
C H A P T E R 5

DevelopingaModel

This chapter illustrates how a simulation model is developed for a business
process. Speci± cally, we develop and investigate a model for a simple production-
distribution system. Such systems are at the heart of most companies that make
and sell products, and similar systems exist in most service-oriented businesses.
Regardless of where you work within most companies, it is useful to under-
stand the sometimes counterintuitive behavior that is possible in a production-
distribution system. As we will see, di° culties in a production-distribution sys-
tem that are often attributed to external events can be caused by the internal
structure of the system.

The purpose of this example is to familiarize you with what is required to
build a simulation model, and how such a model can be used. Some of the
details presented below may not be totally clear at this point. In later chapters,
we will investigate in further detail a number of topics that help clarify these
details and assist you in building your own models.

A basic stock and ®ow diagram for the system we will consider is shown in
Figure 5.11. There are two ®ow processes: The production process shown at the
top of the ± gure with a ®ow to the right, and the distribution system shown at
the bottom of the ± gure with a ®ow to the left. The production system is a ®ow
of orders, while the distribution system is a ®ow of materials. The two processes
are tied together by factory production, as shown at the right side of the ± gure.
As items are produced, the orders for these items are removed from the Factory
Order Backlog, and the items are placed into Retail Inventory.

Note the use of the small \clouds" which are shown at the right and left ends
of the production and distribution processes. These clouds represent either a
source or a sink of ®ow which is outside the process that we are considering.
For example, the cloud in the upper right corner of the ± gure shows that we are
not considering in our analysis what happens to orders once they have initiated
factory production. (In an actual system, the orders probably continue to ®ow
into a billing process. That is outside the bounds of what we are interested in

1 The models in this chapter are adapted from Jarmain (1963), pp. 118{124.
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Figure 5.1 A simple production-distribution system

here, and therefore we simply show a cloud into which the orders disappear|a
\sink".)

The production-distribution system shown in Figure 5.1 is simpler than most
real systems. These often involve multiple production stages, and also multi-
ple distribution stages (for example, distributor, wholesaler, and retailer), each
of which has an inventory of goods. Thus, it might seem that this example is
too simple to teach us much that is interesting about real-world production-
distribution processes. Surely our intuition will be su° cient to quickly ± nd a
good way to run this system! Perhaps not. As we will see, this simpli± ed
production-distribution system is still complicated enough to produce counter-
intuitive behavior. Furthermore, this behavior is typical of what is seen in real
production-distribution systems.

We will study the policy that the retailer uses to place orders with the fac-
tory, and we will develop ± ve di�erent models to investigate di�erent policies
for placing these orders. As we will see, it is not necessarily straightforward to
develop an ordering policy that has desirable characteristics.

5.1 The First Model

Figure 5.2, which has three parts, shows the ± rst model for the production-
distribution system, and the four other models which follow will also be shown
with analogous three-part ± gures. Figure 5.2a shows the stock and ®ow diagram
for the ± rst model, Figure 5.2b shows the Vensim equations for this model, and
Figure 5.2c shows the performance of key variables within the process.

Figure 5.2a was developed from the Figure 5.1 stock and ®ow diagram by
adding several information ®ows. At the left-center side of the diagram, the
auxiliary variable \average retail sales" has been added, along with an auxiliary
constant \TIME TO AVERAGE SALES." In the lower left side of the ± gure,
another auxiliary variable \TESt input" has been added. Since this variable
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Figure 5.2a Stock and ¯ ow diagram for � rst model

name starts with three capital letters, we know that it varies over time in a
prespeci± ed manner. A variable which has a prespeci± ed variation over time is
called an exogenous variable.

In the center of the Figure 5.2a diagram, an auxiliary variable \desired pro-
duction" has been added, along with an auxiliary constant \TARGET PRO-
DUCTION DELAY." Finally, at the right-center of the diagram, the auxiliary
constant \TIME TO ADJUST PRODUCTION" has been added.

Factory Production

The Figure 5.2a diagram presents a particular procedure for how ordering is done
by the retailer, as well as how production is managed. We are going to focus on
di�erent ordering policies for the retailer in our analysis, but ± rst we will develop
a model for how factory production is managed. This is shown by the variables
at the right side of Figure 5.2a. From the information arrows shown there, we
see that there is a \desired production" which depends on the Factory Order
Backlog and the TARGET PRODUCTION DELAY. This desired production
is then used to set the actual \factory production," but there is some delay in
adjusting factory production, as shown by the constant TIME TO ADJUST
PRODUCTION. In this diagram, a delay in an information ®ow is indicated by
using a thicker arrow. Such thicker arrows are shown pointing from \retail sales"
to \average retail sales," and from \desired production" to \factory production."

In this simpli± ed model for production, there is no inventory within the
factory|instead, the ®ow of the production system is adjusted to attempt to
maintain a TARGET PRODUCTION DELAY, which is measured in weeks.
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That is, the philosophy underlying this production system is that the retail or-
derer should be able to predict the length of time it will take to receive an order
that is placed. Thus, if the TARGET PRODUCTION DELAY is two weeks, the
factory will attempt to set production so that the current Factory Order Backlog
will be cleared in two weeks. In equation form, this says that

desired production =
Factory Order Backlog

TARGET PRODUCTION DELAY

where the Factory Order Backlog is measured in units of the item being produced,
and the TARGET PRODUCTION DELAY is measured in weeks.

In typical realistic factory settings, production cannot be instantaneously
changed in response to variations in orders because it takes time to change pro-
duction resources, such as personnel and equipment. A more complex model of
production would include explicit consideration of each of these factors, but we
will approximate them here by saying that there is an average delay of TIME
TO ADJUST PRODUCTION before the actual \factory production" is brought
into line with \desired production."

In most realistic settings, the rate at which production can be adjusted varies
depending on the immediate circumstances. Thus, the delay would not always
be exactly equal to TIME TO ADJUST PRODUCTION. A simple model for
this, but one which matches the data for many realistic settings, is that the
time it takes to adjust production follows an exponential delay process. We
will consider this particular approach in further detail below, but for now just
consider the delay in bringing actual production into line with desired production
to be variable with an average length of TIME TO ADJUST PRODUCTION.

The equations for the production process, as well as the rest of the ± rst model
for the production-distribution system, are shown in Figure 5.2b. Equation 12
of this ± gure shows that the TARGET PRODUCTION DELAY is 2 weeks, and
equation 15 shows that the TIME TO ADJUST PRODUCTION is 4 weeks. (The
values for these and other constants in the production-distribution model are
illustrative and not intended to necessarily represent good management practice.)

Equation 2 shows that the desired production is given by the equation dis-
cussed earlier. Equation 4 shows that actual factory production is delayed from
desired production by an average time of TIME TO ADJUST PRODUCTION.
(In Vensim, the exponential delay function is called SMOOTH.)

When setting up a process model, it is important to keep the measurement
units that you use consistent. If you use units of \weeks" of time in one place
and \months" in another, then you will obviously get incorrect answers. (Note
that you can set up a Vensim model to automatically check units. To simplify
the presentation, we are not using this feature in our model.)

For the remainder of our discussion of the production-distribution system, we
will focus on the retailer ordering process. We will assume that the production
process has the characteristics just presented, and will not attempt to improve
this. In reality, this could be a source of improvements. For example, just-in-time
production processes are designed to improve the performance of a production
process of this type.
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(01) average retail sales

= SMOOTH(retail sales, TIME TO AVERAGE SALES)

(02) desired production

= Factory Order Backlog / TARGET PRODUCTION DELAY

(03) Factory Order Backlog

= INTEG(retailer orders - factory production, 200)

(04) factory production

= SMOOTH(desired production, TIME TO ADJUST PRODUCTION)

(05) FINAL TIME = 50

(06) INITIAL TIME = 0

(07) Retail Inventory = INTEG(factory production - retail sales, 400)

(08) retail sales = TESt input

(09) retailer orders = average retail sales

(10) SAVEPER = TIME STEP

(11) TARGET PRODUCTION DELAY = 2

(12) TESt input = 100 + STEP(20, 10)

(13) TIME STEP = 0.25

(14) TIME TO ADJUST PRODUCTION = 4

(15) TIME TO AVERAGE SALES = 1

Figure 5.2b Vensim equations for � rst model

Retailer Ordering

We now turn our attention to retail sales and orders to the factory by the re-
tailer. We will assume that retail sales are predetermined. (That is, they are an
exogenous variable to the portion of the process we are modeling.) We will soon
consider what these orders are, but ± rst we specify a procedure that the retailer
uses to order from the factory.

The simplest ordering procedure is to order exactly what you sell. However,
in practice, most retailers cannot instantly order each time they make a sale.
Thus, ordering is based on an average over some time period. Furthermore, this
average is likely to take into account recent trends. For example, if sales over
the last few days have been up, then the retailer is likely to put more weight on
that than on the lower sales of an earlier period.

A simple model of this type of averaging process is called exponential smooth-
ing, and this will be studied in more detail later. For now, you can consider that
this type of averaging is approximately taking an average over a speci± ed period
of time, but that more weight is given to recent sales than earlier sales. Thus,
in the Figure 5.2a stock and ®ow diagram, the variable \average retail sales"
is calculated by taking an exponential smooth of \retail sales" over the period
TIME TO AVERAGE SALES. This is shown by equation 1 in the Figure 5.2b
Vensim equations, and equation 15 shows that TIME TO AVERAGE SALES is
equal to 1 week.

Note that the same function (called SMOOTH) is used for the exponential
averaging process as was used for the exponential delay process shown for ad-
justing factory production in equation 4. It turns out that the equation for an
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exponential averaging process and an exponential delay process are identical,
and thus the same function is used for these in Vensim. However, conceptually
the two processes are somewhat di�erent. For the delay, we are interested in
how long it takes for something in the future to happen. For the average, we are
interested in what the average was for some variable over a past period.

The retailer ordering equations are completed by equation 9 in Figure 5.2b,
which says that retailer orders are equal to average retail sales.

Test Input

To complete this ± rst model of the production-distribution system, we need to
determine \retail sales." Equation 8 of Figure 5.2b shows that these are equal
to \TESt input," and thus we need to specify this. Actual retail sales typically
have some average value with random ®uctuation around this average. There
may also be seasonal variation and an overall trend, hopefully upward. Thus,
your ± rst thought is probably to use a complex test input which represents these
features of the real world.

However, we will use a very simple test input, and it is important to under-
stand why this particular input is used because it is often used as a test input for
process simulation models. The input we use will be a simple step: The input
will start at one level, remain constant at that level for a period, and then jump
instantly to another level and remain constant at the new level for the remainder
of the period studied. The implementation of this input is shown in equation 12
of Figure 5.2b. The function STEP is de± ned by the following equation:

STEP(height; step time) =

�
0; Time < step time
height; otherwise

That is, the function is zero until the time is equal to \step time," and then it
is equal to \height." Thus, equation 12 of Figure 5.2b says that TESt input is
equal to 100 units per week until the time is 10 weeks, and then TESt input is
equal to 120 units per week for the remainder of the time.

Why is this used as a test input? It seems quite unlikely that the actual sales
would have this form! The reason for using this form of test input has to do with
what we are trying to accomplish with our model, and thus we need to discuss
the purpose of our modeling.

Our primary purpose in constructing this model is to determine ways to im-
prove the performance of the production-distribution process. In particular, we
are studying di�erent possible retailer ordering policies and how these impact the
performance of the entire production-distribution process. There are, of course,
many di�erent possible patterns of retail sales, and we want to make sure that
the particular pattern that we use in our model allows us to study the charac-
teristics of the process that are important to understand if we are to improve
the performance of the process. Remarkably, a step pattern for the retail sales
is a good pattern for this purpose.

Understanding in detail why this is true requires studying some theory that is
beyond the scope of this text, but we will later look at a more realistic pattern of
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retail orders and show that the behavior of the production-distribution process
in response to this more realistic pattern is remarkably similar to its behavior
with a step input. If you have studied engineering systems, you have probably
already learned that the response of a linear system to a step input completely
characterizes the behavior of the system. While the processes that we are consid-
ering are generally nonlinear, their responses to a step input still gives important
information about how the process responds to a variety of inputs.

To continue this theoretical discussion slightly longer, readers who have stud-
ied Fourier or Laplace analysis methods will remember that the frequency spec-
trum for a step function contains all frequencies. Therefore, using a step as
input to a process excites all resonant frequencies of the process. These resonant
frequencies are usually a critical determinant of the behavior of the process, and
therefore the process response to a step input is often a good indicator of how
the process will respond to a variety of inputs.

Other Model Equations

The remainder of the model equations in Figure 5.2b are mostly straightforward.
Equations 3 and 7 for the stock variables Factory Order Backlog and Retail
Inventory are known from the stock and ®ow diagram in Figure 5.2a, except
for the initial values. We see from equation 3 that the initial value of Factory
Order Backlog is 200 units, and equation 7 shows that the initial value of Retail
Inventory is 400 units.

At an initial Factory Order Backlog of 200 units with a TARGET PRODUC-
TION DELAY of 2 weeks (as given by equation 11 in Figure 5.2b), the \desired
production" is 200=2 = 100 units per week. As long as there is no variation
in Factory Order Backlog, then \factory production" will be equal to \desired
production," and hence will also be equal to 100 units per week.

We see from equation 12 that the initial value of TESt input is 100 units per
week, and hence from equation 8 this is also the initial value of retail sales. With
no variation in retail sales, average retail sales will be equal to retail sales, and
hence also equal to 100 units per week, and thus from equation 9 this will also
be the retailer orders to the factory.

Since initial retail sales, and hence retailer order to the factory, are equal to
factory production (100 units per week), then the system will initially be rather
boring|the factory will make 100 units per week, which will be sold by the
retailer. The Factory Order Backlog will remain stable at 200 units, and the
Retail Inventory will remain stable at 400 units.

When a process is in a situation like that described in the last few paragraphs
where the variables remain constant over time, it is said to be in equilibrium or
steady state. A steady state condition for a simulation model can be detected
by examining the stocks in the model. In steady state, the sum of all in®ows to
each stock is equal to the sum of all out®ows, and therefore the magnitudes of
the stocks do not change over time.

If the production-distribution process we are studying had not started out in
equilibrium, then even without any changes in TESt input some of the variables
would have changed over time. For example, if the initial value for Factory Order
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Backlog had been greater than 200 units, then this level would have declined
over time even if retail sales had remained steady at 100 units per week. This is
because at a Factory Order Backlog greater than 200 units factory production
will exceed 100 units per week, which is the retailer order rate, and hence the
®ow out of Factory Order Backlog will exceed the ®ow in.

Since our purpose in this analysis is to study the impact of changes in retail
sales on the production-distribution process, it is desirable to start the process
model in steady state. Otherwise, it will be di° cult to separate variations over
time in the values of the various model variables which are due to changes in
retail sales from those variations which are due to the lack of initial steady state.
Similar arguments hold for many business process models, and it is usually good
practice to initialize the variables in a model so that it starts in steady state.

The remaining equations in Figure 5.2b (equations 5, 6, 10, and 13) set char-
acteristics of the simulation model. From equations 5 and 6 we see that the
simulation will run for 50 weeks, or approximately one year. The rationale for
setting the TIME STEP (equation 13) to 0.25 will discussed below.

5.2 Performance of the Process

Before reviewing Figure 5.2c which shows results from simulating the model in
Figure 5.5a and Figure 5.2b, you may wish to consider how you expect the process
to respond to the TESt input. This is a much simpler production-distribution
system than many in the real world, and many of those real world systems are
managed with relatively little analysis. Perhaps all this analysis is not necessary.
What do you think will happen in the process? Is the retailer ordering policy
used in this model a good one? What are its strengths and weaknesses?

Figure 5.2c shows plots of three key variables (retail sales, retailer orders, and
Retail Inventory) when the simulation model in Figure 5.2b is run. For the ± rst
ten weeks everything remains constant. The graphs show that retail sales are
100 units per week, and retailer orders also remain at 100 units per week. Retail
Inventory remains at 400 units. At week 10, retail sales jump to 120 units per
week, and remain there for the remaining 40 weeks shown in the graph. Retailer
orders do not immediately jump to 120 units per week because an average of
past sales is used as a basis for ordering, and it takes a while for the average to
climb to 120 units. However, since the averaging period (TIME TO AVERAGE
SALES) is only 1 week, retailer orders quickly move upward, and by week 14
these are also at 120 units per week.

A careful reader may wonder why these orders do not reach 120 units per
week by week 11 since the TIME TO AVERAGE SALES is only 1 week. An
exponential averaging process actually considers a period longer than the aver-
aging time, but it gives increasingly less weight to earlier values as time goes on.
This will be discussed further below.

The behavior of retail sales and retailer orders is what we would probably have
expected. What about Retail Inventory? Figure 5.2c shows that this remains
level until week 10 and then starts to decline. It wiggles somewhat before leveling
o�at 340 units. It reaches a low of about 310 units at week 17, and then increases
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Figure 5.2c Plots for � rst model

to a peak of about 350 units at week 26 before dropping back to 340 units. Note
that there is also a slight valley at around week 35.

This type of wiggling is called oscillation. When you did your intuitive predic-
tion of how the process would perform, did you expect this oscillation? For that
matter, did you predict that Retail Inventory would decline? While not shown
in Figure 5.2c, after seeing this ± gure you will probably not be surprised to
learn that Factory Order Backlog and factory production also both show similar
oscillation to those shown by Retail Inventory.

While these oscillations are not large, they pose some challenges to a fac-
tory manager. Decisions have to be made about how to provide the necessary
resources under oscillating production conditions. For example, do you lay o�
factory workers when production dips? Also, the revenue stream associated with
oscillating conditions is likely to be uneven, which is generally not desirable.

We will shortly be paying considerably more attention to oscillations, but
for now focus on the ± nal level of Retail Inventory. Is this acceptable? For
the particular retail sales stream analyzed here, it may be. In fact, the lower
Retail Inventory resulting from the jump in sales probably means lower inventory
carrying costs, and hence higher pro± t. However, a little additional thought
shows that this could be a dangerous policy in some situations. In particular,
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suppose that retail sales continue to grow (as we would hope they do!). What
happens then? In that case, because average retail sales will always be somewhat
less than current retail sales, there will never be quite enough ordered to replace
what is sold, and eventually Retail Inventory will be depleted.

This e�ect can be reduced by reducing the TIME TO AVERAGE SALES,
which corresponds to more rapidly ordering, however, it cannot be entirely elim-
inated because even if you instantaneously order after each sale, you will still
fall behind because of delays in production.

This e�ect is one reason that many production-distribution systems are mov-
ing to automated, speeded-up ordering systems. For example, Wal Mart has
made extensive use of such systems in its rise to retailing dominance. However,
there is a limit to what is possible along these lines, particularly in businesses
where the supply chain is not yet highly integrated. Is there some approach
that a retailer can use in ordering that will reduce the danger of running out
of inventory when sales rise? (Incidentally, note that if sales steadily fall, then
Retail Inventory will steadily rise.)

5.3 The Second Model

It seems that we need to directly consider the level of Retail Inventory when
retailer orders are placed in order to make sure that this inventory does not
reach undesirable levels. The stock and ®ow diagram in Figure 5.3a shows an
approach to doing this. This is modi± ed from the Figure 5.2a diagram as follows:
There is an information arrow from Retail Inventory to retailer orders to show
that these orders depend on Retail Inventory. There are two auxiliary constants
DESIRED INVENTORY and TIME TO ADJUST INVENTORY which also
in®uence retailer orders. The remainder of this diagram is the same as Figure
5.2a.

The approach to considering Retail Inventory in retailer orders which is shown
in this diagram makes intuitive sense: There is a speci± ed level of DESIRED
INVENTORY and retailer orders are adjusted to attempt to maintain this level.
Of course, we do not want to radically change our orders for every small change
in Retail Inventory, and so we take some time to make the adjustment (TIME
TO ADJUST INVENTORY). Turning this into a speci± c equation, there is now
a component of retailer orders as follows:

DESIRED INVENTORY £ Retail Inventory

TIME TO ADJUST INVENTORY

That is, if everything were to remain the same, the di�erence between DESIRED
INVENTORY and the actual Retail Inventory would be eliminated in a time
period equal to TIME TO ADJUST INVENTORY. Note that if DESIRED IN-
VENTORY is below Retailer Inventory, then the ordering level will be reduced,
while if DESIRED INVENTORY is above Retailer Inventory the ordering level
will be increased.
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Figure 5.3a Stock and ¯ ow diagram for second model

The equations for the second model are shown in Figure 5.3b. These are
identical to the equations in Figure 5.2b except that de± nitions have been added
for the two constants DESIRED INVENTORY and TIME TO ADJUST IN-
VENTORY, and the equation for retailer orders has been modi± ed as discussed
in the preceding paragraph. Speci± cally, in Figure 5.3b, equation 2 shows that
the DESIRED INVENTORY is 400 units (which was the initial level of Retail
Inventory), and equation 15 shows that the TIME TO ADJUST INVENTORY
is 2 weeks. Equation 10 shows that retailer orders now include the component
discussed above to adjust the level of Retailer Inventory, in addition to the com-
ponent to replace retail sales.

A note is in order here on possible de± ciencies in the formulation of this model.
Because the component of the retailer orders equation (equation 10) to replenish
inventory can have a negative sign, it is possible that the overall value of retailer
orders could become negative. Exactly what would happen in that case depends
on the ordering arrangements. It may be possible to withdraw previously placed
orders, or it may not be possible to do this. In a more complete model, this
would be taken into account. Our simple model assumes that it is possible to
withdraw previously placed orders. In fact, the model even assumes that it is
possible to withdraw more orders than you have actually placed, which is not
likely to be true in a realistic setting.
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(01) average retail sales = SMOOTH(retail sales, TIME TO AVERAGE SALES)

(02) DESIRED INVENTORY = 400

(03) desired production = Factory Order Backlog / TARGET PRODUCTION DELAY

(04) Factory Order Backlog

= INTEG(retailer orders - factory production, 200)

(05) factory production

= SMOOTH(desired production, TIME TO ADJUST PRODUCTION)

(06) FINAL TIME = 50

(07) INITIAL TIME = 0

(08) Retail Inventory = INTEG(factory production - retail sales, 400)

(09) retail sales = TESt input

(10) retailer orders = average retail sales

+ (DESIRED INVENTORY - Retail Inventory) / TIME TO ADJUST INVENTORY

(11) SAVEPER = TIME STEP

(12) TARGET PRODUCTION DELAY = 2

(13) TESt input = 100 + STEP(20,10)

(14) TIME STEP = 0.25

(15) TIME TO ADJUST INVENTORY = 2

(16) TIME TO ADJUST PRODUCTION = 4

(17) TIME TO AVERAGE SALES = 1

Figure 5.3b Vensim equations for second model

Thinking further along those lines, you will see that there is also no constraint
in the model on the possible values for Factory Order Backlog and Retail Inven-
tory. Thus, it is possible in this model for these to become negative. Again, a
more complete model should take these issues into consideration. However, we
are interested at the moment in the general characteristics of the performance
of this process, rather than the details. The model we have developed will be
su° cient for this purpose, as we will shortly see.

What do you think will be the performance of the modi± ed ordering policy?
Do you think it will cure the problem of under ordering when sales are growing
and over ordering when sales are declining?

Figure 5.3c gives the answer, and it is not pleasant. The same three variables
are plotted here as in Figure 5.2c which we considered earlier. We see that the
system goes into large and growing oscillation. In fact, the situation is worse
than it may ± rst appear because the scales for some of the graphs is Figure
5.3c (as shown on the left side of the graphs) are greater than those for Figure
5.2c. Thus, the oscillations are greater than it might ± rst appear by visually
comparing Figure 5.2c and Figure 5.3c.

Retail sales still display the same step pattern as in Figure 5.2c. (They must
do this since they are de± ned exogenously to the model.) However, both retailer
orders and Retail Inventory wildly oscillate. Furthermore, both of these go
substantially negative. As noted above, the model equations are probably not
valid when this happens, so a real world system would not display exactly the
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Figure 5.3c Plots for second model

behavior shown here. However, it is clear that the revised retailer ordering policy
is highly unacceptable.

What is going wrong? Some thought shows the answer and provides insight
into the performance of real world production-distribution systems. The di° -
culty with the new ordering policy results from the delays in producing the stock
that has been ordered. It takes time for the orders to work their way through
the Factory Order Backlog, be produced, and ®ow into Retail Inventory. While
this is going on, retailer orders continue to be high in a continuing attempt to
replace the declining Retail Inventory. Then, when the ordered units ± nally start
to arrive, Retail Inventory grows. At this point, the inventory correction term in
retailer orders turns negative in an attempt to reduce the level of Retail Inven-
tory. Once again, it takes time for the impact of this to work its way through the
process, and this eventually leads to an overcorrection in the opposite direction.
Figure 5.3c shows this problem getting worse as time goes on.
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A Technical Note

Our main emphasis is on model formulation, but a brief note is in order on how
the model equations are solved to develop a graph like the one shown in Figure
5.3c. As our earlier development showed, the solution of the model equations re-
quires that some integrals be calculated. There are a variety of di�erent methods
to do this, and most simulation packages provide options for how this is done.
The simplest of these methods, called Euler integration, was used to determine
Figure 5.3c (as well as all the other output presented in this text).

The Euler integration method implemented in Vensim consists of the following
steps:

1 Set \Time" to its initial value.
2 Set all of the stocks in the model to their initial values as speci± ed by the

\initial value" argument of the INTEG function for each stock.
3 Compute the rate of change at the current value of \Time" for each stock

by computing the net values of all the ®ows ®ow into and out of each stock.
(That is, ®ows into a stock increase the value of the stock, while ®ows out of
a stock decrease the value of the stock.)

4 Assume that the rate of change for each stock will be constant for the time
interval from \Time" to \Time + TIME STEP," and compute how much the
stock will change over that interval. This can be expressed in equation form
as follows: If the rate of change for a particular stock calculated in Step 3
is \rate(Time)," then the value of that stock at time Time + TIME STEP is
given by

Stock(Time + TIME STEP) = Stock(Time) + TIME STEP¤rate(Time)

5 Add \TIME STEP" to \Time."
6 Repeat Steps 3 through 5 until \Time" reaches \FINAL TIME."

From this procedure, it is apparent that the accuracy of the Euler method is
in®uenced by the value chosen for the model constant TIME STEP. It is generally
recommended that a value of TIME STEP be selected that is less than one-third
of the smallest time-related constant in the model. In the Figure 5.3b model,
the smallest such constant is TIME TO AVERAGE SALES which is equal to
1 week. Therefore, TIME STEP was set equal to 0.25, which is one-quarter of
TIME TO AVERAGE SALES. A quick test for whether TIME STEP is small
enough is to reduce it by a factor of two and rerun the simulation. If there is no
signi± cant change in the output, then this indicates that TIME STEP is small
enough.

However, even with a small value of TIME STEP, the Euler integration
method can yield inaccurate results when there are signi± cant oscillations in
a process. As Figure 5.3c shows, there are signi± cant oscillations in the process
we are studying. Therefore, other, more sophisticated integration procedures
should be used if high accuracy is needed. However, even without using these
more sophisticated integration method, it is clear that the ordering policy in our
second model is not a good one.



5.5 THE FOURTH MODEL 57

More sophisticated integrated methods available in many simulation packages
often include one or more of the Runge-Kutta methods. The underlying idea of
these methods is to estimate the rate at which the ®ows into stocks are varying
over time, and then use this information to improve on the approximation in
Step 4 of the Euler procedure presented above. When this is done, it is often
possible to achieve improved accuracy without as much increase in computation
as would be necessary if the value of TIME STEP were decreased in the Euler
procedure.

5.4 The Third Model

You might suspect that the problem displayed in Figure 5.3c is due to including
a component in the retailer orders to take account of retail sales. Perhaps if we
focus completely on Retail Inventory when making retailer orders, this will ± x
the problem. The stock and ®ow diagram in Figure 5.4a shows this approach.
This di�ers from the diagram in Figure 5.3a in that the variables related to
ordering to replace retail sales are removed. Speci± cally, at the left center of the
diagram, the auxiliary variable \average retail sales" is removed along with the
constant TIME TO AVERAGE SALES.

The corresponding equations are shown in Figure 5.4b. These di�er from
the equations in Figure 5.3b in that the equations for \average retail sales" and
TIME TO AVERAGE SALES are removed, and the term for average retail sales
is removed from equation 9 for retailer orders.

The resulting performance is shown in Figure 5.4c, and we see that this per-
formance is even worse than what was shown in Figure 5.3c. (Note that the
scales for some of the graphs in Figure 5.4c are considerably increased relative
to Figure 5.3c, and thus the amplitude of the oscillations are much worse.)

Clearly this is not the answer.

5.5 The Fourth Model

Return now to the second model, whose performance is shown in Figure 5.3c.
While the oscillations are clearly unacceptable, there is one way in which the
performance of this process is better than the performance for the ± rst model
which was shown in Figure 5.2c. While there are wild oscillations in the Retail
Inventory in Figure 5.3c, these oscillations are around an average level of 400
units, which is the Retail Inventory that we are trying to maintain. Thus, this
process does not display the declining Retail Inventory level that is shown in
Figure 5.2c. Unfortunately, the oscillations shown in Figure 5.3c are much too
great to be acceptable in most real world production-distribution systems.

Our discussion above of the second model showed that the oscillations are
due to the delays in obtaining the product that the retailer has ordered. This
is sometimes referred to as a \pipeline" e�ect. We place orders into the supply
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Figure 5.4a Stock and ¯ ow diagram for third model
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(01) DESIRED INVENTORY = 400

(02) desired production

= Factory Order Backlog / TARGET PRODUCTION DELAY

(03) Factory Order Backlog

= INTEG(retailer orders - factory production, 200)

(04) factory production

= SMOOTH(desired production, TIME TO ADJUST PRODUCTION)

(05) FINAL TIME = 50

(06) INITIAL TIME = 0

(07) Retail Inventory = INTEG(factory production - retail sales, 400)

(08) retail sales = TESt input

(09) retailer orders

= (DESIRED INVENTORY - Retail Inventory)

/ TIME TO ADJUST INVENTORY

(10) SAVEPER = TIME STEP

(11) TARGET PRODUCTION DELAY = 2

(12) TESt input = 100 + STEP(20, 10)

(13) TIME STEP = 0.25

(14) TIME TO ADJUST INVENTORY = 2

(15) TIME TO ADJUST PRODUCTION = 4

Figure 5.4b Vensim equations for third model
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pipeline, and then we basically forget about these orders and keep ordering. As
discussed above, this leads to the oscillatory performance of the process.

The stock and ®ow diagram in Figure 5.5a shows one way to account for the
orders that are in the pipeline. This diagram is developed from the diagram
in Figure 5.3a (not Figure 5.4a!) as follows: An information arrow is added
from Factory Order Backlog to retailer orders. Thus, the retailer ordering policy
will now explicitly take into account the backlog of orders. How this is done is
indicated by the new auxiliary variable \desired pipeline orders" in the center of
the left side of the diagram, and the two new constants DELAY IN RECEIVING
ORDERS and TIME TO ADJUST PIPELINE.

The \desired pipeline orders" are the amount we want to have on order at
any time, and this depends on \average retail orders" and the DELAY IN RE-
CEIVING ORDERS. In particular, we need to have an amount in the supply
pipeline equal to the product of \average retail orders" and DELAY IN RE-
CEIVING ORDERS if we are to continue to receive enough to replenish our
sales on average. That is,

desired pipeline orders = average retail sales

¤DELAY IN RECEIVING ORDERS:

However, following the same logic presented above regarding adjusting retailer
orders to account for changes in Retail Inventory, we do not want to instantly
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change our orders in response to changes in desired pipeline orders. Hence there is
a constant TIME TO ADJUST PIPELINE which plays a similar role to TIME
TO ADJUST INVENTORY. Therefore, there should be a component in the
retailer order equation to account for orders in the supply pipeline as follows:

desired pipeline orders £ Factory Order Backlog

TIME TO ADJUST PIPELINE
:

The required model equations are shown in Figure 5.5b. The value of DE-
LAY IN RECEIVING ORDERS is set to agree with TARGET PRODUCTION
DELAY. Since the factory has set up a TARGET PRODUCTION DELAY of
2 weeks (equation 14), DELAY IN RECEIVING ORDERS is also set to this
value in equation 2. The TIME TO ADJUST PIPELINE is also set to 2 weeks
in equation 18. Finally, the additional retailer ordering term discussed above is
added to retailer orders in equation 12.

The resulting process performance is shown in Figure 5.5c. This is substan-
tially improved relative to what is shown in any of the earlier ± gures. The
magnitude of oscillation for Retail Inventory is not much greater than in the
original process in Figure 5.2c, but now the Retail Inventory fairly quickly re-
turns to the desired level of 400 units. (Note that the scales for Figure 5.2c and
Figure 5.5c are the same.) Retailer orders now rise above retail sales, but they
then quickly drop back to the level of retail sales without the wild oscillations
that were displayed in the second and third models. (This type of behavior is
called an overshoot.) This performance is pretty good, although there is still
some oscillation in Retail Inventory.

5.6 The Fifth Model

After some study of the fourth model, you might consider a possible enhancement
to reduce the amount of oscillation. In the fourth model, a constant value is used
for the DELAY IN RECEIVING ORDERS. Perhaps adding a forecast for this
delay would improve the performance of the process. Figure 5.6a shows a stock
and ®ow diagram for a process which includes such a forecast. The constant
DELAY IN RECEIVING ORDERS shown in Figure 5.5a has been replace by
an auxiliary variable \delivery delay forecast by retailer," which is shown in the
upper left corner of the diagram. This forecast depends on a constant TIME TO
DETECT DELIVERY DELAY and another auxiliary variable \delivery delay
estimate." The \delivery delay estimate" depends on Factory Order Backlog
and \factory production."

Note that a new type of diagram element has been introduced. This is the
symbol for \factory production" in the upper right portion of the diagram. This
is a second copy of \factory production." (The ± rst copy of this variable is shown
in the center right of the diagram.) The second copy is shown in angle brackets
(<, >), and such a second copy of a variable is called a shadow variable or a ghost
variable. Shadow variables are used to avoid the need to run additional arrows
in a stock and ®ow diagram which would make it more complex and confusing
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(01) average retail sales = SMOOTH(retail sales,TIME TO AVERAGE SALES)

(02) DELAY IN RECEIVING ORDERS = 2

(03) DESIRED INVENTORY = 400

(04) desired pipeline orders

= DELAY IN RECEIVING ORDERS * average retail sales

(05) desired production = Factory Order Backlog / TARGET PRODUCTION DELAY

(06) Factory Order Backlog

= INTEG(retailer orders - factory production, 200)

(07) factory production

= SMOOTH(desired production, TIME TO ADJUST PRODUCTION)

(08) FINAL TIME = 50

(09) INITIAL TIME = 0

(10) Retail Inventory = INTEG(factory production - retail sales, 400)

(11) retail sales = TESt input

(12) retailer orders = average retail sales

+ (DESIRED INVENTORY - Retail Inventory) / TIME TO ADJUST INVENTORY

+ (desired pipeline orders - Factory Order Backlog)

/ TIME TO ADJUST PIPELINE

(13) SAVEPER = TIME STEP

(14) TARGET PRODUCTION DELAY = 2

(15) TESt input = 100 + STEP(20,10)

(16) TIME STEP = 0.25

(17) TIME TO ADJUST INVENTORY = 2

(18) TIME TO ADJUST PIPELINE = 2

(19) TIME TO ADJUST PRODUCTION = 4

(20) TIME TO AVERAGE SALES = 1

Figure 5.5b Vensim equations for fourth model
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Figure 5.6a Stock and ¯ ow diagram for � fth model

to read. In this case, it avoids the need to run an information arrow from the
original version of \factory production" in the right center of the diagram all
the way to the top center of the diagram where the \delivery delay estimate"
variable is located.

The forecasting submodel is an attempt to model what an actual retailer might
be able to do to forecast what is happening at its supplier. Such a retailer is
likely to have some idea of what Factory Order Backlog and \factory production"
are at any time. The product of these yields an estimate of delivery delay:

delivery delay estimate =
Factory Order Backlog

factory production

However, the retailer's estimates of Factory Order Backlog and factory pro-
duction are likely to be somewhat out of date at any given time, and also in-
®uenced by what has been happening at the factory over a period of time. A
simple model of this is the exponential averaging process that we have brie®y
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discussed earlier. Thus, the \delivery delay forecast by retailer" is modeled as
an exponential average of the \delivery delay estimate" over an averaging period
of TIME TO DETECT DELIVERY DELAY.

The equations for the ± fth model are shown in Figure 5.6b. Equation 2
gives \delivery delay estimate," and equation 3 gives \delivery delay forecast by
retailer." The constant TIME TO DETECT DELIVERY DELAY is given in
equation 22 as 2 weeks.

Alas, as Figure 5.6c shows, adding this forecast makes things somewhat worse
than in the fourth model. The process now oscillates. The basic problem is
that forecasts tend to predict that current trends will continue into the future.
Thus, when retail sales jump at 10 weeks, the forecast leads to more extreme
over ordering than in the fourth model. This overcorrection problem also occurs
during the later attempt to reduce ordering, and the oscillating process continues.
Forecasts sometimes do not help system performance, as this example shows.

5.7 Random Order Patterns

At this point, some readers may say, \Yah, but this model is too simple. The
real world is more complex than this, and things average out. You don't really
have to worry about all this stu� in the real world." While this is a natural
reaction, it is a little strange when you think about it: A more complicated
process will perform better and be easier to manage? This doesn't seem very
likely. And the data doesn't support that view. The oscillatory behavior of
production-distribution systems, as well as many other social-technical systems
(including the national and world economies) is well documented.

As a small con± rmation of the more general applicability of what we have
seen in this chapter, Figure 5.7 shows the performance of the second model and
the fourth model that we studied above in the presence of random retail orders.
To produce these diagrams, equation 12 of the second model (shown in Figure
5.3b) and the equivalent equation 16 of the fourth model (shown in Figure 5.5b)
were replaced by

TESt input = 100 + STEP(20; 10) � RANDOM UNIFORM(0; 1; 0):

The Vensim function RANDOM UNIFORM(m, x, s) produces random numbers
that are uniformly distributed between m and x, with the argument s (called the
seed) setting the speci± c stream of random numbers. Therefore, this modi± ed
equation will produce a TESt input of 100 until week 10, and then it will produce
a random TESt input that is distributed uniformly between 100 and 120.

Note that some of the scales are di�erent for Figure 5.7a and Figure 5.7b.
When we compare these graphs to the corresponding Figure 5.3c and Figure
5.5c, we see that the performance is very similar with a random retail order
stream to what was seen with a step order stream. This supports the statement
made earlier that the step input often serves as a good test input for a process
model. Furthermore, these results support a conclusion that the oscillations in
the process are due to innate characteristics of the process and not to external
characteristics of, for example, the retail order stream.
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(01) average retail sales = SMOOTH(retail sales, TIME TO AVERAGE SALES)

(02) delivery delay estimate = Factory Order Backlog / factory production

(03) delivery delay forecast by retailer

= SMOOTH(delivery delay estimate, TIME TO DETECT DELIVERY DELAY)

(04) DESIRED INVENTORY = 400

(05) desired pipeline orders

= delivery delay forecast by retailer * average retail sales

(06) desired production = Factory Order Backlog / TARGET PRODUCTION DELAY

(07) Factory Order Backlog

= INTEG(retailer orders - factory production, 200)

(08) factory production

= SMOOTH(desired production,TIME TO ADJUST PRODUCTION)

(09) FINAL TIME = 50

(10) INITIAL TIME = 0

(11) Retail Inventory = INTEG(factory production - retail sales,400)

(12) retail sales = TESt input

(13) retailer orders = average retail sales

+ (DESIRED INVENTORY - Retail Inventory) / TIME TO ADJUST INVENTORY

+ (desired pipeline orders - Factory Order Backlog)

/ TIME TO ADJUST PIPELINE

(14) SAVEPER = TIME STEP

(15) TARGET PRODUCTION DELAY = 2

(16) TESt input = 100 + STEP(20,10)

(17) TIME STEP = 0.25

(18) TIME TO ADJUST INVENTORY = 2

(19) TIME TO ADJUST PIPELINE = 2

(20) TIME TO ADJUST PRODUCTION = 4

(21) TIME TO AVERAGE SALES = 1

(22) TIME TO DETECT DELIVERY DELAY = 2

Figure 5.6b Vensim equations for � fth model



68 CHAPTER 5 DEVELOPING A MODEL

CURRENT
retail sales

200
175
150
125
100

0 25 50
Time (Weeks)

CURRENT
retailer orders

200
170
140
110
80

0 25 50
Time (Weeks)

CURRENT
Retail Inventory

600
500
400
300
200

0 25 50
Time (Weeks)

Figure 5.6c Plots for � fth model



5.7 RANDOM ORDER PATTERNS 69

CURRENT
retail sales

200
175
150
125
100

0 25 50
Time (Weeks)

CURRENT
retailer orders

400
300
200
100

0
0 25 50

Time (Weeks)

CURRENT
Retail Inventory

800
600
400
200

0
0 25 50

Time (Weeks)

Figure 5.7a Random retail sales for second model



70 CHAPTER 5 DEVELOPING A MODEL

CURRENT
retail sales

200
175
150
125
100

0 25 50
Time (Weeks)

CURRENT
retailer orders

200
170
140
110
80

0 25 50
Time (Weeks)

CURRENT
Retail Inventory

600
500
400
300
200

0 25 50
Time (Weeks)

Figure 5.7b Random retail sales for fourth model



5.9 REFERENCE 71

5.8 Concluding Comments

Production-distribution processes, and similar structures in service businesses,
are widespread throughout industry. Understanding these processes is useful
for any business person. The di° culty of controlling these processes which was
displayed in this example is shared by many real world processes. The result in
many such processes is a massive control structure to ensure stability. Unfor-
tunately, such structures often make the processes strongly resistant to change
when the external environment changes. In the remainder of this text, we will
investigate ways of looking at processes that can help you in the search for better
performance.
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