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Abstract

Graph-structured data, ranging from social networks to financial transaction networks, from
citation networks to gene regulatory networks, have been widely used for modeling a myriad of
real-world systems. As a prevailing model architecture to model graph-structured data, graph neural
networks (GNNs) has drawn much attention in both academic and industrial communities in the past
decades. Despite their success in different graph learning tasks, existing methods usually rely on
learning from “big” data, requiring a large amount of labeled data for model training. However,
it is common that real-world graphs are associated with “small” labeled data as data annotation
and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to
investigate graph machine learning (GML) with minimal human supervision for the low-resource
settings where limited or even no labeled data is available.

In this proposal, we will focus on the state-of-the-art techniques of Graph Minimally-Supervised
Learning, in particular a series of weakly-supervised learning, few-shot learning, and self-
supervised learning methods on graph-structured data as well as their real-world applications. The
objectives of this tutorial are to: (1) formally categorize the problems in graph minimally-supervised
learning and discuss the challenges under different learning scenarios; (2) comprehensively review
the existing and recent advances of graph minimally-supervised learning; and (3) elucidate open
questions and future research directions. This tutorial introduces major topics within minimally-
supervised learning and offers a guide to a new frontier of graph learning. We believe this tutorial
is beneficial to researchers and practitioners, allowing them to collaborate on graph learning.

To tackle these challenges, existing research has focused either on the textual content or on
tracing user engagements on how fake news propagate. User engagements over information such as
news articles, including posting about, commenting on or recommending the news on social media,
contain abundant rich information. Since social media data is big, incomplete, noisy, unstructured,
with abundant social relations, solely relying on user engagements can be sensitive to noisy user
feedback. To alleviate the problem of limited labeled data, it is important to combine contents and
this new (but weak) type of information as supervision signals, i.e., weak social supervision, to
advance fake news detection.

In this proposal, we investigate learning with weak social supervision for understanding
disinformation. In particular, we use fake news as an example to study how to effectively derive and
exploit the weak supervision for learning with little labeled data. We propose novel frameworks that
can learn with weak social supervision to detect fake news more effectively and with explainability,
and discuss principles for early detection and cross-domain detection of fake news with weak social
supervision.
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1 INTRODUCTION

1 Introduction
Recent years have witnessed a rapid growth in our ability to generate and gather data from numerous
platforms in the online world and various sensors in the physical world. Graphs serve as a common
language for modeling a plethora of structured and relational systems, such as social networks,
knowledge graphs, and academic graphs, where entities are denoted as nodes while their relations
are denoted as edges. More recently, graph learning algorithms, especially those based on graph
neural networks (GNNs) [47, 57] have received much research attention due to their significant
impacts in addressing real-world problems. To harness the inherent structure among data, significant
methodological advances have been made in graph learning, which have produced promising results in
applications from diverse domains, ranging from cybersecurity [64] to natural language processing [14].

In general, existing graph learning algorithms focus on the setting where abundant human-annotated
examples can be accessed during training. This assumption is often infeasible since collecting
such auxiliary knowledge is laborious and requires intensive domain-knowledge, especially when
considering the heterogeneity of graph-structured data [59, 15]. As such, it is challenging yet imperative
to study graph learning under different low-resource settings with limited or no labeled training data.
In particular, three fundamental problems have drawn increasing research attention in the field of graph
minimally-supervised learning: (1) Graph Weakly-Supervised Learning (Graph WSL), which focuses
on learning effective GNNs for a specific down-stream task using either incomplete, or indirect, or
inaccurate supervision signals; (2) Graph Few-Shot Learning (Graph FSL), whose goal is to handle
unseen tasks (from novel label space) when only few labeled instances are available; and (3) Graph Self-
Supervised Learning (Graph SSL), which aims to either pre-train task-agnostic GNNs or enhance GNNs
on specific down-stream tasks without any semantic annotations. To address each of the aforementioned
fundamental problems, I conducted a series of research to push forward the performance boundary
of graph machine learning (GML) models with different kinds of low-cost supervision signals. In
the meantime, I also investigated how to effectively adopt minimally-supervised GML algorithms to
advance applications in different domains, such as cybersecurity, natural language processing, and
recommendation. My Ph.D. research aims to understand, characterize, and gain actionable insights
from massive yet scarcely-labeled data (with a special focus on graph-structured data) by developing
effective and efficient AI algorithms, in order to further benefit high-impact real-world applications.

In this proposal, we attempt to learn with weak social supervision to understand and detect
disinformation and fake news more effectively, with explainability, at an early stage, and across
domains. The main contributions are:

• Studying novel problems of understanding disinformation such as fake news on social media;

• Providing principled approaches to learn with weak social supervision guided by social theories
for multi-faceted social media data;

• Proposing novel frameworks to detect fake news with challenging scenarios including effective,
explainable, early, and cross-domain fake news detection; and

• Conducting experiments on real-world datasets to demonstrate the effectiveness of the proposed
frameworks.
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2 RELATED WORK

2 Related Work
2.1 Graph Neural Networks Driven by the momentous success of deep learning, recently, a mass of
efforts have been devoted to developing deep neural networks for graph-structured data [7, 6, 12, 54].
As one of the pioneer works, GNN [45] was introduced to learn node representations by propagating
neighbors’ information via recurrent neural architecture. Based on the graph spectral theory, a series of
graph convolutional networks (GCNs) have emerged and demonstrated superior learning performance
by designing different graph convolutional layers. Among them, the first prominent research on
GCNs called Spectral CNN [5], which extends the convolution operation in the spectral domain for
network representation learning. Since then, increasing research advances on graph convolutional
networks [26, 9, 23] are presented as its extensions. In addition to spectral graph convolution
models, graph neural networks that follow neighborhood aggregation schemes are also extensively
investigated. Instead of training individual embeddings for each node, those methods learn a set
of aggregator functions to aggregate features from a node’s local neighborhood. GraphSAGE [22]
learns a function that generates embeddings by sampling and aggregating features from a node’s
local neighborhood. Similarly, Graph Attention Networks (GATs) [52] incorporate trainable attention
weights to specify fine-grained weights on neighbors when aggregating neighborhood information
of a node. Furthermore, Graph Isomorphism Network (GIN) [58] extends this idea with arbitrary
aggregation functions on multi-sets, and is proven to be as theoretically powerful as the Weisfeiler-
Lehman (WL) graph isomorphism test. Nevertheless, all the existing GNN models focus on semi-
supervised node classification. The inability to handle unseen classes with severely limited samples, is
one of the major challenges for the current GNNs.

For real-world graph learning tasks, the amount of gold-labeled samples is usually quite limited due
to the expensive labeling cost. To improve the GNN model performance on the node classes with only
few labeled nodes, graph few-shot learning [62, 15, 55] and cross-network transfer learning [59, 17]
have been proposed to transfer the knowledge from other auxiliary data source(s). Nonetheless, for
the problem of few-shot semi-supervised node classification, such auxiliary datasets are commonly
not allowed to use. As another line of related work, Li et al. [29] combined GCNs and self-
training to expand supervision signals, while M3S [49] advances this idea by utilizing the clustering
method to eliminate the inaccurate pseudo labels. However, those methods cannot directly address the
oversmoothing issue and may suffer from inaccurate pseudo labels. By conducting meta-learning on
top of a decoupled design, our approach Meta-PN achieves superior performance on few-shot semi-
supervised node classification.

2.2 Few-shot Learning Few-shot learning (FSL) aims to solve new tasks with a limited number
of examples, based on the knowledge obtained from previous experiences. Generally, existing FSL
models fall into two broad categories: (1) optimization-based approaches, which focus on learning
the optimization of model parameters given the gradients on few-shot examples [42, 19, 31, 37]. One
example is the LSTM-based meta-learner [42], which aims to learn efficient parameter updating rules
for training a neural classifier. MAML [19] learns the parameter initialization that is suitable for
different FSL tasks and is compatible with any model trained with gradient descent. Meta-SGD [31]
goes further in meta-learning by arguing to learn the weights initialization, gradient update direction and
learning rate within a single step. SNAIL [37] is another model which combines temporal convolution
and soft attention to learn an optimal learning strategy. However, this line of work usually suffers from
the computational cost of fine-tuning. (2) metric-based approaches, which try to learn generalizable
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3 GRAPH FEW-SHOT LEARNING

matching metrics between query and support set across different tasks [53, 48, 43, 50, 33]. For
instance, Matching Networks [53] learn a weighted nearest-neighbor classifier with attention networks.
Prototypical Network [48] computes the prototype of each class by taking the mean vector of support
examples and classifies query instances by calculating their Euclidean distances. An extension of
Prototypical Networks proposed by Ren et al. [43] considers both labeled and unlabeled data for few-
shot learning. Relation Network [50] trains an auxiliary network to learn a non-linear metric between
each query and the support set. Recently, few-shot learning on graphs has received increasing research
attention [62, 4]. However, those methods treat support examples equally, rendering the model unstable
to noises or outliers [10]. In this paper, we learn a robust and powerful few-shot learning model by
considering the individual importance of labeled support examples.

2.2.1 Weakly-Supervised Learning

2.2.2 Self-Supervised Learning

3 Graph Few-Shot Learning
Following the commonly used notations, in this paper, we use calligraphic fonts, bold lowercase letters,
and bold uppercase letters to denote sets (e.g., G), vectors(e.g., x), and matrices (e.g., X), respectively.
The ith row of a matrix X is denoted by xi, and the transpose of a matrix X is represented as XT. We
summarize the main notations used throughout the paper in Table ??. For the other special notations,
we will illustrate them in the corresponding sections.

Formally, an attributed network can be represented as G = (V,E,X), where V denotes the set of
nodes {v1, v2, . . . , vn} and E denotes the set of edges {e1, e2, . . . , em}. Each node is associated with a
feature vector xi ∈ R

1×d and X = [x1; x2; . . . ; xn] ∈ Rn×d denotes all the node features. Thus, more
generally, the attributed network can be represented as G = (A,X), where A = {0, 1}n×n is an adjacency
matrix representing the network structure. Specifically, Ai, j = 1 indicates that there is an edge between
node vi and node v j; otherwise, Ai, j = 0. The studied problem can be formulated as follows:

As existing FSL models are not tailored for graph-structured data, it is infeasible to apply them to
solve the studied problem directly. In this section, we present the details about the proposed Graph
Prototypical Networks (GPN) for few-shot node classification on attributed networks. Specifically, our
framework is designed and built to address three challenging research questions: (1) How to perform
meta-learning on attributed networks (non-i.i.d. data) for extracting the meta-knowledge? (2) How to
learn expressive node representations from the input attributed network by considering both the node
attributes and topological structure? and (3) How to identify the informativeness of each labeled node
for learning robust and discriminative class representations?

An overview of the proposed Graph Prototypical Networks (GPN) is provided in Figure 1. In
Section 4.1, we introduce the backbone training mechanism of the proposed model. In Section 4.2
and 4.3, we introduce how we design the two essential modules in GPN. Then we discuss how to
perform few-shot node classification using the proposed framework in Section 4.4. Last, we present the
complexity analysis in Section 4.5.

3.1 Graph Prototypical Networks
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Figure 1: (Left) Episodic training on attributed networks. In each episode, we create a semi-supervised
few-shot node classification task by random sampling; (Right) The architecture of the proposed
framework Graph Prototypical Networks (GPN).

3.1.1 Episodic Training on Attributed Networks Our approach is a meta-learning framework
which follows the prevailing episodic training paradigm [53]. Specifically, GPN learns over diverse
meta-training tasks in a large number of episodes rather than only on the target meta-test task. The
key idea of episodic training is to mimic the real test environment by sampling nodes from Ctrain. The
consistency between training and test environment alleviates the distribution gap and improves model
generalization capability. Specifically, in each episode, we construct a N-way K-shot meta-training
task:

St = {(v1, y1), (v2, y2), ..., (vN×K , yN×K)},
Qt = {(v∗1, y

∗
1), (v∗2, y

∗
2), ..., (v∗N×M, y

∗
N×M)},

Tt = {St,Qt},

(3.1)

where both the support set St and query set Qt of the meta-training task Tt are sampled from Ctrain.
The support set St contains K nodes from each class, while the query set Qt includes M query nodes
sampled from the remainder of each of the N classes.

The whole training process is based on a set of T meta-training tasks Ttrain = {Tt}
T
t=1. The model is

trained to minimize the loss of its predictions for the query setQt in each meta-training task Tt, and goes
episode by episode until convergence. In this way, the model gradually collects meta-knowledge across
those meta-training tasks and then can be naturally generalized to the meta-test task Ttest = {S,Q} with
unseen classes Ctest.

Different from conventional episodic training that constructs a pool of supervised meta-training
tasks [20], in each episode, we sample N-way K-shot labeled nodes and mask the rest as unlabeled
nodes. In this way, we can create a semi-supervised meta-training task with the partially labeled
attributed network. By considering both labeled and unlabeled data and their dependencies, we are
able to learn more expressive node representations for few-shot node classification during the meta-
learning process.

3.1.2 Network Representation Learning In order to learn expressive node representations from an
attributed network, we develop a network encoder to capture the data heterogeneity. Specifically, the
network encoder possesses a GNN backbone, which converts each node to a low-dimensional latent
representation. In general, GNNs follow the neighborhood aggregation scheme, and compute the node
representations by recursively aggregating and compressing node features from local neighborhoods.

Dissertation Prospectus 7 Arizona State University
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Briefly, a GNN layer can be defined as:

hl
i = Combinel

(
hl−1

i ,h
l
Ni

)
,

hl
Ni
= Aggregatel

(
{hl−1

j |∀ j ∈ Ni ∪ vi}
)
,

(3.2)

where hl
i is the node representation of node i at layer l and Ni is the set of neighboring nodes

of vi. Combine and Aggregate are two key functions of GNNs and have a series of possible
implementations [26, 22, 52].

By stacking multiple GNN layers in the network encoder, the learned node representations are able
to capture the long-range node dependencies in the network:

H1 = GNN1(A,X),
. . .

Z = GNNL(A,HL−1),
(3.3)

where Z is the learned node representations from the network encoder. For simplicity, we will use fθ(·)
to denote the network encoder with L GNN layers.
Prototype Computation. With the learned node representations from the network encoder, next, we
aim to compute the representation of each class with the labeled nodes from the support set. We follow
the idea of Prototypical Networks [48], which encourages nodes of each class cluster around a specific
prototype representation. Formally, the class prototypes can be computed by:

pc = Proto
(
{zi|∀i ∈ Sc}

)
, (3.4)

where Sc denotes the set of labeled examples from class c and Proto is the prototype computation
function. For instance, in the vanilla Prototypical Networks [48], the prototype of each class is
computed by taking the average of all embedded nodes belonging to that class:

pc =
1
|Sc|

∑
i∈Sc

zi. (3.5)

3.1.3 Node Importance Valuation Despite its simpleness, directly taking the mean vectors of the
embedded support instances as prototypes may not provide promising results for our problem. It not
only neglects the fact that each node has a different significance in a network, but also makes the FSL
model highly noise-sensitive since labeled data is severely limited [60]. Therefore, refining those class
prototypes becomes especially essential for building a robust and effective FSL model.

To identify the informativeness of each labeled node, we adopt a view that the importance of a node
is highly correlated with its neighbors’ importance [40]. Accordingly, we design a GNN-based node
valuator gϕ(·) (as shown in Figure 3) to estimate node importance scores through a score aggregation
layer, which can be defined as follows:

sl
i =
∑

j∈Ni∪vi

αl
i js

l−1
j , (3.6)

Dissertation Prospectus 8 Arizona State University



3 GRAPH FEW-SHOT LEARNING

Score Aggregation Layer

Centrality Adjustment

Scoring Layer

Score Aggregation Layer

𝑠"#
$ 𝑠"%

$ 𝑠&$ 𝑠"'
$ 𝑠"(

$

𝑠&)

�̃�&

𝒙&
𝒙"' 𝒙"(

𝒙"%𝒙"#

Figure 2: Architecture of the node valuator.

where sl
i is the importance score of node vi in the l-th layer (l = 1, . . . , L). αl

i j is the attention weight
between nodes vi and v j, we compute it via a shared attention mechanism:

αl
i j =

exp
(
LeakyReLU

(
aT[sl−1

i ||s
l−1
j ]
))∑

k∈Ni∪vi
exp
(
LeakyReLU

(
aT[sl−1

j ||s
l−1
k ]
)) , (3.7)

where || is a concatenation operator and a is a weight vector.
To compute the initial importance score s0

i , we employ a scoring layer to compress the node
features. Our scoring layer is a feed-forward layer with tanh non-linearity. Specifically, the initial
score of node vi is computed by:

s0
i = tanh(wT

s xi + bs) (3.8)

where ws ∈ R
d is a learnable weight vector and bs ∈ R

1 is the bias.
Centrality Adjustment. As suggested in previous research on node importance estimation [39, 40] ,
the importance of a node positively correlates with its centrality in the graph. Given that the in-degree
deg(i) of node vi is a common proxy for its centrality and popularity, we define the initial centrality C(i)
of node vi as:

C(i) = log(deg(i) + ϵ), (3.9)

where ϵ is a small constant. To compute the final importance score, we apply centrality adjustment to
the estimated score sL

i from the last layer, and apply a sigmoid non-linearity as follows:

s̃i = sigmoid(C(i) · sL
i ). (3.10)

3.1.4 Few-shot Node Classification After we compute the importance score of each support node,
we first normalize those scores using the softmax function:

βi =
exp(s̃i)∑

k∈Sc
exp(s̃k)

, (3.11)

where βi represents the normalized weight of each support node vi, then the refined prototypes can be
directly computed by:

pc =
∑
i∈Sc

βizi. (3.12)
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Table 1: Statistics of the evaluation datasets.
Datasets # nodes # edges # attributes # Train/Valid/Test

Amazon-Clothing 24,919 91,680 9,034 40/17/20
Amazon-Electronics 42,318 43,556 8,669 90/37/40
DBLP 40,672 288,270 7,202 80/27/30
Reddit 232,965 11,606,919 602 16/10/15

As such, our model can adjust the cluster locations to better represent the examples in both the
support and unlabeled sets. These learned prototypes define a predictor for the class label of a query
node v∗i , which assigns a probability over each class c based on the distances between the query node
v∗i and each prototype:

p(c|v∗i ) =
exp(−d(z∗i ,pc))∑
c′ exp(−d(z∗i ,pc′))

, (3.13)

where d(·) is a distance metric function. Commonly, squared Euclidean distance is a simple and
effective choice [48].

Under the episodic training framework, the objective of each meta-training task is to minimize
the classification loss between the predictions of the query set and the ground-truth. Specifically, the
training loss can be defined as the average negative log-likelihood probability of assigning correct class
labels:

L = −
1

N × M

N×M∑
i=1

log p(y∗i |v
∗
i ). (3.14)

By minimizing the above loss function, GPN is able to learn a generic classifier for a specific meta-
training task. Training episodes are formed by randomly selecting a subset of classes from the auxiliary
class set Ctrain, then choosing a subset of nodes within each class to act as the support set and a subset of
the remainder to serve as query set. After training on a considerable number of meta-training tasks, its
generalization performance will be measured on the test episodes, which contain nodes sampled from
Ctest instead of Ctrain. For each test episode, we use the predictor produced by our GPN for the provided
support set S to classify each query node in Q into the most likely class: ŷ∗i = argmaxc p(c|v∗i ).

3.2 Performance Evaluation

3.2.1 Evaluation Settings
Evaluation Datasets. Due to the fact that few-shot node classification on graph-structured data

remains an under-studied problem, it is worth mentioning that the existing benchmark datasets (e.g.,
Cora, Pubmed) for conventional node classification problem are not suitable for evaluating FSL
models. The main reason is that FSL models usually need to be tested on many different classification
tasks, while those datasets only contain limited node classes. To extensively evaluate the model
performance on few-shot node classification, in our experiments, we adopt four public datasets with
plenty of node classes and their statistics of can be found in Table 1. Amazon-Clothing and Amazon-
Electronics [35] are two product networks built with the products in “Clothing, Shoes and Jewelry”
and “Electronics” on Amazon respectively. In these networks, each product is considered as a node and
its description is used to construct the node attributes. We use the substitutable and complementary
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relationship to create links between products. The class label is defined as the low-level product
category. DBLP [51] is a citation network where each node represents a paper, and the links are
the citation relations among different papers. The paper abstracts are used to construct node attributes.
The class label of a node is defined as the paper venue. Reddit [22] is a post-to-post graph constructed
with data sampled from Reddit, which is used to evaluate the performance of our model on large-scale
attributed networks. In this large-scale attributed network, posts are represented by nodes and two posts
are connected if they are commented by the same user. Each post is labeled with it a community ID.

Compared Methods. In the experiments, we compare the proposed model GPN with related
baseline methods: DeepWalk [41] learns node embeddings from a stream of truncated vanilla random
walks on the input graph, and node2vec [21] extends it with biased random walks to explore diverse
neighborhoods. GCN [26] learns latent node representations based on the first-order approximation of
spectral graph convolutions. SGC [56] eliminates the non-linearity between GCN layers and folding
the convolution functions into a linear transformation. Prototypical Network (PN) [48] is one of the
widely used few-shot learning methods for image classification. MAML [19] is an optimization-based
meta-learning method, which tries to learn a better model initialization from a series of meta-training
tasks. By using a GNN base model, Meta-GNN [62] extends MAML to graph data.

3.2.2 General Comparisons For each dataset, we evaluate the performance of all the algorithms on
four few-shot node classification tasks, i.e., 5-way-3-shot, 5-way-5-shot, 10-way-3-shot, and 10-way-
5-shot. We set the query size as same as the support size in our experiments. We adopt two widely
used metrics Accuracy (ACC) and Micro-F1 (F1) to evaluate performance. Each model is evaluated
on 50 meta-test tasks and each meta-test task is randomly sampled from test node classes. We repeat
the process 10 times and the averaged results are presented in Table 3. Higher values are better for all
metrics. From the comprehensive views, we make the following observations:

• A general observation is that our approach GPN achieves the best performance on all the few-
shot tasks. For example, on the Amazon-Clothing dataset, GPN outperforms the best performing
baseline Meta-GNN by 5.9% (ACC) under the 10-way-3-shot task. The improvements are even
more substantial on the larger dataset Reddit. This result verifies that GPN is a powerful and reliable
model to tackle the problem of few-shot node classification on attributed networks.

• Overall, DeepWalk and node2vec largely fall behind other methods on few-shot node classification
tasks. Those random walk-based methods need to train a supervised classifier (e.g., Logistic
Regression) with learned node representations, which typically rely on a large number of labeled
data for good performance. Similarly, GNN-based methods are unable to obtain competitive results
on the few-shot node classification problem. Conventional GNN models are developed for semi-
supervised node classification, and could be easily overfitted with only a small number of labeled
instances.

• Despite the success of MAML and PN on few-shot image classification, however, both of them
perform poorly on our tasks. The main reason is that those methods cannot capture the dependency
between nodes for learning expressive node representations, rendering unsatisfactory performance
on few-shot node classification tasks.

• By integrating the idea of meta-learning into graph neural networks, Meta-GNN is able to achieve
considerable improvements over other baseline methods on few-shot node classification in most
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Table 2: Averaged few-shot node classification results on four datasets w.r.t ACC and F1 (%).
Amazon-Clothing Amazon-Electronics

Methods 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 36.7 36.3 46.5 46.6 21.3 19.1 35.3 32.9 23.5 22.2 26.1 25.7 14.7 12.9 16.0 14.7
node2vec 36.2 35.8 41.9 40.7 17.5 15.1 32.6 30.2 25.5 23.7 27.1 24.3 15.1 13.1 17.7 15.5
GCN 54.3 51.4 59.3 56.6 41.3 37.5 44.8 40.3 53.8 49.8 59.6 55.3 42.3 38.4 47.4 48.3
SGC 56.8 55.2 62.2 61.5 43.1 41.6 46.3 44.7 54.6 53.4 60.8 59.4 43.2 41.5 50.0 47.6

PN 53.7 53.6 63.5 63.7 41.5 41.9 44.8 46.2 53.5 55.6 59.7 61.5 39.9 40.0 45.0 44.8
MAML 55.2 54.5 66.1 67.8 45.6 43.3 46.8 45.6 53.3 52.1 59.0 58.3 37.4 36.1 43.4 41.3
Meta-GNN 74.1 73.6 77.3 77.5 61.4 59.7 64.2 62.9 63.2 61.5 67.9 66.8 58.2 55.8 60.8 60.1
GPN 75.4 74.7 78.6 79.0 65.0 66.1 67.7 68.9 64.6 62.8 70.9 70.6 60.3 60.7 62.4 63.7

DBLP Reddit

Methods 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot 5-way 3-shot 5-way 5-shot 10-way 3-shot 10-way 5-shot
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 44.7 43.1 62.4 60.4 33.8 30.8 45.1 43.0 26.7 26.1 30.1 29.7 17.6 17.1 18.8 18.6
node2vec 40.7 38.5 58.6 57.2 31.5 27.8 41.2 39.6 27.1 25.6 31.2 29.8 19.8 18.6 23.4 22.6
GCN 59.6 54.9 68.3 66.0 43.9 39.0 51.2 47.6 38.8 38.1 45.5 44.1 29.0 27.0 35.7 32.4
SGC 57.3 54.7 65.0 62.1 40.2 36.8 50.3 46.4 44.4 42.1 46.8 42.5 29.7 26.8 31.6 27.7

PN 37.2 36.7 43.4 44.3 26.2 26.0 32.6 32.8 34.6 33.3 37.6 36.4 19.8 18.0 23.3 21.4
MAML 39.7 39.7 45.5 43.7 30.8 25.3 34.7 31.2 29.1 26.8 31.1 29.7 15.2 12.2 17.9 15.6
Meta-GNN 70.9 70.3 78.2 78.2 60.7 60.4 68.1 67.2 60.8 58.3 62.7 61.2 44.9 42.1 51.5 47.1
GPN 74.5 73.9 80.1 79.8 62.6 62.6 69.0 69.4 65.5 66.2 68.4 69.0 53.4 55.8 57.7 59.2

cases. However, it is worth noting that its performance suffers a catastrophic decline on the Reddit
dataset. One reasonable explanation is that optimization-based FSL approaches require extensive
fine-tuning efforts for the target task, especially on those large-scale datasets.

3.2.3 Case Study Figure 3 shows the similarity matrix learned by the best performing baseline Meta-
GNN and our approach on the DBLP dataset, with the same network encoder in a 5-way 5-shot task.
Here we use the negative Euclidean distance as the similarity metric. Specifically, each cell consists of
5 × 5 grids illustrating the divergence between two classes, as well as the intra-class similarities. To
better visualize the results, for GPN, we use the weighted embedding of each support node instead
of computing the class prototype. From the figure, we can observe that GPN can better capture
the similarities between the support nodes and query nodes from a same class, which validates the
robustness and effectiveness of our approach.

4 Graph Weakly-Supervised Learning
Despite their promising results, existing GNNs developed for semi-supervised node classification
predominantly assume that the provided gold-labeled nodes are relatively abundant. This assumption
is often impractical as data labeling requires intensive domain knowledge, especially when considering
the heterogeneity of graph-structured data [59, 15]. When only few labeled nodes per class are
available, how to improve the expressive power of Graph ML models for tackling the few-shot semi-
supervised node classification problem remains understudied and meanwhile requires urgent research
efforts.

However, it is a non-trivial and challenging task mainly because of two reasons: (i) oversmoothing
Dissertation Prospectus 12 Arizona State University
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Figure 3: Similarity matrix on DBLP dataset (5-way 5-shot).

and overfitting. In general, most of the existing GNNs are designed with shallow architecture with
restricted receptive fields, thereby restricting the efficient propagation of label information [29]. In
order to propagate the label signals more broadly, larger receptive fields of GNNs, i.e., the number
of layers, are particularly desirable [28]. Due to the entanglement of representation transformation
and propagation in each layer, GNNs will face the oversmoothing issue when increasing the model
depth [34], which in turn renders the learned node representations inseparable. In the meantime,
when training with few labeled nodes, an over-parametric deep GNN model tends to overfit and
goes timber easily; (ii) no auxiliary knowledge. Though previous works proposed for graph few-
shot learning [15] or cross-network transfer learning [59] also focus on related low-resource scenarios,
their key enabler lies in transferring knowledge from either label-rich node classes or other similar
networks. Nonetheless, such auxiliary knowledge is commonly not accessible, making those methods
practically infeasible to be applied to few-shot semi-supervised learning. As suggested by previous
research, pseudo-labeling [29, 49, 16] is commonly beneficial to solve semi-supervised learning,
whereas inaccurate pseudo labels may instead lead to abysmal failure. Hence, how to infer accurate
pseudo labels on unlabeled nodes plays a pivotal role to solve the studied research problem.

4.1 Meta Propagation Networks

4.1.1 Architecture Overview For solving the problem of few-shot semi-supervised node classifica-
tion, we propose a new framework Meta Label Propagation (Meta-PN), which is built with two simple
neural networks, i.e., adaptive label propagator and feature-label transformer. By decoupling the prop-
agation and transformation steps with two independent networks, such a design inherently allows large
receptive fields without suffering performance deterioration. Upon our proposed meta-learning algo-
rithm, the meta learner – adaptive label propagator learns to adjust its propagation strategy for inferring
accurate pseudo labels on unlabeled nodes, by using the feedback from the target model. Meanwhile,
the target model – feature-label transformer assimilates both the structure and feature knowledge from
pseudo-labeled nodes, therefore addressing the challenges behind few-shot semi-supervised learning.
Specifically, we introduce the architecture details as follows:

Adaptive Label Propagator (Meta Learner). In order to enable broader propagation of label
signals, we propose to adopt the idea of label propagation (LP) [63] to encode informative local and
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global structural information. Similar to the message-passing scheme adopted by many GNNs, label
propagation follows the principle of Homophily [36] that indicates two connected nodes tend to be
similar (share same labels). Specifically, the objective of LP is to find a prediction matrix Ŷ ∈ Rn×c that
agrees with the label matrix Y while being smooth on the graph such that nearby vertices have similar
soft labels [61]. Generally, the solution can be approximated via the iteration as follows:

Ŷ = Y(K),Y(k+1) = TY(k), (4.15)

where Y(0) = Y and K denotes the number of power iteration (propagation) steps. The transition matrix
is denoted by T, which can be set as any form of normalized adjacency matrix (e.g., Ãsym). After K
iterations of label propagation, the predicted soft label matrix Ŷ can capture the prior knowledge of
neighborhood label distribution up to K hops away.

In practice, various propagation schemes can be adopted for LP, such as the Personalized
PageRank [28] where Y(k+1) = (1 − α)TY(k) + αY(0). With appropriate teleport probability α,
the smoothed labels can avoid losing the focus on local neighborhood even using infinitely many
propagation steps [28]. However, most of the existing LP algorithms cannot adaptively balance the label
information from different neighborhoods for each node, which largely restricts the model expressive
power when learning with complex real-world graphs.

To counter this issue, we build an adaptive label propagator gϕ(·) parameterized with ϕ, which is
able to adjust the contribution of different propagation steps for computing the smoothed label vector
of one node. Specifically, the propagation strategy can be formulated as:

Ŷi,: =

K∑
k=0

γikY(k)
i,: ,Y

(k+1) = TY(k), (4.16)

where γik denotes the influence from k-hop neighborhood for node vi and can be computed by the
attention mechanism:

γik =
exp
(
aTReLU

(
WY(k)

i,:

))
∑K

k′=0 exp
(
aTReLU

(
WY(k′)

i,:

)) , (4.17)

where a ∈ Rc is the attention vector and W ∈ Rc×c is a weight matrix. By setting the attention vector
and weight matrix as learnable parameters, the adaptive label propagator acquire the capability of
adjusting its propagation strategy for each node and the final smoothed labels can capture rich structure
information of the input graph.

Feature-label Transformer (Target Model). After encoding the structure knowledge into the
smoothed label matrix Ŷ, we then build a feature-label transformer fθ(·) that transforms node features
to node label, in order to further capture feature-based graph information. For each node vi, the feature-
label transformer parameterized with θ takes the node feature vector Xi,: as input and predicts its node
label Pi,: by:

Pi,: = fθ(Xi,:), (4.18)

where fθ(·) is a multi-layer perceptron (MLP) followed by a softmax function.
In order to learn the target model , i.e., feature-label transformer, we take the soft pseudo labels

computed by the adaptive label propagator as “ground-truth”. Ideally, if the generated pseudo labels
are of high quality, they can be used to augment the insufficient labeled nodes to avoid overfitting
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and improve the model generalization ability [29]. In the meantime, high-quality pseudo-labeled
data not only encodes the feature patterns of unlabeled nodes, but also carries informative local
and global structure knowledge, which enables the target model to leverage larger receptive fields
without suffering from performance degradation. As a result, the feature-label transformer can achieve
excellent performance on the problem of few-shot semi-supervised node classification.

4.1.2 Learning to Propagate. One key challenge of our approach lies in how to learn a better
label propagation strategy for generating pseudo labels on unlabeled nodes. If the pseudo labels are
inaccurate, the target model may easily overfit to mislabeled nodes and encounter severe performance
degradation [44]. This issue is also known as the problem of confirmation bias in pseudo-labeling [1].
While inferring accurate pseudo labels by recursively selecting a subset of samples, re-training the
prediction model will be too expensive and unstable. Hence, without linking the two networks in
a principled way, it is almost infeasible to enforce the adaptive label propagator to efficiently infer
meaningful label propagation strategy for improving the performance of the feature-label transformer.

In this work, we propose to tackle this problem through a unified meta-learning algorithm, allowing
the model to infer accurate pseudo labels for unlabeled nodes and learn a better target model. In a
sense, if the generated pseudo labels are of high quality, their data utility should align with the gold-
labeled nodes. Accordingly, we can derive the following meta-learning objective: optimal pseudo labels
generated by meta-learner should maximize target model’s performance (minimize the classification
loss) on the gold-labeled training nodes. For each meta label propagation task, the goal is to generate
pseudo labels for a batch of unlabeled nodes using the feedback of the target model (i.e., feature-label
transformer). By optimizing the adaptive label propagator on a meta-level, it can adjust the label
propagation strategy to generate informative pseudo-labeled data.

4.1.3 Model Learning via Bi-level Optimization The above meta-learning objective implies a bi-
level optimization problem with ϕ as the outer-loop parameters and θ as the inner-loop parameters. This
problem shares the same formulation with many meta-learning algorithms that have been proposed for
solving different learning tasks such as few-shot learning [19], hyper-parameter optimization [3], and
neural architecture search [32]. Specifically, let L denote the cross-entropy loss for node classification,
and this bi-level optimization problem can be formulated as:

Outer loop: ϕ∗ = arg min
ϕ
Evi∈VL[L( fθ∗(ϕ)(Xi,:),Yi,:)],

Inner loop: θ∗(ϕ) = arg min
θ
Evi∈VU [L( fθ(Xi,:), gϕ(Y,A)i,:)].

(4.19)

The optimal solution of this bi-level optimization problem can potentially train a highly discrimina-
tive feature-label transformer with abundant pseudo-labeled data and only a small set of gold-labeled
data. However, deriving exact solutions for this bi-level problem is indeed analytically intractable and
computationally expensive, owing to the fact that it requires solving for the optimal θ∗(ϕ) whenever
ϕ gets updated. To approximate the optimal solution θ∗(ϕ), we propose to take one step of gradient
descent update for θ, without solving the inner-loop optimization completely by training until conver-
gence. This way allows the optimization algorithm to alternatively update the parameters of feature-
label transformer in the inner loop and the parameters of adaptive label propagator in the outer loop:

Target Model (Inner-loop) Update. Given a batch of unlabeled nodes from VU , we update the
target model parameters θ by taking their pseudo labels computed by the adaptive label propagator as
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ground-truth. For simplicity, we use Jpseudo(θ,ϕ) to denote the inner-loop loss computed on a batch of
pseudo-labeled nodes. Assuming that parameter θ is updated using the computed gradient descent on
Jpseudo(θ,ϕ), with a learning rate ηθ, then we have:

θ′ = θ − ηθ∇θJpseudo(θ,ϕ). (4.20)

Meta Learner (Outer-loop) Update. Note that the dependency between ϕ and θ allows us to
compute the meta-level (outer-loop) loss using the gold-labeled nodes from VL. We denote this loss
by Jgold(θ′(ϕ)) for the purpose of simplicity, and back-propagate this loss to compute the gradient for
the feature-label transformer. Having the gradient, we can update on the backward parameters ϕ with
learning rate ηϕ:

ϕ′ = ϕ − ηϕ∇ϕJgold(θ′(ϕ)). (4.21)

To further compute the gradient of ϕ, we apply chain rule to differentiate Jgold(θ′(ϕ)) with respect to
ϕ via θ′, where θ′(ϕ) = θ − ηθ∇θJpseudo(θ,ϕ). The full derivation is delegated to the Appendix ??. Here,
we directly present the final result:

∇ϕJgold(θ′(ϕ)) ≈ −
ηϕ

2ϵ
[∇ϕJpseudo(θ+,ϕ) − ∇ϕJpseudo(θ−,ϕ)], (4.22)

where θ± = θ ± ϵ∇θ′ Jgold(θ′(ϕ)), and ϵ is a small scalar for finite difference approximation.
By alternating the update rules in Eq. (4.20) and Eq. (4.21), we are able to progressively learn

the two modules. The complete meta-learning algorithm is shown in Algorithm ??. Finally, as the
feature-label transformer only learns from unlabeled data with pseudo labels generated by the adaptive
label propagator, we can further fine-tune the feature-label transformer on labeled data to improve its
accuracy. After the model converges, we use the feature-label transformer to make final predictions on
unlabeled nodes.

4.2 Performance Evaluation

4.2.1 Evaluation Settings
Evaluation Datasets. We conduct experiments on five graph benchmark datasets for semi-

supervised node classification to demonstrate the effectiveness of the proposed Meta-PN. The detailed
statistics of the datasets are summarized in Table ??. Specifically, Cora-ML, CiteSeer [46] and
PubMed [38] are the three most widely used citation networks. MS-CS is a co-authorship network
based on the Microsoft Academic Graph [47]. For data splitting, we follow the previous work [28] and
split each dataset into training set (i.e., K nodes per class for K-shot task), validation set and test set.
In addition, to further evaluate the performance of different methods on large-scale graphs, we further
include the ogbn-arxiv datasets from Open Graph Benchmark (OGB) [24]. For the ogbn-arxiv dataset,
we randomly sample 1.0%, 1.5%, 2.0%, 2.5% nodes from its training splits as labeled data while using
the same validation and test splits in OGB Benchmark [24]. Note that for all the datasets, we run each
experiment 100 times with multiple random splits and different initializations.

Compared Methods. To corroborate the effectiveness of our approach, three categories of base-
lines are included in our experiments: (i) Classical Models. MLP, LP (Label Propagation) [61] are two
classical models using only feature and structure information, respectively. GCN [27] and SGC [56] are
two representative GNN models. Due to the space limit, we omit some baselines like GAT, GraphSAGE
since similar results can be observed; (ii) Label-efficient GNNs. GLP (Generalized Label Propagation)
Dissertation Prospectus 16 Arizona State University
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Table 3: Test accuracy on few-shot semi-supervised node classification: mean accuracy (%) ± 95%
confidence interval.
Method Cora-ML CiteSeer PubMed MS-CS

3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot

MLP 41.07 ± 0.76 51.12 ± 0.61 43.34 ± 0.56 44.90 ± 0.60 56.59 ± 0.93 59.90 ± 0.84 70.33 ± 0.37 79.41 ± 0.31
LP 62.07 ± 0.71 68.01 ± 0.62 54.07 ± 0.59 55.73 ± 1.19 58.75 ± 0.89 59.91 ± 0.85 57.96 ± 0.69 62.98 ± 0.61
GCN 48.02 ± 0.89 67.32 ± 1.02 53.60 ± 0.86 62.60 ± 0.58 58.89 ± 0.80 65.77 ± 0.98 69.24 ± 0.94 84.43 ± 0.89
SGC 49.60 ± 0.55 67.24 ± 0.86 57.37 ± 0.98 61.55 ± 0.53 63.37 ± 0.93 64.93 ± 0.81 72.11 ± 0.76 87.51 ± 0.27

GLP 65.57 ± 0.26 71.26 ± 0.31 65.76 ± 0.49 71.36 ± 0.18 65.34 ± 0.54 65.26 ± 0.29 86.10 ± 0.21 86.94 ± 0.23
IGCN 66.60 ± 0.29 72.50 ± 0.20 67.47 ± 0.29 72.92 ± 0.10 62.28 ± 0.23 65.19 ± 0.13 85.83 ± 0.06 87.01 ± 0.05
M3S 64.66 ± 0.31 69.64 ± 0.18 65.12 ± 0.20 68.18 ± 0.18 63.40 ± 0.32 68.85 ± 0.26 84.96 ± 0.18 86.83 ± 0.29

APPNP 72.39 ± 0.98 78.32 ± 0.58 67.55 ± 0.77 71.08 ± 0.61 70.52 ± 0.62 74.24 ± 0.87 86.65 ± 0.42 90.13 ± 0.86
DAGNN 71.86 ± 0.75 77.20 ± 0.69 66.62 ± 0.27 70.55 ± 0.12 71.22 ± 0.82 73.91 ± 0.71 86.32 ± 0.57 90.30 ± 0.66
C&S 68.93 ± 0.68 73.37 ± 0.24 63.02 ± 0.72 64.72 ± 0.53 70.51 ± 0.57 73.22 ± 0.57 85.86 ± 0.45 87.99 ± 0.24
GPR-GNN 70.98 ± 0.84 75.18 ± 0.52 64.32 ± 0.81 65.28 ± 0.52 71.03 ± 0.73 74.08 ± 0.65 86.12 ± 0.37 90.29 ± 0.38

Meta-PN 74.94 ± 0.25 79.88 ± 0.15 70.48 ± 0.34 74.14 ± 0.50 73.25 ± 0.77 77.78 ± 0.92 88.99 ± 0.29 91.31 ± 0.22

and IGCN (Improved GCN) [30] are two models combine label propagation and GCN from a unify-
ing graph filtering perspective. M3S [49] is a multi-stage self-training framework, which incorporates
self-supervised learning to improve the model performance with few labeled nodes; (iii) Deep GNNs.
APPNP [28] decouples prediction and propagation with performing personalized propagation of neu-
ral predictions, while DAGNN [34] adaptively incorporate information from large receptive fields.
C&S [25] is an effective model that combines label propagation and simple neural networks. GPR-
GNN [8] addresses the limitation of APPNP on different types of graphs with adaptive propagation
weights.

4.2.2 Few-shot Semi-supervised Evaluation First, we evaluate the proposed approach Meta-PN and
all the baseline methods on few-shot semi-supervised node classification, which aims to predict the
missing node labels with only a few labeled nodes. The average test accuracies under the few-shot
setting (i.e., 3-shot and 5-shot) can be found in Table 3. From the reported results, we can clearly see
that Meta-PN significantly outperforms all the baseline methods on each dataset based on paired t-tests
with p < 0.05. Specifically, we elaborate our in-depth observations and analysis as follows: (i) without
abundant labeled data, classical models including vanilla GNNs only obtain very poor classification
accuracy under different evaluation entries; (ii) overall the label-efficient GNNs outperform classical
GNNs, but still cannot achieve satisfying results. One major reason is that those methods cannot
handle the oversmoothing issue since they are incapable of explicitly leveraging the knowledge from
large receptive fields; (iii) by enabling better propagation of label signals, deep GNNs have stronger
performance than both the classical models and label-efficient GNNs, which again demonstrates the
necessity of addressing the oversmoothing issue for solving the few-shot semi-supervised learning
problem. However, existing deep GNNs are not specifically developed to tackle the data sparsity
issue, thus their performance still falls behind Meta-PN by a noticeable margin on different datasets
when only very few labels are available. This observation proves that Meta-PN is able to address the
overfitting and oversmoothing issues when labeled data is extremely sparse by combining the power of
large receptive fields and pseudo labels.
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Figure 4: Comparison results on ogbn-arxiv w.r.t different size of training labels.
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Figure 5: Few-shot (i.e., 5-shot or 1.0% label ratio) evaluation on different datasets w.r.t. propagation
steps (K).

4.2.3 Evaluation on Open Graph Benchmark (OGB). Real-world graphs commonly have a larger
size and more node classes than many toy graphs, leading to the collected graphs having noisy structures
and complex properties. To further illustrate the effectiveness of our approach on large-scale real-
world graphs, we adopt the widely used ogbn-arxiv dataset and compare all the methods under the
few-shot setting (i.e., from 1% to 2.5% label ratio). We summarize their performance for few-shot
semi-supervised node classification on ogbn-arxiv in Figure 4 by changing the ratio of training labels,
in which we omit MLP as its test accuracy is much lower than the other methods. We can observe that
Meta-PN can significantly outperform all the baseline models under different few-shot environments.
Compared to the other baseline methods, the performance of Meta-PN is relatively stable when we
decrease the ratio of training labels, which demonstrates the robustness of Meta-PN in handling noisy
and complex real-world graphs. Remarkably, our approach can achieve close performance to the vanilla
GCN on ogbn-arxiv with much fewer labeled nodes (2.5% vs. 54%).

4.2.4 Parameter & Ablation Analysis. To demonstrate the effects of using different propagation
steps and the importance of the meta-leaned label propagation strategy for Meta-PN, we compare our
approach with two baselines under the 5-shot (or 1.0% label ratio for ogbn-arxiv) semi-supervised
setting with varying number of propagation steps. Specifically, GCN learns the node representation
with the standard message-passing scheme while Static-LP representing the variant of Meta-PN that
uses fixed teleport probabilities instead of meta-learned ones. The evaluation results are shown in
Figure 5. As we can observe from the figure, GCN can achieve very close performance with the other
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two methods when the number of propagation steps is relatively small. While if we largely increase
the number of propagation steps, the performance of GCN breaks down due to the oversmoothing
issue. Empowered by the idea of label propagation, Static-LP can largely alleviate the oversmoothing
issue and significantly outperform GCN. This verifies that larger propagation steps or receptive fields
are necessary for improving the performance of GNN when labeled data is extremely limited. In the
meantime, Static-LP still falls behind Meta-PN, mainly because of the infeasibility of balancing the
importance of different receptive fields. On the contrary, Meta-PN is able to address this issue by
inferring optimal pseudo labels on unlabeled nodes with our meta-learning algorithm. Its performance
becomes stable when K ≥ 10, indicating that Meta-PN can obtain good performance considering both
efficiency and effectiveness with a moderate number of propagation steps (e.g., K = 10).

5 Future Work and Plan
This proposal defines a new research problem of learning with weak social supervision for understand-
ing disinformation, and shows its potential and significance, but only touches upon the tip of the iceberg
of this fertile research area. There are many extensions and work that are worth further explorations
such early fake news detection and cross-domain fake news detection. We summarize the tasks to be
finished and the plan in the near future.

5.1 Graph Self-Supervised Learning Research has shown that fake news spreads farther, faster,
deeper, and more widely than true news [?]. Widespread fake news can erode the public trust in
government and professional journalism and lead to adverse real-life events. Thus, a timely detection
of fake news on social media is critical to cultivate a healthy news ecosystem.

It presents unique challenges and opportunities for early detection of fake news. First, fake news
is diverse in terms of topics, content, publishing method and media platforms, and sophisticated
linguistic styles geared to emulate true news. Consequently, training machine learning models on
such sophisticated content requires large-scale annotated fake news data that is egregiously difficult
to obtain. Second, it is important to detect fake news early. Most of the research on fake news detection
rely on signals that require a long time to aggregate, making them unsuitable for early detection. Third,
the evolving nature of fake news makes it essential to analyze it with signals from multiple sources to
better understand the context. A system solely relying on social networks and user engagements can be
easily influenced by biased user feedback, whereas relying only on the content misses the rich auxiliary
information from the available sources.

5.2 Applications for Graph Anomaly Detection Real-world graphs are commonly contaminated
with a small portion of nodes, namely, anomalies, whose patterns significantly deviate from the vast
majority of nodes [13, 11]. For instance, in a citation network that represents citation relations between
papers, there are some research papers with a few spurious references (i.e., edges) which do not comply
with the content of the papers [2]; In a social network that represents friendship of users, there may
exist camouflaged users who randomly follow different users, rendering properties like homophily
not applicable to this type of relationships [18]. As the existence of even few abnormal instances
could cause extremely detrimental effects, the problem of graph anomaly detection has received much
attention in industry and academy alike. Due to the fact that labeling anomalies is highly labor-
intensive and takes specialized domain-knowledge, existing methods are predominately developed in
an unsupervised manner. However, the anomalies identified by unsupervised methods may turn out to
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be data noises or uninteresting data instances due to the lack of prior knowledge on the anomalies of
interest. Hence, we propose to transfer the knowledge of anomalies from auxiliary graphs to the target
graph to enable accurate anomaly detection without abundant labeled anomalies.

5.3 Time Schedule The above proposed tasks are expected to be finished in a 6-month (03/2022 -
08/2022) period. A specific schedule is planned as follows.

• 03/2022 - 04/2022: prepare for comprehensive exam and proposal defense

• 04/2022 - 06/2022: to investigate graph self-supervised learning and graph anomaly detection;

• 06/2022 - 08/2022: to write up the thesis and prepare for the dissertation defense.
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