In R.E. Snow, P.A. Frederico & W.E. Ill

Montague (Eds.) Aptitude Learning and
i Instruction: Cognitive Process
Analyses. Hillsdale, NJ: Erlbaum, 1980

94 HALFF

Donchin, E., Ritter, W., & McCallum, W. C. Cugnitive psychophysiology. The endogenous com-
ponents of the ERP. In E. Calloway, P. Tueting, & S. Kuslow (Eds.), Brain ¢vent-related
potentials in man. New York: Academic Press, 1978,

Estes, W. K. Component and patiern models with Markovian interpretations. In R. R, Bush & W.
K. Estes (Eds.), Studies in mathematical learning theory. Stanford, Calif.; Stanford Umversity
Press, 1959.]

Falmagne,). C. Siochastic models for choice ion time with applications to experimental results.
Journal of Mathematical Psychology, 1965, 2, 77-124. .

Falmagne, J. C., & Theios, J. On attention and memwory in reaction time experiments. Acta
Psychologica, 1969, 30, 316-323.

Gugné, R. M. The acquisition of knowledge. Psychological Review, 1962, 69, 355-365

Gagné, R. M. The conditions of learning (2nd ed.). New York: Holi, Rinchart & Winston, 1970.

Greeno, J. G., James, C. T., DaPolito, F., & Polson, P. G. Associative learning: A cogminive
analysis. Englewood Cliffs, N.J.: Prentice-Hall, 1978.

Halff, H. M. The role of vpportunities for recall in leaming to retrieve. American Journal of
Psychology, 1977, 90, 383-406.

Kohler, W. Gestult psychology: An introduction to new concepts in modern psychology. New York:
Liveright, 1947.

Lewis, G. W, Rimland, B., & Callaway, E. Psycho-biological predictors of success in a Nuvy
remedul reading program (TR 77-13). San Diego, Calif.: Navy Personnel R & D Center, 1976.
(NTIS No. AD A037 339)

Link, S. W. The relative judgment theory of two choice reaction times. Journal of Mathematical
Psychology, 1975, 12, 114-135.

Link, S. W., & Heath, R. A. A sequential theory of psychological discrimination. Psychometrika,
1975, 40, 77-105. 5

Minsky, M. A framework for representing knowledge. In P. Winston (Ed), The psvchology of
computer vision. New York: McGraw-Hill, 1975

Norman, D. A, Gentner,). R.. & Stevens, A L. Comments on learming schemata and memory
representation. In D. Kiahr (Ed.), Cognition and instruction. Hillsdale, N.J: Lawrence Erlbaum
Associates, 1976.

Ofllman, R. Fast guesses 1n choice reaction ime. Psychonomic Science, 1966, 6, 155-156.

Schank, R., & Abelson, R. Scrapus, pluns, goals, and understanding: An inguiry into human
knowledge structures . Hillsdale, N.J.: Lawrence Erlbaum Associates, 1977.

Shoenfeld, A. H. Problem solving strategies in college level mathematies. Berkeley, Calit: The
Group in Science and Mathematics Education, University of California, 1978,

Weigel, G. A., Schendel, J. D., & Haltf, H. M. Cued recall for words presented in separate pairs.
Paper presented at the 18th annual meeting of the Psychonomic Society, November 1978,

Wescount, K. T., Beard, M., Gould, L., & Barv, A. Knowledge-bused CAlL: CINS for individualized
curriculum sequencing (Tech. Rep. No. 290). Stantord, Calif .: Stanford University, Institute for
Mathematical Studies in the Social Sciences, 1977,

Yellott, J. Correction for guessing in choice reaction time. Psychonomic Science, 1967, 8, 321-
322.

Yellott, J. Comection for fast guessing and the speed-accuracy tradeotf in choice reaction time.
Journal of Mathematical Psychology, 1971, 8, 159-199.

Planning Nets:
A Representation for

Formalizing Analogies and
1 8 Semantic Models of
Procedural Skills

Kurt VanLehn
John Seely Brown
Xerox Palo Alto Science Center

INTRODUCTION

Al some time in our lives, we have all been forced to leam the procedural skills
that supposedly comprise mathematical literacy (e.g., place-value addition)
through the process of fote memorization, perhaps, enhanced by the use.of
“*models’ (e.g., the abacus). These models were intended to provide an intuitive
basis for a given procedure. But what really is a **model’’ of a procedural skill?
How does it help in leaming? How faithful can it be made to be? And, more
generally, how can it help a procedure take on “*meaning’"?

This chapter is directed at understanding how procedures can take on *‘mean-
ing."" It is intended to provide a small step in that direction by discussing a
particular kind of ‘*semantics™" for procedural skills, which we call releologic
semantics, in the context of the unambiguous and totally specifiable procedural
skills of elementary mathematics.

The teleologic semantics of a procedure is knowledge about the purposes of
each of its parts and how they fit together. Such knowledge is the province of true
masters of the procedure. lts value is extolled by the proverb, **To really under-
stand something, one must build it.”* Teleologic semantics is the meaning pos-
sessed by one who knows not only the surface structure of a procedure but also
the details of its design.

This chapter has two arguments. First, we motivate the particular representa-
tion that we use for teleologic semantics, which we call planning nets, by
showing how it can capture analogices between procedures as seen by an expert at
those procedures. Second, we show that teleologic scmangics{ as f.nrmalizcd by
planning nets, is usctul by describing several potential applications in the field of

95

96 VANLEHN AND BROWN

education. In particular, some consideration is given to how teleologic semantics
can be explained and to how it provides a useful framework for developing

“‘optimal "’ sequences of "‘model’" procedures (or microworlds) for guided dis-
covery learning.

Analogy Between Procedures

Before we delve into a technical discussion of procedural analogies, let us con-
sider a simple example of an analogy belween the procedure for adding two
multidigit numbers and a **‘model’’ procedure for addition that manipulates phys-
ical objects that represent numbers. The model procedure is a physical procedure
in that it manipulates physical objects that stand for numbers. Before we can

describe the procedure, we briefly describe the objects that it manipulates,
namely, Dienes Blocks.

The Dienes Blocks Representation of Numbers. Dienes Blocks provide an
explicit representation of base-10 numbers—namely, a set of unir blocks for
representing the units; a set of long blocks consisting of 10 unit blocks molded
into a long stick for representing the 10s; a set of flar blocks consisting of 10 long
blocks laid next to each other, thus forming a 10 x 10 square for represent-
ing the 100s; and finally a set of cubes in the form of 10 x 10 x 10 units for
representing the 1000s. A number (of four or less digits) can be physically
represented by selecting the number of unit blocks to correspond to the units
digit, the number of long blocks to correspond to the 10s digit, and so on. Hence
a particular multidigit number is represented by piles of units, longs, fats, and
cubes. Here, for example, is 123 represented in Dicnes Blocks:

(Ll L Pl Lt LLT
L L L L2 L 7 7 7/

g O

The base- 10 nature of the symbolic place-value scheme for representing num-
bers is then made explicit, since one can see the direct translation of a number
represented as piles of Dicnes Blocks into a base-1 system (i.c., the total number
of units comprising all the blocks in all the piles).

Dienes Block Addition. Addition of two multidigit numbers represented as
concrete Dienes Blocks involves forming set unions and *‘trading. '’ The units
pile for each of the two numbers is first unioned together. This corresponds to
adding the units column. Next, the resulting set is examined. |f it contains more
than [0 umit blocks, then H) blocks are removed from this set and traded for a Yong

;

18. PLANNING NETS 97

block (consisting of 10 units), which is then placed in a pile of long blocks of the
top number. This corresponds to carrying from the units to the 10s column in
standard addition. The procedure now repeats, unioning the longs piles, then the
flats, and so forth.

A theory of analogy between pracedures, applied to this case, should be able
to capture not only the fact that Dienes Block addition and standard addition
produce the same answers given the same inputs, but that their internal struc-
tures correspond as well. Set unions match with column sums, trading matches
carrying, and so on.

Two-Pass Addition Mustrates Differences in Closeness. We were recently
struck by the way Dienes Blocks were being used in a school. In particular, the
Dienes Blocks procedure being taught was not as described earlier but instead
had the students combining all the piles of blocks together and then retumning to
the units pile and trading up and so on. Thus, in standard multidigit addition, a
carry is (potentially) performed after cach column operation, whereas in this
version of Dienes Block addition, the *‘trading™ (or carrying) operation was
being deferred until all the columns has been initially processed. One intuitively
feels that this second, two-pass procedure is not as closely analogous to standard
addition as the previous, one-pass Dienes Block procedure.

A theory of analogy should have some formal measure that can predict how
close an analogy is. The theory that follows has such a formal mechanism, called
a closeness metric. The degree of comelation between the predictions of the
closeness metric and subject s intuitive judgments of closeness is one verification
condition for the theory.!

Why Arithmetic? The examples in the chapter are all drawn from the compu-
tational procedures of arithmetic, even though the techniques we have developed
have wide applicability. We limited our examples to arithmetic for several rea-
sons. Everyone knows how to add and subtract, so lack of familiarity with the
example domain will not hinder comprehension of these admittedly rather
abstract formalisms. Arithmetic is a highly evolved, complex system of proce-
dures. It has iteration, recursion, tables of facts, and, of course, a rather nontri-
vial data representation—namely place-value numbers. Lastly, arithmetic is
taught in school. This means our theories are more likely to accrue the benefits of
thoughtful, experience-based criticism from those with a sincere interest in put-
ting the theories to work.

"t is sale to assume that individuals will differ in their judgments of the closeness of analogies.
We take the pusition that this is due to the different deep structures that they assign to procedures. For
example, someone who is just leaming addition may not find the analugy between one-pass and
two-pass addition particularly close. This might be due to a lack of distinct concepts for *‘carrying "
and *column addstion ~* Sa how one understands a provedure aflects the data against which the
theors of analogy will be venfied Because we are interested in teteologic semantics and because
teleotogie understanding s a mark of expertise, 1L 1s impartant to use expens as subjects.

98 VANLEHN AND BROWN

Organizational Overview. The chapter is divided into three parts. The first
part is an exposition of some of the basic concepts of formal theories of analogy.
We assume that an analogy can be represented as a mapping between a deep
structure representation of each procedure that is expressed as a maximal partial
isomorphism between the two deep structures. Thus, after an analogy has been
comprehended, we would expect to find cognitive structures that could be
modeled by three components; two of which represent the abstraction ur deep
structure of the two procedures, and the third representing the structure-
preserving map (i.e., analogy) between these two structures.

The second part of the chapter motivates the planning-net representation of
teleologic semantics by using it as the deep structure component of a theory of
analogies between procedures. The third part is an examination of some of the
applications of this theory to education. In particular, we discuss a paradigm for
explaining the teleologic semantics that involves using a sequence of analogies
such that each analogy illustrates exactly one concept underlying the synthesis of
the given *‘target’’ procedure (e.g., place-value subtraction). This paradigm is
then augmented with a set of **naturalness’” principles for structuring a sequence
of analogies, thereby addressing the problem of how to design an optimal se-
quence of *‘microworlds’” or models for enhancing discovery learning.

We caution the reader that our style of arguing with examples has led to the
incorporation of a great deal of detail into the subsequent pages. However, if
antificial intelligence has contributed anything to cognitive psychology, it is an
appreciation that ignoring trivial detail often leads to overlooking nontrivial
problems.

A GENERAL THEORY OF ANALOGY

This section presents a theory of analogy so general that it is almost vacuous. It
appears that virtually any theory of analogy, including the theory of procedural
analogies that is presented later, can be recast as a special case of this general
theory. Thus, this general theory is apparently immune to refutation. Nonethe-
less, it allows discussion of some concepts common to all analogies, such as
**closeness,”’ before becoming immersed in the details of procedures and their
representations.

Mapping Between ‘‘Deep Structures”

We view an analogy as a comparison of two “‘things"" that can be broken down
into three parts: (1) an analysis of the first thing into some abstract description (or
deep structure); (2) an analysis of the second thing into another abstract descrip-
ton, and (3) a mapping between the two descriptions. This tripantite breakdown
is the foundation of the general theory of analogy. Exactly this breakdown is also

18. PLANNING NETS 99

found in Tversky's work on similarity, a domain that illustrates the general
theory more clearly because of the simpler ‘‘deep structures’” that are used
(Tversky, 1977).

Much research on similarity has used pairs of geometric figures or letters. A
typical task is to rate the similarity of o to ¢. Tversky's analysis of this task is to
assume a feature space, describe each figure as a set of features, then predict the
similarity judgments with some *‘metric’’ on the overlap of the feature set of o
with the feature set of ¢. The correlation of the judgments with the predictions
serves as a verification condition on the feature space and the metric. Often, the
features are not very abstract; 0 might be mapped into the description {curved,
circular, closed}, and ¢ would become {curved, circular, open}.

Much of the research on analogy has studied a task one often finds on intelli-
gence tests—namely, to fill in X in a statement of the form: “"AistoBas C is to
X."" Most commonly, the four elements A, B, C, and X are either words or
geometric figures. A simple example of a word analogy problem is: *‘Red is to
Stop as Green is to (a. Go; b. Halt)."* Superficially, this appears to be a different
sort of task than the similarity task, since there are four things rather than two.
But the two tasks become very much the same when one considers the analogy
task to be a comparison of relationships rather than directly apprehendable
things. This is a widely held view of analogy. Indeed, the instructions to one
analogy test, as quoted by Evans (1968), read: *‘Find the rule by which Figure A
has been changed to make Figure B. Apply the rule to Figure C. Select the
resulting figure from Figures | to 5 {p. 272).""

Actually, these instructions represent just one strategy for answering analogy
problems. Evans' ANALOGY program, for example, used a different strategy,
whereby it extracted an aB rule, then found five rules for pairs c1, 2, ¢3, cs,
and cs, then finally chose one rule of the five as being the most similar to the AB
rule. The existence of many different strategies for solving analogy problems also
obscures the parallels of this task to the similarity and metaphor tasks. Yet when
one is done finding the analogy, one possesses the same three maps; an abstrac-
tion from AB, an abstraction from cx where x is the chosen answer, and the
partial match (or mapping) between the two resulting abstract descriptions.

In shont, if one ignores the strategic differences between solving an analogy
and evaluating a similarity, and if one puts relationships on an equal footing with
letters and geometric figures, then there is very little difference between the
analogy task and the similarity task. After either task is completed, the cognitive
structures can be modeled by three components: the two abstract descriptions and
the mapping (in the form of a match) between them.

Basic Definitions

In this subsection, several basic concepts are discussed. They all follow rather
immediately from the three-task view of analogy already described. As earlier,

100 VANLEHN AND BROWN

:hey are motivated and illustrated with examples from Tversky s theory of simi-
arity. ;

Intersection and Difference Sets. A good way to summarize the outcome of
the matching map is in terms of one intersection set and (wo difference sets. As
an example, take the similarity task mentioned earlier to evaluate the similarity of
o and ¢. Their descriptions, let's say, are the feature sets {round, curved, closed}
and {round. curved, open} respectively. Call these sets 4 and B, the abstract
descriptions of o and c¢. Then, the intersection and difference sets are:

A N B = {round, curved}
A — B = {closed}
B — A = {open}

This is n_ot particularly startling, to be sure. Indced. there are stereotypical ways
f’f referting to these sets in English similes: **4 is like B inthat A N B," or **4
is like B except that A — B instead of B — A.""

Maximal Partial Graph Morphisms Generalize the Notion of
“"Maich.” With more complex languages than feature spaces for expressing
abstract descriptions, one must of course give a new definition of *‘match.”" For
example, consider the analogy (from Sternberg, 1977): **Washington is to | as
Lincoln is to 5.’ Suppose semantic nets are the representation language. The
abstract description of the relationship Washington:1 is a certain chain of seman-
tic links from the node **Washington®' to the node **1."" The description of
Lindoln:5 is a different chain. However, when one finally finds the correct way
to view the two relationships (which is rather nontrivial for this example), then
the two chains end up bearing the same sequence of link names—namely: Last-
name, image-of, portrait-on, dollar-amount. That is, **Washington'" is the last
name of the man NODEy,; the image of NODEy, appears in the picture NODEy;
NODE is the portrait on the kind of dollar bill NODE 4u: and the dollar amount of
NODEgq is **1."" The chain for the Lincoln:5 relationship is a completely distinct
chain, but it has exactly the same sequence of link labels. In this sense, the
analogy is perfect.

To make these two chains match, the definition would have to be sensitive to:
(1) the order of the links; and (2) the labels on the links. A definition in terms of
intersection of sets of links would be inappropriate because none of the links are
identical and because such a definition would ignore the topology of the descrip-
tions. A definition of *‘match’’ that is appropriate for semantic nets (or any other
representation with the topology of a labeled directed graph, including planning
nets) can be defined in terms of a graph isomorphism:

Adjacency Two links of a graph are adjacent if they are incident with a common
node

18. PLANNING NeTs 101

Isomorphism: An isomorphism of labeled directed graphs is a one-lo-one corre-
spondence on the links that preserves the adjacency, direction, and label of the
links.

The *‘match"" of the two semantic-net chains X and ¥ can now be defined to be
the maximal graph isomorphism from a subgraph (subsequence) of X to the
subgraph of Y. By ‘‘maximal,’’ we mean the isomorphism that pairs the largest
number of links correctly. Unfortunately, use of maximality precludes any
mathematical guarantee of the uniqueness of the resulting isomorphism. How-
ever, in practice, we have yet to be plagued by a nonunique maximal isomorph-
ism.

Note that we have defined *‘match’’ as a map that is an isomorphism between
subgraphs of the two deep structures. The map between deep structures is not
necessarily total (i.e., onto) in either direction (we are in the process of inves-
tigating a revision of this aspect of the definition as well as the interesting
situation where it is many-to-one and hence would have the properties of a
homomorphism). In other words, the analogy is a mapping that is 2 maximal
partial graph isomorphism. However, we abbreviate our terminology somewhat
and say that the analogy from A to B is formalized by the mp-morphism from A
to B (i.e.. we speak of the analogy as being this structure-preserving map).

To replace the terms intersection set and difference set, we simply use infer-
section subgraph and difference subgraph. There are, of course, two difference
subgraphs for an mp-morphism—namely the residue portions of each of the deep
structures being compared. Throughout this chapter, we continue to use the
symbology of sets for these concepts, even though the designated entities are not
sets, but subgraphs.

Closeness Metrics. Both the similarity task and the analogy task involve the
ranking of the match between two things or, rather, between their abstract de-
scriptions. The subject is asked to rank the degree of similarity or choose the
closest analogy. We assert that both kinds of judgments can be modeled by a
function over the intersection set (or subgraph) and two difference sets (or sub-
graphs). In similarity research, this three-argument function is often called a
“'similarity metric,’" even though there are cases when the function is not a
proper mathematical metric (see Tversky, 1977). With the same sloppiness, we
call the function that ranks the closeness of analogies a closencss metric.

These metrics can be rather complex. Certain features might be more salient
than others. and one might model this difference by giving the former more
weight in a summation over the various sets. These metrics might even be
asymmetric,® which means they are not proper “*metrics " in the sirict mathemat-

ITversky (1977) weighted the features in the set A .8 more heavily than the features in the set
H-A in order w account for cenain experimental data - for example, that “"Red China is similar to
North Korea™ has a lower degree of sntutive similanty than **North Korca is siumilar to Red China. ™

102 VANLEHN AND BROWN

ical sense. In short, determining the intersection set and the two difference sets is
not the end of the story for predicting similarity judgments; the metric can play a
decisive role.

Monotonicity, e¢te. We take the position that a precise statement of the
closeness metric for procedural analogies can only be determined from detailed
empirical studies. However, Tversky has shown that it certain formal conditions
on the metric can be guaranteed, such as its monotonicity over subsumption of
the intersection and difference sets, then the metric can have a simple, lincar
form (Tversky, 1977). (One of us—VanLehn—has investigated some of the
conditions for procedural analogies and will discuss them in a later report.)

Individual Dijﬁ'rem'z’:s and Learning. We have been speaking of the abstract
description (or deep structure) of a thing as if this object were the same for all
people. In some tasks, such as assessing the similarity of letters, it seems reason-
able for literate individuals to have roughly the same representation language and
the same abstraction functions for extracting descriptions from the letters. But
this assumption is rather implausible in many other cases. In these cases, indi-
vidual differences in conceptions of the things being compared is likely to influ-
ence judgments of the closeness of analogy. This would make verification of a
theory significantly more difficult.

Individual differences affect analogy, but analogy also affects the individual
differences. That is, one can learn from analogies. More specifically, when an
individual understands an analogy, he or she may become aware of descriptive
features that were previously overlooked. So a complete theory of analogy must
allow for an evolution of an individual's conception of the things being compared
over the course of testing.

In this research, we ignore these difficult methodological problems by assum-
ing that the subjects who are judging the closeness of the analogies are cxperts.
That is, they all have a complete represeatation of the things being compared
and, hence, can be assumed to have roughly the same representations. Secondly,
they already know all there is to know about the things being compared and
therefore leam very little over the course of the testing.

FINDING THE RIGHT REPRESENTATION
FOR PROCEDURAL ANALOGIES

In this section, several candidate representations for procedures are examined as
a basis for a theory that predicts the closeness of procedural analogies.? Possible

\
‘lhe qudgmients of closeness are those of expens on anthmetie and so can be taken o retlect the
%

Slechopie somantios of anthibetn

18. PLANNING NETS 103

representations range from a very superficial one—namely, a simple chronologi-
cal list of actions—on up to a very abstract representation that involves goals,
constraints, and other planning knowledge—namely, planning nets. Our research
has shown that planning ncts are the only serious contender, so the discussion of
the athers is quite brief. However, the more superficial representations are men-
tioned n this section for a reason—namely, to show how a human (or machine)
can construct a very abstract representation of a procedure by ascending through
several levels of representation. We do not claim that the structure of this section
models the abstraction process that a person executes when assimilating a pro-
cedural analogy, but it does provide an indication of the complexity that such a
process would have to have.

Traces

The trace of a procedure is simply a chronological list of the actions it performed
during one particular execution. This representation of a procedure can be con-
structed directly from observation of the execution of the procedure (although
there are the usual problems in choosing the *'grain size'' of primitives).* How-
ever, traces are a highly inappropriate representation for procedures, as the
following example indicates.

Consider an analogy between Dienes Block addition and written addition.
These two traces would probably have few, if any, action labels that match. The
action “‘write ‘4" " would have to be matched against a group of four actions
labeled “place one block in the pile,’" whereas the action *‘write ‘8" "' would
have 10 be matched against a group of eight block-placing actions. Such sophisti-
cated matching could not be represented by an mp-morphism. Indeed, the match
seems 10 require the concept of “*write n”* and the concept of *‘repeat single
block placement n times. " These are abstractions over action sequences and so
should be part of the representation rather than the matching mechanism. Incor-
porating such concepts into the representation lifts us to the next level of abstrac-
tion.

Flowcharts

By generalizing over a large collection of traces, one could derive a notion of
the observed procedure that could be represented with a programming language,

“The folklore about protocol taking, supported by a few experiments (Card, 1978), is: When in
doubi, use a finer grain size. If the grain size is too large, vne might miss distinctions. If one errs the
other way and makes the grain size (o fine, then one creates more work for oneself, yet if one is
tenacious, the relevant disinctions will ultimately appear, prubably as relations between groups of
actions instead of single, individual actions. So it appears that the grain-size issue (and a very similar
issue—the choice ol prinntive actions) 1s more of a practical trade-off than an insurmountable source
ol uncentanty n the theory

104 VANLEHN AND BROWN

PUTRHONTO TABLE

|
PUTLHONTO TABLE

[]
Q emprvson DYES o meturngior) |—O

[ro

IRH * PICK/FROM (TOP)

*
LH « PICK/FROM (BOT)

|

FLOW CHART FOR A BASE-1 BLOCK SUBTRACTION
PROCEDURE USING TWO HANDS

O— emeTv(8OT) D>—YES _Jf ReTuRN (ToP) —00O)
NO

PUTRHONTO TABLE

+
lf‘" + PICK/FROM (TOP)

3
PUT RH ONTO TABLE

*
ktu + PICK/FROM (eon]

FLOW CHART FOR A BASE-1 BLOCK SUBTRACTION
PROCEDURE USING ONE'S LEFT HAND

18. PLANNING NETS 105

such as flowcharts. Granted, this gencralization would be nontrivial: Repetitious
sequences of actions would become loops; objects that are manipulated similarly
become the contents of variables, and so on. Nonetheless, constructing a pro-
gram from examples is well within human ability.

However, flowcharts would also be a poor representation for analogy. Con-
sider a simple subtraction procedure for numbers represented as base- 1 blocks as
illustrated by the lower flowchart on pg. 104. The primitive terms used in this
flowchart are as follows: 1 H stands for someone s left hand. T0P and 80T stand for
place mats on the TaBLE. The BOT set of base-1 blocks is subtracted from the Top
set of blocks by pairing off a block from each, using the primitive actions
pick/FrROM and PUT/ONTO and tossing them onto the table. When the bottom
“‘number’’ is *'zero’’ (i.e., empty), whatever is left in the top “‘number’’ is the
answer. However, notice that by merely shuffling the order of the steps some-
what and using two hands instead of one, a new procedure can be constructed
that is intuitively very similar to the old procedure; yet its lowchart (see pg. 104)
shares virtually no isomorphic subgraph with the old procedure’s flowchant.
Because the intersection graph is so small relative to the difference subgraphs, a
reasonable closeness metric would have to report that the two procedures are not
very close—a false prediction. So for this and other reasons, flowcharts also
secm to be a poor representation or level of abstraction for procedural analogies.

Procedural Nets

On the basis of the foregoing example, it might appear that tlowcharts are too
committed to a set order of performing steps, since the two base-1 flowcharts
have the same steps but order them slightly differently. Also, these charts lack
the typical hierarchy of subprocedures that is used in computer programs to
modularize and organize the procedure. This suggests using a structure that
emphasizes the subprocedure hierarchy and deemphasizes the temporal sequence
of subprocedures.

Just such a structure has been developed for modeling children’s bugs in
arithmetic procedures—namely, BuGGy's procedural-net representation (Brown
& Burton, 1978). Although we do not pause here to explain this representation, a
procedural net for a very familiar procedure—namely, standard subtraction—is
included as Fig. 18.1. However, procedural nets also fail as a basis for a theory
of analogy. as illustrated in the following example.

Consider two Dienes Block subtraction procedures: (1) in “'big-pile "’ Dienes
Block subtraction, a number is represented by one big pile of Dienes Blocks; (2)
in “‘sorted”’ Dienes Block subtraction, all the blocks are kept sorted into little
piles according to their shape. Intuitively, these two procedures are quite closely
analogous. But when the procedural nets are formed and the matching is done,
we find the following statistics:

106 VANLEHN AND BROWN

Finished ?

Blank
Digit ?

Sub Compare
Blank Digits

Decrement

FIG. 18.1.

A N B contains 6 nodes.
A — B comains 10 nodes.
B — A contains 16 nodes.

The intersection subgraph is far too small compared to the difference subgraph
for this analogy to be rated **close "’ by any reasonable metric. So again, we must
abandon a representation and look for a higher level of abstraction.

3

18. PLANNING NETS 107

Planning Knowledge Seems Necessary

Both flowcharts and procedural nets are at the **program’’ level of abstraction.
That is, they both are close to the sorts of languages one sees for computer
programs. The problem with this level of abstraction seems to be that some
design decisions that do not seem so consequential to the intuition have an
enormously large effect on the **program.’* The framework that analogy seems
to require is something that extracts these sorts of choices out of their final
manifestation, makes them explicit, and relates them in a reasonable way to
other, more important elements of the design. In short, what seems necessary is a
representation of the design process behind a procedure—this allows one to say
which choices are important and which are relatively minor. The process of
creating a procedure from a set of constraints is traditionally called *‘planning"’
by the artificial intelligence community. So the abstract representation that anal-
ogy seems to require appears to involve planning knowledge and planning in-
ferencing.

Planning knowledge includes not only the functional decomposition of the
surface structure of the procedure but also the reasoning that was used to trans-
form the goals and constraints that define the intent of the procedure into its
actual surface structure. The formalism we use to represent this knowledge, we
call planning nets. These planning nets are an extension of Sacerdoti’s pioneer-
ing work on representing procedural knowledge for robotics (Sacerdoti, 1977).
Before presenting the formalism (which lies at the heart of the remaining parts of
the chapter), it is best to get some idea of what this *‘planning knowledge®’ is that
is going to be incorporated into the representation. To this end, we plan out a
very simple subtraction procedure, called ‘*base-1 blocks subtraction,’’ that rep-
resents a number as a pile of unit blocks. Later, we show how planning nets
capture this knowledge in a summary form.

Constraints and Planning Heuristics

The basic idea of formal planning is to take a declarative, rulelike presentation of
the goals of the procedure and the world in which it is to be implemented, and
transform them into a surface siructure that achieves the goals while remaining
inside the constraints imposed by the world. There is always an element of
common sense in planning, and as this is formal planning, use of common sense
must also be recorded. '

These two knowledge sources are called constraints and heuristics. Both can
be represented as pattern-action rules in some suitable formal language, but for
our purposes, English will suffice.

The constraints that characterize base-1 blocks subtraction are listed next:

108 VANLEHN AND BROWN

I. Goal: If EmMP1Y (80T) then retum 10P as the answer (i.e., n — 0 = n).

2. The decreasc in ToP must EQUAL the decrease in Bo1 (i.c., a recursive
definition of subtraction). *

3. ais EQUAL to b (i.e., all blocks are equal).

4. Over the action (v «— PICK/FROM(X)), the decrease in X is EQUAL to the
increase in v (i.e., blocks are conserved over the picking-up action).

5. Over the action (PUT Y ONTO X), the increase in X is EQUAL to the decrease
in v (i.e., blocks are conserved over the putting-down action).

6. The action (v « PICK/FROM(X)) requires EMPTY (Y) beforehand (i.c., the
hand must be empty before picking up a block).

7. The action (PUT Y ON10 Xx) entails EMPTY (Y) afterwards (i.€., the putting-
down action always empties the hand completely).

8. ~ EMPTY (x) before the action (v « PICK/FROM(X)) entails that after-
ward, there exists a such that g is the contents of v (i.e., the hand picks up
exactly one block).

The meaning of the primitives is as follows. 10p and BoT are place mats on the
TABLE. The subtraction problem n — m would begin with n base- 1 blocks on Top
and m on BOT (N.B., this is not the way base-1 block subtraction is ordinarily
posed in the classroom).® There are two hands, 11 and R, which can perform
two kinds of actions—namcly, picking up one block (PICK/FROM) or putting
down a block being held (puT/ONTO). The primitive predicate EQUAL takes two
piles of blocks and says whether they designate the same number. EQuaL. is not
executable and cannot appear in the final plan. ’

The foregoing constraints describe the mathematical goals of the procedure,
the objects it works with, and the physical manifold within which it operates. The
mathematical content of subtraction is cxpressed in constraints 1 and 2: 10p
minus BOT is TOP whenever BoT is empty of blocks, but any changes in the num-
ber of blocks on BoT must be echoed by an equal change in the contents of T0p.
The objects the procedure manipulates are base-1 blocks. Because these are very
simple, constraint 3 suffices to describe them. (By convention, a lowercase letter
stands for an arbitrary block, whereas an uppercase letter stands for an arbitrary
place mat or hand.) The remaining constraints define the physical manifold
within which the procedure will operate. Constraints 4 and 5 ensure that blocks
are conserved by the actions Pick/FrRoM and puT/ONTO. Constraints 6, 7, and
8 describe how the hands that manipulate the blocks work. A complete descrip-

SDienes Block subtraction and other block subiraction procedures are usually taught using oral or
written presentations of the problems. Thus, 1 solve # — m, the first step is 1o transtate n into blocks,
using some “‘bank "’ as a source of blucks. Next. one translates m into blocks, but wses the first pile
as the source. When one is finished translating, the first pile contains n — m blocks. This procedure
for doing block subtraction is so dissimilar to written subiraction that we have avoided using it in this
paper

\

18. PLANNING NETS 109

tion of the workspace would require several more constraints, but these will do
for purposcs of illustration.®

The constraints describe domain-dependent knowledge. If the procedure’s
goals or implementation environment change, then the constraints must be
changed to reflect this. For example, if one used Dienes Blocks instead of base- |
blocks, then constraint 3 would be replaced by a new constraint, namely:

3'. ais €QuAL 10 b if and only if sSHAPE(a) = SHAPE(D).

If one wished to plan an addition procedure instead of a subtraction procedure,
then constraint 2 would become:

2°. The increase in 10P must 1QUAL the decrease in BOT.

Heuristics are presupposed to be domain-independent knowledge. They rep-
resent commonsense planning knowledge. such as: **"When you need to accom-
plish two things, and it doesn 't matter which comes first, then pick one arbitrar-
ily, do it first, then the other.'’ We include this distinction between constraints
and heuristics only because it is traditional; nothing in our theory tums on this
distinction.

Planning a Base-1 Subtraction Procedure

The planning of the base-1 subtraction procedure involved 12 steps. Each step is
an application of a constraint or a planning heuristic. The planning begins with a
flowchart initialized to the constraint that is marked as the **goal ™" of subtraction.

(O—={ Goal: It EMPTY (BOT) then RETURN (TOP) I—+()

Planning proceeds by progressive refinement of goals to subgoals, or by check-
ing the current plan against the constraints. (N.8., Because we are only interested
in having a correct planning net for a procedure, not in finding one, we are going
to ignore a few of the subtle issues.)’

*In formulating constraints, it is very important to put as little into each constraint as possible. For
example, we could have replaced constraint 2 by “‘decrementing Bo1 by | must be echoed by
decrementing Top by 1.°' Although adequate for base- | subtraction, this is not the most general
statement of the constraint, and. indeed, this constraint would have to be replaced to handle Dienes
Block subtraction. The basic idea is to split the declarative description of the world and the goal as
finely as possible, so that small variations on the procedure can be modeled by replacement of one
constraint among many small oncs, rather than modification of one clause of a large, special-purpose
constraint.

"We will gloss over a number of very difficult issues in the presentation of the planning steps.
For instance, why was the 1ait1 chosen in Step § as the location for emptying the 1 #? How did we

110 VANLEHN AND BROWN

Step 1: At the outset, the '‘implication-reduction’” planning heuristic that
reduces an implication (4 O B) lo a sequence of subgoals (A, B) can be applied.
The second subgoal in this case is a primitive of the workspace. So the output of
Step | is a plan with just one subgoal:

O——={Goat: EMPTY (BOT) RETURN (T0P) |—=0O

Step 2: A venerable planning heuristic, traditionally called “*hill climbing ™’
(Newell & Simon, 1972), reduces the goal to a loop. The loop test sees if the goal
has been achieved, and it not, it takes a step “‘up the hill,”" so to speak.

O EMPTY (BOT) D>—E2 ol RETURN (TOP)

NO

Goal: Reduce BOT

L

Step 3: The goal matches part of constraint 4 — the definition of PICK/FROM.
So the constraint is applied, and the plan is now fully reduced to primitive
actions:

Y
07 EMPTY (8071 >—> ol ReTURN (TOP)

NO

[LH =— PICK/FROM (BOT)I

Step 4: Execution of this plan reveals a violation of constraint 6: The left
hand must be empty before one can pick something up. So a new goal is created: *

know not to empty it on ToP or BOI? Only the successful seasoning will be presented—the
altemnatives that didn't work aren’t mentioned. Most of the rescarch in planning tor robotics has
gone into improving the search for correct plans by recognizing unworkable ahiernatives and recover-
ing from them gracetully. All these difficult questions involving scarch can be gnored, because we
are not interested in automating the discovery of planning nets. \

18. PLANNING NETS 111

O EMPTY (BOT) >— o] RETURN (TOP)
NO
/ AND\
. [Lno— PICK/FROM (BOT) Goal: EMPTY (LH)
before step »

Step §: This goal is quickly dismissed by applying constraint 7—part of the
definition of puT/ONTO. The left hand is now emptied before use.

Y|
O_I EMPTY (BOT) n RETURN (TOP) O

NO

[Pur Lr onTo TaeLE |

[LM = PICK/FROM (BOT) |

Step 6: Execution of this plan uncovers a violation of constraint 2. Because
the bottom place mat is not empty when PICK/FROM is executed, one knows
from constraint 8 that the left hand comes to hold exactly one block. Via con-
straint 4, one infers that the bottom place mat has its contents decreased by
PICK/FROM. But there is no way to show that the Top place mat undergoes an
equal change. So constraint 2 is violated, and a new goal must be created. The
goal says that there must be a change in ToP to equal the change in BoT.

0O ~(empTY (8011 >E2 RETURN (TOP | —eO
NO

AND

| PuT LK ONTO TRBLE | Goal: The change in BOT
over step » must EQUAL

the chaonge in TOP

% [Lne— PiCK/ FROM (BOT) |

112 VANLEHN AND BROWN

Step 7: Part of this goal matches constraint 4, the definition of PICK/FROM.
A new picking-up action is instantiated for the top place mat. This reduces the
goal of equal changes to the goal of equal contents of the left and right hands.

O —=EMPTY (BOT)
NO

AND\ O
M

| PuT Ln ONTO TABLE |
Goal: LM afler step »
l is EQUAL to RH ofter

#[Lk «—Pick/FrOM (BOT) % % [RHe— PicK/FROM (TOP)] | step o »

RETURN (TOP)

Step 8: Constraint 8 can apply twice now, once per hand. It says that only
one block is picked up by pick/FRoM. Thus, the goal of EQUAL contents is
replaced by equality of two arbitrarily chosen blocks.

O empTy (80T) YYES ol reTURN (TOP) ()

N

B¢— PICK/FROM (BOT) | LH-— PICK/FROM (rop)] LGooI EQUAL (o b)

| Put LH ONTO TaBLE |

18. PLANNING NETS 113

Step 9: Of course, this new goal is trivially satisfied by constraint 3—all
blocks count the same in the base-1 number system. So the goal is simply
removed from the plan.

: eMPTY (B0T) D—ES freturn (ToP) O
NO

AND
[PUT LM ONTO TABLE |

{RH < PICK /FROM (TOP) |

LHe— PICK/FROM (aon]

Steps 10 and 11: Exccution reveals that constraint 6 is violated again, this
time by the right hand. So it must be emptied before use as well, in the same
two-step fashion as Steps 4 and 5.

YES lreTuRn (TOP) ®

(,L ; EMPTY (BOT)
NO

AND

[iur LH ONTO TABLE] [PUT RH ONTO TABLE]

E-— PICK/FROM (BOT) | | RH<—Pick/FrROM (TOP) |

Step 12: A planning heuristic, call it *‘conjunction reduction,’” removes the
conjunction AND. The aAND node is for conjoining subgoals. It makes no state-
ments about which subgoal to achieve first. In this case, it doesn 't matter how the
subgoals are ordered since they tum out to be independent. So the rule arbitrarily
chooses the following ordering:

114 VANLEHN AND BROWN

EMPTY (8OT)N-YES IRETURN (TOP)
O < (: { ®

NO

Impiicotion Reduction

[Pur RH ONTO TABLE |

Hill Climbing

|[Rne—Picx/ FROM (TOP) |

[PuT L1 ONTO TABLE | Detinition of PICK/FROM

|LHe—pick/FrROM (80T |

Violate Constraint 6 Violate Constroint 2

This is the final plan. Every step is a primitive, and all the constraints check
out. The planning for base- | subtraction is complete. The final plan is exactly the

fiowchart representation of the surface structure of the procedure. Detinition

Definition of PICK/FROM
of PUT/ONTO

Planning Nets

Planning nets are directed graphs. The nodes of the net represent plans, and the
links represent planning inferences. That is, cach node of the net stands for a
flowchart containing a mixture of primitive actions and subgoals to be expanded.
Two nodes are linked only if the application of some constraint or heuristic to one
plan results in the other plan. The link is labeled with the planning rule that
causes the change.

Sacerdoti developed a very similar structure to aid in automated task planning
and monitoring in robotics. It is remarkable that we have found it useful tor our
research on procedural semantics, as has Greeno for his research on modeling the
counting behavior of children (Greeno, Gelman, & Riley, 1978). However, we " 9

are faced with a clash in nomenclature. Sacerdoti calls these sorts off structures D',!{',“T','?)"N% Chnifolfoy 3
vprocedural nets.”” We prefer to call them “planning nets, ' because their con-
tent has more to do with the planning of a procedure than with the procedure

Violafe Constroint 6
8 \ Constraint 8

itselt,

Planning Nets Are Partial Orders. In tact, planning ncts are generally not 12 ¢ Conjnciion Raduction
sequences as the chronological presentation of the previous subsection might lead
one 1o believe. Often, two planning inferences can be applicd in either order. For
example, step 6 could have preceded steps 4 and S. To represent this indepen-
dence, we allow the net to be a partial order.

Figure 18.2 shows the planning net for base-1 subtraction. In addition to the
names of the planning rules, the steps have been labeled with the step numbers ' FIG. 18.2.
used in the previous subsection. The split at steps 4 and, 6 occurs because

.

115

116 VANLEHN AND BROWN A

constraints 2 and 6 can be fixed independently. The other split shows that
constraint 6, applicd this time to the right hand, can be fixed independently of the
subgoal reduction due to constraint 8.

Planning Nets Are a Complete Represemtation. The previous section may
have left the impression that planning knowledge must be represented in three
parts: the constraints, the planning steps, and the ultimate surface structure; and
that planning serves as a transformation of the constraints into the surface struc-
ture. Although this is not a bad way to think of planning, it is unnecessarily
redundant. The planning nets alone capture all three kinds of information. The
constraints that arc relevant to the procedure are exactly those constraints that
appear as edge labels. Similarly for the heuristics. The surface structure is the
contents of the bottom node, the final plan. So, pl.mmng nels are a complete
representation of the design of a procedure.

Planning Net mp-Morphisms Formalize Procedural
Analogies

To formalize procedural analogies, one merely applies the definition of **match’™”
for directed graphs that was given in a previous section. That is, a procedural
analogy is formalized as a graph-theoretic mp-morphism between the planning
nets of the two procedures. We illustrate this definition with an example.

Figure 18.3 shows the planning net for a **big-pile”” Dicnes Block subtraction
procedure. This procedure has the same sort of pairing-off action as the base-1
procedure discussed earlier, but it represents a number as a big pile of Dicnes
Blocks. Although space does not permit labeling the links in the planning net
with their planning inferences, the step numbers should be sufficient to describe
the match with the planning net of base-1 subtraction, which appears in Fig.
18.2. Step 9 of Fig. 18.2 is replaced in Fig. 18.3 by a subgraph consisting of
steps 9.0 through 9.7. So all the links of Fig. 18.2 match the correspondingly
numbered links in Fig. 18.3 except for link 9. The reason why link 9 can’t be
matched is simple: It is the application of the constraint that makes base-1 blocks
all count the same—namely, constraint 3. In Dienes Blocks. all blocks do not
count the same. Only if they are the same size do they designate the same
number. What the subgraph of steps 9.0 through 9.7 is doing is planning out a
way to get blocks that aren’t the same size to be the same size by doing the
appropriate trading. In fact, the planning lcads off in step 9.0 by noticing a
violation of the constraint 3', which says: **Only blocks that are the same size
count the same."’

The mp-morphism of the two planning nets results in the following intersec-
tion and difference subgraphs (calling the Dienes Block procedure 4, and the
base-1 procedure B):

18. PLANNING NETS 117

FIG. 18.3.

A N B is almost the whole planning net for base- | subtraction except the
link for step 9.

A — B is the subgraph that replaces step 9, whose steps are labeled 9.0,
9.1, and so on.

B — A is just step 9 of the base-1 planning net.

The A — B subgraph is almost the same size as the intersection subgraph,
indicating that the closeness metric would probably give the analogy a rating of
“‘moderate,’* which corresponds with the intuition nicely.

Difference Generators Are Used To Predict Closeness

As we hinted earlier, it is not always the case that the predictions based on the
relative sizes of the intersection and difference subgraphs comrespond so nicely

118 VANLEHN AND BROWN ¢

with the intuition. However, in those cases, the problem has been immediately
apparent and was fixed, utilizing the fact that planning nets are partial orders.

To illustrate the problem, a new analogy is introduced and compared to the
one described in the previous subsection. Whereas the carlier example was,
intuitively, & moderately close analogy, this new analogy is quite a bit closer
still. However, the simple view of the closeness metric as corresponding to the
relative sizes of the intersection and difference subgraphs leads to the false
prediction that the old analogy is actually closer than the new one.

Suppose we compare big-pile Dienes Block subtraction to sorted Dicnes
Block subtraction, an analogy that earlier provided a counterexample. For con-
venience, let us attach some letters to these procedures and the ones used in the
earlier analogy:

A: base-1 subtraction
B: big-pile Dicnes Block subtraction
C': sonted Dienes Block subtraction

The BC analogy is intuitively rather close. However, when the planning nets are
compared, we find a huge subgraph of (' that isn't matched—namely, all the
design that has to do with maintaining the sort. Indeced, this difference subgraph,
C - B, is much larger than B — A and A — B together. Subgraph B — (is also
quite large. Hence, even though B N 4 is somewhat smaller than 8 N C, any
reasonable metric would predict that analogy AB should be closer than analogy
BC, contrary to the intuition that big-pile Dicnes Block subtraction is more
similar to sorted Dienes Block subtraction than to base-1 block subtraction,
There is a mismatch between predictions of the theory and judgments of close-
ness.

But closer examination ol subgraph ' — B reveals it has only one entering
link, just like link 9.0 of Fig. 18.2. This link is labeled **Violates Constraint 11:
keep blocks sorted by size. " In other words, it appears that one plan inference is
causing all the others. We can capture this notion of causation by wtilizing the
topology of planning nets.

As already discussed, planning nets are panml orders. Any subgraph of a
partial order is also a partial order. In particular, the difference subgraphs are
always partial orders. Any partial order has a unique sct of minimal elements.
This set is the smallest set of links that dominate all the other links in the
subgraph. These mathematical facts ensure that the following lz.rms are well
defined:

Where X and Y are any two planning nets, let (X — ¥) be the links that are the
minimal clements of the difference subgraph X — ¥, and let (Y — X) be the links
that are the minimal elements of ¥ — X, Call these two sds the difference
generators of mp-morphism XY.

18. PLANNING NETS 119

Difference gencrators are a formal representation of what is causing the dif-
ference between two procedures. Intuitively, what the difference generators of
mp-morphism represent are the crucial ideas that separate the two procedures.
All the other differences between the two procedures stem from these few crucial
ones.

To illustrate this notion of **crucial ideas,"’ take the analogy between base- |
and big-pile Dienes Blocks, which we were calling analogy AB in the previous
section. d(B — A) is a graph with just one link, labeled **Step 9: Constraint
3—all blocks are EQUAL.’" d(A — B) is a link labeled *'Step 9.0: Constraint
3'—two blocks are EQuaL if and only if they have the same sHAPE.’’ Replacing
constraint 3 by constraint 3’ is about as clear a statement of the difference
between base-1 blocks and Dienes Blocks as one can hope to make.

Because difference generators capture the distinctions between procedures so
succinctly, they seem highly appropriate as the inputs (or arguments) to the
closeness metric. They are decoupled from the unimportant details that fill flow-
chants, procedural nets, and planning nets—details that obscure the essence of
analogy by inflating ditference subgraphs with derived, less meaningful struc-
ture. Indeed, the comparison of analogy AB to analogy BC (i.e., the big-pile vs.
sorted analogy) now agrees with intuition: All four difference generators—
namely, (A — B). d(B — A), (B — (), and d(C — B)—are about one link big.
On the other hand, the intersection subgraphs are as before, with A N B being
smaller than B N C. Because the difference generators are about the same size,
the intersection sets are more important in the closeness metric. Hence, a reason-
able metric would repont that BC is closer than AB, which corresponds with the
intuition that big-pile Dienes Blocks subtraction is closer to sorted Dienes Block
subtraction than to base-1 blocks subtraction. At last, we seem to have found a
level of abstraction for procedures where intuitions of closeness correspond to the
relative sizes of the inputs to the closeness metric.

Discussion

The main point of this section has been that planning nets provide a basis for a
theory of analogy that can predict the judgments of experts on the closeness of
analogies between procedures. Moreover, all the aspects of the theory have very
natural, almost elegant sources. The deep structure used came naturally from
Sacerdoti's work in robotics; mp-morphisms are a general-purpose concept; and
the notion of difference generators came naturally from the topology of planning
nets.

We have always been struck by how much ol the design of a procedure like
subtraction is governed by the design of the representation of the objects manipu-
lated by the procedure (¢.g., the place-value number system). In fact, many of
the actions in any of the elementary arithmetic procedures concem not the
mathematical operation per se but rather how the object representations are

120 VANLEHN AND BROWN

manipu.lul('d. '.I‘his. impression is reinforced by experience in computer pro-

(giramn;mg. which is o'ﬂen a constant interplay between the design of the object

h;:.'.ﬁe::a':)r::;esc:na:;on and the code, even at the highest levels. Anyone who

et o un:r; and a program that he or she did not write can vouch for the

e & or: erstanding the data representation. In the process of judging

i rcprésema:" analogy, a pnpula.r strategy is first to look at each procedure’s

ekt ion, land then to bulk? the understanding of the overall analogy

onthe a. et e :r‘m ogy belw:en object rgpresemalions. In short, it appears to

ool el ge portion of. lh? understanding " of a procedure consists of an
;;s anding of the implications of the procedure’s object representation.

. is -VICW of procedural understanding is entirely consistent with the
:)e ning n.el formalism. The constraints and heuristics that appear in the net
" :)rr:s::il'.“m);ome s;nse. the essence of the procedure. If object representations
i ;?ge::'“: then none of the planning inferences would be *‘about’’ the
- reprc;emalfon. B.ul. in fact, many planning inferences do deal with the
oo sl ;) — lam;:. Even in the forcgoing base-1 blocks procedure, with its
e e o (: :e o‘ ject representation, we find constraint 3 addressed solely to
b numcp:. " ntation. In more complex procedures, using Dienes Blocks or
it |,; a'l: even larger portion of the constraints concern the object
i . In shont, although pla!mmg nets abstract out the less important

pects o a.proccdure. they leave behind the design of the object representation
'\Vhlﬁh is quite compatible with the view that as a representation of "underslaod :
ing ‘of procedures, a fair portion of the design should model the ** "
standing "’ of the object representation. under
'hor;; ::::c lziolrdl.s‘cussed the exact definition of the closeness metric, even
i cel :llll(:in would be necessary to verify methodically the correla-
hons we have ¢ m:’er. .T.here are many dlf.ﬁcultics and fine points involved in
e ngfcremzs iesnz::it:)en.c:n s:aalrm:ular. cv is ;')‘Iausiblc that the weight of some

nin ose to zero. We have in mi 2 ¢ 5
he'urls.tlcs. such as implication reduction, that play an anltrl::::ﬂr:t:s:l:l,::“ :::)cn:: ?:Z
;;::m::fm:;sc:’e ::;ne pl'ar;‘ning rules are applied more than once in a planning
H ps wis to avoid giving such rules an inappropri i-
:\;:::.c I:'y' ;‘nlge::u;:ng their first occurrence in the differencep:;ls:;::)ersp:r’ Tt:e
. These are jus i
consider in defining a closr:ni::'n::l:)ic(.,r U AR R el 15
ana’:‘;\zei ;:a:l;:lca:d:(:::u::t“::t:;c: th:: inujrcdi:a:le amount of work that goes into
. s planning. First one constructs th 3
:::;: .::‘: c:nts:am(s .and a s-cquemiallplan for the flowchart, and last c:'l?t:)l:’t::::é
plaan® :ﬂeTh).:snl(::\egaml:z:tpl:nmnf |infen:nccs are not ordered with respect to
. 1 of work leaves much room for error on the part of
the theorists. However, each level of abstraction is) st san X
checked for consistency by a computer. Thus.‘onrl‘ :c;:e::csti';':ﬁdb::‘lj :3:(":'-’

\

18. PLANNING NETS 121

puter system of utilities to aid in the analysis of procedurcs. However, there is a
certain amount of intuition that goes into some parts of the analysis, notably the
formulation of a set of constraints, that we doubt could ever be successfully

mechanized.

ANALOGIES AND TELEOLOGIC SEMANTICS
IN EDUCATIONAL RESEARCH

In this section we consider some of the issues involved in explaining (or teach-
ing) the knowledge we discussed in the first previous sectivn—teleologic seman-
tics. Briefly, teleolugic semantics is the kind of knowledge that concems the '
purpose of each part of the procedure, as well as the motivation behind the set of
constraints that defines the particular representation for the objects. In particular,
we consider how an individual piece of teleology can be explained, and how such
individual explanations can be combined into an integrated explanation.

The section closes with a discussion of some issues involved in microworld-
based curricula. These issues turn out to be intimately related to those involved in
teaching teleologic semantics.

Local Explanations: Manifestation and Motivation

An important property of the planning-net formalization is that there is a natural
notion of how to explain a small piece of a procedure’s teleologic semantics. By
“‘picce”’ we mean a constraint (or a small set of constraints) that is used in the
planning net. To “explain’’ it, one uses a minimal contrasting pair of
procedures—onc with the constraint, and one without it—that compute the same
“*operation’” as the given target procedure. In other words, we use analogies (o
illustrate constraints. We believe that using a concretc surface structure illustra-
tion for cach deep structure concept is a very important ¢xplanatory technique
that naturally falls out of this development. For example, this method frees us
from having to explain the planning formalism to the student—a task potentially
more difficult than teaching the procedure itself.

More formally, to illustrate some given constraint(s), onc uses nvo analogous
procedures such that one of the difference generalors of the mp-morphism be-
tween them is exactly the given constraint(s). 1f the pair of procedures forms a
minimal contrasting pair, then the mp-morphism constituting the analogy is
elementary. '

Of course, this technique works just as well for explaining heuristics. How-
ever, heuristics are often such commonsense knowledge that an explanation of
them is unnecessary. So we call the planning inferences to be explained *‘con-

straints, ' avoiding the cumbersome phrase ssconstraints or heuristics. ' Also,

122 VANLEHN AND BROWN '

our terminology reflects the fact that it is often possible to provide a minimal
contrasting pair for each constraint individually (this observation is discussed
later). So we use *‘constraint’* in place of **a small set of constraints. "

An important realization is that minimal contrasting pairs can be used in two
different ways in an explanation. They can be used to show how the constraint is
manifested on the surface, and they can also be used to motivare the inclusion of

the constraint in the ultimate design of the procedure. Probably the best way to
illustrate the differences between these two uses is with an example.

Explaining the Canonicity Constraint. The particular constraint that is used
in this example is one of the most subtle and influential in arithmetic—namely,
the canonicity constraint. To show how the planning-net representation can aid
in explaining procedures, the constraint is presented-as the “‘answer' to a nontri-
vial teleologic question.

What is the purpose of carrying? More specifically, if the problem is 52 + 49,
why bother to carry 10? Why not leave 11 in the units place? It is not because
there is no symbol for the **digit” 11—we could invent one if we wanted. In
Dienes Block addition, the question is even clearer. Why not leave the answer in
the form of 9 longs and 11 units? Why bother carrying?

The answer is that carrying maintains the canonicity of the representation of
numbers. A canonical representation puts the representational objects in one-to-
one comrespondence with the real objects they represent. The Hindu-Arabic rep-
resentation of numbers is canonical because there is a unique, distinct numeral
for each number. Dicnes Blocks are not necessarily a canonical representation,
since most numbers can be represented several ways. For instance, 11 can be
represented as a long and a unit, or as |1 units. The purpose of carrying is to
canonicalize the sum by making sure that there are no more than nine blocks of

any given shape. In other words, carrying is the manifestation of the canonicity
constraint.

But suppose that the questioner rejoins by ashing what the purpose of the
canonicity constraint is. The answer involves another arithmetic subprocedure—
comparison.

It is much more efficient to find out which numeral represents a given large
number if the representation is canonical. Let us use a Dienes Blocks comparison
procedure to illustrate the gain in efficiency. In a noncanonical representation,
the comparison procedure must compare all the piles, because a very large pile of
small blocks can make up for a deficit of larger blocks. In a canonical representa-
tion, the comparison procedure needn't check all the piles. If it finds that one

numeral has more flats than the other numeral, then it needn 't compare the longs
or units: even if the other numeral has the maximum number of longs and units
allowed—namely, nine each—the first numeral will still represent the larger
number. Imposing the canonicity constraint makes the comparison procedure
much more efficient, because it allows the procedure 1o stop carlier. But the
-

18. PLANNING NETS 123

canonicity constraint is a constraint on the representation of ‘numbcrs, and so all
arithmetic procedures must obey it. Even though the constraint makes part of the
addition procedure somewhat less efficient, it makes comparison so much more
efficient that it is worth having. This appeal to efficiency is the ulgu.nale end point
in the explanation of the motivation for carrying and the cal_mmcny com.u'aml.f
In this miniexplanation of carrying, we have seen two ‘Il‘l'lpoﬂlll(faFels o
teleologic knowledge. In the addition procedure, ?he Fanomcny co.nslr:.l:l was
manifesied as a carry subprocedure. But the motivation for adopting « :on-
straint lay in another procedure, comparison. Each 'of these two fac.eu, w u:."we
now call local explanations because they explain just one constraint, was illus-
trated with a minimal contrasting pair of procedures. One member of |hc. pair was
a fully operational version of the procedure that lackcq the constraint _?cmg
discussed, whereas the other member adopted the cuns.!raml._ But the mu_nrcsta-
tion part of the explanation involved a min.imal. contrasting pair tt.lal was'dlf crc:l
from the pair used to motivate the constraint (|.f:.. addition vs. comparison). : s
discussed later, it is preferable to have a pair of analogous .prucedures that
illustrate both the manifestation and the motivation of teleologic concepts, but
is is not always possible. . ' ‘
mlbl::s'::)ur beligf ll‘l’:l the concreteness of this minimal cul?lrasnng-;?au paradlgl:n
of explanation is of crucial importance in making telc'ologlc seman'llcs clear. The
learner can see in very concrete tenms how adopling a constraint affects lrc
procedure. Winston showed that a similar cxamplc-basc.d paradigm was suf 5-
cient to teach the abstract concepts necessary to recognize loy block construc-
ions, such as an arch (Winston, 1975, 1978). '
"0'::' l:l::h u‘::na; minimal contrasting pairs lhal manifes.t the given conslr:u:ll a':e
available, depending on which of the remaining constraints are adopted. If a (. e
constraints of a given target procedure are adopted, ll_\cn one .memlfcr o‘f the Pau‘:
is the target procedure itself. Otherwise, the contrast is cxhlhlll.:d across a pair 0l
maodel procedures that still satisfy the ma.alhcmalncal constraints 'of' |h¢-: largf:h
procedure. Using model procedures often highlights the contrast, lpdkmg it mulc.‘
easier to see the constraint under discussion. Such was the case wnlh‘(he canonic-
ity constraint, where Dienes Bk;;)l;s allowed us to use noncanonical numbers
i i i igit symbols.
w“:‘l(:;:::rc.n:::l;c:r:cfdun{s must be used with some care, as the followi'ng
example illustrates.

The Impact of Efficiency Metrics on **Loop Jamming "’ C(m'sidcr l‘hc (‘i;f-
ference between the standard carry subprocedure and the two-pass version de-
scribed in the introduction, where carrying was deferred while all .lht: .c.(?lumlrs
were added, then performed on a second pass over the culumns: This (l.lllf:rel_;cc
is a constraint that was called loop jamming, after ic compiler opumgal::m
technique of the same name that weaves two loops into one (Allen & Cocke,
1972).

124 VANLEHN AND BROWN

One cannot use Dicnes Blocks procedures to motivate loop jamming, because
exac}ly the same number of hand motions, fact-table lookups, and so on are
req_ulred by each procedure. So, Dienes Blocks are an inappropriate model do-
main for discussing this constraint.

However, when implemented with written numerals, loop jamming does
crgalc a difference in efficiency.® The two-pass implementation of cdrrying re-
quires more writing than the standard implementation. Thus written arithmetic
turns ou! to be an appropriate domain for discussing the loop-jamming constraint.

The important point to notice about this example is that the choice of the
model has some impact on the local explanation. In particular, a model that
clearly displays the manifestation of the constraint in the procedure may not be
able to demonstrate the morivarion for the constraint. For example, because one
doesn 't have to worry about how 10 write the intermediate column sums that may
be greater than 9 with Dienes Blocks, we can use them 10 implement both the
one- a'nd two-pass addition procédures and thus use them to illustrate the man-
lfest-anon of loop jamming. Unfortunately. however, they cannot be used to
motivate loop jamming, because the resulting procedure is no more efficient.

Apol.her po_im to notice about the preceding example is the use of efficiency
meifrics tn motivating design choices. An efficiency metric is some weighted sum
o.f hand motions, fact-table lookups, table size, amount of paper used. and the
like. The weighting of efficiency metrics is very important. For example, if
rcducn,ng memory load is more desirable than decreasing the number of write
opcrauo.ns, then the discussion of loop jamming cnds with the opposite
conclusion—that two-pass carrying is better than the standard shbpmccdurc“’
The two-pass version uses less short-term memory but more pencil lead. So
exactly what efficiency metric is used greatly affects the local explanation. We
do not look upon efficiency metrics as a regrettable new variable that must be tied
down and parameterized with careful experimentation, but rather as a source of

flexibility that can be used to tailor the teaching paradigm to the needs of
particular students.

Principles for Sequencing Local Explanations

l-or_moderately complex procedures, such as subtraction, the number of con-
straints can be high enough to cause problems of presentation. Our current best

*In the standard version of subtraction, where the carry loop is jammed together with the add-
column loop, one must write n + m digits, where n is the length of the longest addend and m is the
number of carries required (it is assumed that one writes a 1 above the columns one carries inm.) In
the two-pass version, one must write n + 2m digits: One must remember from the first pass which
columns are overflowing, and this requires m notes to oneself. —say. in the torm of writing a | above
the overflowing column. The second m operations come from rewriting (he answer digit of the
columns that are carvied into. There may be even more rewriting if the answer carried into isay

*In the column camied into, the standard subprocedure requires adding theye digits. one of 'u hi‘.'i!

~

18. PLANNING NETS 125

estimate of the number of constraints of subtraction is 17. To explain this many
constraints, each with its own manifestation and motivation, may seem a difficult
task. However, with the planning net formalism, we can investigate how to
sequence ‘‘optimally '’ a collection of “*model’* procedures; the first procedure
(or **model™’) of the sequence would be a very, very simple version of the skill,
and the last procedure of the sequence would be the target procedure. For exam-
ple, in subtraction, the first procedure might be base-1 block subtraction and the
last, standard written subtraction. But how should the intermediate models be
sequenced?

Using the formalisms developed earlicr, principles for sequencing local ex-
planations can be stated precisely. Several such principles are stated next that we
belicve will lead to scquences that better enable assimilation of the overall
teleology of a procedure from the explanations of its parts. Each one of them falls
out quite naturally from the planning nct formalism.

It is convenient in what follows to say that such sequences run from left to
right—the target procedure is the procedure on the far right. This allows us to
talk of the left and right procedures of a mp-morphism. Also, we speak of the left
and right difference gencrators of an mp-morphism; if 4 is left of B, then d(A —
B) is the left difference generator.

Introduce Each Constraint. As we saw in the previous subsection, it is best
to illustrate cach constraint with a minimal contrasting pair of analogous proce-
dures. This is probably the most important sequencing principle, that each con-
straint be illustrated individually. However, it is probably also true that it is better
to introduce the constraint rather than take it away. This gives the sequence an air
of progression toward the target procedure. Putting this principle formally, we
have: Each constraint is the sole contents of the right difference generator of
some mp-morphism in the sequence. That is,

Principle 1. For each constraint C in the target procedure’s planning net, there
exists i such that J(P, = P, _ ;) = {C}.

where the procedures are numbered from left to right (first to last).

Starting with a very simple procedure would, hopefully, tap a person’s intui-
tive understanding. Then, since each of the analogies (mp-morphisms) is very
close (or at worst, moderate; we are guaranteed only that one of the difference
generators is a singleton set—namely, the constraint being introduced), it should
be easy (o transfer that understanding along, augmenting it only slightly as each
new procedure is presented.

is, of course, the carried 1. But adding three digits requires remembering the sum of the first two
digits while assessing the third digit The two-pass subprocedure doesn’t load memory this way,
because the intermediate sun 1s witten down instcad.

126 VANLEHN AND BROWN

Only Introduce Target Procedure Constraints. Occasionally, it is necessary
to “'build"* a left procedure to illustrate some constraint. This occurs when one
cannot adjust the sequence so that the right procedure of some other constraint is
this constraint’s left procedure. In this case, one ends up with an adjacent pair of
procedures that do not illustrate a constraint from the target procedure. Although
the person (or computer) doing the explaining can mention that this analogy isn’t
so important, it would be better if the sequence didn 't have such pairs. So another
optimization principle to shoot for is:

Principle 2. For cach i in the sequence, there exists a constraint € in the target

procedure’s planning net, such that d(P, - P, _ ,) = {C}.

Minimize Redundancy. One should not remove a constraint that has been
introduced previously or introduce a constraint twice. Although one could argue
that the redundancy of sceing the constraint illustrated in several different con-
texts (i.e., with different model procedures) serves to reinforce the local explana-
tion, we are of the opinion that this would create confusion rather than dispel it,
and in addition, it would create the impression that the sequence was meander-
ing.

More formally, we propose that the sequence obey the following conditions:

Principle 3. Forany i # j (P, - P,)N AP, -P, =¢
Principle 4. Forany i # (P, . , - PONdP, , - P) - ¢
Principle 5. Forany (i, - P,)N diPy =Py -

The first condition advises one not to introduce a constraint twice, and the second
condition advises one to avoid removing a constraint twice. The third condition
says that once a constraint is introduced (the first term), it can never be taken out
(the second term). Actually, it also says that once a constraint is removed, it
shouldn’t be reinseried, which is also a plausible condition 10 impose for aiding
the cogency of the sequence.

Efficiency Should Increase Monotonically. We mentioned earlier that a min-
imal contrasting pair for a constraint does not necessarily show an increase in
efficiency. That is, all ways of manifesting a constraint do not necessarily
motivate it as well. One condition on a sequence is that the model procedures be
chosen and sequenced so that efficiency always increases as the target constraints
are adopted. That is,

Principle 6. For all j, P, is more cfficient than P,

\
Because there are many minimal contrasting pairs that manifest a constraint, it is
osually not ditticult o find some pair that motivates st as well, but putting that

18. PLANNING NETS 127

pair into a sequence with the other constraint’s pairs can be somewhat difficult.
We know of only one constraint for addition or subtraction—namely the canonic-
ity constraint, where the motivation pair must be distinct from the manifestation
pair. This is inevitable because canonicity is basically designed to improve the
efficiency of comparison, not the other arithmetic operations. Thus, if one were
only interested in a sequence of addition procedures or subtraction procedures,
then the pair for the canonicity constraint would necessary violate this sequence
principle. However, with this one exception, it has been easy to fine some
minimal contrasting pair that serves both (0 manitest and motivate a constraint
for subtraction. :

However, putting such pairs into a sequence requires some care. Switching
the order of two constraints in a sequence often alters the relative efficiency of
the minimal contrasting pair of procedures that manifest the unit. Under one
ordering, both constraints might improve efficiency. But under the reverse order,
adopting one of the units may result in no increase in efficiency or even a
decrease in efticiency. This might scem strange, so let us pause a moment for an
example.

Consider ordering the canonicity constraint versus the constraint that Dienes
Blocks be kept sorted by size. First, suppose that the canonicity constraint
precedes the sort-by-size constraint in the sequence. Under this ordering, l‘he
efficiency increases between cach procedure; imposing the canonicity constraint
forces the procedure 1o search through the big pile of Dicnes Blocks to check that
there are no more thun 10 blocks of any given shape. Hence, adopting the
sort-by-size constraint greatly improves cfficiency by climinating rummaging
around through the big pile in favor of simply counting up the number of blocks
in cach of the small piles.

Now suppose the order in the sequence were reversed and son-by-size were
imposed before canonicity. The minimal contrasting pair for sornt-by-size consists
of: (1) adding two big piles of Dienes Blocks together by simply forming the
union versus (2) adding each of the small piles together in a series of separate
union operations. The introduction of the constraint actually decreases the e.fﬁ-
ciency of addition. Because no carrying is required (canonicity not being lm-
poscd yet), there is no use in the separation by size. Maintaining the constraint
creates extra work with no reward. So modifying the order of two constraints in
the sequence can have an impact on the ability to motivate them.

Although it may be a difficult condition to achieve, if a manifestation-based
sequence has monotonically increasing efficiency, the viewer can sce willli no
additional examples not only what each constraint is but also why it exists (i.e.,
what good it is).

Telescoping Segnences. Occasionally, one finds mp-morphisms that imro-
duce a constraint but don’t need 1o remove any constrmnts. The canonicity
constraint can be illustrated with an mp-morphism whose left difference sub-
graph is aull (for addition, one could use the two-pass addition procedure de-

128 VANLEHN AND BROWN © ¢

scribed in the introduction as the right-hand procedur. . . . the first pass of it for
the le'fl procedure). That is, the mp-morphism is foral with respect to the left
plar!mng net. It seems plausible that mp-morphisms that never removed con-
straints would create a very strong sense of progression toward a target proce-
dure. Such sequences are characterized by the condition:

Principle 7. Forany i, (P, , - P,) = ¢

A Space of mp-Morphisms

Nccdles:s lo say, it will rarely be possible for a sequence to Asaliéfy all the
sequencl'ng .principles we have mentioned. Indeed, we may only be able to satisfy
some principles along part of its length and different principles along another
part. We need some way to study the relative contributions of the various princi-
ples to ease of explanation.

Ultimately, we would like to develop a representation of all principled sc-
quences. to a given target procedure. These sequences could be represented in an
cconomical way by a directed graph whose nodes would represent planning nets.
Thcnc would be a link from node A to node B only if they appeared as an adjacent
pair in some sequence that was considered a plausible explanation sequence,
pcrl!aps because it met some minimum number of the principles listed earlier. (In
pamcul.ar. one might include all (known) minimal contrasting pairs for the target
Fonslramls; this would correspond to using principle number 1 as a threshold for
inclusion in the space.) This directed graph has the property that any sequence
from a *‘most primitive version'* node to the “target”’ node would be a possible
sequence for explaining the teleology of the target procedure. We tend to think of
this graph as a space of mp-morphisms.

One clear problem that could be attacked with such a space is improving on
the m.mlralness of teleologic explanations. Presenting the 17 or so mp-
morphl.sms (or procedural models) for place-value subtraction is bound to be very
cpnfuslng unless they can somehow be aligned along the individual's own cogni-
tive structures (see the Appendix for a detailed cxample of one such chain of
models). We have alrcady mentioned seven principles that probably contribute (o
!quer comprehension of such explanations. Each of these principles would be
incorporated into the space, perhaps as annotations on the basic partial order.
Hopefully, experience and experiment will lead to the discovery of other factors
that improve the naturalness of teleologic explanations.

Using the mp-Morphisms Space
in Microworld-Based Curricula

In a micnfworld.-bascd curriculum, the student explores a rich environment,
hopefully inventing something analogous to the target skills (Papert. 1978;

LY

18. PLANNING NETS 129

Fischer, Brown, & Burton, 1978). For example, a student might be given Dienes
Blocks and a puzzle that requires using multidigit arithmetic to solve it. Actually,
how students are motivated to do the arithmetic is not an issue here. The point is
that students are not given the sequence of actions that implement arithmetic for
the given representation of numbers. Instead, they must invent it themselves.

Tracking a Student’s Discovery Process. The mp-morphisms space could be
quite useful as a way to **track ' a student 's discovery process. The basic idea is
that an observer (possibly a computer) analyzes the procedures that the student
invents in terms of planning nets. The nodes in the space that correspond to the
plans of these procedurcs are marked. The student's progress is then expressed as
the shortest sequence along the constraints that connect the marked nodes. This
provides a strong hypothesis concerning what the student has leamed during the
discovery process.

Such a tracking study would provide an empirical way to verify conjectures
about ‘‘natural’’ sequences for teleologic explanations. That is, observing that
students generally followed sequences that increase the efficiency of the proce-
dure would support the conjecture that monotonically increasing efficiency is
important for cogent, natural explanations.

Sequencing Microworlds. A persistent problem in microworld-based cur-
ricula is how to sequence the microworlds so as to maximize the cumulation of
intuitions built up while exploring the microworld and enable them to be trans-
ferred to the target procedure. One ready answer is provided by the space of
mp-morphism sequences, assuming it has been annotated to show which se-
quences are most natural.

Sequencing microworlds obviously imposes an order on the traversal of the
nodes in the mp-morphism space. One can’t move from a Dienes Block proce-
dure to an abacus procedure's node until one leaves the Dicnes Block microworld
and enters the abacus microworld. So the most natural sequence of microworlds
is the one that enables traversal of the most natural sequences through the con-
straint space. Let us illustrate this conjecture with an example.

Suppose one tried to teach addition with the following sequence of mic-
roworlds:

base-1 blocks, the abacus, Dienes Blocks, written numbers

One would expect the students to become frustrated when they find that the
teleology associated with place-value encoding of numbers, which they labori-
ously invented for the abacus, is obviated by the shape-value encoding of Dienes
Blocks. And when they find they must resurrect this place-value notion to move
from Dienes Blocks to written numbers, one would expect them to become
disgruntled or, worse yet, to apply “‘teacher psychology** and guess that place

130 VANLEHN AND BROWN

value couldn’t possibly be part of the design because *"we already had that."* In
comparison, reordering the sequence o be

base-1 blocks, Dienes Blocks, the abacus, written numbers

allows invention of the notion of place-value just once, in transition from Dicnes
Blocks to the abacus, and then maintenance of the notion throughout the abacus
microworld and on into the written numbers.

These ordering results could be predicted on the basis of one of the naturalness
principles mentioned earlier—namely, that constraints ought to accumulate
along the sequence. They should be added once and never removed. In the first
sequence of microworlds, there is no sequence of procedures that can avoid
adding the constraints that express place-value encoding during the first transi-
tion and dropping some of them during the second transition.

What Is the Clusest Possible Procedure in a Given Microworld to the Target
Procedure? Just exactly how close to standard arithmetic procedures can pro-
cedures built around a particular representation of numbers, say Dienes Blocks,
be made to be? Can a Dienes Block procedure be devised that is totally isomor-
phic to a standard written procedure? This is a question of interest to educators.
For example, it bears on the question of just how much a child can learn about

. standard arithmetic by inventing a good arithmetic procedure in a given micro-
world, such as Dienes Blocks. This in turn bears on the question of how many
microworlds, and which ones, are necessary to allow the student to easily con-
verge upon the target skill. With a formal theory of analogy between procedures,
we can now precisely determine how close the best pussible procedure defined
over a given microworld can be to the target procedure.

Take any procedure that uses the given representation of numbers. Examine

-the difference generator of the analogy between it and the target procedure (e.g.,
written addition). If this set contains constraints that cannot be met because of the
basic physics of the representation, then one cannot construct a model procedure
that is isomorphic 1o the target procedure. An example should make this a little
clearer.

A careful examination of the planning net has shown that it is impossible to
construct a Dienes Block addition procedure whose analogy with written addition
is perfect (i.e., an isomorphism). One design issue that is always present in
Dienes Blocks involves the shape-value encoding that is the hallmark of Dierfes
Blocks. There is an encoding of the relationship between position and place value
that is present in both written addition and sorted Dienes Block addition, but it is
redundantly coded by the visual appearance of Dienes Blocks. If one got rid of
this redundancy by evening out the sizes of the blocks, then they wouldn’t be
Dienes Blocks anymore. So the redundancy is inherent in the representation and
will be part of the difference gencrator of the analogy to written addition no
matter how clever one is about inventing Dicnes Block addition procedures.

18. PLANNING NETS 131

As a consequence, centain subtle shifis in representation that occur in the
standard procedure for adding written numbers cannot be duplicated in any
Dienes Block addition procedure.'® This deficit gives some bite to the inherent
incompleteness; the subtlety of these shifts makes them likely candidates for
misunderstandings that Dicnes Blocks are apparently helpless to prevent. This
essential inadequacy can be directly diagnosed, if not predicted, using the theory
of analogy between procedures.

In similar fashion, other microworlds can be evaluated. This evaluation is,
however, quite constructive. Once the inherent mismatch with the target proce-
dure has been identified, the gap can be filled by modifying the microworld, or
by adding another microworld to the curriculum if desired.

In short, many of the same issues appear to be involved in the teaching
teleology and discovery-based teaching. Planning nets seem to provide a formal
tool for investigating this relationship further.

CONCLUSIONS

The major claim of this chapter is that planning nets provide useful formalisms
for capturing the televlogic semantics of procedures. However, probably the
most importnat thought 10 take away from this exposition is the importance and
utility of using planning knowledge in the deep-structure analysis of procedures.

In contrast to other work on analogy, we have ignored the process of solving
an analogy problem. Instead, we have concentrated on an intuitive determination
of what representation most closely models the way cxperts conceive of proce-
dures in order to understand analogies. This methodology has arrived at the same
conclusion that was reached by a completely different method. In particular, our
planning nets are very similar to Sacerdoti's “‘procedural nets'* (Sacerdoti,
1977). Sacerdoti has shown his procedural ncts to be a sufficient representation
for designing procedures and indeed much better than other known repre-
sentations. We have tried to show a similar representation to be a sufficient
representation for judging the closeness of analogy and indeed much better than
other known representations. In short, evidence is accumulating that planning
net-like representations are good for many purposes. However, we should point
out once again that neither Sacerdoti nor ourselves make any claims that the
process of building a planning net, either for analogy or design, exactly models
the human process of building a planning net.

YWhen one adds Iwo lurge digits from a given column, one gets back a nondigi—for example,
14. The first shift in sepresentation is to break this number down into umits and 1th. Next, the units
must be converted into a Jigit in the columns being added, whereas the 10s must be converted into an
argument o the cary subprocedure. In Dienes Block addition, the second conversion is superfluous,
because the result of the column addition 1s already scaled up to the value of the column, so to speak.
That is, an add in the 10s column yiclds 140 10 the form ol 14 tonGs, not 14 uNnes

132 VANLEHN AND BROWN

Because teleologic knowledge is a pant of a certain kind of expertise, one
naturally wonders how it can be taught. Planning nets provide a precise
framework for constructing explanations and curricula to explicate teléology. In
particular, the formalism helps answer the question of how to sequence a set of
*‘model’’ procedures with certain formal properties. Moreover, many of these
same formal properties seem useful in discovery learning curricula.

Our last comment should undoubtedly be that this research is just beginning.
There are many deficiencies and questions that must be addressed. Reliable
empirical measurements of closencss and transferability must be made. The
uncertainties in the uniqueness issue must be investigated. The general precision
of the theory must be improved, and its inordinate amount of detail must be
tamed, hopefully with the aid of a computer. In particular, we would like a
complete, precise, mp-morphisms space for all five arithmetic operations. The
limitations of the theory should be tested by exercising it on examples from
other domains. In other words, this chapter is more a proposal to investigate a
promising line of thought than a report on completed research.

APPENDIX:
AN EXPLANATION OF THE TELEOLOGIC
SEMANTICS OF SUBTRACTION

To give a feeling for how an explanation based on paths of minimal contrasting
pairs of analogous procedures might go, an example of such a path is presented
here. It begins with a base-1 subtraction model, passes through some Dienes
Block subtraction procedures, and ends with the standard procedure for subtrac-
tion of written numerals. Although reading these rather abbreviated descriptions
can have nothing like the impact of actually handling the blocks and doing the
procedures, the power of this technique to explain teleologic semantics should
nonetheless be apparent.

Throughout the path, there is a certain ambivalence about the particular mate-
rial that is used in the representation of number. In fact, the primitives and
constraints used to describe and implement procedures really can’t differentiate
real, wooden Dienes Blocks from, say, drawings of Dienes Blocks, as long as
they are manipulated the same way. In fact, there is no particular point where
adoption of the constraints of the target procedure (written subtraction) forces us
off the counting table and onto paper; one can actually implement standard
subtraction with cards bearing digits.

However, the material does make a difference to the efficiency metrics. In
particular, some of the later constraints can only be motivated by assuming that
erasing is more work than writing, which is true of paper but hard to emulate with
manipulable materials.

18. PLANNING NETS 133

We start with base-1 blocks because the mathematical semantics of this sub-
traction procedure are simple and concrete.

1. Polynomial. Base-1 numerals are rather bulky for representing large
numbers. One solution to the block management problem is to let some
counters stand for a fixed number of the unit counters. This is the
polynomial constraint (3' in the text). The next procedure of this mp-
morphism is a simple version of big-pile Dienes Block subtraction.

2. Search Instead of Random Choice. This model adds the notion that
searching for two blocks of the same shape is more efficient than picking
two blocks at random, then trading to make them the same shape.

3. Chose Larger 10 Trade Down. The idea here is to trade down the larger
of the two blocks. If one picks an arbitrary block to trade down but not
the unit block, then eventually one will be able to match their shapes. but
it will often take more trading than always picking the larger one to trade
down. This procedure requires memorization of which of two shapes
stands for a larger multiplier.

4. Search for Next Larger Before Trading. When one can't find two
blocks of equal shape. and instead has two blocks of unequal shape, then
before trading down the larger one, replace it with a block that is the nexs
size larger than the smaller block. If the search succeeds, one only has
to trade down once. This plan step requires memorizing which shape is
the next larger one than a given shape.

5. Choose TOP 1o Trade Down. This model is motivated by observing
that when the block that is traded down comes from BoT (the bottom
numeral), the subtraction as a whole takes more time than it would if the
block had come from ToP (the numeral that is being subtracted from).
When a block from BoT is traded down, the nine smaller blocks that are
left over go back into BoT. So the main loop must run nine times more. If
a block comes from ToP, the nine extras go back into top. If BoT runs out
soon, they may never be touched. So trading down a block from Tor is
more efficient than trading down a block from BoTr.

The goal of choosing ToP blocks creates a subgoal that the Top block
be larger than the ot block. This subgoal is satisfied by a subgraph that
is already a part of the left planning net—namely, the union of the
subgraphs gencrated by models 2, 3, and 4. So the new part of the
planning net underlying this procedure is just the part that satisfies the
goal **choose BoT block '’ exclusive of the part that satisfi¢s the subgoal.

6. Canonicity. This constraint was described earlier.

7. Base Ten. The canonicity constraint produces a trading pattern that is
much casier to remember if all the multipliers are powers of 10 (or some
other base). For example, in canonical American money, which is a

134

VANLEHN AND BROWN

polynomial representation but not a base- 10 representation of number, a
citizen would canonicalize their pocket change by trading in five pennies
for a nickel, two nickels for a dime, three dimes for a quarter and a
nickel, and so forth.

. Sort by Power. Canonicalization (= carrying) and decanonicalization

(= bomrowing) are somewhat easier if numerals are sorted so that all
counters of a certain power are accessible at once. Dicnes Blocks, as we
observed them being used in schools, lacked this constraint.” In fact,
Dienes Blocks lack the canonical and base- 10 constraints as well. How-
ever, teachers usually require their students to obey these two.

. Power Represented by Location Only. Numerals must take up space,

either on table tops or on paper. Once powers are sorted, location in space
redundantly represents the power of a counter. In this mp-morphism, that
redundancy is removed by making all coefficient tokens (i.e., **digits’")
look the same, regardless of the power. The abacus, for example, obeys
this constraint. This allows one to represent much larger numbers, since
one need not invent new token shapes when one needs (0 use a new,
higher power. That is, one can make an abacus of arbitrary width, but
Dienes Blocks, which are inherently unable 1o obey this constraint, are
limited in practice to. at most, four powers.

Zero. To use location to represent power, a prearranged pattern of
locations must be used. But such fixed patterns, like the abacus or col-
umnar ruled paper, can’t represent numbers that are larger than they have
been designed to represent. Moreover, producing the patterns accurately
is difficult to do frechand. A good solution to this problem is to represent
power with relative locations, which amounts to using zero as a
placeholder. A “‘relative-location abacus’™ could be built that lays out
piles of beads in a line on the table; it would use a clear plastic bead as a
placeholder and piles of colored beads as nonzero *digits. ™

. Alignment. In setting up the subtraction problem, one insists that the

numerals be aligned so that digits of the same power are in the same
column. This reduces the effort necessary to locate the digits of matching
poewer when subtracting.

. Noncountable Coefficients. 1t is quicker to arrange counters on a table

or write coefficients symbols on paper if the number of counters or
strokes is small. This motivates replacing countable coefficients with
symbolic ones (e.g., digits). However, with symbolic coefficients, the
PICK/FROM operation is radically altered. It is no longer possible to
decrement a coetficient by picking up a piece of it (i.e., picking up a
block or erasing a hash mark). Instead, a decrementation table must be
memorized. That is, one must be able to count backwards from 20.
There is no particular point where the target constraints force us off the
counting table and onto paper. Manipulatory systems can be devised that

13.

14.

16.

18. PLANNING NETS 135

use noncountable coefficients. One such manipulatory system is simply a
set of cards bearing digits, which are laid out in a line on the table.
Memorize Pairing Off. The next few minimal contrasting models are
designed to minimize the manipulation of the cards in a manipulatory
system, or erasing a digit and writing a new one in a written system. In
the previous number systems, column subtraction was realized by pairing
off decrements of the top and bottom digits. A ‘‘movie’’ of the card
procedure doing 15 — 3 would be

OIE _0E 0 __ 06
B @ ° O O

This model replaces this pairing-off loop with a table loopup. A *‘movie’’
of the modified card procedure doing 25 — 7 is

R 00 _ 0 0O
T B B O

Memorize Comparison. This model procedure replaces the two-step
borrowing (see foregoing movie) with a one-step borrow by looking
ahead. That is, it looks ahead 10 see which digit will be zero—the top or
the bottom. This amounts to memorizing the greater-than table for digits.
Now the movie for 25 — 7 is

DE 0 0O
BT @7 O

. Memorize Teens Facts. Two table lookups can be reduced to one, and

two digit rewrites can be saved if a new facts table is provided for the
teens facts. The new table is 10 by 9 and contains facts like 15 — 7 = 8.
The movie reduces to

DE __ 06
R O

Sequence Columns. In the previous systems, columns are processed in
random order. However, this necessitates marking the columns that are
done by zeroing the bottom digit. This digit rewrite can be saved if the
columns are processed in some set order—either left to right or vice

136 VANLEHN AND BROWN ° 4 C e

versa. The planning heuristic—that is, the right difference generator of
this mp-morphism—could be called *‘ordering independent operations
reduces marking. "'

17. Answer Register. If a separate place is provided for writing the answer,
then erasures of the top digits can be reduced. This is motivated by the
fact that writing a digit is easier than erasing—a property peculiar to
paper.

18. Right to Lefi. If the columns are processed right to left, one borrows
from the top digit. If the columns are processed left to right, one borrows
from the answer. The numeral that gets borrowed from ends up with
crasures, whereas the other one has no erasures. If one erases by scratch-
ing out the digit and writing the new digit above, then the numeral that’s
borrowed from can become a real mess. The motivation for this analogy
is that there is more need for the answer numeral 1o be legible than the top
numeral. Hence, subtraction is more efficient if one processes the col-
umns from right to left.

At last, we have arrived at the standard subtraction algorithm via a sequence
of procedures/models where each model in this sequence has an mp-morphism
between it and its immediate successor, thus creating a well-structured sequence
of analogous models converging to the desired target procedure.

REFERENCES

Allen, F & Cocke, J. A catalog of optimizating transformations. In R. Rustin (Ed.), Design and
ion of compilers. Englewood Cliffs, N.J.: Prentice-Hall, 1972,

Bmwn J. S., & Burton, R. R. Diagnostic models for procedural bugs in basic mathematical skills.
Cognitive Science, 1978, 2, 155-192.

Card, S. K. Snudies in the psvchology of computer text editing systems (Xerox PARC Rep. No.
SSL-78-1). Palo Alto, Calif.: Xerox Palo Alio Research Center, 1978 ‘

Evans, T. G. A program for the solution of geometric-analogy intelligence test questions. In M.
Minsky (Ed.), Semantic information processing. Cambridge, Mass.: MIT Press, 1968.

Fischer, G., Brown, J. S., & Burton, R. R. Aspecis of u theory of simplification. debugging. und
coaching (BBN Rep. No. 3912). Cambridge, Mass.: Bolt Beranek and Newman Inc., 1978,

Greeno, J., Gelman, G. R., & Riley, M. S. Young children's counting and understanding of
principles. Paper presented at the meeting of the Psychonomic Society. San Antonio, Texas,
November 1978. '

Newell, A., & Simon, H. A. Human problem solving. Englewood Cliffs, N.J.: Prentice-Hall, 1972.

Papert, S. A. Computer-bused microworlds as incubgtors for powerful ideas (MVT Logo Lab.
Working Paper). Cambridge. Mass.: Massachusetts Institute for Technology. 1978.

Sacerdoti, E. A structure for plans and behavior. New York: Elsevier North-Holland, 1977.

Sternberg, R.). Componential processes in analogical reasoning. Psyvehological Review, 1977, 84,
353-379.

Tversky, A. Features of similarity. Psvchological Review, 1977, 84, 327-35)3.

\

-

‘

18. PLANNING NETS 137

Winston, P. H. Leaming structural descriptions from examples. In P. H. Winston (Ed.). The
psychology of computer vision. New York: McGraw-Hill, 1975.

Winston, P. H. Leaming by creating and justifying transfer frames. Artificial Intelligence, 1978,
10, 147-173.

