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Decisions processes are the glue that binds together the information and ma-
terial ® ow networks in an organization. Decisions about what information to
collect and how to process it determine how information ® ows into an informa-
tion network at the points where this network originates on the material ® ow
network. Similarly, decisions about how to use information and what actions
to take on material ® ows determine how information will impact those material
® ows at points where the information network points into the material ® ow net-
work. Thus, a critical aspect of creating useful simulation models is appropriately
modeling decision processes.

Increasingly, decision making is automated as computers take over more rou-
tine decision making activities in business processes, but many decisions continue
to be made by humans. Thus, it is necessary to model human decision making
if a realistic model is to be constructed of a process. This may seem like an
overwhelmingly complex undertaking. How can we hope to mimic the subtle
nuances of the human mind? Surely this is a task beyond the capabilities of a
computer model!

This chapter presents research results about human reasoning, and then con-
siders how to model decision making in a simulation model. As we shall see, the
research results strongly support the conclusion that human decision making is
neither particularly complex nor particularly e¯ ective. This somewhat discour-
aging result does, however, carry an optimistic message for those interested in
modeling and improving business processes: It is possible to model human deci-
sion making with relatively simple models, and it is also possible to improve on
unaided human decision making with systematic decision policies.
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7.1 Experts and Expertise

This section summarizes key points in Chapter 10, Proper and Improper Linear
Models, of Dawes (1988). That chapter presents results of research on the ability
of experts to provide accurate intuitive predictions. The research results strongly
support the conclusion that experts are not good intuitive predictors and that
simple models using the same predictor variables as the experts provide more
accurate predictions. Page references with the following quotes refer to Dawes
(1988) unless otherwise noted.

Research Findings

A large number of studies have addressed the question of whether trained ex-
perts' intuitive global predictions are better than statistically derived weighted
averages (linear models) of the relevant predictors. Dawes notes (pp. 205{6),
\This question has been studied extensively by psychologists, educators, and
others interested in predicting such outcomes as college success, parole violation,
psychiatric diagnosis, physical diagnosis and prognosis, and business success and
failure : : : In 1954 Meehl : : : summarized approximately twenty such studies com-
paring the clinical judgment method with the statistical one. In all studies, the
statistical method provided more accurate predictions, or the two methods tied.
Approximately ten years later, Jack Sawyer reviewed forty-±ve studies compar-
ing clinical and statistical prediction. Again, there was not a single study in
which clinical global judgment was superior to the statistical prediction."

Continuing, Dawes says (pp. 207{8), \The ±nding that linear combination is
superior to global judgment is strong; it has been replicated in diverse contexts,
and no exception has been discovered : : :Meehl was able to state thirty years
after his seminal book was published, `There is no controversy in social science
which shows such a large body of qualitatively diverse studies coming out so
uniformly in the same direction as this one' : : :People have great misplaced
con±dence in their global judgments."

The referenced work compared statistically derived weighted averages of rele-
vant predictors, however, Dawes (pp. 208{9) himself investigated the possibility
that any linear model might outperform experts. While, as he notes, \the possi-
bility seemed absurd," he found in several studies that linear models where the
weights were selected randomly except for sign outperformed the experts and
did almost as well as those with statistically derived weights.
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Discussion of the Research Findings

When ±rst studying these research ±ndings, they may appear to say that experts
can be replaced by simple linear equations (with random weights, no less!).
However, closer consideration of the research shows that this is too strong a
conclusion to reach from the research. Dawes (1979) notes, \The linear model
cannot replace the expert in deciding such things as `what to look for,' : : : it
is precisely this knowledge of what to look for in reaching the decision that is
the special expertise people have. [However,] people|especially the experts in
a ±eld|are much better at selecting and coding information than they are at
integrating it."

Dawes proposes (pp. 212-215) that the ±ndings can be explained by a principle
of nature, a mathematical principle, and a psychological principle. The princi-
ple of nature that Dawes states is that interactions among predictor variables
tend to be monotone in many situations of interest. That is, while there may
be interactions among predictor variables, these interactions do not change the
monotonicity between a particular variable and the prediction [i.e., more of the
predictor variable always predicts more (less) of the predicted variable regardless
of the levels of the other variables].

The related mathematical principle is that interaction e¯ ects among variables
which contribute monotonically to the overall e¯ ect can often be ignored and
the resulting linear model will still provide adequate predictions, and also that
speci±c coe�cients for predictor variables are not as important in determining
the results of a linear model as the signs of these coe�cients. (While Dawes
terms this principle mathematical , it is really an empirical statistical observation
concerning real world data since counterexamples can be constructed.)

The psychological principle explaining the superior predictive ability of linear
models is that people have di�culty integrating more than one variable. Thus,
they tend to anchor on a particular predictor variable while making a prediction
and do not adjust their predictions su�ciently to account for other variables.
Linear models, of course, give constantly proportional attention to all variables.

Dawes concludes (p. 215), \Given that monotone interactions can be well ap-
proximated by linear models (a statistical fact), it follows that because most
interactions that do exist in nature are monotone and because people have di�-
culty integrating information from noncomparable dimensions, linear model will
outperform clinical judgment. The only way to avoid this broad conclusion is to
claim that training makes experts superior to other people at integrating infor-
mation (as opposed, for example, to knowing what information to look for), and
there is no evidence for that. There is no evidence that experts think di¯ erently
from others."

He further comments (pp. 215{219), \The conclusion that [linear models]
outperform global judgments of trained experts is not a popular one with experts,
or with people relying on them : : :Experts have been revered|and well paid|
for years for their `it is my opinion that' judgments : : :As James March points
out, however, such reverence may serve a purely social function. People and
organizations have to make decisions, often between alternatives that appear
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equally good or bad. What better way to justify such decisions than to consult
any intuitive expert, and the more money she or he charges, the better : : : "

\But there is also a structural reason for doubting the inferiority of global
judgment : : :When we construct a linear model in a prediction situation, we
know exactly how poorly it predicts. In contrast, our feedback about our global
judgments is ® awed. Not only do we selectively remember our successes, we
often have no knowledge of our failures : : : [For example, considering judgments
on accepting or rejecting graduate school applicants], who knows what happens
to rejected graduate school applicants? Professors have access only to accepted
ones, and if the professors are doing a good job, the accepted ones will do well|
exonerating the professors' judgments : : : "

\In contrast, the systematic predictions of linear models yield data on just
how poorly they predict. For example, in [one] study only 18% of the variance
in longevity of Hodgkin's disease patients is predicted by the best linear model
: : : , but that is opposed to 0% by the world's foremost authority. Such results
bring us abruptly to an unpleasant conclusion: a lot of outcomes about which we
care deeply are not very predictable : : :We want to predict outcomes important
to us. It is only rational to conclude that if one method (a linear model) does
not predict well, something else may do better. What is not rational : : : is to
conclude this `something else' is intuitive global judgment."

Concluding Comments on the Research Findings

The research discussed above carries an optimistic message for those of us who
work on quantitative models. Even simple quantitative models can outperform
experts in prediction tasks. However, the research also points out that experts
play a key role in developing such models: They are needed to identify the key
variables to incorporate into a model.

The research also carries a cautionary message for those working on developing
computer-based expert systems. The generally stated criterion for judging the
e¯ ectiveness of such systems is how well they replicate the performance of an
expert. However, the research indicates that at least in prediction tasks it is
possible with even simple models to outperform experts once the key predictor
variables have been identi° ed . Thus, the performance of experts may not be a
good benchmark for judging the performance of a computer-based expert system.
It is probably possible to do better.

As a ±nal comment, I return to the quote from Dawes at the end of the last
subsection. While he notes the superiority of linear models over expert judgment,
he also notes that these models don't do a particularly good job either in many
situations. Often, better models are available, especially when physical system
performance is of interest. For example, someone predicting the behavior of a
new airplane that has not yet been built would not use either expert judgment
or a simple linear model. The physical principles which govern the behavior of
an airplane are well known, and a detailed quantitative model would be built to
predict the performance of the airplane long before it was built.
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7.2 Modeling Decision Processes

The remainder of this chapter presents structures that can be used to represent
decision making processes within a simulation model. Speci±cally, we consider
decisions at points where information arrows enter ® ows. These junctions are
key decision making points within an organizational process because they are
where information impacts the physical activities of the process.

Example: Managing Flows Through the Thurabond Dam

We will proceed by considering a management decision process with a simple
structure: Managing the out® ow from a water reservoir. While it is not likely
that most readers need to manage the out® ow from a reservoir, this decision
situation has two characteristics that make it a useful example for models of
decision processes. First, the stock and ® ow variables are graphically obvious:
The amount of water in the reservoir is clearly a stock, and the ® ows into and
out of the reservoir are clearly ® ows. Second, it has a relatively simple structure
where the implications of di¯ erent decision rules can be easily seen. In many
business settings, there are several interacting stocks and ® ows, and thus the
impact of changing a single decision rule may be obscured by the complexities of
the situation. This example is inspired by one in Roberts, et al (1983), Chapter
22.

The Rappanno Valley has ideal growing conditions for several di¯ erent types of
vegetables, but very little rain. During the waning years of Senator Thurabond's
distinguished Congressional career, Federal funds were allocated for the construc-
tion of the Thurabond Dam in Big Stormy Gorge on the Callahali River. This
dam, together with the Rappanno Valley Irrigation Project, established an ex-
tensive irrigation system throughout Rappanno Valley, and in the forty years
since the completion of the dam and irrigation system, a prosperous agricultural
community has developed there.

The essential features of the reservoir and irrigation system are shown in
Figure 7.1. The \in® ow" to Big Stormy Reservoir behind Thurabond Dam is not
under our control, and the amount of water in the reservoir is labeled \Reservoir
Contents." All releases from the reservoir ® ow into the Rappanno Valley drainage
basin where the water is primarily used for agricultural purposes. The amount
of water available in the drainage basin at any time for agricultural purposes
is labeled \Drainage Basin Contents." Water is consumed from the Rappanno
Valley drainage basin in a variety of ways, including transpiration from plants,
evaporation, and drainage. For notational simplicity, we refer to all of these
losses as \drainage." This drainage is not under the control of the Thurabond
Dam operator. Thus, there is only one decision variable, the \release" through
Thurabond Dam, which is shown in the center of Figure 7.1.

We will examine decision policies for managing releases through Thurabond
Dam for use in Rappanno Valley agriculture. The Dam impounds water from an
substantial stretch of the Callahali River, and the average net annual impound-
ment, taking into account evaporation losses, is 0.5 million acre-feet. Standard
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Figure 7.1 Water �ow process

operating procedure at Thurabond Dam is to maintain a long term average of
one million acre-feet of water behind the dam in Big Stormy Reservoir, although
the actual amount of water in the reservoir may vary over the short term depend-
ing on rainfall and other conditions. Not surprisingly, agriculture has expanded
in the Rappanno Valley to consume 0.5 million acre-feet per year of water. More
speci±cally, the drainage system within the Valley holds one million acres-feet of
water accessible for agricultural use, and ±fty percent of this is consumed each
year.

A reservoir system can have several purposes. The rainy season in a region
may not coincide with the growing season, and then a reservoir can be used
to \time shift" water from the rainy season to the growing season. If there is
® ooding in an area, then the reservoir can trap water during periods of high ® ow
and gradually release it over an extended period of time. If there are periods
of drought, then the reservoir can save water over several years and release it
during drought years.

The primary purpose of Big Stormy Reservoir is to hold water that would
otherwise ® ow unused down the Callahali River to the ocean about two hundred
miles away, so that this water can be used for agriculture. Our analysis of
operating policies for releases through Thurabond Dam will focus on maintaining
su�cient ® ow to support agriculture in the Rappanno Valley, while assuring
that there is su�cient reserve in Big Stormy Reservoir to continue to support
agriculture through a drought period, and also assuring that water does not build
up in the reservoir to the point where it threatens to overtop Thurabond Dam.

It is important to note that in this situation, as in any process involving ® ow
of material, the ® owing material must be conserved. That, is the total amount of
material that ® ows into the process must, over the long run, average out to the
same amount that ® ows out of the process. Otherwise, material will inde±nitely
continue to \pile up" somewhere in the process and you will ultimately run out
of storage capacity. Since there is a sequential ® ow of water through the process
shown in Figure 7.1, the requirement that material must be conserved means
that the long run averages for \in® ow," \release," and \drainage" must all be
the same.



7.3 WEIGHTED-AVERAGE DECISION MODELS 89

Types of Decision Models

The discussion about experts earlier in this chapter shows that even experts in a
±eld use relatively simple decision procedures. Therefore, it is often appropriate
to use simple models to represent decision processes in simulation models. There
are two primary issues that must be addressed in constructing such models: 1)
What factors should be taken into account in the decision model, and 2) How
should these factors be combined. We investigate both of these issues below.

Many decision processes take into account multiple factors. For Thurabond
Dam, it seems clear that any reasonable decision process for releases will need to
consider both the level of Big Stormy Reservoir and the impact of out® ows from
the reservoir on agriculture in Rappanno Valley. In this case, and this is typical
of many decision situations, there are explicit or implicit goals with regard to
both of these factors. For the reservoir level: We do not want the quantity
of water in the reservoir to become so large that a sudden increase in in® ow
might lead to the threat of overtopping Thurabond Dam. (In such situations,
emergency releases must be made, which can lead to substantial downstream
® ooding.) We also do not want the water in the reservoir to get too low, because
if a drought occurs when the reservoir is low we might not be able to provide
su�cient water to the Rappanno Valley to support agriculture.

With regard to out® ows: We do not want these to be too high or they will
cause ® ooding in the Rappanno Valley, and we also do not want them to be too
low because this could cause crop failure. One way to address this is to attempt
to maintain a constant value for the contents of the drainage basis. If this gets
too high, then ® ooding will occur, and if it gets too low, there will be insu�cient
water to maintain crops.

Thus, to summarize, our goals are to maintain constant levels for the two
variables \Reservoir Contents" and \Drainage Basin Contents" in Figure 7.1.

One can visualize a variety of di¯ erent quantitative forms for decision func-
tions which address multiple goals. The two simplest are 1) an average of the
factors, perhaps with di¯ erent weights used for each factor, or 2) a product of
the factors. These forms are both used in simulation models, and they have
proved su�cient to model a variety of di¯ erent real-world decision processes.

7.3 Weighted-average Decision Models

The ideas underlying a weighted-average decision model for a ® ow variable are
straightforward and intuitively appealing:

1 A portion of the ® ow is being used to attempt to maintain some goal with
respect to each of the decision factors, and if the ® ow deviates from what is
needed to maintain that goal, then this portion of the ® ow should be adjusted.

2 These adjustments are made over a period of time (that is, averaged) in
order to avoid disruptive discontinuities in operations, and also to smooth out
transient shifts in conditions due to random factors.

3 The total ® ow is made up of a sum of the portions assigned to achieving each
goal.
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4 Di¯ erent weights may be assigned to meeting each goal depending on their
relative importance.

Figure 7.2a shows a stock and ® ow diagram to represent a weighted-average
decision model for the \release" decision variable. This has been developed from
the Figure 7.1 diagram by adding a variety of auxiliary variable, most of which
are related to the release decision. In the upper left corner of the diagram, LONG
TERM AVERAGE INFLOW is a constant which provides the average ® ow rate
into Big Stormy Reservoir. From our earlier discussion, we know that this is 0.5
million acre-feet per year. This is used to set a target for the amount of water in
Big Stormy Reservoir, which is indicated on the diagram by \reservoir target."
We will assume that the target is two times the LONG TERM AVERAGE
INFLOW. That is, the reservoir is operated to maintain on average two years of
in® ow.

There is also a target for the amount of accessible water in the Rappanno
Valley drainage system, which is indicated in the upper right corner of Figure
7.2a by DRAINAGE BASIN TARGET. This target is set to maintain a constant
amount of water in the basin over the long term. As noted above, annual drainage
from the valley is ±fty percent of the accessible water in the basin. We also know
from our earlier discussion that this average drainage must equal the LONG
TERM AVERAGE INFLOW, which is 0.5 million acre-feet. Therefore, the
DRAINAGE BASIN TARGET must be twice this, or one million acre-feet.

The two constants TIME TO ADJUST RESERVOIR and TIME TO ADJUST
BASIN, which are shown in the lower center of Figure 7.2a, relate to the averaging
period used to address deviations from the goals with respect to the reservoir
contents and the drainage basin contents. Finally, the constant RESERVOIR
WEIGHT in the upper center of the ±gure represents the weight assigned to
the goal of maintaining a constant value for Reservoir Constant, relative to
maintaining a constant value for Drainage Basin Contents.

As noted above, with a weighted-average decision rule, the ® ow is visualized as
being split into several parts which add up to constitute the entire ® ow. A useful
way to develop the decision rule is often to visualize the ® ow being controlled as
made up of a base component needed to maintain stable conditions over the long
run, and then \correction" terms needed to address deviations from each of the
goals. For the reservoir, the long term average in® ow to the reservoir is LONG
TERM AVERAGE INFLOW, and therefore the base component of \release"
must be equal to this.

The correction term for deviations from the target for the quantity of water in
the reservoir can then be built up in three steps: First, note that this correction
term should be zero when the value of Reservoir Contents is equal to \reservoir
target." Therefore, the correction term should be proportional to

Reservoir Contents £ reservoir target: (7:1)

That is, if there is more water in the reservoir than the target, then the release
should be increased, while if there is less water than the target, then release
should be decreased.
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a. Stock and ® ow diagram

(01) drainage = 0.5 * Drainage Basin Contents

(02) Drainage Basin Contents = INTEG(release-drainage,

DRAINAGE BASIN TARGET)

(03) DRAINAGE BASIN TARGET = 1

(04) FINAL TIME = 4

(05) inflow = LONG TERM AVERAGE INFLOW+TEST variation

(06) INITIAL TIME = 0

(07) LONG TERM AVERAGE INFLOW = 0.5

(08) release = LONG TERM AVERAGE INFLOW

+ RESERVOIR WEIGHT * (Reservoir Contents - reservoir target)

/ TIME TO ADJUST RESERVOIR

+(1 - RESERVOIR WEIGHT)

* (DRAINAGE BASIN TARGET - Drainage Basin Contents)

/ TIME TO ADJUST BASIN

(09) Reservoir Contents

= INTEG(inflow - release, reservoir target)

(10) reservoir target = 2 * LONG TERM AVERAGE INFLOW

(11) RESERVOIR WEIGHT = 0.5

(12) SAVEPER = TIME STEP

(13) TESt variation = STEP(0.1, 0.5)

(14) TIME STEP = 0.01

(15) TIME TO ADJUST BASIN = 0.05

(16) TIME TO ADJUST RESERVOIR = 0.5

b. Vensim equations

Figure 7.2 Weighted-average decision rule
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However, if the expression in equation 7.1 were used as the correction term for
deviations from the reservoir goal, this would mean that any deviation would be
instantly corrected. This is probably not feasible due to physical constraints on
the dam, and it may also not be desirable because every little random variation
in reservoir level would result in ® uctuations in the release. Thus, the correction
will be averaged over a period of time as follows:

Reservoir Contents £ reservoir target

TIME TO ADJUST RESERVOIR
: (7:2)

This means that if the correction were to continue at the same rate, it would
take a length of time equal to TIME TO ADJUST RESERVOIR to completely
remove the deviation. (In actuality, the level of the reservoir will change over
time, and thus the actual correction period will probably di¯ er from TIME TO
ADJUST RESERVOIR.)

Another way to visualize this is to de±ne

RESERVOIR ADJUSTMENT FACTOR =
1

TIME TO ADJUST RESERVOIR

and then equation 7.2 can be rewritten

RESERVOIR ADJUSTMENT FACTOR

�(Reservoir Contents £ reservoir target):

From this, we see that RESERVOIR ADJUSTMENT FACTOR is the portion
of the deviation from the goal that is corrected each unit of time.

Finally, to complete the correction factor for the reservoir goal, the expression
in equation 7.2 is multiplied by the RESERVOIR WEIGHT, which is a number
between zero and one, to take into account the relative importance of this goal.
This gives

RESERVOIR WEIGHT�Reservoir Contents £ reservoir target

TIME TO ADJUST RESERVOIR
: (7:3)

A similar procedure can be used to determine the correction factor for the
drainage basin goal, which is

(1 £ RESERVOIR WEIGHT)

�DRAINAGE BASIN TARGET £ Drainage Basin Contents

TIME TO ADJUST BASIN

(7:4)

Note that in this case, the actual level for the variable (Drainage Basin Contents)
is subtracted from the goal (DRAINAGE BASIN TARGET) because we wish
to decrease the ® ow if the actual level is above the target and increase it is the
actual level is below the target. Note also that we are assigning weights to the
two goals so that these weights add up to one. Therefore, it is not necessary
to de±ne a separate weight for the drainage basin goal: It must be equal to
1 £ RESERVOIR WEIGHT.
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The ±nal complete expression for the release decision rule is obtained by
adding the two correction terms in equations 7.3 and 7.4 to the long term average
® ow rate LONG TERM AVERAGE INFLOW. This yields

release = LONG TERM AVERAGE INFLOW

+ RESERVOIR WEIGHT�Reservoir Contents £ reservoir target

TIME TO ADJUST RESERVOIR

+ (1 £ RESERVOIR WEIGHT)

�DRAINAGE BASIN TARGET £ Drainage Basin Contents

TIME TO ADJUST BASIN
(7:5)

The complete set of equations for the reservoir management model with a
weighted-additive decision rule are given in Figure 7.2b. Equation 8 of this ±gure
corresponds to equation 7.5 above. The values assumed for the various constants
are also shown in Figure 7.2b. Note, also that equation 1 in this ±gure shows
that the drainage is a proportion of the Drainage Basin Contents as discussed
above.

As shown by equations 2 and 9 in Figure 7.2b, the initial values of Reservoir
Contents and Drainage Basin Contents are set equal to the targets for these
variables. Thus, so long as \in® ow" continues to be equal to LONG TERM
AVERAGE INFLOW, the entire process will be in steady state, and the levels
of the two stocks will remain the same with a constant ® ow of LONG TERM
AVERAGE INFLOW through the system. Referring back to Figure 7.2a for a
moment, note that there are dashed arrows from \reservoir target" to Reservoir
Contents, and also from DRAINAGE BASIN TARGET to Drainage Basin Con-
tents. These dashed arrows indicate that the initial level for each of the levels
depends on the speci±ed variable, as shown by equations 2 and 9 of Figure 7.2b.

As a test input for this simulation model, we use a step, as shown by equations
5 and 13 of Figure 7.2b. The results are shown in Figure 7.3. The top set of
graphs shows the results with a RESERVOIR WEIGHT equal to one, the middle
set of graphs shows the results with a RESERVOIR WEIGHT equal to 0.5, and
the bottom set of graphs shows the results with a RESERVOIR WEIGHT equal
to zero. Thus, in the top and bottom sets of graphs, only one of the goals is taken
into account in setting the reservoir release, while in the middle set of graphs
both goals are taken into account. (Note that some scales on corresponding
graphs in the three parts of Figure 7.3 di¯ er.)

The pattern for \release" is substantially di¯ erent for the three cases. When
there is no weight on the reservoir goal (RUN0) the release remains constant
at 0.5 million acre-feet per year, and the Reservoir Contents steadily grows to
absorb the extra in® ow that is not being released. When there is no weight on
the drainage basin goal (RUN10) the release grows to 0.6 million acre feet per
year to stabilize the amount of water in the reservoir, but the Drainage Basin
Contents grows substantially.

Finally, in the case where the two goals are given equal weight (RUN5), the
results are intermediate between the other two cases, but the values for Reser-
voir Contents and Drainage Basin Contents are closer to the RUN0 case than the
RUN10 cases. The reason for this can be seen from examining the values for the
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two constants TIME TO ADJUST BASIN and TIME TO ADJUST RESER-
VOIR in equations 15 and 16 of Figure 7.2b. We see from these equations that
TIME TO ADJUST BASIN is one-tenth of TIME TO ADJUST RESERVOIR
(0.05 versus 0.5). Thus, adjustments to Drainage Basin Contents are made much
more quickly than adjustments to Reservoir Contents, and hence the ±nal results
for the equal weight case are closer to the case where all the weight is placed on
maintaining a constant value for Drainage Basin Contents. This illustrates that
the overall performance of a weighted-average decision rule is equally impacted
by the weights and the adjustment time constants.

7.4 Floating Goals

The decision model discussed in the last section assumes that long term averages
are known and are stable, and therefore can be used in decision rules. What if
these long term averages are not known? The model in Figure 7.4 shows one way
to address this. The di¯ erences between the stock and ® ow diagram in Figure
7.4a and the one shown earlier in Figure 7.2a are in the upper left hand corner.
A new variable \short term average in® ow" has been introduced, and now this is
used as an input to the release decision, rather than LONG TERM AVERAGE
INFLOW.

This short term average in® ow is calculated by smoothing \in® ow" using a
±rst order exponential smooth with a time constant of INFLOW AVERAGING
TIME. Thus, this approach does not assume that the decision maker managing
\release" has access to the values of LONG TERM AVERAGE INFLOW. This
modeling approach is sometimes called \® oating goals" because the goal is cal-
culated from data generated as the model solves rather than being prespeci±ed.
Therefore, this goal can vary, or \® oat" as the data changes.

The equations for this model are shown in Figure 7.4b. These di¯ er from the
equations in Figure 7.2a as follows: Additional equations numbered 6 and 14
have been added to calculate \short term average in® ow."

The results of applying the ® oating goal decision rule are shown in Figure
7.5. The meanings of RUN0, RUN5, and RUN10 are the same in this ±gure as in
Figure 7.3. Note that in this case when all the weight is put on the reservoir goal
(RUN10) there is a somewhat counterintuitive result with respect to \release."
After the in® ow to the reservoir jumps at time 0.5, the release actually drops
for about a year. This is because the target for Reservoir Contents grows as
the in® ow to the reservoir grows, as shown by equation 11 of Figure 7.4b, and
therefore more water is needed in the reservoir to meet the target.
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Figure 7.3 Dynamics with weighted-average decision rule
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Reservoir
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a. Stock and ® ow diagram

(01) drainage = 0.5 * Drainage Basin Contents
(02) Drainage Basin Contents

= INTEG(release - drainage, DRAINAGE BASIN TARGET)
(03) DRAINAGE BASIN TARGET = 1
(04) FINAL TIME = 4
(05) inflow = LONG TERM AVERAGE INFLOW + TESt variation
(06) INFLOW AVERAGING TIME = 0.5
(07) INITIAL TIME = 0
(08) LONG TERM AVERAGE INFLOW = 0.5
(09) release = short term average inflow +

RESERVOIR WEIGHT
* (Reservoir Contents - reservoir target)

/ TIME TO ADJUST RESERVOIR
+(1 - RESERVOIR WEIGHT)

* (DRAINAGE BASIN TARGET - Drainage Basin Contents)
/TIME TO ADJUST BASIN

(10) Reservoir Contents = INTEG(inflow - release, reservoir target)
(11) reservoir target = 2 * short term average inflow
(12) RESERVOIR WEIGHT = 0.5
(13) SAVEPER = TIME STEP
(14) short term average inflow = smooth(inflow, INFLOW AVERAGING TIME)
(15) TESt variation = STEP(0.1, 0.5)
(16) TIME STEP = 0.01
(17) TIME TO ADJUST BASIN = 0.05
(18) TIME TO ADJUST RESERVOIR = 0.5

b. Vensim equations

Figure 7.4 Floating goal decision rule
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Figure 7.5 Dynamics with �oating goal decision rule
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Figure 7.6 Multipliers

7.5 Multiplicative Decision Rule

Another approach for modeling decision rules is to use a multiplicative form.
With the weighted-additive form, correction terms are added to a base ® ow rate,
while with the multiplicative form, correction factors are used to multiply the
base ® ow rate. The correction factors are illustrated in Figure 7.6. The left hand
graph in this ±gure applies to a situation where if the variable of interest is above
its target (goal) value the ® ow needs to be increased. (This is the situation in the
reservoir example for Reservoir Contents.) The right hand graph in Figure 7.6
applies to a situation where if the variable of interest is above its target value,
the ® ow needs to be reduced. (This is the situation in the reservoir example for
Drainage Basin Contents.)

It turns out to be useful to normalize the variables by dividing them by their
target values, as shown in the Figure 7.6 graphs. When this is done, a situation
where a normalized variable is equal to one will have a multiplier of one. That
is, when the value of a variable is equal to its target value, there will be no
correction applied to the base case ® ow.

The slope of the normalized curve, as de±ned in the graphs in Figure 7.6, then
sets the strength of the reaction in the ® ow that occurs for a speci±ed percentage
deviation in a variable from its target value. The greater the slope, the greater
the response for a speci±ed percentage deviation of a variable.

It is straightforward to derive the equation for the multiplier as a function of
the variable, its TARGET, and its slope. For the increasing case in Figure 7.6a,
this is

Multiplier = slope� actual

TARGET
+ (1 £ slope) (7:6a)

and for the decreasing case in Figure 7.6b, this is

Multiplier = 1 + slope £ slope� actual

TARGET
(7:6b)
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The results of applying the multiplicative decision rule approach to the reser-
voir example are shown in Figure 7.7. (Note that this example is the multi-
plicative version of the weighted-average example in Figure 7.2. If desired, a
® oating goals approach can be applied to the multiplicative case in a manner
analogous to that presented above for the weighted-average decision rule.) As in
the weighted-average case, the base case ® ow is LONG TERM AVERAGE IN-
FLOW. The targets for the reservoir and drainage basin are \reservoir target"
and DRAINAGE BASIN TARGET, respectively. The slopes of the correction
factors for these are RESERVOIR ADJUSTMENT SLOPE and DRAINAGE
BASIN ADJUSTMENT SLOPE, respectively.

The stock and ® ow diagram for this decision rule is shown in Figure 7.7a, and
the Vensim equations are shown in Figure 7.7b. Equation 9 of this ±gure shows
how equation 7.6 is applied in this case to develop the multiplicative decision
rule.

Figure 7.8 shows the results of running a simulation with the equations in
Figure 7.7b.

The performance of the weighted-average and multiplicative decision rules will
be similar for small variations from the desired ® ow, provided the constants in the
two models are suitably adjusted. For larger variations, the multiplicative rule
can lead to a more aggressive response than the weighted-average rule because
the responses for the two variables interact in a multiplicative fashion. This
type of decision rule may be appropriate for modeling some decision makers.
However, the discussion above of the performance of experts indicates that an
additive model will perform as well as many actual decision makers.
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TESt variation DRAINAGE
BASIN
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SLOPE

RESERVOIR
ADJUSTMENT

SLOPE

DRAINAGE
BASIN

TARGET

reservoir
target

LONG TERM
AVERAGE
INFLOW

drainagereleaseinflow

Drainage Basin
Contents

Reservoir
Contents

a. Stock and ® ow diagram

(01) drainage = 0.5*Drainage Basin Contents
(02) DRAINAGE BASIN ADJUSTMENT SLOPE = 1
(03) Drainage Basin Contents = INTEG(release-drainage,

DRAINAGE BASIN TARGET )
(04) DRAINAGE BASIN TARGET = 1
(05) FINAL TIME = 4
(06) inflow = LONG TERM AVERAGE INFLOW+TEST variation
(07) INITIAL TIME = 0
(08) LONG TERM AVERAGE INFLOW = 0.5
(09) release = LONG TERM AVERAGE INFLOW

*(RESERVOIR ADJUSTMENT SLOPE
*(Reservoir Contents/reservoir target)
+(1-RESERVOIR ADJUSTMENT SLOPE))

*(1+DRAINAGE BASIN ADJUSTMENT SLOPE
-DRAINAGE BASIN ADJUSTMENT SLOPE
*(Drainage Basin Contents/DRAINAGE BASIN TARGET))

(10) RESERVOIR ADJUSTMENT SLOPE = 1
(11) Reservoir Contents = INTEG(inflow-release,reservoir target)
(12) reservoir target = 2*LONG TERM AVERAGE INFLOW
(13) SAVEPER =

TIME STEP
(14) TESt variation = step(0.1,0.5)
(15) TIME STEP = 0.01

b. Vensim equations

Figure 7.7 Multiplicative decision rule
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Figure 7.8 Dynamics with multiplicative decision rule




