
THE JOURNAL OF THE LEARNING SCIENCES, 4(2), 167-207
Copyright Q 1995, Lawrence Erlbaum Associates, Inc.

Cognitive Tutors: Lessons Learned

John R. Anderson, Albert T. Corbett,
Kenneth R. Koedinger, and Ray Pelletier

Carnegie Mellon University

This article reviews the 10-year history of tutor development based on the
advanced computer tutoring theory (J. R. Anderson, 1983, 1993). We devel-
oped production system models in ACT of how students solved problems in
LISP, geometry, and algebra. Computer tutors were developed around these
cognitive models. Construction of these tutors was guided by a set of eight
principles loosely based on the ACT theory. Early evaluations of these tutors
usually, but not always, showed significant achievement gains. Best case eval-
uations showed that students could achieve at least the same level of profi-
ciency as conventional instruction in one third of the time. Empirical studies
showed that students were learning skills in production-rule units and that the
best tutorial interaction style was one in which the tutor provides immediate
feedback, consisting of short and directed error messages. The tutors appear to
work better if they present themselves to students as nonhuman tools to assist
learning rather than as emulations of human tutors. Students working with these
tutors display transfer to other environments to the degree that they can map the
tutor environment into the test environment. These experiences have coalesced
into a new system for developing and deploying tutors. This system involves
selecting a problem-solving interface, constructing a curriculum under the
guidance of a domain expert, designing a cognitive model for solving problems
in that environment, building instruction around the productions in that model,
and deploying the tutor in the classroom. New tutors are being built in this
system to achieve the National Council of Teachers of Mathematics (NCTM)
standards for high-school mathematics in an urban setting.

O v e r the pas t 10 years, our research group (the Advanced Computer Tutoring
Prqject a t Carnegie Mellon University) has been developing a type o f com-

Requests for reprints should be sent to John R. Anderson, Carnegie Mellon University,
Department of Psychology, Pittsburgh, PA 15213-3890.

1 68 ANDERSON, CORBETT, KOEDINGER, PELLETIER

puter-based instructional technology that we call cognitive tutors. The core
commitment at every stage of the work and in all applications is that instruc-
tion should be designed with reference to a cognitive model of the compe-
tence that the student is being asked to learn. This means that the system
possesses a computational model capable of solving the problems that are
given to students in the ways students are expected to solve the problems. As
is elaborated later, all decisions about delivering such instruction are made
with reference to that model. These systems are called tutors because our
initial work on them was inspired by the intelligent tutoring work of the late
1970s and early 1980s (e.g., Sleeman & Brown, 1982). Indeed, when we
embarked on the project, we had the ill-defined goal that our systems should
interact with students like private human tutors. Although we deemphasized
the emulation of the human tutors over the years, the term tutor has stuck.

This article surveys our work on tutoring. It describes the motivations for
being involved in tutoring, the theoretical assumptions underpinning the
work, the empirical evidence for the claims, and the current directions of the
research. This overview is organized according to its three identifiable
stages: (a) a flurry of tutor building in the mid-1980s, (b) a flurry of evalua-
tions in the late 1980s, and (c) a current effort to build and deploy practical
tutor systems.

STAGE 1 : EARLY TUTOR BUILDING

The year 1982 saw the completion of the ACT* theory of learning and
problem solving, which was described in the book The Architecture of
Cognition (J. R. Anderson, 1983). Much of that theory was concerned with
the acquisition of cognitive skills, and we tested the theory in the domains of
proof generation in geometry (J. R. Anderson, Greeno, Kline, & Neves,
1981) and initial programming skills in LISP (J. R. Anderson, Farrell, &
Sauers, 1984). The theory held that a cognitive skill consists in large part of
units of goal-related knowledge. Cognitive skill acquisition involves the
formulation of thousands of rules relating task goals and task states to
actions and consequences. The theory employs a production-rule formalism
to represent this goal-oriented knowledge. For example, a geometry proof
generation rule might be:

IF the goal is to prove two triangles are congruent
THEN set as a subgoal to prove that corresponding parts are congruent.

A LISP programming rule would be:

IF the goal is to get the second element of the list
THEN code car and set as a subgoal to pass to car an argument that is

the tail of the list.

It is not the production-rule notation that is critical; it is the set of
representational features that this notation describes. For example, produc-
tion rules are procedural, abstract, modular, directional, and goal-related.
See J. R. Anderson (1993, chap. 2 and especially Section 2.4) for an elabo-
ration of these features.

A theory of the acquisition of cognitive skills should have implications for
their instruction. We thought it would be an important test of the theory if we
could use it to optimize learning. However, it is not a trivial matter to convert
a scientific theory of a phenomenon to an engineering theory of how to foster
that phenomenon. We undertook our first work in intelligent tutoring to
explore how such a conversion might take place.

The ACT Theory

Because the tutoring effort is so strongly tied to the ACT theories of skill
acquisition (initially the ACT* theory; J. R. Anderson, 1983; and now the
ACT-R theory; J. R. Anderson, 1993), it is worth reviewing the principal
tenets of that theory.

Procedural-declarative distinction. The theory distinguishes be-
tween declarative knowledge (e.g., knowing the side-angle-side theorem)
and procedural knowledge (e.g., an ability to use the side-angle-side theorem
in a proof). The assumption of the theory is that goal-independent declara-
tive knowledge initially enters the system in a form that can be encoded more
or less directly from observation and instruction. Cognitive skill depends on
converting this knowledge into production rules like those noted previously,
which represent the procedural knowledge.

Knowledge compilation. It is assumed that the students could use
various interpretive procedures, such as instruction following and analogy,
to generate problem-solving behavior by relating declarative knowledge to
task goals. A learning process called knowledge compilation converts this
interpretive problem solving into production rules. Thus, the theory assumes
that production rules can only be learned by employing declarative knowl-
edge in the context of a problem-solving activity.

Sfrengthening. It is assumed that both declarative and procedural
knowledge acquire strength with practice. Application of weak knowledge
can result in slips and errors. Thus, even after the knowledge has been
successfully encoded, further practice produces smoother, more rapid, and
less errorful execution.

1 70 ANDERSON, CORBETT, KOEDINGER, PELLETlER

These three assumptions1 pointed us in the direction of a method of
instruction in which students were presented with an initial brief declarative
instruction and then a good deal of guided practice. As stressed elsewhere (J.
R. Anderson, 1993; J. R. Anderson, Conrad, & Corbett, 1989). this concep-
tion of skill acquisition is quite simple. The apparent complexity of learning
a cognitive skill results from the inherent complexity of the domain being
learned. That complexity is reflected in the complexity of the rule set that
has to be learned, but the learning of each production rule is quite simple.

The Nature of a Cognitive Skill

We have already used the term cognitive skill and will continue throughout
this article to use the term to describe what our tutors teach. Therefore, it
seems important to be clear on how the term relates to what one might
conceive of as "competence" in a particular domain, such as geometry. We
use cognitive skill to refer to the set of production rules acquired in the
domain. According to the ACT theory, there is more to domain competence
than just these production rules. There are also the declarative structures that
represent domain knowledge. Although, in principle, it is possible to have all
domain knowledge represented in production rules or all domain knowledge
represented declaratively (and being interpreted by domain-independent
procedures), we do not think either is the profitable way to develop domain
competence. If everything had to be represented as production rules, too
many rules would be required because it would be necessary to represent
each piece of knowledge in each way it could be used. If everything had to
be interpreted from declarative representations it would be too inefficient
and place too great a burden on working memory.

An example of a declarative structure in the domain of geometry might be
the side-angle-side theorem: "If two sides and the included angles of two
triangles are congruent, then the triangles are congruent." Procedural knowl-
edge might involve skills of placing triangles into correspondence, determin-
ing what an included angle is, setting subgoals, and making inferences. It
might also include some frequently encountered uses of this rule, such as
recognizing triangles as congruent which meet this condition.

Given that competence depends on both declarative and procedural
knowledge, why have we placed the emphasis on the procedural? This is
because our view is that the acquisition of the declarative knowledge is
relatively problem-free. However, declarative knowledge by itself is inert
and often quite u s e l e s ~ . ~ Declarative knowledge can be acquired by simply

 here were other ideas in the ACT* theory about production-rule learning, but these were
abandoned in the ACT-R theory, which is in many ways a simplification of the earlier theory.

' ~ l t h o u ~ h our theoretical interpretation of the phenomenon is different, this issue of inert
knowledge is, of course, a familiar problem in education (e.g., Brown, Collins, & Duguid, 1989;
Cognition and Technology Group at Vanderbilt, 1990; Whitehead. 1929).

COGNITIVE TUTORS: LESSONS LEARNED 171

being told and our tutors always apply in a context where students receive
such declarative instruction external to the tutors. What is problematical is
acquiring the procedural knowledge that enables this inert knowledge to
become the basis for effective action in the context of use. Production rules
cannot be learned by simply being told. Rather, they are skills that are only
acquired by doing. Thus, it is critical to set up contexts in which these skills
can be displayed, monitored, and appropriate feedback given to shape their
acquisition. This is the function of our tutors.

Initial Work on Tutoring

Our initial motivation in developing intelligent tutoring systems was mainly
to learn more about skill acquisition rather than to produce practical class-
room results. It was a significant test of the ACT theory to see whether we
could produce successful learning by getting students to act like the under-
lying production-rule model. It was by no means obvious at the time whether
or not there were going to be major gaps in ACT production-rule models
when applied to such instructional situations.

In 1983 work began on a LISP tutor and a geometry tutor (J. R. Anderson,
Boyle, Corbett, & Lewis, 1990; J. R. Anderson, Boyle, & Yost, 1986; J. R.
Anderson & Reiser, 1985). The former helped students write short programs
in LISP, and the latter helped students search for geometry proofs and
represent them in proof-graph form. The screen displays for the two tutors
are depicted in Figures 1 and 2. These two tutors embodied a number of key
ideas about how computer-based instruction should be realized. These ideas
have been part of all of our subsequent tutors.

Model. There should be a production-rule model of the underlying skill
incorporated into the tutor. This is a model that would perform the task the
student was expected to perform. At each point in the problem solving the
model is capable of generating a set of production sequences that represent
correct solutions of the problem.

On-path actions. Correct actions on the student's part are recognized
if they are along one of the correct solution paths generated by the model. If
the student is correct, the tutor does not comment but rather allows the
student to progress with the solution.

Off-path actions. If the student performs an off-path action, instruc-
tion is focused on getting the student back on path. Our earlier tutors
required students to always stay on path. More recent tutors allow the
student to go off path but still focus instruction on getting the student back
on path when they are off path.

Error feedback and help. The tutors possess two types of instruction.
If the student makes a recognizable error (a "bug"), a message can be given
explaining why it is an error. This is generated from a buggy production that
embodies the error. If the student asks for help, a help message is presented
to guide the student to the correct solution. This message is generated from
the information along a correct path. Both bug messages and help messages
are generated to be specific to the particular context in which they occur by
using the particular instantiations of the general production rules.

This approach to tutoring is described as the model-tracing approach
because it involves trying to relate the behavioral manifestations of the
student's solution on the computer to some sequence of production firings in
the cognitive model. This is a version of the plan-recognition problem,
which is recognized as being computationally very difficult in its general
form because of the combinatorics of how a plan can fit onto external
behavior. We originally dealt with this problem by insisting that each action
of the student be on an interpretable path. When there was any ambiguity
about the interpretation of the student's action the student was presented
with a disambiguation menu to identify the proper interpretation of the
action. If the student's action was in error, the student was to correct it and

Define a function called 'create-list" that accepts one
argument, which must be a positive integer. This function
returns a list of all the integers between 1 and the value of
the argument, in ascending order. For example,

(create-list 8) returns (1 2 3 4 5 6 7 8).

You should count down in this function, so that you can just
insert each new number into the front of the result variable.

CODE for create-list

(defun create-list <parameters>
<process>)

FIGURE 1 The appearance of the LISP tutor screen at the beginning of a coding
problem. (From Rules of the Mind, p. 146, by 1. R. Anderson, Ed., 1993, Hillsdale, NJ:
Lawrence Erlbaum Associates, Inc. Copyright 1993 by Lawrence Erlbaum Associates, Inc.)

COGNITIVE TUTORS: LESSONS LEARNED 173

FIGURE 2 A screen image from the geometry tutor showing the proof-graph formal-
ism. The givens of the problem are at the bottom of the screen, and the statement to be
proven is at the top. (From Rules of the Mind, p. 171, by J. R. Anderson, Ed., 1993,
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. Copyright 1993 by Lawrence Erlbaum
Associates, Inc.)

-

rL

r o b 1 - 1 I
rtL
.rtb -
..v
H...l. cS.9,
LC.* U)
m*m
HRMEIIC

R m

(

:
m n r

b w
..Lrt
*- 4.1
)r

get back on an interpretable path. This approach, combined with an interface
which yielded a relatively rich behavioral trace and a restriction on possible
interpretations of the behavior, tamed the combinatorics of the problem so
that we were able to follow the solution of the student and do so in real time.
As we discuss later in this article, we have subsequently relaxed the require-
ment that the student stay on an interpretable path but have done so in ways
that avoid the potential combinatorial explosion.

This technical accomplishment was no mean feat in itself. It was and still is
the only practical automatic approach to protocol analysis. This model-tracing
approach has been adapted to doing automatic protocol analyses of problem
solving in psychology experiments where there is no tutorial intervention (J. R.
Anderson, 1993). However, solving the technical problem of model tracing does
not bring with it any automatic guarantee of instructional effectiveness.

AEJYEAEKX .$. 1
AEJXSAEJY 7=? AEJXSAEKX

v

LXEKSLYEJ

/
LEJXPLEJY

SITWITY REFLEXIVE
t

MF-BISECTOR

LXEJILXEK LXEJIILYEJ LEXJELEXK
t

j / j bi...ts LXJY

Interacting With the LISP Tutor

We first need to illustrate what it is like to interact with one of these tutors.
Because we report more empirical research from the LISP tutor than from the
others, it is the best choice for an illustration. This section describes an
interaction with the original LISP tutor we ~ r e a t e d . ~ Figure 1 depicts the

174 ANDERSON, CORBETT, KOEDINGER, PELLETIER

terminal screen at the beginning of an exercise. The original LISP tutor ran
on Vaxes and communicated with students via a regular 24 x 80 character
terminal. The screen is divided into two windows, and the problem descrip-
tion appears in the "tutor window" at the top of the screen. As the student
types, the code appears in the "code window" at the bottom of the screen.
This exercise is drawn from the lesson in which iteration is being introduced.
Students are familiar with the structure of function definitions by this point,
so the tutor has put up the template for a definition, filling in defun and the
function name for the student. The symbols in angle brackets reify remaining
goals, that is, they represent code components remaining for the student to
supply. The tutor places the cursor over the first symbol the student needs to
expand, <PARAMETERS>.

As the student works on an exercise, this tutor monitors the student's
input, essentially on a symbol-by-symbol basis. As long as the student is on
some reasonable solution path, the tutor remains in the background and the
interface behaves like a structure editor. The tutor expands templates for
function calls, provides balancing right parentheses, and advances the cursor
over the remaining symbols that must be expanded. If the student makes a
mistake, however, the tutor immediately provides feedback and gives the
student another opportunity to type a correct symbol. If the student requests
an explanation or if the student appears to be f ~ o u n d e r i n ~ , ~ the tutor will also
provide a correct next step in a solution, along with an explanation.

Table 1 contains a record of a hypothetical student completing the code
for the exercise.' This table does not attempt to show the terminal screen as
it actually appears at each step in the exercise. Instead, it shows an abbrevi-
ated "teletype" version of the interaction. As described earlier, while the
student is working, the problem description generally remains in the tutor
window (except when a message to the student is being presented), and the
code window is updated on a symbol-by-symbol basis. Instead of portraying
each update to the code window in the interaction, the table portrays nine
key "cycles" in which the tutor interrupts to communicate with the student.
At each of these enumerated cycles the complete contents of the code
window are shown along with the tutor's response. The tutor's response is
shown below the code to capture the temporal sequence of events; on the
terminal screen, the tutor's communications would appear in the tutor window
above the code. In each cycle all the code that the student has typed since the

'AS it turns out, there are a number of different LISP tutors that we have constructed. The
original tutor is affectionately called "LISP tutor classic" in our laboratory.

4~tudents are judged to be floundering at a step in the solution when they repeat the same type
of error three times or make two mistakes that the tutor does not recognize.

5~ndoubtedly, the use of LISP creates a barrier to communication with that fraction of the
readership that is not familiar with LISP. However, the semantics of LISP are not really
necessary to understanding how the tutor interacts or how these interactions depend on the
underlying production-rule models.

TABLE 1
A Teletype Depiction of a Hypothetical Student Completing the Code for the

Function cmbllrt Wlth the Tutor

The Problem Description

Define a function called "create-listn that accepts one argument, which must be a positive
integer. This function returns a list of all the integers between 1 and the value of the
argument, in ascending order. For example:

(create-list 8) returns (1 2 3 4 5 6 7 8).

You should count down in this function, so that you can just insert each new number into
the front of the result variable.

Cycles in which the tutor communicates with the student.

1. (defun create-list (num)
(loop)

You will need local variables in this function. So before you code anything else, there is a
particular LISP operator you need to code.

2. (defun create-list (num)
(let (()
< BODY >))

Which of the following do you want to do?
PRESS: IF YOU WANT TO
1 Initialize a variable to hold the list of digits between 1 and the value of the parameter.
2 Initialize a counter variable to keep track of how many times we go around the loop.
3 Have the tutor choose.

Menu choice: 2

3. (defun create-list (num)
(let ((count 1)
< OTHER-INITIALIZATIONS >)
<BODY >))

In this problem we won't want to start counting at the same value each time we call the
function, so we can't initialize the counter to a constant like 1. How is the starting value
being communicated to the function?

4. (defun create-list (num)
(let ((count num)

(nu- (list num)))
(lop))

Did you mean loop (y or n)? y

5. (defun create-list (num)
(let ((count num)

(numlist (list num)))
(loop

(cond ((equal count 1) numlist))
< LOOP-ACTIONS2 >)))

You do want to return the variable "numlist" here, but just typing it into the code won't
accomplish that. What LISP operator will allow you to return something from a LOOP?

(continued)

175

TABLE 1 (continued)

The Problem Description

6. (defun create-list (num)
(let ((count num)

(numlist (list num)))
(loop

(cond ((equal count 1) (return n d t)))
< LOOP-ACTIONS2 > 1))

In numeric iteration the f is t thing you should do after the exit test is update the counter
variable. You can use the function SETQ to do this.

7. (defun create-list (num)
(let ((count)

(numlist (list num)))
(loop

(cond ((equal count 1) (return numlist)))
(setq count (1- count))
(cons)))

You've got the right idea, since you1 need to use the function "cons," but remember you
are trying to insert the new value of the counter into the list. What LISP function allows
you to assign the results of this function call to a local variable?

8. (defun create-list (num)
(let ((count num)

(numlist (list num)))
(loop

(cond ((equal count 1) (return numlist)
(setq count (1- count)
(wtq llumlblt W)))

If you LIST together arguments like 7 and (8) you get (7 (8)). What you want is (7 8). Try
another function that combines things together.

9. (defun create-list (num)
(let ((count num)

(numlist (list num)))
(loop

(cond ((equal count 1) (return nudist)))
(setq count (1- count)
(setq nudist (COOS copat numliot)))))

-YOU ARE DONE. TYPE NEXT TO 00 ON AFTER-
-TESTING THE FUNCTION YOU HAVE DEFINED-

THE LISP WINDOW
= > (create-list 10)

=> next

COGNITIVE TUTORS: LESSONS LEARNED 1 77

preceding cycle is shown in boldface in Table 1. However, in each case, the
tutor is responding specifically to the last symbol the student typed.

In the first of the cycles displayed, the student has typed in the parameter
list and has called loop so as to iterate. The tutor reminds the student that it
is necessary to create some local variables before entering the loop. In the
second cycle, the student has called let and is about to create a local variable.
The template for numeric iteration calls for two local variables in this
function, so the tutor puts up a menu to clarify which variable the student is
going to declare first. This illustrates the tutor's need to know at all times
what the student's intentions are so that it can follow the student. If there is
an ambiguity, it will query the student by the means of such menus. In the
third cycle, the student has coded an initial value that would be correct if the
function were going to count up. However, this exercise is intended to give the
student practice in counting down, so the tutor redirects the student. In the fourth
cycle, the student has made a typing error that the tutor recognizes, and in the
fifth cycle the student is attempting to return the correct value from the loop but
has forgotten to call return. The tutor reminds the student that a special function
call is required to exit a loop. The interactions between the tutor and student
continue in this manner. Note that, for illustration's sake, this interaction shows
students making more errors than they usually do. Typically, the error rate is
about 15%, whereas it is approximately 30% in this dialogue. After each
exercise, the student enters a standard LISP environment called the LISP win-
dow. Students can experiment in the LISP window as they choose; the only
constraint is that they successfully call the function they have just defined
(which the tutor has automatically loaded).

The Initial Incursion Into the Classroom

In 1984 we ran a few high-school students through the geometry tutor and
taught a minicourse in computer science at Carnegie Mellon University
(CMU) with the LISP tutor. The results exceeded our initial modest expecta-
tions. Students seemed to learn fairly well with the geometry tutor. The LISP
minicourse was broken up into two groups to allow for an evaluation. One
group worked exercises with the LISP tutor, and one worked the same
exercises in a standard LISP environment. Students with the LISP tutor took
30% less time and scored one standard deviation higher on a final test than
the students in the control condition.

In response to these results, we created a full semester course in LISP,
taught to humanities and social sciences students, which is still a successful
course today but with a number of revisions over the period.6 We decided to

6~urrently, the course is now a combined LISP and Prolog course in which the students learn
both languages. The tutor is now delivered on a Macintosh system.

COGNITIVE TUTORS: LESSONS LEARNED 1 79

Farrell, and Reiser (1987) examined the ACT* theory and extracted what we
felt were eight principles for design of tutors that followed from that theory.
These principles follow.

Principle 1 : Represent student competence a s a production
set. The fundamental insight is that the tutoring enterprise should be
informed by an accurate model of the target skill. The cognitive model
allows us to set appropriate curriculum objectives and to properly interpret
the actions of the student. This has been the essential difference between our
approach and the more behaviorist approaches to computer-based instruc-
tion. The production rules define a more abstract and, we believe, more
accurate representation of the target skill than did the behavioral objectives
of a typical behaviorist analysis (e.g., Bunderson & Faust, 1976; GagnC &
Briggs, 1974). However, our approach shares with the behaviorist approach
the idea of decomposing a skill into components and organizing instructions
according to the componential analysis. The difference is in what the com-
ponents are.

This principle does not specify how to define a computer interface, how
to interact with a student, or when to promote the student through the
curriculum. This all depends on a theory of how such production rules are
acquired. The other principles of tutoring were all concerned with how to
take this first insight and convert it into pedagogical policy. These other
principles were derived with varying degrees of rigor from the ACT theory
of skill acquisition.

Principle 2: Communicate the goal structure underlying the problem
solving. One of the enduring assumptions of the ACT theory has been that
solving a problem involves decomposing that problem into a set of goals and
subgoals. Another observation was that, in many domains that students had
difficulty mastering (e.g., proof skills in geometry or writing recursive
programs), the goal structure governing the problem solving was not ade-
quately communicated to the student. So the reasonable assumption was that
exposing and communicating such goals should be an instructional objec-
tive. We adapted an approach that has been called reification (Brown, 1985;
Collins & Brown, 1987). We attempted to develop interfaces that made
explicit the goal structures that were only implicit in the instruction. We had
at least two notable successes. This was the use of a proof graph in geometry
to illustrate the subgoaling relationship between certain conclusions and the
ultimate conclusion of the proof.' The other was Singley's use of a subgoal
tree to illustrate use of the chain rule in related-rates calculus problems
(Singley, 1986).

7 ~ o r an evaluation of the contribution of the proof graph over and above any tutoring, see
Scheines and Sieg (1993).

Principle 3: Provide instruction in the problem-solving context. This
principle was based on the research showing the context specificity of
learning (e.g., J. R. Anderson, 1990, chap. 7). The current situated learning
movement (e.g., Collins, Brown, & Newman, 1989; Lave & Wenger, 1990)
presumably gives a new currency to this principle. The difficulty with this
principle is that there is not a detailed theoretical interpretation of why it is
true, and so it is a little hard to know how to apply it in detail. Does this mean
that instruction should be provided in the same class session as the tutor is
used, before each problem, or in the midst of each problem? As it has
evolved in our applications, this has come to mean providing instruction
between each new section in the tutor (a section begins where new produc-
tion rules are introduced), allowing the student to refer back to this instruc-
tion in the course of problem solving. We have experimented with placing
instruction at the precise point where it is needed in a problem, but students
find this interferes with their problem solving.

Principle 4: Promote an abstract understanding of the problem-
solving knowledge. This principle was motivated by the observation that
students will often develop overly specific knowledge from particular prob-
lem-solving examples. In terms of production rules, this has meant that the
conditions on the rules were not sufficiently general. Although the problem
is undoubtedly real, this principle provides no guidance for how it is to be
achieved. In practice, we tried to reinforce the correct abstractions in the
language of our help and error messages.

Principle 5: Minimize working memory load. This principle was
motivated by the fact that learning a new production rule in ACT requires
that all the relevant information (relevant to the condition and action of the
to-be-learned production) be simultaneously active in memory. Keeping
other information active could potentially interfere with learning the target
information. Sweller (1988) showed that a high working-memory load inter-
feres with learning. This principle means minimizing presentation and pro-
cessing of information not relevant to the target productions. This includes
minimizing presentation of instruction while problem solving because pro-
cessing this instruction poses another working-memory load.

This also implies that one should try to provide instruction on specific
components only when other components of the skill have already been
relatively well mastered. This leads to a curriculum design in which only a
few new things are taught at a time. This could be viewed as being at odds
with the current approaches, such as cognitive apprenticeship or anchored
instruction, which advocate teaching component skills in the context of
complex, real-world problems. However, this approach does not deny the
value of learning in such context but, rather, argues that students should

COGNITIVE TUTORS: LESSONS LEARNED 181

gradually acquire the skills required to deal with this complexity rather than
having to acquire them all at once.

Principle 6: Provide immediate feedback on errors. T h i s c 1 ear 1 y
has been the most controversial of our tutoring pritlciples. The ACT* theory
claimed that new productions were created from records of problem-solving
traces. Therefore, the longer one waited until an error was corrected, the
longer the span of problem solving over which the student would have to
integrate to create a production. The current ACT-R theory claims that one
learns from problem-solving products. Thus, the learner examines the result-
ing solution (code, proof, algebraic derivation) and builds productions from
that. Thus, it does not matter whether all the critical steps occur together in
time or not--only that they be represented in the final solution. Thus, the
principal theoretical justification for immediate feedback no longer exists in
ACT-R. We discuss later evidence about immediacy of feedback from our
tutors that is consistent with the current ACT-R conception. Still, we note
that immediate feedback can be beneficial in cutting down on time spent in
error states and making it easier to interpret the student's problem solving.

Principle 7: Adjust the grain size of instruction with learning. This
principle was motivated by the composition learning operator in ACT*,
which claimed that single productions would be composed into larger pro-
ductions that did in one cognitive step what had been done in many steps.
Whereas ACT-R does not have such a composition learning operator, it still
predicts this change in the grain size of problem solution, but from other
mechanisms (J. R. Anderson, 1993, chap. 4). Thus, it seemed reasonable to
design the interface so that one could process the student's problem solving
in ever larger units of analysis. There has only been one early attempt to do
this, however, and this was with the algebra tutor (J. R. Anderson et al.,
1990). That attempt was not notably successful. In retrospect, our problems
here reflected some fundamental misconceptions about the role of the inter-
face in problem solving. This is a topic that is discussed at length later in the
article.

Principle 8: Facilitate successive approximations to the target skill,
Frequently, when students are initially trying to perform a skill, they cannot
perform all the steps. We had the tutor fill in the missing steps. The expecta-
tion was that with repeated practice this division of labor between student
and tutor would change, with the student providing more and more of the
work until the tutor was completely in the background. In practice, this
successive approximation has frequently worked quite well. This principle
seems quite analogous to "fading" in the cognitive apprenticeship terminology
(Collins, Brown, & Newman, 1989).

1 82 ANDERSON, CORBETT, KOEDINGER, PELLETIER

Some of these principles are similar to ideas that accompanied more
behaviorist attempts at instructional design (Bunderson & Faust, 1976;
GagnB & Briggs, 1974). This is particularly true for Principles 3 ,6 ,7 , and 8.
The difference is that these principles were being used in service of a
different representation of the underlying skill. The places where these
principles add something to the standard behaviorist approach (Principles 1,
2, 4, and 5) reflect the different representational assumptions. This is a case
where assumptions about knowledge representation matter.

The fact that our tutors embody cognitive models of the target compe-
tence does not imply that they would always behave differently from instruc-
tional systems based on behaviorist principles: It depends on the domain. If
we were building a spelling tutor with the goal of memorization, we suspect
it would be much like behaviorist applications (e.g., Porter, 1961), which
produce similar achievement gains to those of our systems. However, we
have chosen to focus our applications on much more complex skills, in
which our cognitive models do lead to different instructional strategies. It is
our impression that the behaviorist programs have not had much success in
extending to such complex domains.

STAGE 2: THE EVALUATIONS AND EMPIRICAL
STUDIES

J. R. Anderson et al. (1990) reported the state of the tutoring work in 1987,
including the results of the first phase of research activity. This section
reviews those results and brings the research record up to date. The first
three sections describe summative evaluations of the geometry tutor, algebra
tutor, and LISP tutor. Succeeding sections discuss evidence on the compo-
nential nature of skill acquisition, student modeling, and feedback control
and content.

The Geometry Tutor

The geometry tutor was used in a pilot study in the 1985-1986 school year.
A number of classes were exposed to it, and all showed large achievement
gains. The 1986-1987 school year was the major test in which we compared
classes with the tutor with classes without the tutor but with the same
teacher. We performed a number of regression analyses trying to predict
student performance in a final paper-and-pencil test of proof skills. The
following equation predicted student performance on a scale from 0 to 80:

35 + 7.5* (letter grade in algebra)
+ 14 if access to tutor one on one
+ 4 if access to tutor two on one

The student's letter grade in the prior year's algebra class (1 = D to 4 = A)
was the best measure of prior individual student differences in predicting
geometry test performance (e.g., better than IQ). The 14 points for the tutor
reflected more than one standard deviation in the population or more than
one letter grade on the test. Because we did not have enough machines,
sometimes pairs of students worked on the machines. In this case, most of
the tutor benefit was eliminated, and the remaining 4-point advantage of
these students was not statistically different from that of the control group.

In addition to our own assessment of the tutor, there have appeared reports
from third-party observers (Schofield & Evan-Rhodes, 1989) and the teacher
(Wertheimer, 1990) confirming the large positive impact of the tutor on the
classroom. Schofield and Evan-Rhodes reported large improvements in the
motivation of students, with students spending more time on task.' Werthei-
mer (1990) reported that he found the experience satisfying as a teacher
because it allowed him to focus on the specific difficulties of specific
students.

A more recent geometry tutor has been completed based on the cognitive
model of geometry proof of Koedinger and Anderson (1990). It has been
subject to a preliminary evaluation (Koedinger & Anderson, 1993) in which
we also found a large positive result but only for the teacher carefully
integrated into the project. Students with the tutor and the project teacher
averaged just over five proofs correct out of eight, whereas students in each
of the other three conditions (project teacher without the tutor, tutor without
nonproject teacher, or nonproject teacher without tutor) averaged just over
three proofs c ~ r r e c t . ~ The fact that the tutor had its benefit only for the
project teacher highlights the issue of integrating the tutor into the classr~om.'~

The Algebra Tutor

An evaluation of the algebra tutor was performed in the 1987-1988 school
year. There were no differences between experimental classes, which had
access to the tutors, and control classes, which did not. We think the major
reason for the lack of effect was that there was a large difference between the
tutor interface and the interface used in class (i.e., paper and pencil). It was
just not obvious how to map the boxed representation of algorithmic decom-
positions (see Figure 3) to the linear line-by-line transformations that were
used to assess performance in the paper-and-pencil posttest. A less important
reason relates to a ninth-grade algebra class in an urban school. Symbol

'1t got to the point where fights were occurring among students for access to the tutor.
 his is one standard deviation difference.
''subsequent research has suggested that teachers take about 1 year to become comfortable

with the tutor, and 2nd-year teachers have students who show achievement gains with the tutor.

kurtv
Highlight

kurtv
Highlight

kvanlehn
Highlight

kvanlehn
Highlight

1 84 ANDERSON, CORBETT, KOEDINGER, PELLETIER

manipulation is sufficiently easy that some students were mastering the skill
quite well without tutorial intervention. Other students were just not in-
volved in the class at all (often not attending), and the algebra tutor was too
peripheral a part of their experience to help change their general pattern of
behavior toward school.

We followed up the algebra tutor with a word algebra tutor that had some
large positive results in the laboratory (Singley, Anderson, Gevins, & Hoff-
man, 1989), although it was never tested in the classroom. We think there are
two basic reasons for the success of the word-problem tutor in the laboratory.
First, the mapping from word problems in the tutor to the paper-and-pencil
posttest was obvious. Second, word problems are in fact a difficult topic for
even motivated students, and we were able to illuminate their instruction
with our cognitive model for their solution. We are currently working with
yet a newer algebra word tutor that is being used in the Pittsburgh Public
Schools. Preliminary evaluations again suggest significant achievement gains.

The LISP Tutor

The LISP tutor was evaluated in a classroom setting early in its development.
In the fall of 1984 we taught a minicourse on LISP in which students
attended lectures and completed a fixed set of programming exercises either
with the tutor or in a standard LISP environment. Students using the tutor
completed the exercises 30% faster and performed 43% better on a posttest.
We performed a second laboratory evaluation that more closely approxi-
mates the current self-paced course structure (Corbett & Anderson, 1991).
Students worked through the lessons, reading the same text and trying to
solve the same set of exercises with and without the tutor. In this evaluation,
students using the tutor completed the exercises 64% faster and scored 30%
higher on posttests than did students using a standard LISP environment. As
is elaborated later, we think that the only reason for the posttest difference is
that students working in the standard nontutor environment were unable to
generate working solutions to all the exercises. Conceivably, if students in
the control condition had put in sufficient time, they could have eventually
found working solutions and scored as well on the posttest. Nonetheless, this
study supports the claim that a well-designed tutor can bring students to as
high or higher achievement levels in no more than one third the time required
by traditional learning environments.

A more typical practice in education evaluation is to hold learning time
constant and examine differences in achievement scores. This is what we
were forced to do in our algebra and geometry evaluations because we could
not manipulate the time students spent on these problems. The achievement
differences are always a little hard to judge-what does 14 points on an
80-point test really mean? One solution is to report differences in achieve-
ment level measured in standard deviations (e.g., Bloom, 1984). However,

kurtv
Highlight

kurtv
Highlight

standard deviation differences say as much about the variance in test scores
as they do about the impact of an instructional manipulation. Such variances
are substantially affected by test construction and inherent variability in the
population. Thus, the numbers are virtually meaningless except to establish
the direction of the difference. It is more meaningful to hold constant the
level of mastery required and look at differences in time to achieve that
level. This reflects the true gain of an educational technique.

The LISP tutor has been followed up with a general programming envi-
ronment in which LISP, Prolog, and Pascal tutors have been built (J. R.
Anderson et al., 1993). The Pascal tutor has just started to be used in the
public schools. This will serve as a basis for evaluation outside of the rather
specialized CMU population.

Componential Analysis of Learning

One of the current controversies in cognitive science and education is
whether it is possible to take a complex competence, break it down into its
components, and understand the learning and performance of that compe-
tence in terms of the learning and performance of the components (e.g.,
Shephard, 1992). When we have addressed this question in the context of our
tutors, the answer is a resounding yes.

Consider the question of predicting how quickly and accurately a specific
student will generate a particular piece of code in a particular LISP program.
In a rather exhaustive analysis of data from the LISP tutor, J. R. Anderson et
al. (1989) concluded that there were essentially four critical factors.

Production practice. The first factor was how often the student had
applied the relevant production rule earlier. As students have more opportu-
nities to use a production rule across exercises, their performance on the rule
improves. Because there is a many-to-one mapping between production rules
and surface code symbols (e.g., car, +, write, for) in different contexts, we
are able to show it is the rule and not the surface construct that is the critical
unit of practice. Similar production-specific learning has been shown in the
case of geometry in which there is a many-to-one mapping between produc-
tion rules and surface rules like "side-angle-side" (J. R. Anderson, Bellezza,
& Boyle, 1993). In the ACT theory, this is attributed to strengthening the
production rule. Figure 4 shows learning curves for "new" productions being
introduced in a LISP lesson and "old" productions introduced in previous
lessons. As can be seen, both show improvement as a function of amount of
practice within the lesson. Old productions are better off because of practice
from previous lessons. J. R. Anderson et al. (1989) also showed that student
performance on old productions in a new lesson starts off close to where it
left off on the previous lesson with only a little forgetting.

-0- new productions
* old productions

FIGURE 4 Time to write a piece of code in the LISP tutor for productions new to a
lesson and old productions. Similar functions are obtained for error rates. (From Rules of
the Mind, p. 153, by J. R. Anderson, Ed., 1993, Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc. Copyright 1993 by Lawrence Erlbaum Associates, Inc.)

Within-problem practice effects. In both LISP and geometry, we
were able to show that time and accuracy for rule application improves as the
student progresses further into a specific problem, partialing out any effect
of rule-specific practice. In the ACT theory, this is attributed to strengthen-
ing of the declarative representation of the problem through repeated access.

Acquisition factor. In a factor analysis of student performance, we
found that students varied in how well they performed on new rules that were
introduced in a lesson. The real significance of this factor is unclear. It may
reflect some profound individual differences or just the care with which
students reviewed the material.

Retention factor, The same factor analysis identified students who did
well in retaining productions from earlier lessons. This factor was largely
orthogonal to the acquisition factor. Again, the real significance of this
factor is uncertain. It could reflect some profound individual differences or
just how much students reviewed material between lessons.

The upshot of this analysis is the following scheme for predicting how
well a student will do on a fragment of code: First determine if an old or new

COGNITIVE TUTORS: LESSONS LEARNED 187

production is generating that code. If it is a new production, one needs to use
the learning curve for new productions to figure out the within-lesson prac-
tice effects, add in a factor to represent how much the student has worked on
that problem, and add in an individual difference effect to reflect where that
student stands on the acquisition factor. To predict performance on an old
production one adds in the within-lesson practice effect for old productions,
the problem practice effect, and an effect to reflect where that student is on
the retention factor. As far as we could determine, these considerations
captured the predictable variance.

Knowledge Tracing

The LISP tutor had a student modeling facility called knowledge tracing
shared by neither the geometry nor algebra tutors." As a student worked
through the exercises, the tutor used a Bayesian procedure to estimate the
probability that the student had learned each of the rules in the cognitive
model. Knowledge tracing was used to implement a form of mastery learn-
ing. Students were given sufficient practice in each section of the curriculum
to bring them to a specified degree of mastery of the individual cognitive
rules introduced in the section before proceeding to the next section. This
feature has substantial impact on student achievement level (J. R. Anderson
et al., 1989). Knowledge tracing is a regular feature of all the tutors we are
currently developing (see the section on practical deployment in this article).

A more detailed examination of the knowledge tracing model provided
further confirmation of the componential analysis in the cognitive model:
The learning and performance models that underlie knowledge tracing in the
tutor can be used to predict posttest performance. The probability that a
student will solve each posttest exercise correctly can be accurately derived
from the probability that the student has learned each of the necessary rules
(Corbett & Anderson, 1992; Corbett, Anderson, & O'Brien, 1995).

These results have strong implications for instruction. They imply that we
should be able to get students to master the overall skill by getting them to
master the individual components. Numerous analyses have reported posi-
tive results for mastery-based curricula (e.g., Block, 1971: Guskey & Gates,
1986; Kulik, Kulik, & Bangert-Downs, 1986), although the interpretation of
these results is not without controversy (e.g., L. W. Anderson &Burns, 1987;
Guskey, 1987; Slavin, 1987). Our application of mastery principles is differ-
ent from most other efforts in that it is done on an individual student basis
and it applies to the detailed components of the target skill.

" ~ u b l i c school teachers have been unwilling to allow students to progress at their own rate as
enabled by the knowledge-tracing facility. Recently, we have gotten Pittsburgh Public School
teachers to accept such individual progress.

1 88 ANDERSON, CORBETT, KOEDINGER, PELLETIER

Locus of Feedback Control

As prescribed by one of the original tutoring principles, our tutors conven-
tionally employ immediate feedback and require immediate error correction.
The LISP tutor has served as the vehicle for some studies that differentially
distribute the control of feedback and the timing of error correction between
the tutor and student. We developed three new versions that vary widely on
the dimension of studentltutor control. At the far extreme from immediate
feedback and control, we created a version that provides no advice on how
to achieve programming goals. Students enter their code with a structure
editor and have access to a LISP interpreter, but are largely on their own.
This tutor provides just one bit of information: At any time in the course of
problem solving students can ask whether their solution is correct (similar to
checking an answer at the back of the book). This provides the best control
against which to measure the effectiveness of our tutors, because it holds
constant the type of problem-solving interface, the nontutor instruction, and
the exercises attempted.

The remaining two versions are capable of providing the same advice as
the standard immediate feedback version, but do so under different circum-
stances. One version, which we call the error-flagging tutor; falls closer to
standard immediate feedback. This tutor identifies an error as soon as it
occurs, by flagging it in bold font on the screen, but provides no feedback
message and does not require immediate correction. The student can ask for
a feedback message (the same one that would be presented automatically in
immediate feedback), try to fix the error without feedback, or continue
generating new code and come back to the error later. We call the other
version the demand tutor because it provides no assistance until asked by the
student. This tutor appears like the no-feedback control version as the stu-
dent works, unless the student asks for error feedback. At that point, the tutor
will identify the first error in the code (if any) and provide the same message
as appears automatically in the immediate feedback version. In both of these
versions, the student can ask for advice on how to accomplish a program-
ming goal in addition to error feedback. The same advice is available at each
goal in these tutors as in the standard tutor.

In the no-feedback, demand-feedback, and error-flagging tutors, the stu-
dent might generate a complete working solution that the tutor does not
recognize (cannot generate). As a result, the tutor will try any code that it
does not recognize on a set of test cases and will accept the solution if it
works. In practice, this happens rarely. Only about 5% of the students'
unrecognized solutions worked.

We compared the four versions of the tutor across a five-lesson sequence
that took students from the easiest (introductory) lessons to the most chal-
lenging (recursion) lessons (Corbett & Anderson, 1991). Each student at-
tempted a fixed set of exercises (not necessarily enough to reach mastery)
with one of the four versions. Students completed a paper-and-pencil posttest

COGNITIVE TUTORS: LESSONS LEARNED 189

and an online posttest in a standard LISP environment. There were no
significant differences among the immediate-feedback tutor, flag tutor, or
demand-feedback tutor in either of these posttest environments. Mean scores
across the two posttest environments were 55%, 55%, and 58% correct,
respectively. All three groups were reliably superior to the no-feedback
control group (43% correct) in both posttest environments.

The time to complete the tutor exercises is displayed in Figure 5. As can
be seen, the conditions are ordered in terms of tutor support: Immediate
feedback is best, and it is followed by error flagging, demand feedback, and
no-feedback." Students in the three feedback conditions necessarily arrived
at working solutions to each exercise. Whereas students in the no-feedback
control condition attempted every exercise, they failed to solve 25%. Thus,
the only condition to show inferior posttest performance was the condition in
which students failed to solve all the problems. This reinforces our conclusions
(J. R. Anderson et al., 1989) that posttest performance is primarily governed by
the set of exercises that students successfully solve and understand.

Figure 5 depicts the 3:l elapsed time ratio cited earlier between immedi-
ate feedback and no-feedback. This ratio underestimates the true benefit
because students did not solve all the exercises in the no-feedback condition.
It may underestimate the benefit over a typical classroom in that students in
all conditions at least had access to declarative instruction and problems
carefully designed to communicate and teach the target productions. A typi-
cal classroom may well be less organized.

An analysis of students' performance in the error flagging and demand
feedback conditions indicated that students in these two conditions re-
sponded fairly passively to the control they were offered. When errors were
noted immediately in the error flagging condition, students fixed the errors
immediately 80% of the time. On the other hand, when the tutor did not
volunteer error information in the demand-feedback condition, students
rarely interrupted their coding activity to ask for help or evaluation. In the
demand-feedback conditions, students did not ask for feedback until they
had completed a preliminary solution in 90% of the exercises. Finally, we
asked students how well they liked the tutor and the feedback they received.
Perhaps surprisingly there were no reliable differences across groups, al-
though there was an interaction with the curriculum: The harder the exer-
cises became, the more students appreciated immediate help.

Feedback Content

A key feature of a tutor is what it says to the student during a problem-solv-
ing episode. There are two obvious occasions for communicating to the
student during problem solving. One is when the student makes some error

-

12 Subjects are taking longer in the later lessons because the exercises are longer and harder.

- "

1 90 ANDERSON, CORBETT, KOEDINGER, PELLETIER

FIGURE 5 Mean exercise completion time for five tutor lessons. (From Rules of the
Mind, p. 160, by J. R. Anderson, Ed., 1993, Hillsdale, NJ: Lawrence Erlbaum Associates,
Inc. Copyright 1993 by Lawrence Erlbaum Associates, Inc.)

and the tutor can comment on the error. The other is when the student asks
for help or appears to need help and some help message is given. Obviously,
if students never get any information about errors in their solutions, they are
not going to learn to avoid them. Similarly, if students never receive any help
of any sort, they are in danger of becoming permanently stuck on some
problems. However, one can construct a tutor in which errors are just flagged
as such and correct solutions pointed out without any accompanying expla-
nation. One can then ask what the potential benefit is of the accompanying
explanations. We have performed such comparisons twice--once with the
LISP tutor and once with the geometry tutor.

In the LISP tutor (J. R. Anderson et al., 1989), we took a number of measures
of how much error messages helped. One was how well students performed on
individual productions. We found students made fewer errors per production if
they were receiving explanatory feedback (15% vs. 22%). Also, when they
made an error and received feedback (an explanation, not just that they were
wrong), they were more likely to correct their error on the first attempt (65%
corrections vs. 38%). However, when we looked for long-term learning benefits
we failed to find any significant differences. On a quiz immediately after the
tutor exercises, students with explanatory feedback got 90% correct and those
without got 91% correct. When we looked at their performance on a final exam,
students with explanatory feedback got 76% correct and those without got 80%
correct. Neither difference approached statistical significance.

Thus, the impact of such instruction in the LISP tutor was to facilitate
the students' progress through the material but did not have any perma-
nent achievement consequences. This is not an insignificant outcome
because speed of learning is a critical dependent measure. Reasonable
feedback messages also appeared to have a positive impact on the percep-
tion of the tutor. That is, students had numerous derogatory comments to
make about the no-feedback tutor even if they eventually learned as much
with it.

McKendree's (1990) evaluation of the feedback messages in the geometry
tutor came to somewhat different conclusions. In her first dissertation study
(McKendree, 1986), she found, as in the LISP tutor, that these messages facili-
tated progress through the tutor but did not have any permanent benefit. Frus-
trated with this lack of permanent benefit, she went through and specifically
tuned the feedback messages to be particularly cogent to the specific problems.
In her second evaluation (reported in McKendree, 1990), she was able to show
a benefit in terms of both progress through the tutor and final achievement.

McKendree (1990) performed a theoretical analysis of why her students
benefited from the carefully crafted feedback messages. She was able to
show that students had failings in their underlying declarative knowledge
that the feedback was able to correct. Some students without the feedback
were able to get through the tutor without really correcting their misunder-
standings and the holes in their knowledge. The tutor had no mastery-based
instructional curriculum, and students just had to get through a fixed number
of problems. This suggests that we have a time-achievement tradeoff and so
suggests a way of reconciling the results with the LISP tutor. In the LISP
tutor experiment, students were given enough problems to reach a high level
of achievement, and the effect of feedback was on their time to reach that
level. In the geometry tutor, students went through the problems in relatively
constant time (and a short amount of time in hours), and the effect showed
up in their achievement levels.

When one designs help messages, one tends to wax on in the messages to
the student both to make the tutor seem intelligent and to communicate one's
insights into the problem. Students take a rather different attitude. They
realize it is just a computer that, at best, is just a tool to help them learn, and
they have no interest in someone else's prose. They want to solve the
problem and are often impatient with long messages. In a study with the
algebra tutor, Lewis (1989) compared terse messages with longer messages
more like natural English, which were originally used with the tutor. He
found that students actually did better with the shorter messages, although
the effect was not statistically significant.

STAGE 3: PRACTICAL DEPLOYMENT

Despite the successful empirical evaluations of our work on tutoring, our
tutors had not been used much. The programming tutor has been regularly

used at CMU and occasionally used elsewhere. A scaled-down version of the
geometry tutor was ported to a Mac SE, and that had been used occasionally
in classrooms around the country. However, until very recently, our software
had not played a significant and permanent role in the instructional plans of
any organization outside of our own CMU classrooms. As long as the
machines we were working with were large, impractical, artificial intelli-
gence behemoths, this lack of practical demonstration was not a salient
issue. However, now our tutors can be deployed on machines that are con-
ceivable in American classrooms.

When we examined why we were so far from practical tutors it became
apparent that we had avoided addressing a number of issues:

1. There was never any attempt on our part to address the curriculum that
educators wanted to teach. The most striking case of this is the situation with
our geometry tutors, which focused on teaching proof skills while mathemat-
ics educators were stressing more general reasoning and problem-solving
skills.

2. There was no thought given to what would happen to students after
they passed through our tutors. We always took as our measure of success
performance on some final test. However, to be educationally valuable, our
tutors have to fit in with some larger set of curriculum objectives.

3. The systems that we developed were inflexible in the way they had to
be used and gave teachers no ability to tune the application of the tutors to
their own needs and beliefs about instruction.

4. There was little understanding of how to support the deployment of
these tutors in the classroom. Relevant to this is the observation that we have
not had a positive classroom evaluation that did not involve teachers who
had spent extensive time involved in the project.'3

Addressing these problems has caused us to go beyond our original goals
of showing that our cognitive models can lead to successful learning. We
have now begun to address the issues of how to develop tutors that will
implement an externally specified curriculum, which can be deployed in a
wide range of classrooms, and which will leave students with a competence
that makes a demonstrable contribution to their activities outside of the
specific domains taught by the tutor. We have undertaken two major endeav-

13 This, of course, raises interesting issues about evaluation. Because we have not gotten
positive results simply by putting computers in the classroom, this indicates our positive results
with project teachers is not simply a Hawthorne effect. The control classes (no-tutor classes)
taught by our project teachers do at least as well as the control and tutored classes of the
nonproject teachers. Thus, there is something special about the combination of the tutor and the
teachers' preparation to use them. We are working with the Pittsburgh Public Schools to try to
develop an appropriate teacher training program.

COGNITIVE TUTORS: LESSONS LEARNED 193

ors in response to these new agenda. One has been to create a development
system for creating such cognitive tutors and to begin to work on a development
discipline for their creation. The second has been to strike up a close relation-
ship with the Pittsburgh Public Schools in which they serve as our clients and
we try to build instructional software that can be used in their classrooms.

We have three permanent classrooms of Mac 11s and Quadras in three
local city high schools, and additional classrooms are currently being
planned in other area high schools. We are working toward supporting the
city's mathematics and computer science curriculum. The emphasis in the
mathematics curriculum is to implement the National Council of Teachers of
Mathematics (NCTM) standards (NCTM, 1989) in an urban setting. A major
issue here is to teach a curriculum that will empower students to participate in
modem society. This is a particularly significant issue in a large urban school
system with many students coming from economically disadvantaged families.

We have created a succession of development systems (J. R. Anderson,
Corbett, Fincham, Hoffman, & Pelletier, 1992; J. R. Anderson & Pelletier,
1991). We have implemented in them tutors for three programming lan-
guages (LISP, Pascal, and Prolog), for elementary arithmetic, and for Alge-
bra I. We have plans to build a tutor for geometry in this system that will
extend the geometry tutor of Koedinger and Anderson (1993) to combine
construction, exploration, conjecture, and proof. A major goal in this tutor
development system is usability. This means both facilitating the teachers'
use and modification of the systems and enabling as many people as possible
to develop software in the system.

The actual process of developing a tutor has five identifiable stages:
interface construction, curriculum specification, cognitive modeling, design
of instruction, and classroom deployment. We discuss each of these.

Interface Construction and the Issue of Transfer

The first step in developing a tutor is to define the world in which the
student's problem solving is going to take place. This will be the interface
between the student and the computer. Placing interface design ahead of
production-system design represents a major restructuring of our approach
to tutor construction. In our early efforts, we started with an abstract produc-
tion-rule model of the cognitive skill. Interface design was a secondary
though nontrivial task in which we considered optimal ways to communicate
the content of productions and to depict goals on the screen. Our current
view is that the skill we are teaching is problem solving in a particular
interface. Therefore, the interface must be designed before we can identify
the production rules. The significant issue that we must face in interface
design is transfer. What interface students learn will have a large impact on
where their skills will transfer.

In designing an interface, one must keep in mind the domain to which the
skill is supposed to transfer. Often that domain is still paper and pencil. For

194 ANDERSON, CORBETT, KOEDINGER, PELLETIER

instance, most college mathematics departments still expect incoming students
to be proficient at paper-and-pencil algebraic manipulations. However, there
is an increasing tendency for the target skill to involve use of computer
software. Thus, part of the competence we are trying to teach in the current
algebra tutor is how to use spreadsheets, symbol manipulation packages, and
graphing routines. Having identified the target skills, one must design the
interface to enable transfer to these target skills. The issue of transfer is one
of psychology, and here it is worth distinguishing three levels at which
transfer can occur.

Identical productions. The production rules for tutor exercises may be
identical to those for the target domain. In this case, we would expect total
transfer. This might be the case, for instance, if the target domain were a
computer system and our tutor taught how to use it. In other cases, the tutor
productions will only overlap with those for the target domain. In this case,
Polson and Kieras (1985) and Singley and Anderson (1989) showed that the
amount of transfer will be a function of the degree of production-rule
overlap. For instance, our programming tutors focus on code selection and
not syntax with a structure editor providing the syntax. Thus, students grad-
uating from our tutors are successful coders but have some difficulty with
syntax when tested without the structure editor because they have not ac-
quired the necessary syntax productions. Although students have to pick up
syntax after mastering the other aspects of the language, this does not appear
to be a major learning hurdle (Goldenson, 1989a, 1989b).

Translating actions. Even if the tutor productions and target domain
productions are different, it may be apparent to the student how to convert
the actions of the learned productions into appropriate behavior in the target
domain. For instance, we find relatively high transfer from a tutor that has
students select programming constructs by menu to a test environment that
requires the student to recall these constructs. This is because it is pretty
apparent to most students that if they have been selecting "writeln" from a
menu in the tutor, they should type that in when writing code into a standard
file. In the 1986-1987 geometry tutor study, we found high transfer of
students from doing proofs in the proof-graph formalism to the two-column
proof formalism. This is a less obvious translation, but the teacher had gone
over with them how the proof graph related to the traditional two-column proof.

Declarative transfer. Even if actions in one domain cannot be directly
translated to actions in another, there can be declarative transfer of the
underlying competence. Thus, we find that students who practice coding
with the LISP tutor do fairly well in evaluating LISP expressions (although

COGNITIVE TUTORS: LESSONS LEARNED 195

there is hardly total transfer between these activities; J. R. Anderson et al.,
1989). This is because both skills rest on the same declarative understanding
of LISP and students must get their declarative representation right before
they can acquire successful productions for coding.

There has been a great deal of interest of late in occasions where students
fail to transfer across domains (Lave & Wenger, 1990). In our perspective,
there is nothing mysterious about when transfer will occur and when it will
not. Transfer requires students to have learned production rules in the train-
ing domain that will solve problems in the target domain. In the cases that
the actions of the rules in the training domain are different than what is
needed in the target domain (e.g., menu selection vs. writing), it must be
apparent to the student how to map one action into another. In some writings,
one gets the impression that lack of transfer is the rule. However, our
research on tutoring shows that transfer as predicted by production-rule
overlap is quite common. Every time we report a positive result in a paper-
and-pencil test outside of one of our tutors it is a case of transfer.

There are two approaches to interface construction in our tutor develop-
ment package. One is to build the interface ourselves. We have a set of
primitives for facilitating the development of such interfaces and relating
these interfaces to our production model. The other possibility is to take the
existing piece of software and add hooks to it so that it is linked into our
tutoring system. In either case, the following are the requirements for the
interaction with the interface:

1. Actions taken to the interface must be passed through the tutor. The
tutor needs to know what actions students have taken so it can follow
students along the solution path they are pursuing and provide appro-
priate guidance.

2. The tutor must be informed about the consequences of any interface
action for the state of the interface. Basically, the cognitive model
needs to maintain in its working memory a representation of the
interface that the students see.

3. The tutor must be able to perform interface actions itself.

Subject to these constraints, there is unlimited flexibility in the kind of
interfaces we can tutor. We are particularly attracted to taking generally
available pieces of software and tutoring students on problem solving within
that software. When students leave our tutors, they will still have a useful
problem-solving environment (and the transfer problem is minimized). So,
for instance, we are doing some work on tutoring students on algebraic
problem solving using Excel and geometric conjecture using Sketchpad
(Key Curriculum Press, 1991). In using such an interface, we can take
advantage of the many years of effort that went into making it flexible,
reliable, and efficient.

1 96 ANDERSON, CORBETT, KOEDINGER, PELLETIER

Curriculum Construction

Once having specified the environment in which the students are going to
display their problem-solving competence, we come to the issue of exactly
what competence they are to display in that domain. Specifying the compe-
tence comes down to identifying the type of problems students are expected
to solve in the domain and the constraints on their problem solving. Here our
attitude is to take our specification from the educational community that is
our client. For instance, in working with the Pittsburgh Public Schools
mathematics educators, we take their input as to what problems they want
students to solve. Fortunately, we have chosen a client who is at the lead in
trying to achieve NCTM standards in an urban environment. Therefore, we
are confident our tutors will have broader applicability.

Our clients also have strong input on the computer problem-solving inter-
face. So, for instance, in the case of geometry it was the Pittsburgh Public
Schools that decided we should work with the Geometer's Sketchpad (Key
Curriculum Press, 1991). However, the exact form of that problem-solving
interface was already determined by other forces. They made their choice
much as they would make a textbook adoption. They cannot specify the
microstructure of the interface any more than they can specify the exact
content of a textbook. However, like a textbook, they can specify how the
interface is to be used.

Within a particular interface, our clients have their conception of the
problems they want students to solve and the constraints under which they
want students to solve the problems. The issue of constraints is key here. For
instance, a client may want to use a piece of software that has an algebraic-
symbol manipulation package but may want to prevent the student from
using that package in certain parts of the curriculum to exercise that
student's own symbol-manipulation abilities. This amounts to the sort of
instructions a teacher might give the student about how to solve a problem.

Although our software is initially developed in response to the needs of
one client, other clients may want to use it with somewhat other goals in
mind. This means we must allow them to select the constraints under which
the problems are solved and the problems that are actually solved. It is useful
to have a facility so teachers can enter new problems. Also, educators need
to have access to some of the tutoring options. Earlier we described the
variety of tutoring modes, such as immediate feedback, flag tutoring, and
demand tutoring. Our current tutor development kit permits all of these
different tutoring modalities, and the educator is able to choose among them.

Our tutors will track the students' performance on various production
rules (knowledge tracing) and promote students through the curriculum as
they achieve mastery on these rules (mastery learning). Again, teachers need
to have the ability to turn mastery learning or knowledge tracing off or to
override these facilities at various points.

COGNITIVE TUTORS: LESSONS LEARNED 1 97

Production System Modeling

Specifying a problem-solving environment and a set of constrained problems
to be solved in that environment amounts to a behavioral specification of the
target competence. Our major task as cognitive modelers is to figure out
what that competence means in terms of a set of underlying production rules
that are capable of generating that behavioral competence in a cognitively
plausible way. This is the task of constructing a student model. Such a
student model is able to be utilized in the sense that it can send actions to the
interface that would constitute a correct solution to the problem. In most
cases, there is more than one possible solution path, and the ideal student
model must be capable of nondeterministically generating all the solutions.

The production rules respond to information in working memory. Typi-
cally, information in working memory will be of two kinds: information
about what the current state of the problem is and a representation of what
the goal is. In some cases, like the statement to be proved in a geometry
problem, the goal representation is straightforward. However, when the goal
is stated in natural language, as in the case of a programming problem, it can
be quite problematical how to represent it. We do not want to represent or
model the natural language processing that is involved in understanding the
statement: This would just be too much to feasibly model. Therefore, we
represent, in some form, what we believe to be the product of the natural
language understanding. The problem is that it is hard to resist building into
that representation part of the solution to the problem. Thus, we may not
adequately represent the problem that the student faces or the skills that need
to be learned.

Once the production rules for solving the problem are specified, one
needs to be able to match up the student's behavior with these rules. This
requires augmenting the rules with tests that match against the student's
behavior so that the tutor can determine which rules have fired in the
student's head. In the case of ambiguities, disambiguation menus must be
generated from templates stored with the rules.

The product of this effort might be viewed as an "instructionless" tutor,
like the nonexplanation tutors described in the evaluation section, that can
be deployed in a number of tutor modalities (e.g., immediate feedback, flag,
demand, no tutor). It can identify for a student where mistakes are and
indicate correct courses of action. However, it can say nothing about why
one action is wrong and another is correct. That awaits the construction of
declarative instruction in the next stage.

Declarative Instruction

As we noted in the beginning of this article, part of the domain competence
comes from declarative instruction given outside of the tutor. Successful

1 98 ANDERSON, CORBETT, KOEDINGER, PELLETIER

operation of the tutor assumes successful acquisition of this declarative
knowledge. Some of this declarative instruction concerns general concepts
(e.g., what an alternate interior angle is) and other instruction communicates
information that will serve as the declarative basis from which production
rules are compiled (e.g., one way to prove lines parallel is to show that their
alternate interior angles are congruent). This declarative instruction may
come in class lectures or in text material. We have often provided the student
with specially written material to accompany the tutor. Recently, we have
had success using hypertext facility that can be accessed in parallel with the
tutor. The content of this instruction is informed by the production rules that
are to be learned in the upcoming section. The instruction tries to provide
examples that illustrate the rules and annotate those examples with com-
ments that will highlight the significant aspects of the rules. A general
principle in our approach to instruction is to be minimalist and not say more
than is needed. This sensible approach tends not to be followed in most
textbooks but is well supported by research (Reder & Anderson, 1980;
Reder, Charney, & Morgan, 1986). Although this tutor-external instruction is
important, of more concern to the tutor development system are the two
kinds of declarative instruction delivered from within the tutor.

Error messages. When the student makes an error, one can present a
message that attempts to tell the student something useful about that error.
This requires writing buggy productions and attaching instruction to these
productions. In general, we do not attempt to provide any deep diagnosis of
the cognitive origins of the error. Rather, we simply try to explain why it is
an error.

Help messages. At various points in time the student can request help
or be judged in need of help, and a help message can be generated. These are
generated from templates associated with the correct productions that would
have fired at that point.

There are a number of issues about how to present the help messages. We
have striven for a system that tries to make these messages as short and to
the point as possible even if the messages sound nonhuman. Another issue
concerns modality of delivery. Although we have always given these in the
visual modality, we would like to add an auditory modality for instruction.
Instructing in the visual modality interferes with processing of the problem,
which is also in the visual modality. Instruction in the auditory modality
would increase the premium placed on short messages (Laddaga, Levine, &
Suppes, 1981).

Another issue concerns how to deal with students who overuse hints and,
as a consequence, learn little (Shute, Woltz, & Regian, 1989). We find that
linking knowledge tracing to help seeking is an effective way of dealing
with hint abusers. If their progress through the tutor depends on eventually

COGNITIVE TUTORS: LESSONS LEARNED 199

solving the problems without help, students will not seek help unless they
really need it.

Two questions remain unresolved with respect to help messages. These
are whether to volunteer help to students who appear to need it and whether
to present students everything in a single message or to provide a sequence
of successively more explicit messages. The current hinting discipline in the
tutor was designed to let students do as much as possible for themselves.
This was motivated by research in psychology showing that subjects have
better memory for material to the degree they participate in the generation of
that material (J. R. Anderson, 1990, chap. 7). Thus, our current tutors never
volunteer help and only provide help upon request.14 Also, our current tutors
use a scheme of successive hinting in which the initial help only gives a
vague characterization and subsequent help messages become more specific
until the student is told exactly what to do. However, these may not be the
best choices. Some students stubbornly refuse to seek help even when they
need it. Also, with respect to the policy of successive hinting, students are
often annoyed with the vague initial messages and decide there is no point in
using the help facility at all. The deployment of the tutor in courses may also
influence the content of help messages. When students are using the tutor in
a self-paced course or otherwise on their own, it is essential to tell students
exactly what to do if necessary to allow them to proceed. In a classroom, it
may be preferable for the students to interact with the teacher if they do not
understand an explanation, so help messages may stop short of describing
the specific action.

Deployment in the Classroom

It is interesting to consider how these tutors are actually deployed. At CMU,
the programming tutors are used in self-paced learn-on-your-own environ-
ments. There are class sessions associated with the tutor, but they are largely
used for administrative purposes. Students learn successfully from reading
the prepared text and doing problems. They can go to the teacher if they have
special problems that the tutor cannot handle, and occasionally they do. They
also do larger (but still modest) projects outside of the tutor counting on
competencies they have built up with the tutor.

Although this relatively teacherless and isolated model has worked rea-
sonably well for our programming course, this model is not viable for the
general deployment of tutors in public high schools. The CMU model de-
pends on the following facts: (a) We have designed our programming tutors
to deliver just the material we want to teach, (b) we have total control over
our classroom, (c) we are working with relatively mature students who come

'?his can be viewed as embedding opportunities within the tutors for students to discover the
concepts for themselves.

200 ANDERSON, CORBETT, KOEDINGER, PELLETIER

in on their own time and are generally familiar with computers, and (d) we
expect students in introductory programming courses to display their skills
isolated from other students. None of these assumptions are satisfied in
general. The particular nature of our programming class has made it an
excellent laboratory for study of skill acquisition and issues of tutoring, but
it has made it nonrepresentative for how these tutors will be deployed in
other educational environments.

The typical educational environment in an American high-school mathe-
matics class contrasts with this situation in several ways. First, there are
large curriculum variations across states and school districts and smaller
variations across almost every teacher within a district. As a consequence,
any mathematics tutor will likely be delivering only part of the curriculum
that a particular teacher delivers, so the tutor will be integrated with other
classroom activities. Second, students are not mature enough to simply show
up at a teacherless class and learn. They will get stuck too often in ways that
the tutor cannot remediate, and discipline problems would develop. Finally,
the NCTM has placed a major emphasis on teaching group problem solving
in their standards (1989, 1991), so group activities will come to replace
individual skill performance to varying degrees across classrooms.

Our tutors have had some successes in such classrooms. Currently, 30
classes in algebra, geometry, and Pascal programming are using a classroom
of Mac 11-based tutors at a local Pittsburgh high school. Students in these
courses alternate between working on tutor exercises and other classroom
activities, so tutor use has the flavor of going to a computer laboratory within
the context of a conventional course, although students may spend as much
as two thirds of their class time in the laboratory.

We are struck by the way students interact with these tutors and the
consequences for class organization. Much of this was described in the early
reports of Schofield and Evan-Rhodes (1989) and Wertheimer (1990), but
the effects are even more striking in the current classrooms reflecting the
larger class sizes and the social changes since the original classroom studies.
When students are in the laboratory, they are working one-on-one with
machines, but that hardly means they are working in isolation. There is a
constant banter of conversation going on in the classroom in which different
students compare their progress and help one another. Peer instruction is
particularly key in cases where students have to adapt to a new interface
feature. Information about how to use that feature propagates through the
classroom much like information about how to use a new trick in a Nintendo
game. We have come to realize that our tutors would be less successful if
such peer assistance were not available. Peer helping may also be a good way
for the helper to come to a deeper understanding of the material. An effective
teacher is quite active in such a classroom, circulating about the class and
providing help to students who cannot get the help they need from either the
tutor or their peers. The tutor in effect becomes an assistant that can deal
with the more routine learning problems, allowing the teacher to focus on the

COGNITIVE TUTORS: LESSONS LEARNED 201

more difficult. By means of its knowledge-tracing algorithm, it also is able
to monitor separately the progress of individual students, providing a book-
keeping facility the teacher would never be able to accomplish. Teachers
seem to require some time in the classroom before they appreciate the "tutor
as teaching assistant" model and can use it to its maximum potential.

Students' own attitudes to the tutor classrooms are quite positive, to the
point of creating minor discipline problems. Students skip other classes to do
extra work on the tutor, refuse to leave the class when the period is over, and
come in early, However, in net, discipline problems and class management
problems are much fewer in a tutored classroom. There is a sense of satisfac-
tion in progress and achievement. Visitors to the classroom are struck by the
fact that students are absorbed in the learning tasks through the whole
period. Teachers particularly remark on the success with minority students
who are frequently alienated in conventional classrooms. It is our belief that
students receive our tutors favorably to the degree that our tutors achieve
their fundamental claim-to embody an accurate cognitive model of the
details of the problem solving. If so, the interactions with the tutor are
largely congruent with the student's thinking, and, when the interactions are
not congruent, they point the student in the right direction. Although students
do not consciously assess the system in terms of its cognitive fidelity, they
are very aware of the resulting smoothness of their trajectory through learn-
ing curriculum. A sense of growing competence in a challenging problem
domain is something that most people respond to positively.

We have been impressed by the relative ease of management in our
tutored classrooms. If one provides teachers with a couple of weeks of
familiarization with the basic software, they seem to adapt comfortably to
the tutored classroom.'s This contrasts sharply with many efforts at class-
room reform, which teachers report to be quite exhausting in terms of the
demands being placed on them. Our classrooms are relatively easy because
the tutor is doing all of the bookkeeping and low-level instruction associated
with the classroom, and the teacher can focus on giving one-on-one tutoring
to students for whom the computer is not adequate. They generally find this
a satisfying role and one that enhances their classroom esteem as subject-
matter experts. This works because our tutors are engaging and so other students
are on task when a teacher is giving one student individual attention.16

15 However, it may take much longer before they really use the tutor to its full effectiveness.
There is some evidence that achievement gains are higher the 2nd year teachers work with the
tutor.

I 6 ~ h i s only works if our tutors are bug-free, easy to use, and allow for error recovery from
things like machine crashes. Typical teachers become very frustrated when their interactions
with the student must focus on the computer or the tutor, rather than the subject domain being
taught.

202 ANDERSON, CORBETT, KOEDINGER, PELLETIER

REFLECTIONS

We have come a long way from our original goal of putting ACT* to a tough
test. There certainly has been a harvest of empirical data that has played a
major role in leading to the new ACT-R theory (see J. R. Anderson, 1993).
We have totally abandoned our original conception of tutoring as human
emulation. We now conceive of a tutor as a learning environment in which
helpful information can be provided and useful problems can be selected. We
are able to take actions that facilitate learning because we possess a cogni-
tive model of where the student is in that task.

Although we have not abandoned our goals of contributing to the under-
standing of human cognition, we have been drawn by application to issues
that are far afield. Particularly with the tutor development kit and large-scale
applications, we find ourselves addressing issues of software engineering.
Although we have tried to place content decisions in the hands of our
"clients," we inevitably are drawn into issues about the content and purpose
of high-school education. Finally, there are important social phenomena in
our classrooms, critical to the success of our tutors, which we need to
understand.

Many such issues may ultimately prove more important to the success of
our tutors than their cognitive fidelity. However, we are impressed that 10
years later the general cognitive-modeling approach still seems viable and
important in our new applications.

The Curriculum Issue

Rather than conclude this article on this self-congratulatory note, we have
been persuaded to address some of the senses of unease that some people
have with our efforts. There are probably many dimensions to their unease,
but the reviewers of our article have gotten us to focus on issues surrounding
the nature of the curriculum our tutors deliver. We have taken the liberty of
quoting three of their remarks and then commenting.

I would like to believe that a decade of research in this area has given
the authors a solid perspective on what to teach, how to teach it, and
how to assess the effect of that instruction. Instead of providing guid-
ance to educators in these areas, the authors seem willing to abrogate
this responsibility and to settle into the role of technologists, teaching
what the current curriculum dictates regardless of the appropriateness.

We have stated strong opinions about how to assess the effect (time to reach
a prescribed level of achievement), but otherwise the reviewer is correct in the

assertion. l7 Our 10 years of experience have in fact given us no basis for
offering advice on some of the key issues facing the City of Pittsburgh in
deciding about its mathematics curriculum. Some of these issues have been very
responsibly addressed by things like the NCTM standards, and the city has
adopted these. However, frankly, these standards leave open some important
issues facing mathematics education in an urban setting. An example of such an
issue is to what degree should the cumculum be teaching students "employable"
skills (e.g., using spreadsheets) versus to what degree should the cumculum be
preparing students for college mathematics (e.g., being prepared to understand
the proof of the fundamental theorem of calculus). As citizens we may hold
opinions on this issue, but nothing in our tutoring work informs us on the
relative value of different educational goals.

Underlying the project of tutor construction is the conviction that the
subject matter can be represented as a production set. I cannot repress
the suspicion that the particular choices of subject matter made by the
tutor authors reflect, whether consciously or not, this conviction and,
thus, that the material which lends itself less well to the theoretical
framework is left unconsidered.

As the first remark, this reviewer is substantially correct in the assertion,
although we again see somewhat different implications in it. Our tutors have
their largest potential impact when there is a substantial production-rule
component. Thus, we have stayed away from teaching simple algorithmic
skills like addition and focused on high-school mathematics because it
seemed that this is where the largest impact would be. Some "advanced"
domains are largely declarative. So we have considered a tutor for cognitive
psychology but have concluded that the body of knowledge typically taught
in an undergraduate course is largely factual, and very limited inferential
chains are required. (We think, by the way, in our role as citizens of the field
and as authors of a cognitive psychology text, that this reflects a serious
indictment of instructional goals in the field.) It is also the case that devel-
oping cognitive modeling is an expensive enterprise (we estimate 10 hr or more
per production rule), and it may not be economical or feasible to model all the
competence involved within more advanced areas of mathematics.

However, although there are these practical limitations, we do not believe
that there are any fundamental limitations of the approach. For instance, we
are currently working on developing a tutor for exploration and discovery in
the context of geometry because these are typically thought to be skills outside
the domain of our tutor. Although we do not have any educational results, we

I7~owever , assenting to the reviewer's comment requires interpreting "current curriculum" to
Pittsburgh's algebra and geometry curriculum that follows, and in some way goes beyond, the
NCTM standards.

204 ANDERSON, CORBETT, KOEDINGER, PELLETIER

can report that the skills are perfectly capable of being modeled within a
production-system framework (as indeed earlier research would have indicated;
e.g., Klahr & Carver, 1988).

I find the production-rule-based approach to subject matter . . . well . . .
less than fun. It would be hard for me to believe that a student would
choose to study geometry on his or her own-would go home and start
playing with geometric shapes or cutouts or models or whatever-
based on experience with these tutors.

We think it is easy to underestimate the motivational gains produced by
the simple experience of learning achievement. The principal reason for the
enthusiasm for our tutors within the Pittsburgh Public School System is
motivational gains, not achievement gains. Perhaps our favorite anecdote is
about one student in a school in another state that had the LISP tutor. The
student, frustrated by restrictive access to the LISP tutor, deliberately in-
duced a 2-day suspension by swearing at a teacher. He used those 2 days to
dial into the school computer from his home and complete the lesson mate-
rial on the LISP tutor.

Although the issue of the content of the curriculum is essential, learning
achievement is a very empowering experience. Thinking back on one's own
learning experiences and the environment one learned in, it is easy to take
learning for granted and only focus on what is being learned. The fact that
something will be learned cannot be taken for granted in many American
schools.

ACKNOWLEDGMENTS

We thank Lael Schooler for his comments on this article.
Over its 10-year history, the research reported in this article has been

supported by Contracts MDA 903-85-K-0343 and MDA 903-89-K-0190
from the Army Research Institute; a grant from the Carnegie Corporation;
Grant Nos. MDR-84-70337, IST-83-18629, MDR-87-15890, MDR-89-
54745, and MDR-92-53 161 from the National Science Foundation; and
Contracts NO00 14-84-K-0064, NO00 14-87-0 103, and NO00 14-9 1-J- 1597
from the Office of Naval Research.

REFERENCES

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.
Anderson, J. R. (1990). Cognitive psychology and its implications. New York: Freeman.
Anderson, J. R. (Ed.). (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Anderson, J. R., Bellezza, F. S., & Boyle, C. F. (1993). The geometry tutor and skill acquisition.

In J. R. Anderson (Ed.), Rules of the mind (pp. 165-181). Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc.

COGNITIVE TUTORS: LESSONS LEARNED 205

Anderson, J. R., Boyle, C. E, Corbett, A., & Lewis, M. W. (1990). Cognitive modeling and
intelligent tutoring. Artificial Intelligence, 42, 7-49.

Anderson, J. R., Boyle, C. F., Farrell, R., & Reiser, B. J. (1987). Cognitive principles in the design
of computer tutors. In P. Moms (Ed.), Modeling cognition (pp. 93-134). New York: W~ley.

Anderson, J . R., Boyle, C. F., & Yost, G. (1986). The geometry tutor. The Journal of Mathemat-
ical Behavior, 5, 5-19.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor.
Cognitive Science, 13, 467-505.

Anderson, J. R., Conrad, F., Corbett, A. T., Fincham, J. M., Hoffman, D., & Wu, Q. (1993).
Computer programming and transfer. In J. R. Anderson (Ed.), Rules of the mind (pp. 205-
233). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Anderson, J. R., Corbett, A. T., Fincham, J. M., Hoffman, D., & Pelletier, R. (1992). General
principles for an intelligent tutoring architecture. In J. W. Regian & V. J. Shute (Eds.),
Cognitive approaches to automated instruction (pp. 81-106). Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Anderson, J. R., Fanell, R., & Sauers, R. (1984). Learning to program in LISP. Cognitive
Science, 8, 87-130.

Anderson, J. R., Greeno, J. G., Kline, P. J., & Neves, D. M. (1981). Acquisition of problem-solv-
ing skill. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 191-230).
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Anderson, J. R., & Pelletier, R. (1991). A development system for model-tracing tutors. In L.
Birnbaum (Ed.), Proceedings of the International Conference of the LRarning Sciences (pp.
1-8). Charlottesville, VA: AACE.

Anderson, J. R., & Reiser, B. J. (1985). The LISP tutor. Byte, 10, 159-175.
Anderson, L. W., & Burns, R. B. (1987). Values, evidence, and mastery learning. Review of

Educational Research, 57, 215-223.
Block, J. H. (1971). Mastery learning. New York: Holt, Rinehart & Winston.
Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as

effective as one-to-one tutoring. Educational Researcher, 13, 4-16.
Brown, J. S. (1985). Idea amplifiers: New kinds of electronic learning. Educational Horizons,

63, 108-112.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning.

Educational Researcher, 18(1), 32-41.
Bunderson, C. V., & Faust, G. W. (1976). Programmed and computer-assisted instruction. In N.

L. Gage (Ed.), The psychology of teaching methods: 75th Yearbook of the National Society for
the Study of Education. Chicago: University of Chicago Press.

Cognition and Technology Group at Vanderbilt. (1990). Anchored instruction and its relation-
ship to situated cognition. Educational Researcher, 19(6), 2-10.

Collins, A., & Brown, J. S. (1987). The computer as a tool for learning through reflection. In H.
Mandl & A. M. Lesgold (Eds.), Learning issues for intelligent tutoring systems (pp. 1-18).
New York: Springer-Verlag.

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the
crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and
instruction: Essays in honor of Robert Glaser (pp. 453-494). Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Corbett, A. T.. & Anderson, J. R. (1991, April). Feedback control and learning to program with
the CMU LISP tutor. Paper presented at the annual meeting of the American Educational
Research Association, Chicago, IL.

Corbett, A. T.. & Anderson, J. R. (1992). Student modeling and mastery learning in a computer-
based programming tutor. In C. Fiasson, G. Gauthier, & G. McGalla (Eds.), Proceedings of
the Second International Conference on Intelligent Tutoring Systems (pp. 413-420). Berlin:
Springer-Verlag.

206 ANDERSON, CORBETT, KOEDINGER, PELLETIER

Corbett, A. T., Anderson, J . R., & O'Brien, A. T. (1995). Student modeling in the ACT
programming tutor. In P. Nichols, S. Chipman, & R. Brennan (Eds.), Cognitively diagnostic
assessment (pp. 1941) . Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Gagnt, R., & Briggs, L. J. (1974). Principles of instructional design. New York: Holt, Rinehart
& Winston.

Goldenson, D. R. (1989a). The impact of structure editing on introductory computer science
education: The results so far. SIGCSE Bulletin, 21, 26-29.

Goldenson, D. R. (1989b). Teaching introductory programming methods using structure editing:
Some empirical results. In W. C. Ryan (Ed.), Proceedings of the National Educational
Computing Conference 1989 (pp. 194-203). Eugene: University of Oregon, International
Council on Computers in Education.

Guskey, T. R. (1987). Rethinking mastery learning reconsidered. Review of Educational Re-
search, 57, 225-229.

Guskey, T. R., & Gates, S. (1986). Synthesis of research on the effects of mastery learning in
elementary and secondary classrooms. Educational Leadership, 43, 73-80.

Key Curriculum Press. (1991). Geometer's sketchpad [Computer software]. Berkeley, CA: Author.
Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum:

Instruction, learning and transfer. Cognitive Psychology, 20, 362404.
Koedinger, K., & Anderson, J. R. (1993). Effective use of intelligent software in high school

math classrooms. In Artificial intelligence in education: Proceedings of the World Conference
on A1 in Education (pp. 241-248). Charlottsville, VA: AACE.

Koedinger, K. R., &Anderson, J. R. (1990). Abstract planning and perceptual chunks: Elements
of expertise in geometry. Cognitive Science, 14, 51 1-550.

Kulik, C., Kulik, J., & Bangert-Downs, R. (1986). Effects of testing for mastery on student
learning. Paper presented at the annual meeting of the American Educational Research
Association, San Francisco, CA.

Laddaga, R., Levine, A,, & Suppes, P. (1981). Studies of student preference for computer-as-
sisted instruction with audio. In P. Suppes (Ed.), University-live computer-assisted instruc-
tion at Stanford: 1968-1980 (pp. 399-430). Stanford, CA: Institute for Mathematical Studies
in the Social Sciences.

Lave, J., & Wenger, E. (1990). Situated learning: Legitimate peripheral participation. Palo
Alto, CA: Institution for Research in Learning.

Lewis, M. W. (1989). Developing and evaluating the CMU algebra tutor: Tension between
theoretically driven and pragmatically driven design. Paper presented at the annual meeting
of the American Educational Research Association, San Francisco, CA.

Matz, M. (1982). Towards a process model for high school algebra errors. In D. Sleeman & J. S.
Brown (Eds.), Intelligent tutoring systems (pp. 25-50). New York: Academic.

McKendree, J. (1990). Effective feedback content for tutoring complex skills. Human-Com-
puter Interaction, 5, 381-413.

McKendree, J. E. (1 986). Impact of feedback content during complex skill acquisition. Unpub-
lished doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.

Milson, R., Lewis, M. W., & Anderson, J. R. (1990). The teacher's apprentice project: Building
an algebra tutor. In R. Freedle (Ed.), Artificial intelligence and the future of testing (pp.
53-71). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

National Council of Teachers of Mathematics Commission on Standards for School Mathematics.
(1 989). Curriculum and evaluation standards for school mathematics. Reston. VA: Author.

National Council of Teachers of Mathematics. (1991). Professional standards for teaching
mathematics. Reston, VA: Author.

Polson, P., & Kieras, D. E. (1985). A quantitative model of learning and performance of text
editing knowledge. In L. Bormann & B. Curtis (Eds.), Proceedings of CHI '85 Human
Factors in Computing Systems Conference (pp. 207-212). New York: Association for Com-
puting Machinery

COGNITIVE TUTORS: LESSONS LEARNED 207

Porter, D. (1961). An application of reinforcement principles to classroom teaching. Cambridge,
MA: Harvard University, Graduate School of Education, Laboratory for Research in Instruction.

Reder, L. M., & Anderson, J. R. (1980). A comparison of texts and their summaries: Memorial
consequences. Journal of Verbal Learning and Verbal Behavior, 198, 121-134.

Reder, L. M., Charney, D. H., &Morgan, K. I. (1986). The role of elaborations in learning a skill
from an instructional text. Memory and Cognition, 14, 64-78.

Scheines, R., & Sieg, W. (1993). An experimental comparison of alternative proof construction
environments (Tech. Rep. No. CMU-PHIL-40). Pittsburgh, PA: Carnegie Mellon University,
Department of Philosophy.

Schofield, J. W., & Evan-Rhodes, D. (1989). Artificial intelligence in the classroom: The impact
of a computer-based tutor in teachers and students. In D. Bierman. J. Breuker, & J. Sandberg
(Eds.), Artificial intelligence and education (pp. 238-243). Amsterdam: IOS.

Shephard, L. A. (1992). Psychometricians' beliefs about learning. Educational Researcher, 21,
2--16.

Shute, V. J., Woltz, D. J., & Regian, J. W. (1989). An investigation of learner differences in an
ITS environment: There is no such theory as a free lunch. In D. Bierman. J. Breuker, & J.
Sandberg (Eds.), A ~ i f i c i a l intellkence and education . (q~ . 260-2661. Amsterrlam.-US

Singley, M. K. (1986). Developing models of skill acquisition in the context of intelligent tutoring
systems. Unpublished doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA:
Harvard University Press.

Singley, M. K., Anderson, J. R., Gevins, J. S., &Hoffman, D. (1989). The algebra word problem
tutor. In D. Bierman, J. Breuker, & J. Sandberg (Eds.), Artificial intelligence and education
(pp. 267-275). Amsterdam: IOS.

Slavin, R. E. (1987). Taking the mystery out of mastery: A response to Guskey, Anderson, and
Burns. Review of Educational Research, 57. 231-235.

Sleeman, D. H., & Brown, J. S. (1982). Intelligent tutoring systems. London: Academic.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive

Science, 12, 257-286.
Wertheimer, R. (1990). The Geometry Proof tutor: An "intelligent" computer-based tutor in the

classroom. Mathematics Teacher, 308-313.
Whitehead, A. N. (1929). The aims of education. New York: Macmillan.

