary
networks; (b) Model robustness study w.r.t. AUC-ROC with different contamination
levels.

43

2.2.5.3 Sensitivity & Robustness Analysis

In this section, we further analyze the sensitivity and robustness of the proposed

framework Meta-GDN. By providing different numbers of auxiliary networks during

training, the model sensitivity results w.r.t. AUC-ROC are presented in Figure 8a.

Specifically, we can clearly find that (1) as the number of auxiliary networks increases,

Meta-GDN achieves constantly stronger performance on all the three datasets. It

shows that more auxiliary networks can provide better meta-knowledge during the

training process, which is consistent with our intuition; (2) Meta-GDN can still

achieve relatively good performance when training with a small number of auxiliary

networks (e.g., p = 2), which demonstrates the strong capability of its base model

GDN. For example, on Yelp dataset, the performance barely drops 0.033 if we change

the number of auxiliary networks from p = 6 to p = 2.

As discussed in Sec. 2.2.4.1, we treat all the sampled nodes from unlabeled data

as normal for computing the deviation loss. This simple strategy introduces anomaly

contamination in the unlabeled training data. Due to the fact that rc is a small number

in practice, our approach can work very well in a wide range of real-world datasets.

To further investigate the robustness of Meta-GDN w.r.t. different contamination

levels rc (i.e., the proportion of anomalies in the unlabeled training data), we report

the evaluation results of Meta-GDN, GDN and the semi-supervised baseline method

SemiGNN in Figure 8b. As shown in the figure, though the performance of all the

methods decreases with increasing contamination levels, both Meta-GDN and GDN

are remarkably robust and can consistently outperform SemiGNN to a large extent.

44

2.3 Conclusion

Developing a powerful graph representation learning model for a downstream task

often requires abundant annotated samples. However, in real-world attributed net-

works, a large portion of node classes only contains limited labeled instances, rendering

a long-tail node class distribution. In practice, many current graph representation

learning models usually fails to deal with new (i.e., never-seen-before) tasks since they

cannot rapidly generalize from a few examples. In this chapter, I discuss my work on

solving the challenges in few-shot node classification and few-shot network anomaly

detection problems:

To handle the never-before-seen node classes, we propose a graph meta-learning

framework – Graph Prototypical Networks (GPN). By constructing a pool of semi-

supervised node classification tasks to mimic the real test environment, GPN is able

to perform meta-learning on an attributed network and derive a highly generalizable

model for handling the target classification task. Extensive experiments demonstrate

the superior capability of GPN in few-shot node classification.

Meanwhile, we make the first investigation on the problem of few-shot cross-network

anomaly detection. To tackle this problem, we first design a novel GNN architecture,

GDN, which is capable of leveraging limited labeled anomalies to enforce statistically

significant deviations between abnormal and normal nodes on an individual network.

To further utilize the knowledge from auxiliary networks and enable few-shot anomaly

detection on the target network, we propose a cross-network meta-learning approach,

Meta-GDN, which is able to extract comprehensive meta-knowledge from multiple

auxiliary networks in the same domain of the target network. Through extensive

45

experimental evaluations, we demonstrate the superiority of Meta-GDN over the

state-of-the-art methods.

46

Chapter 3

GRAPH WEAKLY-SUPERVISED LEARNING

Existing Graph ML algorithms are mainly developed for the supervised or semi-

supervised setting where the input graph usually has relatively plenty of labeled

instances. However, weakly-supervised Graph ML, in particular where only incomplete

and indirect supervision signals are provided, remains largely understudied in the

community. In this chapter, I will present my effort on addressing this challenging

research problem, with a focus on the aforementioned two types of weak supervision.

Starting from the most common incomplete supervision, we proposed to enlarge

receptive fields of GNNs and automatically exploit the knowledge from unlabeled data

to deal with incomplete supervision. Specifically, I developed a graph self-training

framework, namely Meta Propagation Networks (Meta-PN), which is able to adjust

its label propagation strategy and leverage large receptive fields for inferring accurate

pseudo labels on unlabeled nodes. By augmenting the scarce training data with the

generated pseudo labels, one can learn a label-efficient GNN with only few labels per

class are provided.

Then, I discuss my work in leveraging the indirect supervision – the invaluable

auxiliary information from a labeled attributed graph, to facilitate the anomaly

detection in the unlabeled attributed graph is seldom investigated. To solve this

problem, we propose a novel framework Commander for cross-domain anomaly

detection on attributed graphs. Specifically, Commander first compresses the two

attributed graphs from different domains to low-dimensional space via a graph attentive

encoder. In addition, we utilize a domain discriminator and an anomaly classifier to

47

detect anomalies that appear across networks from different domains. In order to

further detect the anomalies that merely appear in the target network, we develop an

attribute decoder to provide additional signals for assessing node abnormality.

3.1 Node Classification with Incomplete Supervision

3.1.1 Introduction

Graphs serve as a common language for modeling a plethora of structured and

relational systems, ranging from social networks (Zafarani, Abbasi, and Liu 2014)

to citation networks (Namata et al. 2012), to molecular graphs (Klicpera, Groß,

and Günnemann 2019). To ingest the rich information encoded in graph-structured

data, it is of paramount importance to learn expressive node representations by

modeling the information from both node attributes and graph topology. Among

numerous endeavors in the graph machine learning (Graph ML) community, graph

neural networks (GNNs) have received significant attention due to their effectiveness

and scalability (Thomas N. Kipf and Welling 2017b; Veličković, Cucurull, Casanova,

Romero, Lio, et al. 2018b; Hamilton, Ying, and Leskovec 2017).

In general, most of the prevailing GNNs adopt the message-passing scheme to learn

the representation of a node by iteratively transforming, and propagating/aggregating

node features from its local neighborhoods. Along with this idea, different designs

of GNN architectures have been proposed, including graph convolutional networks

(GCNs) (Thomas N. Kipf and Welling 2017b; Defferrard, Bresson, and Vandergheynst

2016), graph attention networks (GAT) (Veličković, Cucurull, Casanova, Romero, Lio,

et al. 2018b; X. Wang et al. 2019) and many others (Hamilton, Ying, and Leskovec 2017;

48

K. Xu et al. 2019; Klicpera, Bojchevski, and Günnemann 2019; F. Wu et al. 2019; T.

Chen et al. 2020). Despite their promising results, existing GNNs developed for semi-

supervised node classification predominantly assume that the provided gold-labeled

nodes are relatively abundant. This assumption is often impractical as data labeling

requires intensive domain knowledge, especially when considering the heterogeneity of

graph-structured data (Yao et al. 2020a; Ding, Wang, Li, Shu, et al. 2020). When

only few labeled nodes per class are available, how to improve the expressive power

of Graph ML models for tackling the few-shot semi-supervised node classification

problem remains understudied and meanwhile requires urgent research efforts.

However, it is a non-trivial and challenging task mainly because of two reasons: (i)

oversmoothing and overfitting. In general, most of the existing GNNs are designed

with shallow architecture with restricted receptive fields, thereby restricting the efficient

propagation of label information (Li, Han, and Wu 2018). In order to propagate

the label signals more broadly, larger receptive fields of GNNs, i.e., the number of

layers, are particularly desirable (Klicpera, Bojchevski, and Günnemann 2019). Due

to the entanglement of representation transformation and propagation in each layer,

GNNs will face the oversmoothing issue when increasing the model depth (Liu, Gao,

and Ji 2020), which in turn renders the learned node representations inseparable. In

the meantime, when training with few labeled nodes, an over-parametric deep GNN

model tends to overfit and goes timber easily; (ii) no auxiliary knowledge. Though

previous works proposed for graph few-shot learning (Ding, Wang, Li, Shu, et al. 2020)

or cross-network transfer learning (Yao et al. 2020a) also focus on related low-resource

scenarios, their key enabler lies in transferring knowledge from either label-rich node

classes or other similar networks. Nonetheless, such auxiliary knowledge is commonly

not accessible, making those methods practically infeasible to be applied to few-shot

49

semi-supervised learning. As suggested by previous research, pseudo-labeling (Li, Han,

and Wu 2018; Sun, Lin, and Zhu 2020; Ding, Xu, et al. 2022) is commonly beneficial

to solve semi-supervised learning, whereas inaccurate pseudo labels may instead lead

to abysmal failure. Hence, how to infer accurate pseudo labels on unlabeled nodes

plays a pivotal role to solve the studied research problem.

To address the aforementioned challenges, we propose a new graph meta-learning

framework, Meta Propagation Networks (Meta-PN), which goes beyond the canonical

message-passing scheme of GNNs and learns expressive node representations in a more

label-efficient way. Specifically, Meta-PN is built with two simple neural networks, i.e.,

adaptive label propagator and feature-label transformer, which inherently decouples the

entangled propagation and transformation steps of GNNs, thereby allowing sufficient

propagation of label signals without suffering the oversmoothing issue. At its core,

the adaptive label propagator is meta-learned to adjust its propagation strategy for

inferring accurate pseudo labels on unlabeled nodes, according to the feedback (i.e.,

the performance change on the gold-labeled nodes) from the target model feature-label

transformer. This way the generated soft pseudo labels not only capture informative

local and global structure information, but more importantly, have aligned data usage

with the gold-labeled nodes. Optimizing with our proposed meta-learning algorithm,

those two decoupled networks are able to reinforce each other synergistically. As a

result, the target model assimilates the encoded knowledge of pseudo-labeled nodes

and offers excellent performance for the semi-supervised node classification problem

even if only few labeled nodes are available. In summary, the contributions of our

work are as follows:

• We study the problem of semi-supervised node classification under the few-shot

setting, which remains largely under-studied in the Graph ML community.

50

• We propose a simple yet effective graph meta-learning framework Meta-PN to

solve the studied problem. The essential idea is to augment the limited labeled

data via a meta-learned label propagation strategy.

• We conduct comprehensive evaluations on different graph benchmark datasets

to corroborate the effectiveness of Meta-PN. The results show its superiority

over the state-of-the-arts on semi-supervised node classification, especially under

the low-resource setting.

3.1.2 Related Works

For real-world graph learning tasks, the amount of gold-labeled samples is usu-

ally quite limited due to the expensive labeling cost. To improve the GNN model

performance on the node classes with only few labeled nodes, graph few-shot learn-

ing (F. Zhou et al. 2019; Ding, Wang, Li, Shu, et al. 2020; N. Wang et al. 2020) and

cross-network transfer learning (Yao et al. 2020a; Ding, Zhou, et al. 2021) have been

proposed to transfer the knowledge from other auxiliary data source(s). Nonetheless,

for the problem of few-shot semi-supervised node classification, such auxiliary datasets

are commonly not allowed to use. As another line of related work, Li et al. (Li,

Han, and Wu 2018) combined GCNs and self-training to expand supervision signals,

while M3S (Sun, Lin, and Zhu 2020) advances this idea by utilizing the clustering

method to eliminate the inaccurate pseudo labels. However, those methods cannot

directly address the oversmoothing issue and may suffer from inaccurate pseudo labels.

By conducting meta-learning on top of a decoupled design, our approach Meta-PN

achieves superior performance on few-shot semi-supervised node classification.

51

3.1.3 Architecture Overview

For solving the problem of few-shot semi-supervised node classification, we propose

a new framework Meta Label Propagation (Meta-PN), which is built with two simple

neural networks, i.e., adaptive label propagator and feature-label transformer. By

decoupling the propagation and transformation steps with two independent networks,

such a design inherently allows large receptive fields without suffering performance

deterioration. Upon our proposed meta-learning algorithm, the meta learner – adaptive

label propagator learns to adjust its propagation strategy for inferring accurate pseudo

labels on unlabeled nodes, by using the feedback from the target model. Meanwhile,

the target model – feature-label transformer assimilates both the structure and feature

knowledge from pseudo-labeled nodes, therefore addressing the challenges behind

few-shot semi-supervised learning. Specifically, we introduce the architecture details

as follows:

3.1.3.1 Adaptive Label Propagator (Meta Learner)

In order to enable broader propagation of label signals, we propose to adopt the

idea of label propagation (LP) (Zhu and Ghahramani 2002) to encode informative local

and global structural information. Similar to the message-passing scheme adopted

by many GNNs, label propagation follows the principle of Homophily (McPherson,

Smith-Lovin, and Cook 2001) that indicates two connected nodes tend to be similar

(share same labels). Specifically, the objective of LP is to find a prediction matrix

Ŷ ∈ Rn×c that agrees with the label matrix Y while being smooth on the graph such

that nearby vertices have similar soft labels (Dengyong Zhou et al. 2004). Generally,

52

the solution can be approximated via the iteration as follows:

Ŷ = Y(K),Y(k+1) = TY(k), (3.1)

where Y(0) = Y and K denotes the number of power iteration (propagation) steps.

The transition matrix is denoted by T, which can be set as any form of normalized

adjacency matrix (e.g., Ãsym). After K iterations of label propagation, the predicted

soft label matrix Ŷ can capture the prior knowledge of neighborhood label distribution

up to K hops away.

In practice, various propagation schemes can be adopted for LP, such as the

Personalized PageRank (Klicpera, Bojchevski, and Günnemann 2019) where Y(k+1) =

(1− α)TY(k) + αY(0). With appropriate teleport probability α, the smoothed labels

can avoid losing the focus on local neighborhood even using infinitely many propa-

gation steps (Klicpera, Bojchevski, and Günnemann 2019). However, most of the

existing LP algorithms cannot adaptively balance the label information from different

neighborhoods for each node, which largely restricts the model expressive power when

learning with complex real-world graphs.

To counter this issue, we build an adaptive label propagator gϕ(·) parameterized

with ϕ, which is able to adjust the contribution of different propagation steps for

computing the smoothed label vector of one node. Specifically, the propagation

strategy can be formulated as:

Ŷi,: =
K∑
k=0

γikY
(k)
i,: ,Y

(k+1) = TY(k), (3.2)

where γik denotes the influence from k-hop neighborhood for node vi and can be

computed by the attention mechanism:

γik =
exp

(
aTReLU

(
WY

(k)
i,:

))
∑K

k′=0 exp
(
aTReLU

(
WY

(k′)
i,:

)) , (3.3)

53

where a ∈ Rc is the attention vector and W ∈ Rc×c is a weight matrix. By setting

the attention vector and weight matrix as learnable parameters, the adaptive label

propagator acquire the capability of adjusting its propagation strategy for each node

and the final smoothed labels can capture rich structure information of the input

graph.

3.1.3.2 Feature-label Transformer (Target Model)

After encoding the structure knowledge into the smoothed label matrix Ŷ, we

then build a feature-label transformer fθ(·) that transforms node features to node

label, in order to further capture feature-based graph information. For each node vi,

the feature-label transformer parameterized with θ takes the node feature vector Xi,:

as input and predicts its node label Pi,: by:

Pi,: = fθ(Xi,:), (3.4)

where fθ(·) is a multi-layer perceptron (MLP) followed by a softmax function.

In order to learn the target model , i.e., feature-label transformer, we take the soft

pseudo labels computed by the adaptive label propagator as “ground-truth”. Ideally,

if the generated pseudo labels are of high quality, they can be used to augment the

insufficient labeled nodes to avoid overfitting and improve the model generalization

ability (Li, Han, and Wu 2018). In the meantime, high-quality pseudo-labeled data

not only encodes the feature patterns of unlabeled nodes, but also carries informative

local and global structure knowledge, which enables the target model to leverage

larger receptive fields without suffering from performance degradation. As a result,

the feature-label transformer can achieve excellent performance on the problem of

few-shot semi-supervised node classification.

54

3.1.3.3 Learning to Propagate

One key challenge of our approach lies in how to learn a better label propagation

strategy for generating pseudo labels on unlabeled nodes. If the pseudo labels are

inaccurate, the target model may easily overfit to mislabeled nodes and encounter

severe performance degradation (Ren, Zeng, et al. 2018). This issue is also known

as the problem of confirmation bias in pseudo-labeling (Arazo et al. 2020). While

inferring accurate pseudo labels by recursively selecting a subset of samples, re-training

the prediction model will be too expensive and unstable. Hence, without linking the

two networks in a principled way, it is almost infeasible to enforce the adaptive label

propagator to efficiently infer meaningful label propagation strategy for improving the

performance of the feature-label transformer.

In this work, we propose to tackle this problem through a unified meta-learning

algorithm, allowing the model to infer accurate pseudo labels for unlabeled nodes and

learn a better target model. In a sense, if the generated pseudo labels are of high

quality, their data utility should align with the gold-labeled nodes. Accordingly, we

can derive the following meta-learning objective: optimal pseudo labels generated by

meta-learner should maximize target model’s performance (minimize the classification

loss) on the gold-labeled training nodes. For each meta label propagation task, the

goal is to generate pseudo labels for a batch of unlabeled nodes using the feedback of

the target model (i.e., feature-label transformer). By optimizing the adaptive label

propagator on a meta-level, it can adjust the label propagation strategy to generate

informative pseudo-labeled data.

55

3.1.3.4 Model Learning via Bi-level Optimization

The above meta-learning objective implies a bi-level optimization problem with ϕ

as the outer-loop parameters and θ as the inner-loop parameters. This problem shares

the same formulation with many meta-learning algorithms that have been proposed

for solving different learning tasks such as few-shot learning (Finn, Abbeel, and Levine

2017), hyper-parameter optimization (Baydin et al. 2018), and neural architecture

search (Liu, Simonyan, and Yang 2018). Specifically, let L denote the cross-entropy

loss for node classification, and this bi-level optimization problem can be formulated

as:
Outer loop: ϕ∗ = argmin

ϕ
Evi∈VL [L(fθ∗(ϕ)(Xi,:),Yi,:)],

Inner loop: θ∗(ϕ) = argmin
θ

Evi∈VU [L(fθ(Xi,:), gϕ(Y,A)i,:)].

(3.5)

The optimal solution of this bi-level optimization problem can potentially train a

highly discriminative feature-label transformer with abundant pseudo-labeled data and

only a small set of gold-labeled data. However, deriving exact solutions for this bi-level

problem is indeed analytically intractable and computationally expensive, owing to

the fact that it requires solving for the optimal θ∗(ϕ) whenever ϕ gets updated. To

approximate the optimal solution θ∗(ϕ), we propose to take one step of gradient descent

update for θ, without solving the inner-loop optimization completely by training until

convergence. This way allows the optimization algorithm to alternatively update

the parameters of feature-label transformer in the inner loop and the parameters of

adaptive label propagator in the outer loop:

Target Model (Inner-loop) Update. Given a batch of unlabeled nodes from VU ,

we update the target model parameters θ by taking their pseudo labels computed by

the adaptive label propagator as ground-truth. For simplicity, we use Jpseudo(θ,ϕ) to

56

denote the inner-loop loss computed on a batch of pseudo-labeled nodes. Assuming

that parameter θ is updated using the computed gradient descent on Jpseudo(θ,ϕ),

with a learning rate ηθ, then we have:

θ′ = θ − ηθ∇θJpseudo(θ,ϕ). (3.6)

Meta Learner (Outer-loop) Update. Note that the dependency between ϕ and θ

allows us to compute the meta-level (outer-loop) loss using the gold-labeled nodes

from VL. We denote this loss by Jgold(θ
′(ϕ)) for the purpose of simplicity, and back-

propagate this loss to compute the gradient for the feature-label transformer. Having

the gradient, we can update on the backward parameters ϕ with learning rate ηϕ:

ϕ′ = ϕ− ηϕ∇ϕJgold(θ
′(ϕ)). (3.7)

To further compute the gradient of ϕ, we apply chain rule to differentiate

Jgold(θ
′(ϕ)) with respect to ϕ via θ′, where θ′(ϕ) = θ − ηθ∇θJpseudo(θ,ϕ). The

full derivation is delegated to the Appendix ??. Here, we directly present the final

result:

∇ϕJgold(θ
′(ϕ)) ≈ −ηϕ

2ϵ
[∇ϕJpseudo(θ

+,ϕ)−∇ϕJpseudo(θ
−,ϕ)], (3.8)

where θ± = θ ± ϵ∇θ′Jgold(θ
′(ϕ)), and ϵ is a small scalar for finite difference approxi-

mation.

By alternating the update rules in Eq. (3.6) and Eq. (3.7), we are able to pro-

gressively learn the two modules. Finally, as the feature-label transformer only learns

from unlabeled data with pseudo labels generated by the adaptive label propagator,

we can further fine-tune the feature-label transformer on labeled data to improve its

accuracy. After the model converges, we use the feature-label transformer to make

final predictions on unlabeled nodes.

57

3.1.4 Performance Evaluation

3.1.4.1 Evaluation Settings

Evaluation Datasets. We conduct experiments on five graph benchmark datasets

for semi-supervised node classification to demonstrate the effectiveness of the proposed

Meta-PN. The detailed statistics of the datasets are summarized in Table 7. Specifically,

Cora-ML, CiteSeer (Sen et al. 2008a) and PubMed (Namata et al. 2012) are the

three most widely used citation networks. MS-CS is a co-authorship network based

on the Microsoft Academic Graph (Shchur et al. 2018). For data splitting, we follow

the previous work (Klicpera, Bojchevski, and Günnemann 2019) and split each dataset

into training set (i.e., K nodes per class for K-shot task), validation set and test set.

In addition, to further evaluate the performance of different methods on large-scale

graphs, we further include the ogbn-arxiv datasets from Open Graph Benchmark

(OGB) (W. Hu et al. 2020). For the ogbn-arxiv dataset, we randomly sample 1.0%,

1.5%, 2.0%, 2.5% nodes from its training splits as labeled data while using the same

validation and test splits in OGB Benchmark (W. Hu et al. 2020). Note that for

all the datasets, we run each experiment 100 times with multiple random splits and

different initializations.

Table 7. Summary Statistics of the Evaluation Datasets.

Dataset # Nodes # Edges # Features # Classes

Cora-ML 2,810 7,981 2,879 7
CiteSeer 2,110 3,668 3,703 6
PubMed 19,717 44,324 500 3
MS-CS 18,333 81,894 6,805 15
ogbn-arxiv 169,343 1,166,243 15 40

58

Compared Methods. To corroborate the effectiveness of our approach, three

categories of baselines are included in our experiments: (i) Classical Models. MLP,

LP (Label Propagation) (Dengyong Zhou et al. 2004) are two classical models using

only feature and structure information, respectively. GCN (Thomas N. Kipf and

Welling 2017b) and SGC (F. Wu et al. 2019) are two representative GNN models. Due

to the space limit, we omit some baselines like GAT, GraphSAGE since similar results

can be observed; (ii) Label-efficient GNNs. GLP (Generalized Label Propagation) and

IGCN (Improved GCN) (Q. Li et al. 2019) are two models combine label propagation

and GCN from a unifying graph filtering perspective. M3S (Sun, Lin, and Zhu

2020) is a multi-stage self-training framework, which incorporates self-supervised

learning to improve the model performance with few labeled nodes; (iii) Deep GNNs.

APPNP (Klicpera, Bojchevski, and Günnemann 2019) decouples prediction and

propagation with performing personalized propagation of neural predictions, while

DAGNN (Liu, Gao, and Ji 2020) adaptively incorporate information from large

receptive fields. C&S (Q. Huang et al. 2021) is an effective model that combines label

propagation and simple neural networks. GPR-GNN (Chien et al. 2021) addresses

the limitation of APPNP on different types of graphs with adaptive propagation

weights.

3.1.4.2 Performance Evaluation

Performance EvaluationFew-shot Semi-supervised Evaluation. First, we

evaluate the proposed approach Meta-PN and all the baseline methods on few-shot

semi-supervised node classification, which aims to predict the missing node labels with

only a few labeled nodes. The average test accuracies under the few-shot setting (i.e.,

59

3-shot and 5-shot) can be found in Table 8 and Table 9. From the reported results,

we can clearly see that Meta-PN significantly outperforms all the baseline methods

on each dataset based on paired t-tests with p < 0.05. Specifically, we elaborate our

in-depth observations and analysis as follows: (i) without abundant labeled data,

classical models including vanilla GNNs only obtain very poor classification accuracy

under different evaluation entries; (ii) overall the label-efficient GNNs outperform

classical GNNs, but still cannot achieve satisfying results. One major reason is that

those methods cannot handle the oversmoothing issue since they are incapable of

explicitly leveraging the knowledge from large receptive fields; (iii) by enabling better

propagation of label signals, deep GNNs have stronger performance than both the

classical models and label-efficient GNNs, which again demonstrates the necessity of

addressing the oversmoothing issue for solving the few-shot semi-supervised learning

problem. However, existing deep GNNs are not specifically developed to tackle the

data sparsity issue, thus their performance still falls behind Meta-PN by a noticeable

margin on different datasets when only very few labels are available. This observation

proves that Meta-PN is able to address the overfitting and oversmoothing issues when

labeled data is extremely sparse by combining the power of large receptive fields and

pseudo labels.

Evaluation on Open Graph Benchmark (OGB). Real-world graphs commonly

have a larger size and more node classes than many toy graphs, leading to the

collected graphs having noisy structures and complex properties. To further illustrate

the effectiveness of our approach on large-scale real-world graphs, we adopt the widely

used ogbn-arxiv dataset and compare all the methods under the few-shot setting

(i.e., from 1% to 2.5% label ratio). We summarize their performance for few-shot

60

Table 8. Test accuracy on few-shot semi-supervised node classification on Cora-ML
and CiteSeer: mean accuracy (%) ± 95% confidence interval.

Method Cora-ML CiteSeer
3-shot 5-shot 3-shot 5-shot

MLP 41.07± 0.76 51.12± 0.61 43.34± 0.56 44.90± 0.60
LP 62.07± 0.71 68.01± 0.62 54.07± 0.59 55.73± 1.19
GCN 48.02± 0.89 67.32± 1.02 53.60± 0.86 62.60± 0.58
SGC 49.60± 0.55 67.24± 0.86 57.37± 0.98 61.55± 0.53

GLP 65.57± 0.26 71.26± 0.31 65.76± 0.49 71.36± 0.18
IGCN 66.60± 0.29 72.50± 0.20 67.47± 0.29 72.92± 0.10
M3S 64.66± 0.31 69.64± 0.18 65.12± 0.20 68.18± 0.18

APPNP 72.39± 0.98 78.32± 0.58 67.55± 0.77 71.08± 0.61
DAGNN 71.86± 0.75 77.20± 0.69 66.62± 0.27 70.55± 0.12
C&S 68.93± 0.68 73.37± 0.24 63.02± 0.72 64.72± 0.53
GPR-GNN 70.98± 0.84 75.18± 0.52 64.32± 0.81 65.28± 0.52

Meta-PN 74.94± 0.25 79.88± 0.15 70.48± 0.34 74.14± 0.50

Table 9. Test accuracy on few-shot semi-supervised node classification on PubMed
and MS-CS: mean accuracy (%) ± 95% confidence interval.

Method PubMed MS-CS
3-shot 5-shot 3-shot 5-shot

MLP 56.59± 0.93 59.90± 0.84 70.33± 0.37 79.41± 0.31
LP 58.75± 0.89 59.91± 0.85 57.96± 0.69 62.98± 0.61
GCN 58.89± 0.80 65.77± 0.98 69.24± 0.94 84.43± 0.89
SGC 63.37± 0.93 64.93± 0.81 72.11± 0.76 87.51± 0.27

GLP 65.34± 0.54 65.26± 0.29 86.10± 0.21 86.94± 0.23
IGCN 62.28± 0.23 65.19± 0.13 85.83± 0.06 87.01± 0.05
M3S 63.40± 0.32 68.85± 0.26 84.96± 0.18 86.83± 0.29

APPNP 70.52± 0.62 74.24± 0.87 86.65± 0.42 90.13± 0.86
DAGNN 71.22± 0.82 73.91± 0.71 86.32± 0.57 90.30± 0.66
C&S 70.51± 0.57 73.22± 0.57 85.86± 0.45 87.99± 0.24
GPR-GNN 71.03± 0.73 74.08± 0.65 86.12± 0.37 90.29± 0.38

Meta-PN 73.25± 0.77 77.78± 0.92 88.99± 0.29 91.31± 0.22

61

LP
GC

N
SG

C
GL

P
IG
CN M
3S

AP
PN

P
DA

GN
N

C&
S

GP
RG

NN
M
et
a-
PN

45

50

55

60

65
Ac

c(
%
)

(a) label ratio = 1.0%

LP
GC

N
SG

C
GL

P
IG
CN M
3S

AP
PN

P
DA

GN
N

C&
S

GP
RG

NN
M
et
a-
PN

45

50

55

60

65

Ac
c(
%
)

(b) label ratio = 1.5%

LP
GC

N
SG

C
GL

P
IG
CN M
3S

AP
PN

P
DA

GN
N

C&
S

GP
RG

NN
M
et
a-
PN

45

50

55

60

65

Ac
c(
%
)

(c) label ratio = 2.0%

LP
GC

N
SG

C
GL

P
IG
CN M
3S

AP
PN

P
DA

GN
N

C&
S

GP
RG

NN
M
et
a-
PN

45

50

55

60

65

Ac
c(
%
)

(d) label ratio = 2.5%

Figure 9. Comparison results on ogbn-arxiv w.r.t different size of training labels.

semi-supervised node classification on ogbn-arxiv in Figure 9 by changing the ratio

of training labels, in which we omit MLP as its test accuracy is much lower than

the other methods. We can observe that Meta-PN can significantly outperform all

the baseline models under different few-shot environments. Compared to the other

baseline methods, the performance of Meta-PN is relatively stable when we decrease

the ratio of training labels, which demonstrates the robustness of Meta-PN in handling

noisy and complex real-world graphs. Remarkably, our approach can achieve close

performance to the vanilla GCN on ogbn-arxiv with much fewer labeled nodes (2.5%

vs. 54%).

3.1.4.3 Parameter & Ablation Analysis.

To demonstrate the effects of using different propagation steps and the importance

of the meta-leaned label propagation strategy for Meta-PN, we compare our approach

with two baselines under the 5-shot (or 1.0% label ratio for ogbn-arxiv) semi-supervised

setting with varying number of propagation steps. Specifically, GCN learns the node

representation with the standard message-passing scheme while Static-LP representing

the variant of Meta-PN that uses fixed teleport probabilities instead of meta-learned

ones. The evaluation results are shown in Figure 10. As we can observe from the

62

2 5 10 15 20
K

20

40

60

80

100

AC
C

(%
)

GCN Static-LP Meta-PN

(a) Cora-ML

2 5 10 15 20
K

20

40

60

80

100

AC
C

(%
)

GCN Static-LP Meta-PN

(b) CiteSeer

2 5 10 15 20
K

20

40

60

80

100

AC
C

(%
)

GCN Static-LP Meta-PN

(c) PubMed

2 5 10 15 20
K

20

40

60

80

100

AC
C

(%
)

GCN Static-LP Meta-PN

(d) Ogbn-arxiv

Figure 10. Few-shot (i.e., 5-shot or 1.0% label ratio) evaluation on different datasets
w.r.t. propagation steps (K).

figure, GCN can achieve very close performance with the other two methods when

the number of propagation steps is relatively small. While if we largely increase

the number of propagation steps, the performance of GCN breaks down due to the

oversmoothing issue. Empowered by the idea of label propagation, Static-LP can

largely alleviate the oversmoothing issue and significantly outperform GCN. This

verifies that larger propagation steps or receptive fields are necessary for improving

the performance of GNN when labeled data is extremely limited. In the meantime,

Static-LP still falls behind Meta-PN, mainly because of the infeasibility of balancing

the importance of different receptive fields. On the contrary, Meta-PN is able to

address this issue by inferring optimal pseudo labels on unlabeled nodes with our meta-

learning algorithm. Its performance becomes stable when K ≥ 10, indicating that

Meta-PN can obtain good performance considering both efficiency and effectiveness

with a moderate number of propagation steps (e.g., K = 10).

63

3.2 Cross-domain Graph Anomaly Detection

3.2.1 Introduction

Attributed graphs are a type of graphs that not only model the attributes of each

data instance, but also encode the inherent dependencies among them. They have been

widely used to model complex systems such as social media networks (Qi et al. 2011),

academic graphs (J. Tang et al. 2008), financial transaction networks (Akoglu, Tong,

and Koutra 2015). However, anomalous nodes – whose patterns significantly deviate

from the majority – can be rampant in attributed graphs and cause real-world societal

effects. For example, spammers in social networks can coordinate among themselves

to launch various attacks such as spreading ads to generate sales, disseminating

pornography, viruses, phishing, etc (X. Hu et al. 2013); fraud behaviors in financial

networks may lead to huge financial loss for both customers and merchants (West and

Bhattacharya 2016). Therefore, it is critical to detect anomalies on attributed graphs.

For a real-world anomaly detection system, it is often unrealistic to obtain abundant

labeled data for every domain (e.g., Hotels and Restaurants are two different domains

in Yelp) due to the expensive labeling cost (Qu et al. 2019; Pang et al. 2020). As

such, graph anomaly detection is commonly performed in the single-domain setting,

and unsupervised methods are proposed to handle those unlabeled domains (Akoglu,

Tong, and Koutra 2015). However, the performances of unsupervised approaches may

be limited without any supervision information. Thus when the target graph is from

an unlabeled domain, it is natural and important to explore the auxiliary knowledge

from other related domains that come from the same data platform. Specifically,

we would like to investigate whether the anomaly detection performance on an

64

Source network (Books domain) Target network (Clothes domain)

A"

B"

B$

Figure 11. An example of cross-domain graph anomaly detection. A1 and B1 can
be considered as the shared anomalies since they show similar behaviors across two
graphs from different domains, while B2 is an instance of unshared anomalies since
such type of anomalies only exist in the target graph.

unlabeled attributed graph (target graph) can be improved by leveraging another

labeled attributed graph (source graph). Recent advancements on domain adaptation

have shown promising results in learning domain-invariant features across domains

in various research disciplines, including computer vision (Saenko et al. 2010; Ganin

and Lempitsky 2014; Hoffman et al. 2014) to natural language processing (Collobert

et al. 2011; Glorot, Bordes, and Bengio 2011). In light of this, we propose to tackle

the novel problem of cross-domain graph anomaly detection by adapting domain

discrepancies between two attributed graphs.

Despite the unprecedented success of deep domain adaptation, directly grafting

it for detecting anomalies on attributed graphs is infeasible due to the following

challenges. First, compared to conventional text or image data, attributed graphs

are notoriously difficult to handle due to the data heterogeneity from both structure

and attribute perspectives (Ding et al. 2019). As such, applying conventional domain

adaptation techniques to our problem may result in unsatisfactory results as they

are not tailored for attributed graphs. Therefore, the first challenge centers around

65

how to model two arbitrarily structured attributed graphs from different domains and

learn domain-invariant node representations for detecting anomalies. Second, in order

to detect anomalies on the unlabeled target graph, one straightforward solution is

to train a domain-adapted classifier as existing work shows (Ganin and Lempitsky

2014; Tzeng et al. 2017; Qu et al. 2019). However, the domain-adapted classifier may

render unsatisfactory anomaly detection performance. Figure 11 shows an example of

detecting anomalies on attributed graphs in the cross-domain setting. As we can see,

the labeled fraudulent reviewers in the Books domain (e.g., A1) continuously spread

promotion links instead of reviewing books, which can be treated as a typical type of

anomalies. Although we are able to detect the anomalies that reveal similar behaviors

(i.e., shared anomalies) in the Clothes domain (e.g., B1) by domain adaptation, domain

B has another type of fraudulent reviewers who generate negative reviews to sabotage

the reputation of targeted products (e.g., B2). The domain-adapted classifier may not

work well for detecting such type of anomalies (i.e., unshared anomalies) since they

do not appear in the source domain graph. Therefore, the second challenge lies in how

to spot both the shared and unshared anomalies on the target graph simultaneously.

In this work, we propose Commander (cross-domain anomaly detection on

attributed networks), a novel end-to-end framework which consists of four principled

components to address the above challenges. For the first challenge, Commander

employs a shared graph attentive encoder building on top of the graph attention

networks (Veličković, Cucurull, Casanova, Romero, Lio, et al. 2018c) to learn node

representations of both source and target attributed graphs. Meanwhile, by deceiving

the domain discriminator to distinguish the domain assignment of nodes, the graph

attentive encoder gradually maps node representations from both source and target

graphs to a domain-invariant feature space. For the second challenge, Commander

66

can detect the shared anomalies with the domain-adapted anomaly classifier trained

from the labeled source graph. Meanwhile, Commander uses an attribute decoder to

spot the unshared anomalies by measuring the attribute reconstruction error of each

node. As such, the synergistic collaboration between anomaly classifier and attribute

decoder empowers Commander to achieve superior anomaly detection performance

on the target graph. To summarize, our contributions of this study are as follows:

• Problem : To the best of our knowledge, we are the first to study the novel

problem of cross-domain graph anomaly detection. In particular, we emphasize its

importance and give a formal problem definition.

• Algorithm : We develop an end-to-end framework for cross-domain graph anomaly

detection. The proposed framework bridges the domain discrepancy between two

attributed graphs and detects both the shared and unshared anomalies on the target

graph.

• Evaluation : We perform extensive experiments on real-world datasets to verify

the effectiveness of our proposed model. The experimental results demonstrate its

superior performance for cross-domain graph anomaly detection.

3.2.2 Related Works

Domain adaptation (Pan and Yang 2009) aims at mitigating the generalization

bottleneck introduced from domain shift. With the rapid growth of deep neural

networks, deep domain adaptation has drawn much attention lately. In general,

deep domain adaptation methods are trying to locate a domain-invariant feature

space that can reduce the differences between the source and target domains. This

goal is accomplished either by transforming the features from one domain to be

67

closer to the other domain, or projecting both domains into a domain-invariant

latent space (Ganin and Lempitsky 2014; J. Yu et al. 2018; Shu et al. 2019). For

instance, Tzeng et al. (Tzeng et al. 2014) leverage an adaptation layer and a domain

confusion loss to learn the domain-invariant representations. TLDA (Zhuang et

al. 2015) is a deep autoencoder-based model which tries to learn to domain-invariant

representations and useful for label classification. Inspired by the idea of Generative

Adversarial Network (GAN) (Goodfellow et al. 2014), researchers also propose to

perform domain adaptation in an adversarial training paradigm (Ganin and Lempitsky

2014; Ganin et al. 2016; Tzeng et al. 2017; Shu et al. 2019). By exploiting a domain

discriminator to distinguish the domain labels while learning deep features to confuse

the discriminator, DANN (Ganin et al. 2016) achieves superior domain adaptation

performance. ADDA (Tzeng et al. 2017) learns a discriminative representation using

labeled source domain data and then map the target data to the same space through

an adversarial loss. Later on, researchers also try to apply domain adaptation

techiniques on graph-structured data (Y. Zhang et al. 2019; Dai et al. 2019; Shen

et al. 2020; M. Wu et al. 2020) to handle the domain discrepancy between source and

target graphs. For example, DANE (Y. Zhang et al. 2019) applies a shared weight

graph convolutional network architecture with constraints of adversarial learning

regularization, enabling cross-network knowledge transfer fro unsupervised network

embedding. Similarly, UDA-GCN (M. Wu et al. 2020) further propose a dual graph

convolutional networks to capture both the local and global consistency relationship

of each graph, and use inter-graphed based attention mechanism to better represent

each node. However, cross-domain anomaly detection remains unsolved in the graph

learning community.

68

3.2.3 Anomaly Analysis Across Domains.

To gain insight into the relations between anomalies in a single domain or across

different domains, we conduct an initial exploration on a pair of real-world datasets

covering two different domains (i.e., Hotel and Restaurant) in Yelp (The details of the

datasets are introduced in Section 3.2.6.1). There are regular users and anomalies in

both domains. In this analysis, we regard Hotel as our target domain for which we

want to detect anomalies. As shown in Figure 12, we compare the cosine similarity

between different user pairs. Note that each user is represented with a feature vector

constructed with the bag-of-word features from all his/her reviews. For Group 3 (G3),

we calculate the similarity between each anomaly and all the regular users in Hotel and

show the average value for each anomaly. Compared with G1, in which we show the

average similarity between each anomaly and the other anomalies in the same domain,

the values in G3 are significantly smaller. Such discrepancy between anomalies and

regular users–which represent the majority of users in the platform– can be utilized

for anomaly detection under the unsupervised setting. To investigate whether the

labeled anomalies in the source domain (Restaurant in this case) can give guidance

to anomaly detection in Hotel, we evaluate the similarities between anomalies across

these two domains (shown in G2). The fact that the anomalies in Hotel are closer to

anomalies in Restaurant than regular users in Hotel demonstrates that the supervised

information from the source domain (Restaurant) can be potentially leveraged for

detecting anomalies in the target domain (Hotel). However, the values of similarity

in G2 are still smaller than those in G1, meaning that there exist some anomalies

in Hotel revealing unshared patterns compared with anomalies in Restaurant. We

69

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Cosine Similarity

A in Hotel
 vs G1
A in Hotel

A in Restaurant
 vs G2
A in Hotel

A in Hotel
 vs G3
R in Hotel

A: Anomaly R: Regular User
Restaurant ==> Hotel

Figure 12. Cross-domain data analysis w.r.t. feature similarity between different user
groups.

observe similar data patterns in other pairs of cross-domain datasets, which motivates

our design of Commander.

3.2.4 Problem Definition

To legibly describe the studied problem, we follow the commonly used notations

as introduced in Section 2.1.3. In order to provide more interpretable results, graph

anomaly detection is commonly considered as a ranking problem (Akoglu, Tong, and

Koutra 2015; Ding et al. 2019). Accordingly, we define the problem of cross-domain

graph anomaly detection as follows:

Problem Definition 3 Cross-domain Graph Anomaly Detection: Given a

labeled attributed graph Gs = (Xs,As) from the source domain and another unlabeled

attributed graph Gt = (Xt,At) from the target domain, here we follow previous works

and assume Gs and Gt share the same feature space but do not have overlapped nodes

or edges. The objective is to learn an anomaly detection model, which is capable of

generalizing the knowledge from the labeled graph Gs, to detect the anomalies on the

target graph Gt. Ideally, anomalous nodes should be ranked on higher positions over

normal nodes in the returned list.

70

3.2.5 Architecture Overview

In this section, we present the details of the proposed framework that consists

of four dedicated components (see Figure 13): (1) a graph attentive encoder; (2)

a domain discriminator; (3) an anomaly classifier; and (4) an attribute decoder.

Specifically, Commander accomplishes domain adaptation on attributed graphs with

the graph attentive encoder and domain discriminator. The anomaly classifier and

attribute decoder are employed to detect anomalies on the target attributed graph

synergistically.

3.2.5.1 Domain Adaptation on Attributed Graphs

Deep domain adaptation has recently drawn much attention with the booming

development of deep neural networks (DNNs). Those deep domain adaptation methods

have been proven to be effective in different learning tasks, such as image classifi-

cation, sentiment classification and text matching (Ganin and Lempitsky 2014; Qu

et al. 2019). The main intuition behind these methods is to learn the domain-invariant

representations of combined samples from both source and target domains. In order

to perform cross-domain anomaly detection on attributed graphs, we propose to follow

a prevalent line of study (Ganin and Lempitsky 2014; Zheng Li et al. 2018; Shu

et al. 2019) and first employ a shared encoder to extract the latent representation of

each node in both Gs and Gt. However, apart from the image or text data that we can

directly feed the combined samples from both source and target domains into a shared

feature extractor, different attributed graphs have distinctive topological structures.

71

Thus, it is unclear that how we can model two arbitrarily structured attributed graphs

using a shared encoder.

Graph Attentive Encoder (Enc). To counter this problem, we build our shared

encoder grounded on the graph attention networks (Veličković, Cucurull, Casanova,

Romero, Lio, et al. 2018c) (GATs). GAT is an attention-based GNN model that

allows specifying fine-grained weights when aggregating information from neighbors

(as shown in Figure 13). Formally, in each layer l, node vi integrates the features of

neighboring nodes to obtain representations of layer l + 1 via:

h
(l+1)
i = σ

(∑
j∈Ni∪vi

αijWh
(l)
j

)
, (3.9)

where σ denotes the nonlinear activation function (e.g., ReLU). Ni denotes the set

of neighbors for vi and αij is the attention coefficient between node vi and node vj,

which can be computed as:

αij =
exp

(
σ
(
aT[Wh

(l)
i ⊕Wh

(l)
j]

))∑
k∈Ni∪vi exp

(
σ
(
aT[Wh

(l)
i ⊕Wh

(l)
k]

)) , (3.10)

where ⊕ is the concatenation operation and the attention vector a is a trainable

weight vector that assigns importance to the different neighbors of node vi, allowing

the model to highlight the features of the important neighboring node that is more

task-relevant.

The benefits of using graph attention networks are mainly two-fold: (1) graph

attention networks employ a trainable aggregator function to learn the representation

of each node, which eliminates the dependency on the global graph structure. In this

way, our shared encoder is capable of learning node representations for both Gs and

Gt (Veličković, Cucurull, Casanova, Romero, Lio, et al. 2018c); (2) due to the fact that

malicious users might build spurious connections with normal users to camouflage

their noxious intentions, graph attention networks can better assess the abnormality

72

of each node by specifying fine-grained attentions on the neighboring nodes. Thus,

the graph attentive encoder is able to learn high-quality node representations from

the two attributed graphs Gs and Gt. Moreover, we build the graph attentive encoder

Enc with multiple GAT layers:

h
(1)
i = σ

(∑
j∈Ni∪vi

α
(1)
ij W(1)xj

)
,

. . .

zi = σ
(∑
j∈Ni∪vi

α
(L)
ij W(L)h

(L−1)
j

)
,

(3.11)

where zi is the latent representation of node i. In this way, the graph attentive encoder

Enc can capture the non-linearity of topological structure and nodal attributes.

Following previous domain adaptation works (Ganin et al. 2016; M. Wu et al. 2020),

we use Enc as a shared architecture and encodes Gs and Gt one by one in each epoch.

This way the graph attentive encoder is able to map the learned node representations

from two graphs to an aligned embedding space and further enables knowledge transfer

across graphs from different domains.

Domain Discriminator (Dis). In order to further perform domain adaptation on

two attributed graphs from different domains, we adopt the idea of adversarial machine

learning (Goodfellow et al. 2014) to perform adversarial domain adaptation (Tzeng

et al. 2017; Pan et al. 2019) in a two-player minimax game. As illustrated in Figure

13, the first player is the domain discriminator Dis which tries to distinguish whether

an embedded node is from the source domain or the target domain, and the second

player is the graph attentive encoder Enc which is adversarially trained to deceive

the domain discriminator. The domain discriminator Dis is built with a feed-forward

73

Graph Attentive Encoder

Anomaly
Classifier

Domain
Discriminator

A"

Attribute
Decoder

B"

B#

Source Target

Anomaly Ranking List

...

B! B"

!

"

#

$

%&' (&!')$

*&

(&"')$

(&#')$

(&$')$

Source Target

Figure 13. Overview of the Commander framework for cross-domain graph anomaly
detection. Figure best viewed in color.

layer with tanh non-linearity, followed by a sigmoid function:

oD
i = tanh(WDzi + bD),

ŷi = sigmoid(uToD
i),

(3.12)

where WD and bD denote the trainable parameter matrix and bias, respectively. oD
i

is the output of the feed-forward layer. Here u is another trainable weight vector, and

ŷi is the predicted domain label. The adversarial domain loss can be mathematically

formulated as:

LD = − 1

ND

ND∑
i=1

[
di log ŷi + (1− di) log(1− ŷi)

]
, (3.13)

74

where ND denotes the number of all the nodes in both Gs and Gt. Here di represents

the domain label of node i and ŷi is the predicted domain label.

Since our goal is to bridge the domain discrepancy between two graphs, here we

choose to maximize the above cross-entropy loss. In other words, after the feature

encoding phase, the domain label of nodes would not be accurately recognized by

the domain discriminator, and the shared graph attentive encoder would be able to

extract domain-invariant node representations from both source graph Gs and target

graph Gt.

3.2.5.2 Cross-domain Anomaly Detection

In the previous subsection, we have discussed how to bridge the domain discrepancy

between two attributed graphs from different domains. This subsection introduces

how to detect both shared anomalies and unshared anomalies on the target graph Gt.

Anomaly Classifier (Clf). Following the idea of other domain adaptation learning

tasks (Shu et al. 2019), we train an anomaly classifier Clf right after the shared graph

attentive encoder, to distinguish whether a node from Gs is an anomaly or not. Clf is

built with a feed-forward layer with tanh non-linearity, followed by a sigmoid function:

oC
i = tanh(WCzi + bC),

ȳi = sigmoid(vToC
i),

(3.14)

where WC and bC are the trainable parameter matrix and bias, v is a trainable

weight vector. Specifically, the anomaly classification loss can be defined as the binary

cross-entropy:

LC = − 1

NC

NC∑
i=1

[
yi log ȳi + (1− yi) log(1− ȳi)

]
, (3.15)

75

where NC denotes the number of nodes sampled from the labeled graph Gs. yi and

ȳi denote the ground truth anomaly label and the predicted anomaly label of node

i, respectively. Note that here we sample an equal number of normal nodes and

abnormal nodes from Gs for addressing data imbalance. The shared graph attentive

encoder maps data from different domains to a domain-invariant feature space by

deceiving the domain discriminator, then the domain-adapted anomaly classifier can

be directly used for detecting the shared anomalies on the target attributed graph.

Nevertheless, one critical issue is that not all anomalies share similar characteristics

across graphs from different domains. As discussed in the previous sections, some

specific types of anomalies that exist in Gt may not appear in Gs. Thus solely

relying on a classifier trained on the labeled source graph cannot accurately trace such

unshared anomalies, rendering unsatisfactory anomaly detection performance on the

target attributed graph.

Attribute Decoder (Dec). As suggested by recent studies (Xia et al. 2015; Li, Dani,

Hu, and Liu 2017; Ding et al. 2019), the reconstruction error between original data

and estimated data is a strong indicator to show the abnormality of each data instance.

The intuition is that anomalies usually cannot be well reconstructed from the observed

data and have large reconstruction errors since their patterns deviate significantly

from the majority. Therefore, we build an attribute decoder Dec following the graph

attentive encoder for reconstructing two attributed graphs. Since node dependency

information is inherently encoded in each GAT layer, we propose to reconstruct the

76

node attributes for simplicity. Specifically, we build Dec with multiple GAT layers:

h
(L+1)
i = σ

(∑
j∈Ni∪vi

α
(L+1)
ij W(L+1)zj

)
,

. . .

x̃i = σ
(∑
j∈Ni∪vi

α
(L̃)
ij W(L̃)h

(L̃−1)
j

)
,

(3.16)

where x̃i is the estimated attribute of node vi. The reconstruction error computed by

this deep autoencoder network provides a precise assessment of node abnormality (Zhou

and Paffenroth 2017; Chalapathy, Menon, and Chawla 2017; Ding et al. 2019) and

enables us to spot the unshared anomalies. Specifically, the reconstruction loss can be

defined as:

LR = ||X̃s −Xs||2F + ||X̃t −Xt||2F , (3.17)

where X̃ = [x̃1, x̃2, . . . , x̃n] denotes the reconstructed attribute matrix of a graph.

In this way, our anomaly classifier and attribute decoder are able to synergis-

tically perform anomaly detection on the target attributed graph. Intuitively, the

anomaly classifier would spot the shared anomalies with high precision, meanwhile

the attribute decoder is capable of providing complementary insight for detecting the

unshared anomalies. As another benefit, the incorporation of the attribute decoder

can also improve the feature learning quality of the graph attentive encoder through

back-propagation, and relieve the overfitting problem when training the anomaly

classifier (LeCun, Bengio, and Hinton 2015).

3.2.5.3 Model Learning

So far, we have introduced the architecture of our framework Commander for

solving the problem of cross-domain graph anomaly detection. This joint architecture

77

requires dedicated training objective for each component. The complete objective

function can be formulated as follows:

L = −LD + LC + LR

=
1

ND

ND∑
i=1

[
di log ŷi + (1− di)log(1− ŷi)

]

− 1

NC

NC∑
i=1

[
yi log ȳi + (1− yi)log(1− ȳi)

]
+ ||X̃s −Xs||2F + ||X̃t −Xt||2F .

(3.18)

We summarize the training procedure of Commander in Algorithm 1. By minimizing

the dedicated objective functions, Commander gradually closes the domain shift

between Gs and Gt, and learns a powerful anomaly detector. All the parameters of

Commander are optimized by the standard back-propagation algorithm (LeCun,

Bengio, and Hinton 2015). Specifically, for each node, we use the output from Clf as a

learned weight to re-weight the reconstruction errors from Dec, and the final anomaly

score of node vi can be formulated as:

score(vi) = ȳi||x̃i − xi||22, (3.19)

where ȳi ∈ [0, 1] and the final scores represent the node abnormality computed by

both the anomaly classifier and the attributed decoder.

3.2.6 Performance Evaluation

3.2.6.1 Experiment Settings

Evaluation Datasets. To evaluate the performance of different methods, we adopt

two pairs of real-world datasets for evaluation. All the datasets are public and have

78

Table 10. Statistics of the Real-world Datasets.

YelpHotel ⇌ YelpRes YelpNYC ⇌ Amazon

nodes 5,196 5,102 21,040 18,601
edges 171,743 239,738 303,949 274,458
attributes 8,000 8,000 10,000 10,000
anomalies 250 275 1000 750

been widely used for graph anomaly detection problems (Rayana and Akoglu 2015;

Kaghazgaran, Caverlee, and Squicciarini 2018). The dataset statistics are listed in

Table 10 and we summarize the details of those two dataset pairs as follows:

• YelpHotel ⇌ YelpRes: YelpHotel and YelpRes are collected from Yelp on two

major business domains, i.e., hotel and restaurant, in the Chicago area (Rayana

and Akoglu 2015). For each dataset, users are considered as nodes and a link will

be created if two users commented on the same hotel or same restaurant. By using

the Yelp anti-fraud filter, the users from each dataset can be separated into two

classes: anomaly (authors of filtered reviews), and regular users (authors with no

filtered reviews), which can be considered as the ground truth labels.

• YelpNYC ⇌ Amazon: To further study the effect of different levels of domain

discrepancy on the performance improvements, we also adopt another pair of

attributed graphs collected from two different platforms (domains with higher

discrepancy), i.e., Yelp and Amazon. Specifically, YelpNYC collects data for the

restaurants located in New York City (Rayana and Akoglu 2015). Amazon is

another attributed graph collected from an E-commerce platform by (Kaghazgaran,

Caverlee, and Squicciarini 2018). In this dataset, a user is flagged as a fraudulent

user if he/she has reviewed two or more products that have been targeted by

crowdsourcing efforts (Kaghazgaran, Caverlee, and Squicciarini 2018), otherwise

the user is considered as legitimate.

79

For all the datasets above, we apply bag-of-words model (Zhang, Jin, and Zhou

2010) to obtain the attributes of each node. The vocabulary is built on top of the

textual contents related to the nodes from both source and target graphs. With

the processed datasets, we are able to conduct the evaluation across 4 domain shifts

in our experiments, including YelpHotel → YelpRes, YelpRes → YelpHotel,

YelpNYC → Amazon, and Amazon → YelpNYC. Notably, “A → B” represents

the task which aims at detecting anomalies on the target domain attributed graph B,

by adapting the knowledge from the labeled source domain attributed graph A. In

addition, as anomalies usually consist of a small portion of a dataset, we randomly

sampled out part of the spammers or fraudulent reviewers to make our experiments

more realistic and challenging.

Compared Methods. In the experiments, we compare the proposed framework

Commander with several state-of-the-art representative anomaly detection methods.

Specifically, LOF (Breunig et al. 2000) detects anomalies at the contextual level and

only considers nodal attributes. ConOut (Sánchez et al. 2014) detects anomalies in the

local context by determining its subgraph and its relevant subset of attributes. AMEN

(Perozzi and Akoglu 2016) uses both attribute and graph structure information to

detect anomalous neighborhoods. Specifically, it analyzes the abnormality of each

node from the ego-network point of view. DOMINANT (Ding et al. 2019) is the

state-of-the-art model for detecting anomalies on attributed graphs. By developing

a graph convolutional networks based autoencoder, the reconstruction errors can be

used for spotting anomalies. ADDA (Tzeng et al. 2017) is an adversarial domain

adaptation model for image classification. We adopt the architecture of this model to

conduct cross-domain graph anomaly detection by omitting the graph structures.

Due to the fact that cross-domain graph anomaly detection remains an under-

80

0

20

40

60

80

100

A
U

C
(%

)

 67.7

 51.2

 72.3
 76.7 74.5

 79.3

LOF
ConOut
AMEN
Dominant
ADDA
Commander

(a) YelpHotel→YelpRes

0

20

40

60

80

100

A
U

C
(%

) 59.3

 68.4 67.0 69.4 67.9
 74.8

LOF
ConOut
AMEN
Dominant
ADDA
Commander

(b) YelpRes→YelpHotel

0

20

40

60

80

100

A
U

C
(%

)

 65.4

 56.6 57.3

 85.6
 79.8

 87.3
LOF
ConOut
AMEN
Dominant
ADDA
Commander

(c) YelpNYC→Amazon

0

20

40

60

80

100

A
U

C
(%

) 56.5
 61.2

 68.0 69.2 66.7
 71.5

LOF
ConOut
AMEN
Dominant
ADDA
Commander

(d) Amazon→YelpNYC

Figure 14. Results of cross-domain graph anomaly detection w.r.t. AUC scores.

Table 11. Results of cross-domain graph anomaly detection w.r.t. Precision@K on
YelpRes and YelpHotel.

Precision@K

YelpHotel → YelpRes YelpRes → YelpHotel
K 50 150 250 50 150 250
LOF 0.460 0.260 0.176 0.440 0.213 0.172
ConOut 0.260 0.107 0.064 0.480 0.280 0.216
AMEN 0.040 0.073 0.092 0.160 0.113 0.080
DOMINANT 0.580 0.327 0.236 0.560 0.320 0.224
ADDA 0.460 0.233 0.176 0.500 0.247 0.172
Commander 0.620 0.360 0.244 0.600 0.347 0.228

studied task, it is worth mentioning that none of the above methods is exactly

developed for solving our studied problem. Since no labels are available on the

target graph, we first select four state-of-the-art baselines (i.e., LOF, ConOut, AMEN

and DOMINANT) for unsupervised anomaly detection on attributed graphs. We

directly run each of them on the target graph, and report the corresponding detection

performance to make a fair comparison. Additionally, we also compare with ADDA,

which is a state-of-the-art domain adaptation method. As it is not designed for

graph-based anomaly detection problem, we omit the topological structure and use

the probability predicted by ADDA to rank all the nodes on the target graph.

81

Table 12. Results of cross-domain graph anomaly detection w.r.t. Precision@K on
YelpNYC and Amazon.

Precision@K

YelpNYC → Amazon Amazon → YelpNYC
K 50 150 250 50 150 250
LOF 0.140 0.073 0.052 0.380 0.200 0.168
ConOut 0.040 0.020 0.012 0.660 0.407 0.328
AMEN 0.020 0.013 0.012 0.580 0.333 0.264
DOMINANT 0.480 0.433 0.444 0.620 0.407 0.320
ADDA 0.380 0.220 0.184 0.540 0.353 0.312
Commander 0.500 0.460 0.456 0.680 0.420 0.332

Table 13. Results of cross-domain graph anomaly detection w.r.t. Recall@K on
YelpRes and YelpHotel.

Recall@K

YelpHotel → YelpRes YelpRes → YelpHotel
K 50 150 250 50 150 250
LOF 0.084 0.142 0.160 0.088 0.128 0.172
ConOut 0.047 0.058 0.058 0.096 0.168 0.216
AMEN 0.007 0.040 0.084 0.032 0.068 0.080
Dominant 0.105 0.178 0.215 0.112 0.192 0.224
ADDA 0.084 0.127 0.160 0.100 0.148 0.172
Commander 0.113 0.196 0.222 0.120 0.208 0.228

3.2.6.2 Evaluation Results

Firstly, we evaluate the performance of the proposed framework Commander and

other unsupervised baseline methods on four different domain shifts. The results with

respect to AUC scores are presented in Figure 14. We also report the Precision@K

scores and Recall@K scores in Table 11, Table 12, Table 14 and Table ??, respectively.

From a comprehensive view, we can clearly find our approach Commander achieves

considerable improvements over the state-of-the-art unsupervised methods on all the

domain shifts. Take AUC value as an example, the performance of Commander

82

Table 14. Results of cross-domain graph anomaly detection w.r.t. Recall@K on
YelpNYC and Amazon.

Recall@K

YelpNYC → Amazon Amazon → YelpNYC
K 50 150 250 50 150 250
LOF 0.009 0.015 0.017 0.019 0.030 0.042
ConOut 0.003 0.004 0.004 0.033 0.061 0.082
AMEN 0.001 0.003 0.004 0.029 0.050 0.066
Dominant 0.032 0.087 0.148 0.031 0.061 0.080
ADDA 0.025 0.044 0.061 0.027 0.053 0.078
Commander 0.033 0.092 0.152 0.034 0.063 0.083

is 2.6% higher than the best baseline on the YelpHotel → YelpRes case, and the

corresponding improvements on YelpHotel→ YelpRes, YelpNYC→ Amazon, Amazon

→ YelpNYC are reported with 5.4%, 1.7% and 1.6%, respectively. Meanwhile,

our approach consistently outperforms the best performing baselines according to

Precision@K and Recall@K results, which indicates that Commander is capable of

discovering more anomalous nodes in its top return lists and once again demonstrates

the effectiveness our approach.

Note that the unsupervised methods, including LOF, ConOut and AMEN, cannot

achieve competitive results in comparison. In particular, the performance of LOF is

limited by its inability of modeling node dependencies. We also observe that AMEN

performs poorly in the task of ranking anomalous nodes. One explanation is that

AMEN is designed for detecting anomalous neighborhoods rather than nodes. Even

though DOMINANT performs best amongst all the unsupervised methods owing to

the excellent expressive power of graph convolutional network (GCN), it is still largely

behind our approach as it is unable to accurately spot those shared anomalies by

utilizing labeled data from the source graph.

Next, we compare the performance of the domain adaptation method ADDA with

83

our proposed framework Commander. With the reported results (w.r.t. AUC scores),

we observe that Commander outperforms ADDA by a significant margin, reaching

around 10% to 20% relative improvement in most cases. Meanwhile, as shown in

Table 11, Table 12 Table 14 and Table ??, Commander is able to discover more

true anomalies on its top anomaly ranking list than ADDA. There are two major

reasons that result in the ineffectiveness of ADDA for the studied problem: First,

node dependency information is indispensable for assessing the abnormality of a node

while ADDA cannot model such information modality; Second, ADDA is unable to

detect the unshared anomalies on the target graph since it is not tailored for anomaly

detection problem. On the contrary, our approach Commander is able to detect

unshared anomalies on the target graph using the Attribute Decoder Dec.

Additionally, the results show that our approach is able to achieve larger improve-

ments in the first two domain shifts than the last two. Compared with the attributed

graphs YelpHotel and YelpRes, the attributed graphs YelpNYC and Amazon are not

only from two different business domains, but also from two different platforms. Thus,

this observation implies that the model performance is strongly associated with the

degree of domain discrepancy. In brief, smaller domain discrepancy could be easier

adapted, leading to better cross-domain anomaly detection performance.

3.2.6.3 Ablation Study

To investigate how much is the contribution of each component, in this subsec-

tion, we design the ablation study and show the corresponding experimental results.

Specifically, we compare our proposed framework Commander with the following

three variants:

84

Table 15. Ablation results on two cross-domain settings: YelpHotel → YelpRes and
YelpRes → YelpHotel.

Methods YelpHotel → YelpRes YelpRes → YelpHotel
Pre@50 AUC Pre@50 AUC

Clf 0.280 0.461 0.220 0.431
Clf +Dis 0.500 0.758 0.420 0.688
Dec 0.540 0.765 0.540 0.695
w/o GAT 0.580 0.776 0.580 0.722
Commander 0.620 0.793 0.600 0.748

• Clf : We exclude the domain discriminator and attribute decoder from Commander,

and only use the anomaly classifier to detect anomalies on the target domain

attributed graph Gt.

• Clf +Dis : We exclude the attribute decoder from the proposed framework Comman-

der and use the anomaly classifier and domain discriminator to detect anomalies

on the target domain attributed graph Gt.

• Dec: We exclude the anomaly classifier and domain discriminator from the proposed

framework Commander and only employ attribute decoder for detecting anomalies

on the target domain attributed graph Gt.

• w/o GAT : We replace the GAT layers in Commander with GCN layers to examine

the effectiveness of using GAT for anomaly detection.

The comparison results on YelpHotel → YelpRes and YelpRes → YelpHotel are

shown in Table 15, and the results on YelpNYC→ Amazon and Amazon→ YelpNYC

are shown in Table 16. Due to the space limit, we only show the results in terms of

Precison@50 and AUC in our ablation study. From the reported results, we make the

following observations:

• By examining the performance of Clf on four domain shifts, we can clearly find

85

that it performs poorly overall. On the contrary, the variant Clf +Dis improves the

detection performance to a large extent with the join of Dis, which demonstrates

that an anomaly classifier trained on the Gs cannot be directly used on Gt without

domain adaptation.

• Comparing to the variant Clf +Dis, Dec achieves superior detection performance in

our experiments. The reasonable explanation is that the attribute decoder provides

a more comprehensive assessment and is capable of detecting both shared anomalies

and unshared anomalies to some extent.

• By replacing the GAT layers in the Commander framework with vanilla GCN

layers, the performance decreases a noticeable margin, which shows the advantage

of using graph attention mechanism for detecting anomalies.

• Despite Clf +Dis and Dec considerably improve the detection performance, they

still cannot achieve competitive results with our approach Commander in the

evaluations. It validates our assumption that Dis assists the anomaly classifier Clf

to detect the shared anomalies, meanwhile Dec is the key component to detect those

unshared anomalies on the target graph.

Table 16. Ablation results on two cross-domain settings: YelpNYC → Amazon and
Amazon → YelpNYC.

Methods YelpNYC → Amazon Amazon → YelpNYC
Pre@50 AUC Pre@50 AUC

Clf 0.040 0.558 0.320 0.445
Clf +Dis 0.420 0.812 0.560 0.677
Dec 0.480 0.848 0.600 0.696
w/o GAT 0.460 0.857 0.640 0.702
Commander 0.500 0.873 0.680 0.715

86

3.3 Conclusion

In this chapter, firstly, for solving the problem of node classification with incom-

plete supervision, we propose a new graph meta-learning framework, Meta Label

Propagation (Meta-LP). Based on the meta-learned label propagation strategy, we are

able to generate informative pseudo labels on unlabeled nodes, in order to augment

the insufficient labeled data and learn powerful GNN model. Though built with

simple neural networks, Meta-LP effectively enables larger receptive fields and avoid

oversmoothing when learning with very few labeled data. We test Meta-LP on a

spectrum of benchmark datasets and the results well demonstrate its effectiveness.

For future work, it would be interesting to investigate other pseudo-labeling strategies

for solving the studied problem.

Secondly, to leverage the indirect supervision, we propose a novel cross-domain

anomaly detection framework called Commander, to tackle the problem of anomaly

detection in the unlabeled attributed graphs. The proposed framework consists of

four principled components: graph attentive encoder, anomaly classifier, domain

discriminator and attribute decoder. These components are tightly coupled to bridge

the domain discrepancy between two attributed graphs from different domains and

then perform accurate anomaly detection on the target attributed graph. We perform

extensive experiments to corroborate the effectiveness of the proposed Commander

framework.

87

Chapter 4

GRAPH SELF-SUPERVISED LEARNING

To alleviate the demand for massive labeled data and provide sufficient supervision,

self-supervised learning has been introduced and achieved great success in various

domains. In this chapter, I will elaborate my research on graph self-supervised learning

in two lines: (1) graph contrastive learning ; and (2) graph generative modeling.

In graph contrastive learning, most of the existing methods learn node representa-

tions solely based on the information from the local neighborhoods due to the shallow

property of GNNs. While for real-world graphs, nodes sharing similar characteristics

may not always be geographically close, requiring the learning algorithm to retain such

“global” awareness. To address this critical problem, I designed a simple yet effec-

tive graph contrastive learning model S3-CL to elicit global structural and semantic

knowledge from the input graph, which demonstrates its superior performance over

state-of-the-art methods.

For my research on graph generative modeling, I have developed a self-supervised

graph anomaly detection models – Dominant, which have been considered as the repre-

sentative works in deep graph anomaly detection. Based on the idea of reconstructing

the input graph naturally serves as a self-supervision pretext for training the graph

neural networks, Dominant performs both structure and feature reconstruction to

capture the patterns of the majority nodes in a self-supervised fashion. This way the

anomalies can be effectively detected by measuring the reconstruction errors.

88

4.1 Unsupervised Graph Contrastive Learning

4.1.1 Introduction

Learning expressive node representations of graph-structured data plays an es-

sential role in a variety of real-world applications, ranging from social network anal-

ysis (Thomas N. Kipf and Welling 2017b), to drug discovery (Fout et al. 2017), to

financial fraud detection (Ding et al. 2019). Recently, graph neural networks (GNNs),

which generally follow a recursive message-passing scheme, have emerged as pow-

erful architectures in graph machine learning (sgc; Thomas N. Kipf and Welling

2017b; Veličković, Cucurull, Casanova, Romero, Liò, et al. 2018; Hamilton, Ying,

and Leskovec 2017; Ding, Wang, Li, Shu, et al. 2020; J. Wang et al. 2020). Though

GNNs are empirically effective in handling supervised or semi-supervised graph ma-

chine learning tasks, the labor-intensive and resource-expensive data labeling cost

is meanwhile unbearable (Ding, Xu, et al. 2022; C. Zhang et al. 2022; Ding, Zhang,

et al. 2022). To relieve the burdensome reliance on human-annotated labels, unsu-

pervised (self-supervised) node representation learning with GNNs has drawn much

research attention lately (Thomas N Kipf and Welling 2017a; Veličković et al. 2019;

Y. You et al. 2020).

More recently, contrastive learning (He et al. 2020; T. Chen et al. 2020) has

been actively explored to advance the performance of GNNs in graph self-supervised

learning (Veličković et al. 2019; Y. You et al. 2020; Hassani and Khasahmadi 2020; Qiu

et al. 2020; Zhu et al. 2020b). In general, graph contrastive learning (GCL) methods

learn representations by creating two augmented views of each graph element and

maximizing the agreement between the encoded representations of the two augmented

89

views. Correspondingly, the relevant view pairs (positive) will be pulled together, and

the irrelevant view pairs (negative) will be pushed away in the latent space. With only

non-semantic labels, unsupervised GCL can provide generalizable node representations

for various downstream tasks (Y. You et al. 2020; Hassani and Khasahmadi 2020;

Du et al. 2021), becoming a prevailing paradigm in unsupervised node representation

learning.

Despite the success, the research of unsupervised GCL is still in its infancy – most of

the existing GCL methods learn node representations based on the information from the

local neighborhoods due to the shallow property of conventional GNNs. While for real-

world graphs, nodes sharing similar characteristics may not always be geographically

close, requiring the learning algorithm to retain such “global” awareness. However,

it is a non-trivial task for the existing GCL methods built on top of shallow GNNs

since they have inherent limitations in capturing either structural global knowledge

or semantic global knowledge. Specifically: (i) from the structural perspective, long-

range node interactions are highly desired for capturing structural global knowledge,

especially for many downstream tasks that have large problem radii (Alon and Yahav

2021). To this end, a straightforward way is to employ a deeper GNN encoder to

encode the augmented graphs. However, directly stacking multiple GNN layers will

not only lead to information distortion caused by the oversmoothing issue (D. Chen

et al. 2020), but also introduce additional training parameters that hamper the model

training efficiency; and (ii) from the semantic perspective, existing unsupervised GCL

methods predominately focus on instance-level contrast that leads to a latent space

where all nodes are well-separated and each node is locally smooth (Junnan Li et

al. 2021) (i.e., input with different augmentations have similar representations), while

the underlying semantic structure (i.e., intra-cluster compactness and inter-cluster

90

separability) of the input graph is largely ignored (Junnan Li et al. 2021). The lack of

prior knowledge of ground-truth labels (e.g., cluster/class numbers) leaves a significant

gap for unsupervised GCL to consolidate the semantic structure from a global view in

the latent space. Yet, how to bridge this gap remains unattended.

In this work, we address the aforementioned limitations by proposing a simple yet

effective GCL framework, namely, S3-CL (Simple Neural Networks with Structural

and Semantic Contrastive Learning). The proposed two new contrastive learning

algorithms enable the framework to outperform other GCL counterparts with a much

simpler and parameter-less encoding backbone, such as an MLP or even a one-layer

neural network. To capture long-range node interactions without oversmoothing, the

structural contrastive learning algorithm first generates multiple augmented views of

the input graph based on different feature propagation scales (i.e., multi-scale feature

propagation). Then by performing contrastive learning on the node representations

learned from the local and multiple high-order views, the encoder network can improve

node-wise discrimination by exploiting the consistency between the local and global

structure information of each node. In the meantime, the semantic contrastive learning

algorithm further enhances intra-cluster compactness and inter-cluster separability to

better consolidate the semantic structure from a global view. Specifically, it infers

the clusters among nodes and their corresponding prototypes by a new Bayesian

non-parametric algorithm and then performs semantic contrastive learning to enforce

those nodes that are semantically similar to cluster around their corresponding cluster

prototypes in the latent space. By jointly optimizing the structural and semantic

contrastive losses, the pre-trained encoder network can learn highly expressive node

representations for various downstream tasks without using any human-annotated

labels. We summarize our contributions as follows:

91

• We develop a new GCL framework S3-CL, which can learn expressive node represen-

tations in a self-supervised fashion by using a simple and parameter-less encoding

backbone.

• We propose structural and semantic contrastive learning algorithms, which can be

used for explicitly capturing the global structural and semantic patterns of the

input graph.

• We conduct extensive experiments to show that our approach significantly outper-

forms the state-of-the-art GCL counterparts on various downstream tasks.

4.1.2 Preliminaries – Graph Contrastive Learning

We follow the commonly used notations for attributed graph as described in 2.1.3.

In general, graph contrastive learning aims to pre-train a graph encoder that can

maximize the node-wise agreement between two augmented views of the same graph

element in the latent space via a contrastive loss. Generally, given an attributed graph

G = (X,A), two different augmented views of the graph, denoted as G(1) = (X(1),A(1))

and G(2) = (X(2),A(2)), are generated through the data augmentation function(s).

The node representations on G1 and G(2) are denoted as H(1) = fθ(X
(1),A(1)) and

H(2) = fθ(X
(2),A(2)), where fθ(·) is an encoder network. The agreement between the

node representations is commonly measured through Mutual Information (MI). Thus,

the contrastive objective can be generally formulated as:

max
θ

N∑
i=1

MI(h(1)
i ,h

(2)
i). (4.1)

Following this formulation, Deep Graph Infomax (DGI) (Veličković et al. 2019)

is the first method that contrasts the patch representations with high-level graph

representations by maximizing their mutual information. MVGRL (Hassani and

92

Khasahmadi 2020) adopts graph diffusion to generate an augmented view, and contrast

representations of first-order neighbors with a graph diffusion. GCC (Qiu et al. 2020)

and GRACE (Zhu et al. 2020a) create the augmented views by sampling subgraphs.

MERIT (Jin et al. 2021) adopts a siamese self-distillation network and performs

contrastive learning across views and networks at the same time. Nonetheless, existing

unsupervised GCL methods only focus on short-range node interactions and are also

ineffective in capturing the semantic structure of graphs.

4.1.3 Architecture Overview

In this work, we propose a novel graph contrastive learning framework S3-CL for

unsupervised/self-supervised node representation learning. The overall framework is

illustrated in Figure 15. Our proposed framework consists of three main components:

(i) a simple (e.g., 1-layer) encoder network; (ii) a structural contrastive learning

algorithm; and (iii) a semantic contrastive learning algorithm.

4.1.3.1 Structural Contrastive Learning

Existing GCL methods for unsupervised node representation learning aim to achieve

node-wise discrimination by maximizing the agreement between the representations

of the same graph element in different augmented views. Despite their success, they

commonly ignore the global structure knowledge due to the limitations of either the

adopted data augmentation function or the GNN encoder. In this work, we propose

the structural contrastive learning algorithm, which enables a simple neural network to

93

𝑓𝜽!

…

𝑓𝜽

Momentum
Update

…

𝑼(#) 𝑼(%)

…

𝑼(&)

𝑯'

Pseudo Labels Latent Space

𝐿()*

𝑔+

Semantic Prototypes

𝐿,-.

Node Representation

…

Node-wise Contrasting

…

…

𝑯

…

𝒉!
𝒉"
𝒉#

…

Momentum
Encoder

Prototype
Inference

Projection
HeadEncoder

Semantic Contrastive Learning

Multi-scale
Feature Propagation

Structural Contrastive Learning

𝐗'(%)

𝐗'(&)

𝐗'(#)

Figure 15. Illustration of the overall framework S3-CL for self-supervised node
representation learning.

capture both local and global structural knowledge by performing contrastive learning

on multi-scale augmented graph views.

Multi-scale Feature Propagation. In order to capture long-range node interactions

without suffering the oversmoothing issue, in our structural contrastive learning

algorithm, we propose to adopt multi-scale feature propagation to augment the input

graph from the structural perspective. Compared to arbitrarily modifying the graph

structure such as perturbing edges or nodes, feature propagation not only allows

incorporating long-range node interactions but also mitigates the noises in the original

graph (Ding, Xu, et al. 2022). Unlike existing GCL algorithms that perform only

two augmentations for each instance, we perform feature propagation with different

scales to generate L augmented feature matrices {X̄(l)}Ll=1, each of which encodes the

l-hop node interactions in the graph. Then each augmented feature matrix X̄(l) can

be encoded by a encoder network fθ(·) and the corresponding node representations

can be computed by:

H(l) = fθ(X̄
(l)) = ReLU(X̄(l)Θ), X̄(l) = TlX, (4.2)

where T ∈ RN×N is a generalized transition matrix and we take T = Ãsym =

94

D̃−1/2ÃD̃−1/2 in this work. H(1) is learned from a local view as the message-passing

is only enabled between direct neighbors, while {H(l)}Ll=2 are learned from a set of

high-order views that encode the long-range node interactions at different scales.

It is noteworthy that our model inherently separates the feature propagation step,

i.e., X̄(l) = TlX, and transformation step, i.e., fθ(X̄(l)) into the data augmentation

and representation learning modules, respectively. Compared to standard GNNs

that couple the two steps together in each layer, this decoupling strategy allows the

model to perform the high-order feature propagation without conducting non-linear

transformations, reducing the risk of over-smoothing (Feng et al. 2020; Ding, Wang,

et al. 2022) in contrastive learning. In the meantime, we can use a much simpler

encoding backbone to transform the augmented features to node representations

without stacking multiple GNN layers.

Structural Contrastive Objective. In our structural contrastive learning, we aim

to maximize the agreement between the representations of each node learned from the

local view and its different high-order views by maximizing their mutual information.

Instead of directly contrasting the output of the encoder network, we follow previous

research in contrastive learning (T. Chen et al. 2020) and apply a projection head

gψ(·) to the node representations computed by the encoder network. As such, the

representations we contrast in our structural contrastive learning can be denoted by

{U(l)}Ll=1, where U(l) = gψ(H
(l)), and gψ(·) is a two-layer MLP in our implementation.

In our work, we adopt InfoNCE (Oord, Li, and Vinyals 2018) to estimate the lower

bound of the mutual information between the node representations learned from a

local view U(1) and different high-order views {U(l)}Ll=2 of the input graph. The loss

function of structural contrastive learning can be defined as:

Lstr = −
N∑
i=1

L∑
l=2

log
exp(u

(1)
i · u

(l)
i /τ1)∑M+L−1

j=1 exp(u
(1)
i · u

(l)
j /τ1)

, (4.3)

95

where τ1 is the temperature parameter. Note that {u(l)
j }M+L−1

j=1 contains L− 1 positive

examples and M negative examples sampled from augmented views of other nodes.

By performing the proposed structural contrastive learning based on multi-scale

augmentations of the input graph, the encoder network fθ(·) not only encourages

accurate node-wise discrimination but also captures multi-scale global structural

knowledge during the learning process. The resulted node representations H can be

computed by feeding the mixed-order propagated features X̄ to the encoder network

as:

H = fθ(X̄) = ReLU(X̄Θ), X̄ =
1

L

L∑
l=0

TlX. (4.4)

This enables the learned node representations to preserve both local and global

structure information compared with directly using TLX (K. Xu et al. 2018; Feng

et al. 2020).

4.1.3.2 Semantic Contrastive Learning

Despite the structural contrastive learning algorithm can provide better node-wise

discrimination by exploiting the global structural knowledge based on the multi-scale

propagated features, it has the same limitation as existing GCL efforts – cannot

explicitly encode the semantic structure of the input graph. To further capture the

semantic global knowledge, we propose a semantic contrastive learning algorithm that

encourages the intra-cluster compactness and inter-cluster separability in the semantic

latent space.

Since the prior knowledge of node clusters is unknown, we propose to iteratively

infer the clusters among nodes and the corresponding prototypes based on the learned

node representations, and perform semantic contrastive learning to promote those

96

nodes that are semantically similar clustering around their corresponding cluster

prototypes.

We denote the cluster prototype representation via a matrix C ∈ RK×D′ , where

K is the number of prototypes inferred from the data. We use ck to denote the k-th

row of C, which is the representation of the k-th prototype in the latent space. The

prototype assignments or pseudo labels of nodes are denoted by Z = {zi}ni=1, where

zi ∈ {1, ..., K} is the pseudo label of node vi.

Bayesian Non-parametric Prototype Inference. A key function of our semantic

contrastive learning algorithm is to infer highly representative cluster prototypes.

However, the optimal number of clusters is unknown under the setting of unsupervised

node representation learning. To bridge the gap, we propose a Bayesian non-parametric

prototype inference algorithm to approximate the optimal number of clusters and

simultaneously compute the cluster prototypes. Specifically, we build a Dirichlet

Process Mixture Model (DPMM) and assume the distribution of node representations

is a mixture of Gaussians, in which each component is used to model the prototype of

a cluster. Note that the components share the same fixed covariance matrix σI. The

DPMM model is defined as:

G ∼ DP(G0, α), ϕi ∼ G, hi ∼ N (ϕi, σI), (4.5)

where G is a Gaussian distribution drawn from the Dirichlet process DP(G0, α), and α

is the concentration parameter for DP(G0, α). ϕi is the mean of the Gaussian sampled

for node representation hi. G0 is the prior over means of the Gaussians. We take G0

to be a zero-mean Gaussian N (0, ρI), where ρI is the covariance matrix.

Next, we use a collapsed Gibbs sampler (Resnik and Hardisty 2010) to infer the

Gaussian components. The Gibbs sampler iteratively samples pseudo labels for the

nodes given the means of the Gaussian components and samples the means of the

97

Gaussian components given the pseudo labels of the nodes. Following (Kulis and

Jordan 2011), such a process is almost equivalent to K-Means when the variance of

the Gaussian components σ → 0. The almost zero variance eliminates the need to

estimate the variance σ, thus making the inference efficient. Let K̃ denote the number

of inferred prototypes at the current iteration step, the prototype assignment update

can be formulated as:

zi = argmin
k
{dik} ,

dik =

 ||hi − ck||2 for k = 1, ..., K̃

ξ for k = K̃ + 1,

(4.6)

where dik is the distance to determine the pseudo labels of node representation hi. ξ

is the margin to initialize a new prototype.

With the formulation in Equation (4.6), a node will be assigned to the prototype

modeled by the Gaussian component corresponding to the closest mean of Gaussian,

unless the squared Euclidean distance to the closest mean is greater than ξ. In this

case, we initialize a new prototype with such node representation. After obtaining

the pseudo labels, the cluster prototype representations can be computed by: ck =∑
zi=k hi/

∑
zi=k 1, for k = 1, ..., K̃.

Note that we iteratively update prototype assignments and prototype represen-

tations till convergence, and we set the number of prototypes K to be the number

of inferred prototypes K̃. Afterward, we refine the cluster prototypes using label

propagation, and we attach the details in Supplementary ?? due to the space limit.

Semantic Contrastive Objective. After obtaining the prototype assignments Z and

prototype representations C, our semantic contrastive objective aims to consolidate

the semantic structure (i.e., intra-cluster compactness and inter-cluster separability)

of the learned node representation H by updating the encoder parameter θ. To this

98

end, we maximize the likelihood of each node in the graph given θ and C:

Q(θ) =
N∑

n=1

log p(hi|θ,C)

=
N∑

n=1

log
K∑
k=1

p(hi, k|θ,C),

(4.7)

where p is the probability density function. Directly optimizing log-likelihood Q(θ) is

intractable as the labels of nodes are unknown. Instead, we optimize the variational

lower bound of Q(θ), given by:

Q(θ) ≥
N∑
i=1

K∑
k=1

p(k|hi) log
p(hi, k|θ,C)

p(k|hi)

=
N∑
i=1

K∑
k=1

p(k|hi) log p(hi, k|θ,C)

−
N∑
i=1

K∑
k=1

p(k|hi) log p(k|hi).

(4.8)

Note that we can drop the second term of the right-hand side of Equation (4.8)

as it is a constant. To maximize the remaining part, we can estimate p(k|hi) by

p(k|hi,θ,C) = ⊮{k=zi}, as we assign hi to cluster zi given C in our DPMM model.

Thus, we can maximize Q(θ) by minimizing the following loss function:

Lsem = −
N∑
i=1

log p(hi, zi|θ,C). (4.9)

Under the assumption of a uniform prior distribution of node representation, we

have p(hi, zi|θ,C) ∝ p(zi|hi,θ,C). Since the distribution of node representation

around each prototype generated by the DPMM is an isotropic Gaussian, we can

estimate p(k|hi,θ,C) by exp(||hi−czi ||2/σ2)/
∑K

i=1 exp(||hi−ck||2/σ2). After applying

ℓ2 normalization on the representation of nodes and prototypes, we can estimate

p(zi|hi,θ,C) by:

p(zi|hi,θ,C) =
exp(hi · czi/τ2)∑K
k=1 exp(hi · ck/τ2)

, (4.10)

99

where czi is the representations of zi-th prototype. The temperature parameter τ2 ∝ σ2

is related to the concentration of node representation around each prototype, and σ is

the variance of the Gaussians in the DPMM model defined by Equation (4.5). For the

simplicity of training, we directly take τ2 as a hyperparameter. Taking Equation (4.10)

into Equation (4.9), we can maximize Q(θ) by minimizing the following loss function:

Lsem = −
N∑
i=1

log
exp(hi · czi/τ2)∑K
k=1 exp(hi · ck/τ2)

. (4.11)

4.1.3.3 Model Learning

Given the proposed S3-CL learning framework, our goal is to learn expressive

node representations that preserve both valuable structural and semantic knowledge

without any semantic labels. In this section, we will introduce the overall loss function,

and also the optimization of the proposed framework with regard to the network

parameters, prototype assignments, and prototype representations.

Overall Loss. To train our model in an end-to-end fashion and learn the encoder

fθ(·), we jointly optimize both the structural and semantic contrastive learning losses.

The overall objective function is defined as:

L = γLstr + (1− γ)Lsem, (4.12)

where we aim to minimize L during training, and γ is a balancing parameter to control

the contribution of each contrastive learning loss. For the sake of the stability of the

training of the encoder, we apply our Bayesian non-parametric prototype inference

algorithm on the node representations computed by a momentum encoder (He et

al. 2020).

Notably, in semantic contrastive learning, the computed pseudo labels Z can be

utilized in the negative example sampling process in our structural contrastive learning

100

to avoid sampling bias issues (Chuang et al. 2020). We select negative samples in

Equation (4.3) for each node from nodes assigned to different prototypes.

Model Optimization via EM. Specifically, we adopt EM algorithm to alternately

estimate the posterior distribution p(zi|xi,θ,C) and optimize the network parameters

θ. We describe the details for the E-step and M-step applied in our methods as

follows:

• E-step. In this step, we fix the network parameter θ, and estimate the prototypes

C and the prototype assignment Z with our proposed Bayesian non-parametric

prototype inference algorithm.

• M-step. Given the posterior distribution computed by the E-step, we aim to maxi-

mize the expectation of log-likelihood Q(θ), by directly optimizing the semantic

contrastive loss function Lsem. In order to perform structural and semantic con-

trastive learning at the same time, we instead optimize a joint overall loss function

as formulated in Equation (4.12).

Note that after the self-supervised pre-training is done, the pre-trained encoder

can be directly used to generate node representations for various downstream tasks.

4.1.4 Experiments

4.1.4.1 Experimental Settings

Evaluation Datasets. In our experiments, we evaluate S3-CL on six public bench-

mark datasets that are widely used for node representation learning, including Cora

(Sen et al. 2008b), Citeseer (Sen et al. 2008b), Pubmed (Namata et al. 2012), Amazon-

P (Shchur et al. 2018), Coauthor CS (Shchur et al. 2018) and ogbn-arxiv (W. Hu

101

et al. 2020). Cora, Citeseer, and Pubmed are the three most widely used citation

networks. Amazon-P is a co-purchase graph and Coauthor CS is a co-authorship

graph.

The ogbn-arxiv is a large-scale citation graph benchmark dataset.

Compared Methods. To demonstrate the effectiveness of our proposed method, six

state-of-the-art graph self-supervised learning methods are compared in our experi-

ments, including DGI (Veličković et al. 2019), MVGRL (Hassani and Khasahmadi

2020), GMI (Peng et al. 2020), GRACE (Zhu et al. 2020a), MERIT (Jin et al. 2021),

and SUGRL (Mo et al. 2022). As we consider node classification as our down-

stream task, we also include five representative supervised node classification methods,

namely MLP (Veličković et al. 2019), LP (Zhu, Ghahramani, and Lafferty 2003),

GCN (Thomas N. Kipf and Welling 2017b), GAT (Veličković, Cucurull, Casanova,

Romero, Liò, et al. 2018), and SGC (sgc), as baselines for the evaluation on the node

classification task. To evaluate the model performance for node clustering, we compare

S3-CL against methods including K-Means (Lloyd 1982), GAE (Thomas N Kipf and

Welling 2017a), adversarially regularized GAE (ARGA) and VGAE (ARVGA) (Pan

et al. 2018), GALA (J. Park et al. 2019), DGI, DBGAN (Zheng et al. 2020), MVGRL,

MERIT, and SUGRL.

4.1.4.2 General Comparisons

Node Classification. To evaluate the trained encoder network, we adopt a linear

evaluation protocol by training a separate logistic regression classifier on top of

the learned node representations. We follow the evaluation protocols in previous

102

Table 17. Node Classification Performance Comparison on Benchmark Datasets.

Methods Cora Citeseer Pubmed Amazon-P Coauthor CS ogbn-arxiv
supervised

MLP 55.2± 0.4 46.5± 0.5 71.4± 0.3 78.5± 0.2 76.5± 0.3 55.5± 0.2
LP 68.0± 0.5 45.3± 0.6 63.0± 0.3 75.4± 0.0 74.3± 0.0 68.3± 0.0
GCN 81.7± 0.4 70.5± 0.3 79.4± 0.4 87.3± 1.0 91.8± 0.1 71.7± 0.3
GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3 86.2± 1.5 90.5± 0.7 73.2± 0.2
SGC 81.5± 0.2 73.1± 0.1 79.7± 0.4 88.3± 1.1 91.5± 0.3 69.8± 0.2

self-supervised + fine-tuning
DGI 81.7± 0.6 71.5± 0.7 77.3± 0.6 83.1± 0.3 90.0± 0.3 67.1± 0.4
GMI 82.7± 0.2 73.0± 0.3 80.1± 0.2 85.1± 0.0 91.0± 0.0 69.6± 0.3
MVGRL 82.9± 0.7 72.6± 0.7 79.4± 0.3 87.3± 0.1 91.3± 0.1 71.3± 0.2
GRACE 80.0± 0.4 71.7± 0.6 79.5± 1.1 81.8± 0.8 90.1± 0.8 71.1± 0.2
MERIT 83.1± 0.6 74.0± 0.7 80.1± 0.4 88.8± 0.4 92.4± 0.4 71.7± 0.1
SUGRL 83.4± 0.5 73.0± 0.5 81.9± 0.5 88.5± 0.2 92.2± 0.5 69.3± 0.2
S3-CL (ours) 84.5± 0.4 74.6± 0.4 80.8± 0.3 89.0± 0.5 93.1± 0.4 72.8± 0.3

Table 18. Node Clustering Performance Comparison on Benchmark Datasets.

Methods Cora Citeseer Pubmed
ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-Means 49.2 32.1 22.9 54.0 30.5 27.8 59.5 31.5 28.1
GAE 59.6 42.9 34.7 40.8 17.6 12.4 67.2 27.7 27.9
ARGA 64.0 44.9 35.2 57.3 35.0 34.1 66.8 30.5 29.5
ARVGA 64.0 45.0 37.4 54.4 26.1 24.5 69.0 29.0 30.6
GALA 74.5 57.6 53.1 69.3 44.1 44.6 69.3 32.7 32.1
DGI 55.4 41.1 32.7 51.4 31.5 32.6 58.9 27.7 31.5
DBGAN 74.8 56.0 54.0 67.0 40.7 41.4 69.4 32.4 32.7
MVGRL 73.2 56.2 51.9 68.1 43.2 43.4 69.3 34.4 32.3
MERIT 73.6 57.1 52.8 68.9 43.9 44.1 69.5 34.7 32.8
SUGRL 73.9 58.5 53.0 70.5 45.8 47.0 69.5 35.0 33.4
S3-CL (ours) 75.1 60.7 56.6 71.2 46.3 48.5 71.3 36.0 34.7

103

1% 2% 3% 4%
Label Rate

72.5

75.0

77.5

80.0
A
cc

ur
ac

y
(%

)

(a) Cora

0.5% 1% 0.2% 0.3%
Label Rate

62.5

65.0

67.5

70.0

72.5

A
cc

ur
ac

y
(%

)

(b) Citeseer

0.05% 0.1% 0.2% 0.3%
Label Rate

65.0
67.5
70.0
72.5
75.0
77.5
80.0

A
cc

ur
ac

y
(%

)

DGI
GMI
MVGRL
GRACE
MERIT
SUGRL
S3-CL

(c) Pubmed

Figure 16. Node Classification Results with Limited Training Labels.

works (Veličković et al. 2019; W. Hu et al. 2020) for node classification. The mean

classification accuracy with standard deviation on the test nodes after 10 runs of

training is reported. To avoid the out-of-memory issue when evaluating MVGRL,

GRACE, and MERIT on the ogbn-arxiv dataset, we subsample 512 nodes as negative

samples for each node during the self-supervised learning phase.

The node classification results of different methods are reported in Table 17. We

can clearly see that S3-CL outperforms the state-of-the-art self-supervised node repre-

sentation learning methods across the five public benchmarks. Such superiority mainly

stems from two factors: (i) our approach S3-CL grants each node access to information

of nodes in a larger neighborhood; (ii) S3-CL infers the semantic information of

nodes, and enforces intra-cluster compactness and inter-cluster separability on the

node representation. With the help of this extra information, node representations

generated by S3-CL are more informative and distinctive. Without access to labels,

S3-CL even outperforms supervised methods like SGC and GAT.

Node Clustering. To evaluate the quality of the node representations learned by

different methods, we conduct experiments on node clustering. We follow the same

evaluation protocol as in (Hassani and Khasahmadi 2020). K-Means is applied on

the learned node representation to get clustering results. We use accuracy (ACC),

104

normalized mutual information (NMI), and adjusted rand index (ARI) to measure

the performance of clustering. We report the averaged clustering results over 10 times

of execution.

The clustering results are displayed in Table 18. It is observed that our approach

achieves remarkable performance gain over compared methods. For example, the

NMI on Cora is improved by 2.2% against the previous SOTA method SUGRL.

Such improvement greatly attributes to the fact that S3-CL explores the semantic

information of nodes instead of enforcing node-wise discrimination alone as other GCL

methods. Thus, the node representation learned by S3-CL works well for clustering

algorithms.

Node Classification with Few Labels. We further evaluate the impact of label rate

on the downstream node classification task. Specifically, we evaluate all self-supervised

learning methods from Table 17 under different low-resource settings. The results

in Figure 16 show that our proposed framework S3-CL can still outperform existing

methods given a lower label rate. It validates that the node representations learned

by our approach S3-CL can encode valuable structural and semantic knowledge from

the input graph. As a result, the node representations can be effectively used for the

node classification task even with an extremely small label ratio.

Effect of Feature Propagation. Next, we investigate the effect of multi-scale

feature propagation in the structural contrastive learning by altering the propagation

steps L. A larger L allows message-passing within a larger neighborhood for learning

the node representations. To demonstrate the power of our approach in utilizing

structural global knowledge, we compare S3-CL against GRACE, MVGRL, MERIT,

and SUGRL with different numbers of layers L. The node clustering accuracy of

different methods is shown in Figure 17. By increasing the propagation steps (number

105

1 2 5 10 15 20
L

30
40
50
60
70
80

A
cc

ur
ac

y
(%

)

(a) Cora

1 2 5 10 15 20
L

30

40

50

60

70

A
cc

ur
ac

y
(%

)

(b) Citeseer

1 2 5 10 15 20
L

30

40

50

60

70

A
cc

ur
ac

y
(%

) MVGRL
GRACE
MERIT
SUGRL
S3-CL

(c) Pubmed

Figure 17. Node Clustering Results of GCL Methods with Various Propagation Steps
(L).

of layers), we can clearly observe that existing unsupervised GCL methods severely

degrade due to the oversmoothing issue. In contrast, S3-CL consistently achieves

improved performance by making use of information in a larger neighborhood for node

representation learning.

Ablation Study. To validate the effectiveness of the structural contrastive learning

and semantic contrastive learning in S3-CL, we conduct an ablation study on Citesser,

Cora, and Pubmed with two variants of S3-CL, each of which has one of the contrastive

learning components removed. The node classification results are shown in Table 19.

We can observe that the performance of S3-CL degrades when any of the components

are removed. Our S3-CL using all components achieves the best performance as the

structural and semantic contrastive components complement each other. Hence, the

effectiveness of each component is verified.

Table 19. Ablation Study on Contrastive Components.

Method Citeseer Cora Pubmed

w/o structural 73.1±0.2 83.3±0.3 80.0± 0.3
w/o semantic 71.9±0.4 82.2±0.5 79.3± 0.2
S3-CL 74.6±0.4 84.5±0.4 80.8±0.3

106

4.1.4.3 Representation Visualization.

To visually show the superior quality of the node representations learned by S3-CL,

we use t-SNE to visualize and compare the learned node representations between

S3-CL and the best-performing baseline on Citeseer, i.e., SUGRL. The visualization

results are shown in Figure 18, where each dot represents the representation of a

node, and the color of the dot denotes its ground-truth label. From the figure, we

can observe that though some classes can be identified by SUGRL, the boundaries

between different classes are unclear. Our proposed model is able to enforce better

intra-cluster compactness and inter-cluster separability.

(a) SUGRL (b) S3-CL

Figure 18. Representation Visualization on the Citeseer Dataset.

4.2 Self-supervised Graph Anomaly Detection

4.2.1 Introduction

Attributed networks provide a potent tool to handle the data heterogeneity that

we are often confronted with in vast amounts of information systems. Apart from

107

traditional plain networks in which only node-to-node interactions are observed,

attributed networks also encode a rich set of features for each node (Akoglu et al. 2012;

Huang, Li, and Hu 2017; Li, Dani, Hu, Tang, et al. 2017). They are increasingly used

to model a wide range of complex systems, such as social media networks, critical

infrastructure networks, and gene regulatory networks (Akoglu et al. 2012; Pfeiffer III

et al. 2014). For example, in social networks, users not only are connected with each

other by performing various social activities but also are affiliated with rich profile

information; in critical infrastructure networks, different power stations form grids,

and are also associated with additional attribute information (e.g., electricity capacity);

in gene regulatory networks, genes interact with each other to control specific cell

functions in addition to the rich gene sequence expressions. Studies from social science

have shown that data often exhibits correlation among the attributes of connected

individuals (McPherson, Smith-Lovin, and Cook 2001; Shalizi and Thomas 2011), and

such insights are helpful in distilling actionable knowledge from such networks.

Detecting anomalies from data (e.g., attribute-value data, networked data) is

a vital research problem of pressing societal concerns, with significant implications

in many security-related applications, ranging from social spam detection, financial

fraud detection to network intrusion detection (Akoglu, Tong, and Koutra 2015).

Due to the strong modeling power of attributed networks in unifying information

of different modalities, there is a surge of research interests in detecting anomalous

nodes whose patterns deviate significantly from other majority nodes on attributed

networks. Generally, the abnormality of nodes on attributed networks is not only

determined by their mutual interactions with others (w.r.t.topological structure), but

also is measured by their content dissonance (w.r.t. nodal attributes).

Due to the prohibitive cost for accessing the ground truth anomalies, existing

108

efforts are mostly unsupervised. Among them, one family of methods study the

problem at the mesoscope with ego-network (Perozzi and Akoglu 2016) or community

analysis (Gao et al. 2010) and then identify anomalies by measuring the abnormality

of ego-networks or comparing the current node with other nodes within the same

community. Another family of methods heavily rely on subspace selection and attempt

to find anomalies in a node feature subspace (Sánchez et al. 2013; Sánchez et al. 2014;

Müller et al. 2013; Perozzi et al. 2014). Recently, residual analysis has emerged as

another way to find anomalous nodes (Li, Dani, Hu, and Liu 2017; Peng et al. 2018),

where anomalies are defined as the nodes that cannot be approximated from others.

Despite their empirical success, the following challenges remain for anomaly detection

on attributed networks: (1) Network sparsity - the network structure could be very

sparse on real-world attributed networks; thus ego-network or community analysis is

difficult to perform as they highly depend on the observed node interactions. (2) Data

nonlinearity - the node interactions and nodal attributes are highly non-linear in nature

while existing subspace selection based anomaly detectors mainly model the attributed

networks with linear mechanisms. (3) Complex modality interactions - attributed

networks are notoriously difficult to tackle due to the bewildering combination of

two information sources, which necessitates an unified feature space to capture their

complex interactions for anomaly detection.

To address the challenges above, we propose to model the attributed networks

with graph convolutional network (GCN) (Thomas N. Kipf and Welling 2017b).

GCN, which takes the topological structure and nodal attributes as input, is able

to learn discriminative node embeddings by stacking multiple layers of linear units

and non-linear activation functions. Even though GCN emerges to be a principled

tool to model attributed networks and achieves the state-of-the-art performance in

109

the semi-supervised node classification task, it remains unclear how its power can

be shifted to the anomaly detection problem. To bridge the gap, we propose a

novel graph convolutional autoencoder framework called Dominant (Deep Anomaly

Detection on Attributed Networks) to support anomaly detection on attributed

networks. Specifically, Dominant first compresses the input attributed network to

succinct low-dimensional embedding representations using graph convolutional network

as an encoder function; then we aim to reconstruct both the topological structure

and nodal attributes with corresponding decoder functions. The reconstruction errors

of nodes following the encoder and decoder phases are then leveraged for spotting

anomalous nodes on attributed networks. The main contributions of this work are as

follow:

• We systematically analyze the limitations of existing shallow anomaly detection

methods and show the significance of developing a novel deep architectured anomaly

detector on attributed networks.

• We develop a principled graph convolutional autoencoder Dominant which seam-

lessly models the attributed network and conducts anomaly detection in a joint

framework. In particular, the proposed model can spot anomalies by analyzing the

reconstruction errors of nodes from both the structure and the attribute perspectives.

• We evaluate our proposed model on various attributed networks from different

domains. Empirical experimental results demonstrate the superior performance of

our proposed framework.

110

𝝈(𝐙 ∗ 𝐙𝐓)

𝐙

𝐀(

.

.

.

Attributed Network Encoder Attribute Reconstruction Decoder

Structure Reconstruction Decoder

Anomaly Ranking List

Embedding
Vectors

Hidden Layer 1

!"
!#
!$
!%
!&
!'

𝑣*

𝑣+

𝑣,

!"
!#
!$
!%
!&
!'

!"	!#	!$!% 	!&	!'

!"
!#
!$
!%
!&
!'

ReLU

1

6

2

3

5

4

1

6

2

3

5

4

1

6

2

3

5

4

…

!" !#!$!% !& '(

')
'*

'+

', '-

!" !#!$!% !&

!" !#!$!% !&

!" !#!$!% !&

!" !#!$!% !&

!" !#!$!% !&

𝐗(

Hidden Layer 2

ReLU

1

6

2

3

5

4

1

6

2

3

5

4

1

6

2

3

5

4

…

Hidden Layer 3

ReLU

1

6

2

3

5

4

1

6

2

3

5

4

1

6

2

3

5

4

…
ReLU

1

6

2

3

5

4

1

6

2

3

5

4

1

6

2

3

5

4

…

Score(𝒗𝒊)

Figure 19. The Overall Framework of Our Proposed Dominant for Deep Anomaly
Detection on Attributed Networks.

4.2.2 Problem Definition

The notations and definition for attributed networks are explained in Section 2.1.3.

To make the results more interpretable, we formulate the task of anomaly detection

on attributed networks as a ranking problem:

Problem Definition 4 Anomaly Ranking on Attributed Networks: Given an

attributed network G, with the adjacency matrix A and attribute information matrix

X of n node instances, the task is to rank all the nodes according to the degree of

abnormality, such that the nodes that differ singularly from the majority reference

nodes should be ranked on high positions.

4.2.3 Architecture Overview

In this section, we present the proposed framework of Dominant in detail. The

architecture of the deep model is illustrated in Figure 19. As can be observed, the

fundamental building block of Dominant is the deep autoencoder (Goodfellow et

al. 2016) and it consists of three essential components: (i) attributed network encoder -

which models network structure and nodal attributes seamlessly in a joint framework

111

for node embedding representation learning with GCN; (ii) structure reconstruction

decoder - which aims to reconstruct the original network topology with the learned node

embeddings; and (iii) attribute reconstruction decoder - which attempts to reconstruct

the observed nodal attributes with the obtained node embeddings. Afterwards, the

reconstruction errors of nodes are then leveraged to flag anomalies on attributed

networks.

4.2.3.1 Preliminary - Deep Autoencoder

As suggested by (Tong and Lin 2011; Zhou and Paffenroth 2017; Li, Dani, Hu,

and Liu 2017), the disparity between the original data and the estimated data (i.e.,

reconstruction errors) is a strong indicator to show the abnormality of instances in

a dataset. Specifically, the data instances with large reconstruction errors are more

likely to be considered as anomalies, since their patterns deviate significantly from

the majority and cannot be accurately reconstructed from the observed data. Among

various reconstruction based anomaly detection methods, deep autoencoder achieves

state-of-the-art performance. Deep autoencoder is a type of deep neural network that

is used to learn latent representations of data in an unsupervised manner by stacking

multiple layers of encoding and decoding functions together. It has achieved promising

learning performance in various domains, such as computer vision, natural language

processing, and speech recognition (Goodfellow et al. 2016).

Given an input dataset X, the encoder Enc(·) is first applied to map the data into

a latent low-dimensional feature space, and then the decoder Dec(·) tries to recover

the original data based on the latent representations. The learning process can be

112

described as minimizing a cost function described below:

minE[dist(X, Dec(Enc(X))], (4.13)

where dist(·, ·) is a predefined distance metric. In practice, we often choose the ℓ2-norm

distance to measure the reconstruction errors. It also should be noted that deep

autoencoder is able to capture the highly non-linear information from high-dimensional

input by applying multiple layers of linear units and nonlinear activation functions

in the encoder and decoder phases, which is advantageous compared to conventional

shallow learning models. Subsequently, in this study, we propose to solve the problem

of anomaly detection on attributed networks in a deep autoencoder architecture.

4.2.3.2 Attributed Network Encoder

As a rich network representation, attributed networks encode not only the network

structure but also abundant nodal attributes. However, conventional deep autoen-

coders can only handle i.i.d. attribute-value data (Zhou and Paffenroth 2017; W. Yu

et al. 2018), which cannot be directly applied to our scenario. How to design an

effective encoder to capture the underlying properties of attributed networks remains

a daunting task as we need to address the three challenges (i.e., network sparsity,

data nonlinearity, and complex modality interactions) simultaneously. To this end, we

propose a new type of attributed network encoder inspired by the graph convolutional

network (GCN) model (Thomas N. Kipf and Welling 2017b). Specifically, GCN

considers the high-order node proximity when learning the embedding representations,

thus it mitigates the network sparsity issue beyond the observed links among nodes.

Meanwhile, through multiple layers of nonlinear transformations, it captures the

113

nonlinearity of data and the complex interactions of two information modalities on

attributed networks.

Mathematically, GCN extends the operation of convolution to networked data in

the spectral domain and learns a layer-wise new latent representation by a spectral

convolution function:

H(l+1) = f(H(l),A|W(l)), (4.14)

where H(l) is the input for the convolution layer l, and H(l+1) is the output after the

convolution layer. We take the attribute matrix X ∈ Rn×d as the input of first layer,

which is equivalent to H(0). W(l) is a layer-specific trainable weight matrix we need

to learn in the neural network. Each layer of the graph convolutional network can be

expressed with the function f(H(l),A|W(l)) as follows:

f(H(l),A|W(l)) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W(l)), (4.15)

where Ã = A + I and D̃ is the diagonal matrix of Ã with the diagonal element

as D̃i,i =
∑

j Ãi,j. Thus we can directly compute D̃− 1
2 ÃD̃− 1

2 as a pre-processing

step. Note that σ(·) is a non-linear activation function, such as Relu(x) = max(0, x).

It is worth noting that the filter or feature map parameters Wl are shared for all

nodes on the attributed network. Given the attribute matrix X as input, the kth-hop

neighborhood of each node can be effectively captured by successively stacking a

number of k convolutional layers. Therefore, the embeddings Z not only encode

the attribute information of each node but also involve the kth-order node proximity

information. In this work, we propose to use three convolutional layers for constructing

the attributed network encoder, but it should be noted that more layers can also

be stacked for building a deeper network. The attributed network encoder can be

114

formulated as:

H(1) = fRelu(X,A|W(0)) (4.16)

H(2) = fRelu(H
(1),A|W(1)) (4.17)

Z = H(3) = fRelu(H
(2),A|W(2)). (4.18)

Here, W(0) ∈ Rn×h1 is an input-to-hidden layer with h1 feature maps. Similarly,

W(1) ∈ Rh1×h2 and W(3) ∈ Rh2×h3 are two hidden-to-hidden weight matrices. After

applying three layers of convolution, the input attributed network can be transferred to

the h3-dimensional latent representations Z, which can capture the high non-linearity

in the topological network structure and nodal attributes.

4.2.3.3 Structure Reconstruction Decoder

In this subsection, we will discuss how to reconstruct the original network struc-

ture with the learned latent representations Z, which is from the aforementioned

encoder module. Let Â denote the estimated adjacency matrix, then the structure

reconstruction error RS = A− Â can be exploited to determine structural anomalies

on the network. Specifically, for a certain node, if its structure information can be

approximated through the structure reconstruction decoder, thus it is of low prob-

ability to be anomalous. On the opposite side, if the connectivity patterns cannot

be well reconstructed, it implies that its structure information does not conform to

the patterns of majority normal nodes. Therefore, a larger norm of RS(i, :) indicates

that the ith node on the attributed network has a higher probability of being an

anomaly from the network structure aspect. Specifically, the decoder takes the latent

representations as input and predicts whether there is a link between each pair of two

115

nodes:

p(Âi,j = 1|zi, zj) = sigmoid(zi, z
T
j). (4.19)

Accordingly, we train a link prediction layer based on the output of attributed network

encoder Z, which can be presented as follows:

Â = sigmoid(ZZT). (4.20)

4.2.3.4 Attribute Reconstruction Decoder

Similarly, to compute the reconstruction errors of nodal attributes, we propose an

attribute reconstruction decoder that approximates the nodal attributes information

from the encoded latent representations Z. Specifically, the attribute reconstruction

decoder leverages another graph convolutional layer to predict the original nodal

attributes as follows:

X̂ = fRelu(Z,A|W(3)). (4.21)

With the computed reconstruction errors RA = X− X̂, we can spot anomalies on the

attributed networks from the attribute perspective.

4.2.3.5 Anomaly Detection

Until now, we have introduced how to reconstruct the topological network structure,

and nodal attributes using structure reconstruction decoder and attribute reconstruc-

tion decoder, respectively. To jointly learn the reconstruction errors, the objective

116

function of our proposed deep graph convolutional autoencoder can be formulated as:

L = (1− α)RS + αRA

= (1− α)||A− Â||2F + α||X− X̂||2F ,
(4.22)

where α is an important controlling parameter which balances the impacts of structure

reconstruction and attribute reconstruction.

By minimizing the above objective function, our proposed deep graph convolutional

autoencoder can iteratively approximate the input attributed network based on the

encoded latent representations until the objective function converges. The final

reconstruction errors are then employed to assess the abnormality of nodes. Note that

the weight matrices of the deep graph convolutional autoencoder are trained using

gradient descent on the objective function. After a certain number of iterations, we

can compute the anomaly score of each node vi according to:

score(vi) = (1− α)||a− âi||2 + α||xi − x̂i||2. (4.23)

Specifically, instances with larger scores are more likely to be considered as anoma-

lies; thus we can compute the ranking of anomalies according to the corresponding

anomaly scores.

4.2.4 Experiments

In this section, we perform empirical evaluations on real-world attributed networks

to verify the effectiveness of the proposed Dominant framework.

117

Table 20. Details of the Three Attributed Network Datasets with Injected Anomalies.

BlogCatalog Flickr ACM

nodes 5,196 7,575 16,484
edges 171,743 239,738 71,980
attributes 8,189 12,047 8,337
anomalies 300 450 600

4.2.4.1 Experimental Settings

In this section, we introduce the detailed experimental settings, including the

compared baseline methods and evaluation metrics.

Evaluation Datasets. In order to have a comprehensive evaluation, we adopt

three real-world attributed network datasets that have been widely used in previous

research (Jundong Li et al. 2015; X. Huang et al. 2018; Ding, Li, and Liu 2019) in our

experiments:

• BlogCatalog: BlogCatalog is a blog sharing website. The bloggers in blogcatalog

can follow each other forming a social network. Users are associated with a list of

tags to describe themselves and their blogs, which are regarded as node attributes.

• Flickr: Flickr is an image hosting and sharing website. Similar to BlogCatalog,

users can follow each other and form a social network. Node attributes of users are

defined by their specified tags that reflect their interests.

• ACM: ACM is another attributed network from academic field. It is a citation

network where each paper is regarded as a node on the network, and the links are

the citation relations among different papers. The attributes of each paper are

generated from the paper abstract.

As there is no ground truth of anomalies in the above datasets, thus we need

118

to inject anomalies into the attributed networks for our empirical evaluation. In

particular, we refer to two anomaly injection methods that has been used in previous

research (Ding, Li, and Liu 2019; Song et al. 2007) to generate a combined set of

anomalies for each dataset by perturbing topological structure and nodal attributes,

respectively. On one hand, to perturb the topological structure of an attributed

network, we adopt the method introduced by (Ding, Li, and Liu 2019) to generate

some small cliques. The intuition behind this method is that in many real-world

scenarios, small clique is a typical anomalous substructure in which a small set of

nodes are much more closely linked to each other than average (Skillicorn 2007).

Therefore, after we specify the clique size as m, we randomly select m nodes from the

network and then make those nodes fully connected, and then all the m nodes in the

clique are regarded as anomalies. We iteratively repeat this process until a number of

n cliques are generated and the total number of structral anomalies is m× n. In our

experiments, we fix the clique size m to 15 and set n to 10, 15 and 20 for BlogCatalog,

Flickr and ACM, respectively. In addition to the injection of structural anomalies,

we adopt another attribute perturbation schema introduced by (Song et al. 2007)

to generate anomalies from attribute perspective. To guarantee an equal number of

anomalies from structural perspective and attribute perspective will be injected into

the attributed network, we first randomly select another m× n nodes as the attribute

perturbation candidates. For each selected node i, we randomly pick another k nodes

from the data and select the node j whose attributes deviate the most from node i

among the k nodes by maximizing the Euclidean distance ||xi − xj||2. Afterwards, we

then change the attributes xi of node i to xj. In our experiments, we set the value of

k to 50. The details of these three attributed network datasets are shown in Table 20.

119

Compared Methods. We compare the proposed Dominant framework with the

following popular anomaly detection methods:

• LOF (Breunig et al. 2000) detects anomalies at the contextual level and only

considers nodal attributes.

• SCAN (X. Xu et al. 2007) is a structure based detection method which detects

anomalies at the structural level.

• AMEN (Perozzi and Akoglu 2016) uses both attribute and network structure

information to detect anomalous neighborhoods. Specifically, it analyzes the

abnormality of each node from the ego-network point of view.

• Radar (Li, Dani, Hu, and Liu 2017) is the state-of-the-art unsupervised anomaly

detection framework for attributed networks. It detects anomalies whose behav-

iors are singularly different from the majority by characterizing the residuals of

attribute information and its coherence with network information.

• ANOMALOUS (Peng et al. 2018) performs joint anomaly detection and

attribute selection to detect anomalies on attributed networks based on the

CUR decomposition and residual analysis.

Evaluation Metrics In the experiments, two evaluation metrics are used to measure

the performance of different anomaly detection algorithms:

• ROC-AUC: As a widely used evaluation metric in previous anomaly detection

methods (Li, Dani, Hu, and Liu 2017; Peng et al. 2018), the ROC curve is a

plot of true positive rate (an anomaly is recognized as an anomaly) against

false positive rate (a normal node is recognized as an anomaly) according to the

ground truth and the detection results. AUC value is the area under the ROC

curve, representing the probability that a randomly chosen abnormal node is

120

Table 21. Performance of different anomaly detection methods w.r.t. precision@K
and recall@K.

Precision@K

BlogCatalog Flickr ACM
K 50 100 200 50 100 200 50 100 200
LOF 0.300 0.220 0.180 0.420 0.380 0.270 0.060 0.060 0.045
Radar 0.660 0.670 0.550 0.740 0.700 0.635 0.560 0.580 0.520
Anomalous 0.640 0.650 0.515 0.780 0.710 0.650 0.600 0.570 0.510
Dominant 0.760 0.710 0.590 0.760 0.730 0.685 0.620 0.590 0.540

Recall@K

BlogCatalog Flickr ACM
K 50 100 200 50 100 200 50 100 200
LOF 0.050 0.073 0.120 0.047 0.084 0.120 0.005 0.010 0.015
Radar 0.110 0.223 0.367 0.082 0.156 0.282 0.047 0.097 0.173
Anomalous 0.107 0.217 0.343 0.087 0.158 0.289 0.050 0.095 0.170
Dominant 0.127 0.237 0.393 0.084 0.162 0.304 0.052 0.098 0.180

ranked higher than a normal node. If the AUC value approaches 1, the method

is of high quality.

• Precision@K: As each anomaly detection method outputs a ranking list

according to the anomalous scores of different nodes, we use Precision@K to

measure the proportion of true anomalies that a specific detection method

discovered in its top K ranked nodes.

• Recall@K: This metric measures the proportion of true anomalies that a specific

detection method discovered in the total number of ground truth anomalies.

Parameter Settings In the experiments on different datasets, we propose to optimize

the loss function with Adam (Kingma and Ba 2014) algorithm and train the proposed

model for 300 epochs for the performance evaluation. We set the learning rate to

0.005. In addition, the attributed network encoder is built with three convolutional

layers (64-neuron, 32-neuron and 16-neuron, respectively). For the other baselines, we

retain to the settings described in the corresponding papers.

121

4.2.4.2 Experimental Results

In the experiments, we evaluate the performance of our proposed model Dominant

by comparing it with the aforementioned baselines. We first present the experimental

results in terms of ROC-AUC on the three datasets in Figure 20. Then we present

the results w.r.t. Precision@K and Recall@K for other methods on all the attributed

networks in Table 21. Note that we do not include the results of SCAN and AMEN in

Table 21 as only limited number of ground truth anomalies can be detected on the top

in our experiments. From the evaluation results, we make the following observations:

• The proposed deep model Dominant outperforms other baseline methods on all

the three attributed networks. It verifies the effectiveness of performing anomaly

detection on attributed networks by deep architecture.

• LOF and SCAN cannot achieve satisfying results in our experiments as they merely

consider the nodal attributes or topological structure. Even though AMEN is

designed for anomaly detection on attributed networks, it centers around finding

anomalous neighborhoods rather than nodes, which also result in relatively poor

performance.

• The residual analysis based models (Radar and Anomalous) are superior to the

conventional anomaly detection methods (LOF, SCAN and AMEN). However, these

models are still limited by their shallow mechanisms to handle the network sparsity,

data nonlinearity, and complex modality interactions issues.

• Dominant shows a stronger ability to rank anomalies on higher positions according

to the results of precision@K and recall@K. It can achieve better detection

performance when the objective is to find more true anomalies within the ranking

list of limited length.

122

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

LOF = 0.4915
SCAN = 0.2727
AMEN = 0.6648
Radar = 0.7104
Anomalous = 0.7281
Dominant = 0.7813

(a) BlogCatalog

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

LOF = 0.4881
SCAN = 0.2686
AMEN = 0.6047
Radar = 0.7286
Anomalous = 0.7159
Dominant = 0.7490

(b) Flickr

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

LOF = 0.4738
SCAN = 0.3599
AMEN = 0.5337
Radar = 0.6936
Anomalous = 0.7185
Dominant = 0.7494

(c) ACM

Figure 20. ROC Curves and AUC Scores of All Methods on Different Datasets.

4.2.4.3 Parameter Analysis

Next, we investigate the impact of the controlling parameter α in our proposed

Dominant framework and report the performance variance results in Figure 21.

Here we present the AUC values on the three attributed network datasets. The

controlling parameter α balances the impact of attribute reconstruction errors and

structure reconstruction errors on model training and anomaly scores computation. In

two extreme cases, Dominant will only consider the structure reconstruction errors

when α is set to 1 while merely consider the attribute reconstruction errors when

α is set 0. The results indicate that it is necessary to find a balance between the

structure reconstruction errors and attribute reconstruction errors for achieving a

better performance. The reasonable choice of α is around 0.4 to 0.7 for BlogCatalog

and Flickr datasets, and 0.5 to 0.8 for ACM dataset.

123

0.0 0.2 0.4 0.6 0.8 1.0

0.73

0.74

0.75

0.76

0.77

0.78

AU
C

BlogCatalog
Flickr
ACM

Figure 21. Impact of different α w.r.t. AUC values.

4.3 Conclusion

In this chapter, I summarize my research on self-supervised graph learning on

two aspects: My first effort focus on learning generalizable node representations in

a self-supervised manner. In general, the contrastive learning process in GCL is

performed on top of the representations learned by a graph neural network (GNN)

backbone, which transforms and propagates the node contextual information based

on its local neighborhoods. However, nodes sharing similar characteristics may not

always be geographically close, which poses a great challenge for unsupervised GCL

efforts due to their inherent limitations in capturing such global graph knowledge.

In this work, we address those inherent limitations by proposing a simple yet effec-

tive framework – Simple Neural Networks with Structural and Semantic Contrastive

Learning (S3-CL). Notably, by virtue of the proposed structural and semantic con-

trastive learning algorithms, even a simple neural network can learn expressive node

representations that preserve valuable global structural and semantic patterns. Our

experiments demonstrate that the node representations learned by S3-CL achieve

124

superior performance on different downstream tasks compared with the state-of-the-art

unsupervised GCL methods.

Secondly, I discuss my work in making the first investigation on the research

problem of anomaly detection on attributed networks by a self-supervised deep

learning model. Specifically, we address the limitations of existing methods and model

the attributed networks with graph convolutional network (GCN). As GCN handles

the high-order node interactions with multiple layers of nonlinear transformations,

it alleviates the network sparsity issue and can capture the nonlinearity of data as

well as the complex interactions between two sources of information on attributed

networks. To further enable the detection of anomalous nodes, we introduce a deep

autoencoder framework to reconstruct the original attributed network with the learned

node embeddings from GCN. The reconstruction errors of nodes are then employed to

flag anomalies. The experimental results demonstrate the superiority of the proposed

deep model over the state-of-the-art methods.

125

Chapter 5

CONCLUSION

This dissertation covers the topics of data-efficient graph learning through graph

few-shot learning, graph weakly-supervised learning, as well as graph self-supervised

learning:

In Chapter 2, we delve into the topic of graph few-shot learning. Specifically, we

propose a method called Graph Prototypical Networks (GPN) for the problem of

few-shot node classification. GPN is designed to handle new node classes in real-world

graphs using only a small amount of labeled data. It uses graph meta-learning to

extract meta-knowledge from many-shot seen node classes and apply it to few-shot

unseen node classes. We conduct extensive experiments to demonstrate the superior

capability of GPN in few-shot node classification. Additionally, we introduce Meta

Graph Deviation Networks (Meta-GDN) for performing few-shot anomaly detection

on a previously unseen graph by learning from other related graphs in the same

domain. Utilizing the Graph Deviation Networks and Cross-network Meta Learning

algorithm, Meta-GDN can transfer knowledge from auxiliary graphs and quickly adapt

to the target graph with limited labeled anomalies. Through extensive experimental

evaluations, we demonstrate the superiority of Meta-GDN over the state-of-the-art

methods.

In Chapter 3, we focus on my research in graph weakly-supervised learning. Firstly,

we propose a new graph meta-learning framework called Meta Label Propagation

(Meta-LP), which can generate informative pseudo-labels for unlabeled nodes based on

a meta-learned label propagation strategy to augment the limited labeled data. Despite

126

its simple neural network architecture, our experiments demonstrate that Meta-LP

offers easy and substantial performance gains compared to existing techniques on

various benchmark datasets. Then we propose a new cross-domain anomaly detection

framework Commander, to address the problem of detecting anomalies in unlabeled

attributed graphs. The framework includes four main components: a graph attentive

encoder, anomaly classifier, domain discriminator, and attribute decoder. These

components work together to bridge the gap between two attributed graphs from

different domains and perform accurate anomaly detection on the target attributed

graph. We conduct thorough experiments to validate the effectiveness of the proposed

Commander framework.

In Chapter 4, we explore the area of graph self-supervised learning. I first propose a

model called S3-CL that goes beyond existing unsupervised graph contrastive methods

by capturing global graph knowledge from both structural and semantic perspectives.

The results of our experiments show that the node representations learned by S3-

CL outperform state-of-the-art unsupervised GCL methods on various downstream

tasks. Additionally, I present a graph generative framework called DOMINANT

for the problem of graph anomaly detection, which models the input attributed

graph by reconstructing both structure and attribute information from learned node

representations. The idea behind DOMINANT is that anomalies usually cannot be

well reconstructed, leading to higher reconstruction errors, thus the reconstruction

errors can be used to measure the abnormality of each node. Our experiments show

that the proposed DOMINANT outperforms the state-of-the-art methods.

127

5.1 Future Directions

In the future, I plan to have an adaptive research agenda to keep updated with

emerging challenges in machine learning and data mining. Furthermore, I hope to

leverage my expertise to conduct interdisciplinary research to extend the power of

graph neural networks. Below, I discuss two future research directions:

• Resource-efficient Deep Learning: Deep neural networks especially large

pre-trained models (e.g., PLMs and ViT) are becoming omnipresent in different

domains ranging from computer vision to natural language processing. Despite

their success that largely relies on the over-parameterization and huge amount of

labeled data, training or fine-tuning these models can be very resource-expensive

and challenging in practical scenarios. To democratize AI algorithms at scale, it

is of vital importance to invest on enhancing the efficiency of large-scale models

in terms of both labeled training data and model parameters. For the research

on data efficiency (e.g., weakly-supervised learning, few-shot learning, and self-

supervised learning), I have developed a series of works on graph learning (Ding,

Xu, et al. 2022) as well as natural language processing problems (Ding, D. Li,

et al. 2021). In the next stage, I will continue my explorations and develop

more fundamental and theoretical understanding of data-efficient deep learning.

Moreover, I plan to start my research on parameter-efficient transfer learning,

which is another critical research field for advancing the generalization of deep

learning models to different resource-constrained scenarios. By developing a

suite of new models, algorithms, and theories on both data and parameter

efficient deep learning, we are able to free AI machines from the resource-hungry

beast.

128

• Trustworthy Machine Learning: Though in recent years huge advances

have been made in deep learning, current machine learning systems, however,

generally lacks of trustwothiness, which poses great challenges for their usability

in many high-stake applications such as fraud detection and drug design. Hence,

I plan to study the core topics regarding trustworthy machine learning, with a

focus on the statistical understructure of various topics under this umbrella topic,

and also branching out the central understanding to solve multiple problems in

topics such as reliability, causality, and uncertainty quantification, with a main

application domain of graph learning. For instance, machine learning models

deployed in the open world often struggle with out-of-distribution (OOD) input

samples from a different distribution that the model has not been exposed to

during training. How to detect out-of-distribution samples and enable out-of-

distribution generalization is important to improve the reliability of the deployed

machine learning system. Moreover, to answer the research question “Why and

how does a ML model work?”, I am specifically interested in studying generative

counterfactual explanation, which aims to analyze the feature importance and

model sensitivity by generating counterfactual examples. Such counterfactual

explanations can help us to understand how decisions made by ML models,

which bridges the gap between artificial intelligence and human intelligence.

129

REFERENCES

Akoglu, Leman, Hanghang Tong, and Danai Koutra. 2015. “Graph based anomaly
detection and description: a survey.” DMKD.

Akoglu, Leman, Hanghang Tong, Brendan Meeder, and Christos Faloutsos. 2012. “Pics:
Parameter-free identification of cohesive subgroups in large attributed graphs.”
In SDM, 439–450.

Alon, Uri, and Eran Yahav. 2021. “On the bottleneck of graph neural networks and
its practical implications.” In ICLR.

Arazo, Eric, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness.
2020. “Pseudo-labeling and confirmation bias in deep semi-supervised learning.”
In IJCNN.

Bandyopadhyay, Sambaran, N Lokesh, and M Narasimha Murty. 2019. “Outlier aware
network embedding for attributed networks.” In AAAI.

Baydin, Atilim Gunes, Robert Cornish, David Martinez Rubio, Mark Schmidt, and
Frank Wood. 2018. “Online Learning Rate Adaptation with Hypergradient De-
scent.” In ICLR.

Bose, Avishek Joey, Ankit Jain, Piero Molino, and William L Hamilton. 2019.
“Meta-Graph: Few Shot Link Prediction via Meta Learning.” arXiv preprint
arXiv:1912.09867.

Breunig, Markus M, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.
“LOF: identifying density-based local outliers.” In SIGMOD.

Chalapathy, Raghavendra, Aditya Krishna Menon, and Sanjay Chawla. 2017. “Robust,
deep and inductive anomaly detection.” In ECML-PKDD.

Chen, Deli, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. “Measuring
and relieving the over-smoothing problem for graph neural networks from the
topological view.” In AAAI.

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. “A
simple framework for contrastive learning of visual representations.” In ICML.

Chien, Eli, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. “Adaptive Universal
Generalized PageRank Graph Neural Network.” In ICLR.

130

Chuang, Ching-Yao, Joshua Robinson, Lin Yen-Chen, Antonio Torralba, and Stefanie
Jegelka. 2020. “Debiased contrastive learning.” arXiv preprint arXiv:2007.00224.

Collobert, Ronan, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. “Natural language processing (almost) from scratch.”
Journal of machine learning research 12 (Aug): 2493–2537.

Dai, Quanyu, Xiao Shen, Xiao-Ming Wu, and Dan Wang. 2019. “Network trans-
fer learning via adversarial domain adaptation with graph convolution.” arXiv
preprint arXiv:1909.01541.

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. 2016. “Convolutional
neural networks on graphs with fast localized spectral filtering.” In NeurIPS.

Deng, Shumin, Ningyu Zhang, Jiaojian Kang, Yichi Zhang, Wei Zhang, and Huajun
Chen. 2020. “Meta-Learning with Dynamic-Memory-Based Prototypical Network
for Few-Shot Event Detection.” In Proceedings of the International Conference
on Web Search and Data Mining.

Ding, Kaize, Dingcheng Li, Alexander Hanbo Li, Xing Fan, Chenlei Guo, Yang Liu, and
Huan Liu. 2021. “Learning to Selectively Learn for Weakly-supervised Paraphrase
Generation.” In EMNLP.

Ding, Kaize, Jundong Li, Nitin Agarwal, and Huan Liu. 2020. “Inductive Anomaly
Detection on Attributed Networks.” In Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence.

Ding, Kaize, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. “Deep anomaly
detection on attributed networks.” In Proceedings of the SIAM International
Conference on Data Mining.

Ding, Kaize, Jundong Li, and Huan Liu. 2019. “Interactive anomaly detection on
attributed networks.” In Proceedings of the ACM International Conference on
Web Search and Data Mining.

Ding, Kaize, Jianling Wang, James Caverlee, and Huan Liu. 2022. “Meta Propagation
Networks for Few-shot Semi-supervised Learning on Graphs.” In AAAI.

Ding, Kaize, Jianling Wang, Jundong Li, Dingcheng Li, and Huan Liu. 2020. “Be More
with Less: Hypergraph Attention Networks for Inductive Text Classification.” In
EMNLP.

131

Ding, Kaize, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu. 2020.
“Graph prototypical networks for few-shot learning on attributed networks.” In
CIKM.

Ding, Kaize, Zhe Xu, Hanghang Tong, and Huan Liu. 2022. “Data Augmentation for
Deep Graph Learning: A Survey.” arXiv preprint arXiv:2202.08235.

Ding, Kaize, Chuxu Zhang, Jie Tang, Nitesh Chawla, and Huan Liu. 2022. “Toward
Graph Minimally-Supervised Learning.” In KDD.

Ding, Kaize, Qinghai Zhou, Hanghang Tong, and Huan Liu. 2021. “Few-shot Network
Anomaly Detection via Cross-network Meta-learning.” In TheWebConf.

Dou, Yingtong, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. 2020.
“Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged
Fraudsters.” In CIKM.

Du, Yuanqi, Shiyu Wang, Xiaojie Guo, Hengning Cao, Shujie Hu, Junji Jiang, Aish-
warya Varala, Abhinav Angirekula, and Liang Zhao. 2021. “GraphGT: Machine
Learning Datasets for Deep Graph Generation and Transformation.” In NeurIPS.

Feng, Wenzheng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang
Yang, Evgeny Kharlamov, and Jie Tang. 2020. “Graph random neural networks
for semi-supervised learning on graphs.” In NeurIPS.

Finn, Chelsea, Pieter Abbeel, and Sergey Levine. 2017. “Model-agnostic meta-learning
for fast adaptation of deep networks.” In ICML.

Fout, Alex, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. “Protein Interface
Prediction using Graph Convolutional Networks.” In NeurIPS.

Ganin, Yaroslav, and Victor Lempitsky. 2014. “Unsupervised domain adaptation by
backpropagation.” arXiv preprint arXiv:1409.7495.

Ganin, Yaroslav, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. 2016. “Domain-
adversarial training of neural networks.” In JMLR.

Gao, Jing, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, and Jiawei Han. 2010. “On
community outliers and their efficient detection in information networks.” In
KDD.

Garcia, Victor, and Joan Bruna. 2018. “Few-shot learning with graph neural networks.”
Proceedings of the International Conference on Learning Representations.

132

Garcia-Teodoro, Pedro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez. 2009. “Anomaly-based network intrusion detection: Techniques, systems
and challenges.” computers & security.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. 2011. “Domain adaptation for
large-scale sentiment classification: A deep learning approach.” In ICML.

Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. “Generative adversarial
nets.” In NeurIPS.

Grover, Aditya, and Jure Leskovec. 2016. “node2vec: Scalable feature learning for
networks.” In Proceedings of the ACM SIGKDD international conference on
Knowledge discovery and data mining.

Hadsell, Raia, Sumit Chopra, and Yann LeCun. 2006. “Dimensionality reduction by
learning an invariant mapping.” In CVPR.

Hamilton, Will, Zhitao Ying, and Jure Leskovec. 2017. “Inductive representation
learning on large graphs.” In NeurIPS.

Hassani, Kaveh, and Amir Hosein Khasahmadi. 2020. “Contrastive multi-view repre-
sentation learning on graphs.” In ICML.

He, Kaiming, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. “Momentum
contrast for unsupervised visual representation learning.” In CVPR.

Hochreiter, Sepp, A Steven Younger, and Peter R Conwell. 2001. “Learning to learn
using gradient descent.” In ICANN.

Hoffman, Judy, Sergio Guadarrama, Eric S Tzeng, Ronghang Hu, Jeff Donahue, Ross
Girshick, Trevor Darrell, and Kate Saenko. 2014. “LSDA: Large scale detection
through adaptation.” In NeurIPS.

Hu, Weihua, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. “Open graph benchmark: Datasets for
machine learning on graphs.” In NeurIPS.

Hu, Xia, Jiliang Tang, Yanchao Zhang, and Huan Liu. 2013. “Social spammer detection
in microblogging.” In IJCAI.

133

Huang, Qian, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. 2021.
“Combining Label Propagation and Simple Models Out-performs Graph Neural
Networks.” In ICLR.

Huang, Xiao, Jundong Li, and Xia Hu. 2017. “Label informed attributed network
embedding.” In WSDM, 731–739. ACM.

Huang, Xiao, Qingquan Song, Jundong Li, and Xia Hu. 2018. “Exploring expert
cognition for attributed network embedding.” In WSDM.

Jin, Ming, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou, and Shirui Pan.
2021. “Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph
Representation Learning.” In IJCAI.

Kaghazgaran, Parisa, James Caverlee, and Anna Squicciarini. 2018. “Combating
crowdsourced review manipulators: A neighborhood-based approach.” In WSDM.

Kingma, Diederik P, and Jimmy Ba. 2014. “Adam: A method for stochastic optimiza-
tion.” arXiv preprint arXiv:1412.6980.

Kipf, Thomas N, and Max Welling. 2017a. “Variational graph auto-encoders.” In
ICLR.

. 2017b. “Semi-Supervised Classification with Graph Convolutional Networks.”
In ICLR.

Klicpera, Johannes, Aleksandar Bojchevski, and Stephan Günnemann. 2019. “Predict
then propagate: Graph neural networks meet personalized pagerank.” In ICLR.

Klicpera, Johannes, Janek Groß, and Stephan Günnemann. 2019. “Directional Message
Passing for Molecular Graphs.” In ICLR.

Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. 2015. “Siamese neural
networks for one-shot image recognition.” In ICML deep learning workshop.

Kriegel, Hans-Peter, Peer Kroger, Erich Schubert, and Arthur Zimek. 2011. “Inter-
preting and unifying outlier scores.” In SDM.

Kulis, Brian, and Michael I Jordan. 2011. “Revisiting k-means: New algorithms via
Bayesian nonparametrics.” arXiv preprint arXiv:1111.0352.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep learning.” nature.

134

Li, Ao, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. 2019. “Spam review detection
with graph convolutional networks.” In CIKM.

Li, Jundong, Harsh Dani, Xia Hu, and Huan Liu. 2017. “Radar: Residual Analysis for
Anomaly Detection in Attributed Networks.” In IJCAI.

Li, Jundong, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.
“Attributed network embedding for learning in a dynamic environment.” In
CIKM, 387–396.

Li, Jundong, Xia Hu, Jiliang Tang, and Huan Liu. 2015. “Unsupervised streaming
feature selection in social media.” In CIKM, 1041–1050.

Li, Junnan, Pan Zhou, Caiming Xiong, and Steven CH Hoi. 2021. “Prototypical
contrastive learning of unsupervised representations.” In ICLR.

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. 2018. “Deeper insights into graph
convolutional networks for semi-supervised learning.” In AAAI.

Li, Qimai, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. 2019. “Label
efficient semi-supervised learning via graph filtering.” In CVPR.

Li, Yuening, Xiao Huang, Jundong Li, Mengnan Du, and Na Zou. 2019. “SpecAE:
Spectral AutoEncoder for Anomaly Detection in Attributed Networks.” In CIKM.

Li, Zheng, Ying Wei, Yu Zhang, and Qiang Yang. 2018. “Hierarchical attention transfer
network for cross-domain sentiment classification.” In AAAI.

Li, Zhenguo, Fengwei Zhou, Fei Chen, and Hang Li. 2017. “Meta-sgd: Learning to
learn quickly for few-shot learning.” arXiv preprint arXiv:1707.09835.

Liu, Hanxiao, Karen Simonyan, and Yiming Yang. 2018. “DARTS: Differentiable
Architecture Search.” In ICLR.

Liu, Lu, Tianyi Zhou, Guodong Long, Jing Jiang, Xuanyi Dong, and Chengqi Zhang.
2021. “Isometric Propagation Network for Generalized Zero-shot Learning.” In
ICLR.

Liu, Lu, Tianyi Zhou, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. 2019.
“Prototype propagation networks (PPN) for weakly-supervised few-shot learning
on category graph.” In NeurIPS.

135

Liu, Lu, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019. “Learning
to propagate for graph meta-learning.” In Proceedings of the Annual Conference
on Neural Information Processing Systems.

Liu, Meng, Hongyang Gao, and Shuiwang Ji. 2020. “Towards deeper graph neural
networks.” In KDD.

Lloyd, Stuart. 1982. “Least squares quantization in PCM.” IEEE transactions on
information theory.

Manning, Christopher D, Hinrich Schütze, and Prabhakar Raghavan. 2008. Introduction
to information retrieval. Cambridge university press.

McAuley, Julian, Rahul Pandey, and Jure Leskovec. 2015. “Inferring networks of
substitutable and complementary products.” In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.

McPherson, Miller, Lynn Smith-Lovin, and James M Cook. 2001. “Birds of a feather:
Homophily in social networks.” Annual review of sociology.

Mishra, Nikhil, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. 2018. “A Simple
Neural Attentive Meta-Learner.” In Proceedings of the International Conference
on Learning Representations.

Mo, Yujie, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. 2022. “Simple
Unsupervised Graph Representation Learning.” AAAI.

Müller, Emmanuel, Patricia Iglesias Sánchez, Yvonne Mülle, and Klemens Böhm. 2013.
“Ranking outlier nodes in subspaces of attributed graphs.” In ICDE Workshop.

Namata, Galileo, Ben London, Lise Getoor, Bert Huang, and UMD EDU. 2012.
“Query-driven active surveying for collective classification.” In Workshop on
MLG.

Northcutt, Stephen, and Judy Novak. 2002. Network intrusion detection. Sams Pub-
lishing.

Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. 2018. “Representation learning
with contrastive predictive coding.” arXiv preprint arXiv:1807.03748.

Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
pagerank citation ranking: Bringing order to the web. Technical report. Stanford
InfoLab.

136

Pan, Shirui, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, and Chengqi Zhang.
2019. “Learning graph embedding with adversarial training methods.” IEEE
Transactions on Cybernetics.

Pan, Shirui, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.
2018. “Adversarially Regularized Graph Autoencoder for Graph Embedding.” In
IJCAI.

Pan, Sinno Jialin, and Qiang Yang. 2009. “A survey on transfer learning.” In TKDE.

Pang, Guansong, Chunhua Shen, Longbing Cao, and Anton van den Hengel. 2020.
“Deep learning for anomaly detection: A review.” arXiv preprint arXiv:2007.02500.

Pang, Guansong, Chunhua Shen, and Anton van den Hengel. 2019. “Deep anomaly
detection with deviation networks.” In KDD.

Park, Jiwoong, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young Choi.
2019. “Symmetric graph convolutional autoencoder for unsupervised graph repre-
sentation learning.” In ICCV, 6519–6528.

Park, Namyong, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos Faloutsos.
2019. “Estimating node importance in knowledge graphs using graph neural
networks.” In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Peng, Zhen, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu,
and Junzhou Huang. 2020. “Graph Representation Learning via Graphical Mutual
Information Maximization.” In WWW.

Peng, Zhen, Minnan Luo, Jundong Li, Huan Liu, and Qinghua Zheng. 2018. “ANOMA-
LOUS: A Joint Modeling Approach for Anomaly Detection on Attributed Net-
works.” In IJCAI.

Perozzi, Bryan, and Leman Akoglu. 2016. “Scalable anomaly ranking of attributed
neighborhoods.” In SDM.

Perozzi, Bryan, Leman Akoglu, Patricia Iglesias Sánchez, and Emmanuel Müller. 2014.
“Focused clustering and outlier detection in large attributed graphs.” In KDD.

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. 2014. “Deepwalk: Online learning
of social representations.” In Proceedings of the ACM SIGKDD international
conference on Knowledge discovery and data mining.

137

Pfeiffer III, Joseph J, Sebastian Moreno, Timothy La Fond, Jennifer Neville, and
Brian Gallagher. 2014. “Attributed graph models: Modeling network structure
with correlated attributes.” In WWW.

Qi, Guo-Jun, Charu Aggarwal, Qi Tian, Heng Ji, and Thomas Huang. 2011. “Explor-
ing context and content links in social media: A latent space method.” IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Qiao, Limeng, Yemin Shi, Jia Li, Yaowei Wang, Tiejun Huang, and Yonghong Tian.
2019. “Transductive episodic-wise adaptive metric for few-shot learning.” In
Proceedings of the IEEE International Conference on Computer Vision.

Qiu, Jiezhong, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. “Gcc: Graph contrastive coding for graph
neural network pre-training.” In KDD.

Qu, Chen, Feng Ji, Minghui Qiu, Liu Yang, Zhiyu Min, Haiqing Chen, Jun Huang,
and W Bruce Croft. 2019. “Learning to Selectively Transfer: Reinforced Transfer
Learning for Deep Text Matching.” In WSDM.

Ravi, Sachin, and Hugo Larochelle. 2017. “Optimization as a model for few-shot learn-
ing.” In Proceedings of the International Conference on Learning Representations.

Rayana, Shebuti, and Leman Akoglu. 2015. “Collective opinion spam detection: Bridg-
ing review networks and metadata.” In KDD.

Ren, Mengye, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua
B Tenenbaum, Hugo Larochelle, and Richard S Zemel. 2018. “Meta-learning
for semi-supervised few-shot classification.” In Proceedings of the International
Conference on Learning Representations.

Ren, Mengye, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. 2018. “Learning to
reweight examples for robust deep learning.” In ICML.

Resnik, Philip, and Eric Hardisty. 2010. Gibbs sampling for the uninitiated. Technical
report. Maryland Univ College Park Inst for Advanced Computer Studies.

Ruff, Lukas, Robert A Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel
Müller, Klaus-Robert Müller, and Marius Kloft. 2020. “Deep Semi-Supervised
Anomaly Detection.” In ICLR.

Saenko, Kate, Brian Kulis, Mario Fritz, and Trevor Darrell. 2010. “Adapting visual
category models to new domains.” In ECCV.

138

Sánchez, Patricia Iglesias, Emmanuel Muller, Fabian Laforet, Fabian Keller, and
Klemens Bohm. 2013. “Statistical selection of congruent subspaces for mining
attributed graphs.” In ICDM, 647–656.

Sánchez, Patricia Iglesias, Emmanuel Müller, Oretta Irmler, and Klemens Böhm. 2014.
“Local context selection for outlier ranking in graphs with multiple numeric node
attributes.” In SSDBM.

Santoro, Adam, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy
Lillicrap. 2016. “Meta-learning with memory-augmented neural networks.” In
ICML.

Sen, Prithviraj, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008a. “Collective classification in network data.” AI magazine.

. 2008b. “Collective classification in network data.” AI Magazine.

Shalizi, Cosma Rohilla, and Andrew C Thomas. 2011. “Homophily and contagion
are generically confounded in observational social network studies.” Sociological
Methods & Research 40 (2): 211–239.

Shchur, Oleksandr, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Gün-
nemann. 2018. “Pitfalls of graph neural network evaluation.” arXiv preprint
arXiv:1811.05868.

Shen, Xiao, Quanyu Dai, Fu-lai Chung, Wei Lu, and Kup-Sze Choi. 2020. “Adversarial
Deep Network Embedding for Cross-Network Node Classification.” In AAAI.

Shu, Yang, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. 2019. “Transferable
Curriculum for Weakly-Supervised Domain Adaptation.” In AAAI.

Skillicorn, David B. 2007. “Detecting anomalies in graphs.” In ISI.

Snell, Jake, Kevin Swersky, and Richard Zemel. 2017. “Prototypical networks for few-
shot learning.” In Proceedings of the Annual Conference on Neural Information
Processing Systems.

Song, Xiuyao, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. 2007. “Condi-
tional anomaly detection.” TKDE.

Sun, Ke, Zhouchen Lin, and Zhanxing Zhu. 2020. “Multi-stage self-supervised learning
for graph convolutional networks on graphs with few labeled nodes.” In AAAI.

139

Sung, Flood, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. “Learning to compare: Relation network for few-shot learn-
ing.” In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Tang, Jie, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. “Ar-
netminer: extraction and mining of academic social networks.” In Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

Tang, Xianfeng, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang
Wang. 2020. “Transferring Robustness for Graph Neural Network Against Poison-
ing Attacks.” In WSDM.

Tong, Hanghang, and Ching-Yung Lin. 2011. “Non-negative residual matrix factoriza-
tion with application to graph anomaly detection.” In SDM.

Tzeng, Eric, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. “Adversarial
discriminative domain adaptation.” In CVPR.

Tzeng, Eric, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. 2014.
“Deep domain confusion: Maximizing for domain invariance.” arXiv preprint
arXiv:1412.3474.

Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. 2018a. “Graph attention networks.” In Proceedings of the
International Conference on Learning Representations.

. 2018b. “Graph attention networks.” In ICLR.

. 2018c. “Graph attention networks.” In ICLR.

Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. 2018. “Graph Attention Networks.” In ICLR.

Veličković, Petar, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. “Deep Graph Infomax.” In ICLR.

Vinyals, Oriol, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016. “Match-
ing networks for one shot learning.” In Proceedings of the Annual Conference on
Neural Information Processing Systems.

140

Wang, Daixin, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan
Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. “A Semi-supervised Graph
Attentive Network for Financial Fraud Detection.” In ICDM.

Wang, Jianling, Kaize Ding, Liangjie Hong, Huan Liu, and James Caverlee. 2020.
“Next-item Recommendation with Sequential Hypergraphs.” In Proceedings of
the International ACM SIGIR Conference on Research and Development in
Information Retrieval.

Wang, Ning, Minnan Luo, Kaize Ding, Lingling Zhang, Jundong Li, and Qinghua
Zheng. 2020. “Graph Few-shot Learning with Attribute Matching.” In CIKM.

Wang, Xiao, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.
2019. “Heterogeneous graph attention network.” In TheWebConf.

West, Jarrod, and Maumita Bhattacharya. 2016. “Intelligent financial fraud detection:
a comprehensive review.” Computers & security 57:47–66.

Wu, Felix, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. “Simplifying graph convolutional networks.” In ICML.

Wu, Man, Shirui Pan, Lan Du, Ivor Tsang, Xingquan Zhu, and Bo Du. 2019. “Long-
short Distance Aggregation Networks for Positive Unlabeled Graph Learning.” In
CIKM.

Wu, Man, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. 2020. “Unsu-
pervised Domain Adaptive Graph Convolutional Networks.” In The Web Confer-
ence.

Wu, Zonghan, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. 2020. “A comprehensive survey on graph neural networks.” TNNLS.

Xia, Yan, Xudong Cao, Fang Wen, Gang Hua, and Jian Sun. 2015. “Learning discrim-
inative reconstructions for unsupervised outlier removal.” In ICCV.

Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. “How powerful
are graph neural networks?” In ICLR.

Xu, Keyulu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi,
and Stefanie Jegelka. 2018. “Representation learning on graphs with jumping
knowledge networks.” In ICML.

Xu, Xiaowei, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. 2007. “Scan: a
structural clustering algorithm for networks.” In Proceedings of the 13th ACM

141

SIGKDD International Conference on Knowledge Discovery and Data mining
(KDD).

Yao, Huaxiu, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang,
Nitesh Chawla, and Zhenhui Li. 2020a. “Graph few-shot learning via knowledge
transfer.” In AAAI.

Yao, Huaxiu, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang,
Nitesh V Chawla, and Zhenhui Li. 2020b. “Graph few-shot learning via knowledge
transfer.” In Proceedings of the AAAI Conference on Artificial Intelligence.

You, Jiaxuan, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. 2018. “Graph
convolutional policy network for goal-directed molecular graph generation.” In
NeurIPS.

You, Yuning, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang
Shen. 2020. “Graph contrastive learning with augmentations.” In NeurIPS.

Yu, Jianfei, Minghui Qiu, Jing Jiang, Jun Huang, Shuangyong Song, Wei Chu, and
Haiqing Chen. 2018. “Modelling domain relationships for transfer learning on
retrieval-based question answering systems in e-commerce.” In WSDM.

Yu, Wenchao, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei
Wang. 2018. “NetWalk: A Flexible Deep Embedding Approach for Anomaly
Detection in Dynamic Networks.” In KDD, 2672–2681.

Zafarani, Reza, Mohammad Ali Abbasi, and Huan Liu. 2014. Social media mining: an
introduction. Cambridge University Press.

Zhang, Chuxu, Kaize Ding, Jundong Li, Xiangliang Zhang, Yanfang Ye, Nitesh V
Chawla, and Huan Liu. 2022. “Few-Shot Learning on Graphs: A Survey.” In
IJCAI.

Zhang, Jian, Chenglong Zhao, Bingbing Ni, Minghao Xu, and Xiaokang Yang. 2019.
“Variational few-shot learning.” In Proceedings of the IEEE International Confer-
ence on Computer Vision.

Zhang, Tiantian, and Bin Wu. 2012. “A method for local community detection by
finding core nodes.” In Proceedings of the International Conference on Advances
in Social Networks Analysis and Mining.

142

Zhang, Yin, Rong Jin, and Zhi-Hua Zhou. 2010. “Understanding bag-of-words model:
a statistical framework.” International Journal of Machine Learning and Cyber-
netics.

Zhang, Yizhou, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. 2019. “Dane:
Domain adaptive network embedding.” In IJCAI.

Zhang, Zhen-Yu, Peng Zhao, Yuan Jiang, and Zhi-Hua Zhou. 2019. “Learning from
incomplete and inaccurate supervision.” In KDD.

Zhao, Tong, Chuchen Deng, Kaifeng Yu, Tianwen Jiang, Daheng Wang, and Meng
Jiang. 2020. “Error-Bounded Graph Anomaly Loss for GNNs.” In CIKM.

Zheng, Shuai, Zhenfeng Zhu, Xingxing Zhang, Zhizhe Liu, Jian Cheng, and Yao Zhao.
2020. “Distribution-induced bidirectional generative adversarial network for graph
representation learning.” In CVPR.

Zhou, Chong, and Randy C Paffenroth. 2017. “Anomaly detection with robust deep
autoencoders.” In KDD.

Zhou, Dawei, Jingrui He, Hongxia Yang, and Wei Fan. 2018. “Sparc: Self-paced network
representation for few-shot rare category characterization.” In KDD.

Zhou, Dengyong, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard
Schölkopf. 2004. “Learning with local and global consistency.” In NeurIPS.

Zhou, Fan, Chengtai Cao, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Ji Geng.
2020. “Fast Network Alignment via Graph Meta-Learning.” In INFOCOM.

Zhou, Fan, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng.
2019. “Meta-GNN: On Few-shot Node Classification in Graph Meta-learning.” In
CIKM.

Zhou, Qinghai, Liangyue Li, Nan Cao, Lei Ying, and Hanghang Tong. 2019. “ADMIR-
ING: Adversarial multi-network mining.” In ICDM.

Zhou, Qinghai, Liangyue Li, and Hanghang Tong. 2019. “Towards Real Time Team
Optimization.” In Big Data.

Zhu, Xiaojin, and Zoubin Ghahramani. 2002. “Learning from labeled and unlabeled
data with label propagation.” Technical Report.

Zhu, Xiaojin, Zoubin Ghahramani, and John D Lafferty. 2003. “Semi-supervised
learning using gaussian fields and harmonic functions.” In ICML.

143

Zhu, Yanqiao, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020a.
“Deep Graph Contrastive Representation Learning.” In ICML Workshop.

. 2020b. “Graph Contrastive Learning with Adaptive Augmentation.” In TheWe-
bConf.

Zhuang, Fuzhen, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and Qing He. 2015.
“Supervised representation learning: Transfer learning with deep autoencoders.”
In IJCAI.

Zügner, Daniel, Amir Akbarnejad, and Stephan Günnemann. 2018. “Adversarial
attacks on neural networks for graph data.” In KDD.

144

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	1.1 Motivation and Contributions
	1.2 Thesis Outline

	2 Graph Few-Shot Learning
	2.1 Few-Shot Node Classification
	2.1.1 Introduction
	2.1.2 Related Work
	2.1.3 Problem Definition
	2.1.4 Methodology and Model Design
	2.1.4.1 Episodic Training on Attributed Networks
	2.1.4.2 Network Representation Learning
	2.1.4.3 Node Importance Valuation
	2.1.4.4 Few-shot Node Classification

	2.1.5 Performance Evaluation
	2.1.5.1 Evaluation Settings
	2.1.5.2 General Comparisons
	2.1.5.3 Case Study

	2.2 Few-Shot Graph Anomaly Detection
	2.2.1 Introduction
	2.2.2 Related Work
	2.2.3 Problem Definition
	2.2.4 Meta-GDN
	2.2.4.1 Graph Deviation Networks
	2.2.4.2 Cross-network Meta-learning

	2.2.5 Performance Evaluation
	2.2.5.1 Evaluation Setting
	2.2.5.2 Effectiveness Results
	2.2.5.3 Sensitivity & Robustness Analysis

	2.3 Conclusion

	3 Graph Weakly-Supervised Learning
	3.1 Node Classification with Incomplete Supervision
	3.1.1 Introduction
	3.1.2 Related Works
	3.1.3 Architecture Overview
	3.1.3.1 Adaptive Label Propagator (Meta Learner)
	3.1.3.2 Feature-label Transformer (Target Model)
	3.1.3.3 Learning to Propagate
	3.1.3.4 Model Learning via Bi-level Optimization

	3.1.4 Performance Evaluation
	3.1.4.1 Evaluation Settings
	3.1.4.2 Performance Evaluation
	3.1.4.3 Parameter & Ablation Analysis.

	3.2 Cross-domain Graph Anomaly Detection
	3.2.1 Introduction
	3.2.2 Related Works
	3.2.3 Anomaly Analysis Across Domains.
	3.2.4 Problem Definition
	3.2.5 Architecture Overview
	3.2.5.1 Domain Adaptation on Attributed Graphs
	3.2.5.2 Cross-domain Anomaly Detection
	3.2.5.3 Model Learning

	3.2.6 Performance Evaluation
	3.2.6.1 Experiment Settings
	3.2.6.2 Evaluation Results
	3.2.6.3 Ablation Study

	3.3 Conclusion

	4 Graph Self-supervised Learning
	4.1 Unsupervised Graph Contrastive Learning
	4.1.1 Introduction
	4.1.2 Preliminaries – Graph Contrastive Learning
	4.1.3 Architecture Overview
	4.1.3.1 Structural Contrastive Learning
	4.1.3.2 Semantic Contrastive Learning
	4.1.3.3 Model Learning

	4.1.4 Experiments
	4.1.4.1 Experimental Settings
	4.1.4.2 General Comparisons
	4.1.4.3 Representation Visualization.

	4.2 Self-supervised Graph Anomaly Detection
	4.2.1 Introduction
	4.2.2 Problem Definition
	4.2.3 Architecture Overview
	4.2.3.1 Preliminary - Deep Autoencoder
	4.2.3.2 Attributed Network Encoder
	4.2.3.3 Structure Reconstruction Decoder
	4.2.3.4 Attribute Reconstruction Decoder
	4.2.3.5 Anomaly Detection

	4.2.4 Experiments
	4.2.4.1 Experimental Settings
	4.2.4.2 Experimental Results
	4.2.4.3 Parameter Analysis

	4.3 Conclusion

	5 Conclusion
	5.1 Future Directions

	References

