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This bug only does the write-nine half of borrowing across zero. It changes 
the zero to nine, but does not continue borrowing to the left. Because it does do 
half of borrowing across zero, it is likely that subjects with this bug have been 
taught borrowing across zero. But it is also clear that they did not acquire all of 
the subprocedure, or else forgot part of it. If the subtraction curriculum was such 
that teachers first taught one half of borrowing across zero and some weeks later 
taught the other half, then one ·would be tempted to account for this bug with 
perfect prefix learning. But borrowing across zero is in fact always taught as a 
whole (as nearly as I can tell from examining arithmetic textbooks). So some 
other formal technique, deletion, is implicated in this core procedure's 
generation. 

Deletion is easily formalized by an operator that mutates a given core 
procedure to produce another. But formalizing perfect prefix learning requires a 
new technique. In order to capture the belief that perfect prefix learning depends 
on the sequence of instruction used with the skill, it cannot be captured as an 
operator on core procedures (Keil's approach and the one followed in the original 
version of Repair Theory), nor as constraints on just a set of core procedures (the 
pure Chomskyan approach). Also, it is premature to actually construct a learning 
algorithm that generates core procedures given something representing class
room instruction. More must be understood about the constraints on learning 
before such a project can be attempted. The approach used in the current version 
of Repair Theory is to capture perfect prefix learning with constraints on instruc
tion/knowledge pairs. This is the Chomskyan approach, but applied to sets 
whose elements are not core procedures, but pairs consisting of a core procedure 
and a prefix of the instructional sequence. 

The goal is to find constraints such that only the "good" core procedures 
are paired in the set. To be a "good" core procedure, not only must it occur in 
the sense that the bugs that are derived from it by repair occur or are plausible 
predictions, but all of the core procedures that are derived from it by deletion 
must also occur. When the output of perfect prefix learning is amplified by 
deletion, it must produce only correct predictions. 

There is a potential confusion surrounding the deletion operator. Since it 
acts upon the output of perfect prefix learning, one might plausibly interpret 
these comments as making a chronological and almost mechanistic claim: A 
student first learns perfectly, only to have some process come along later and 
"clobber" part of the memory for the procedure. Such a connotation goes far 
beyond the claims of the theory. The intent in separating perfect prefix learning 
and deletion is to allow formulation of constraints that accurately express the 
dependence of acquisition on instruction, both perfect acquisition and incomplete 
acquisition. 

So far, three constraints on perfect prefix learning have been identified . 
They all depend crucially on properties of the representation language. Indeed, 
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the representation language has been chosen in order to allow these constraints to 
be chosen (cf. the discussion of explanatory adequacy on pp. 214-215). All 
three constraints need to mention the input to perfect prefix learning, which is 
supposed to represent instruction. For the sake of stating these constraints, a very 
simple representation will be used. It relies on the fact that instruction in pro
cedural skills like subtraction is almost always divided into segments that intro
duce a new aspect of the algorithm and then drill the students on it. In a typical 
textbook presentation of subtraction, the segment for borrowing from zero is two 
pages: one page explains the new subprocedure and shows the sequence of 
actions needed to solve an example problem and the other is a page of exercises 
for the student to solve. Other typical segments are borrowing in two-column 
problems, borrowing in three-column problems where the borrow is initiated in 
the tens column, and adjacent simple borrows in three-column problems. These 
examples are cited to illustrate the grain-size of the formalization. In this chapter, 
that is all that is needed of the instruction formalization. 

Given the notion of segments, the three constraints that are the targets of the 
arguments of the next section can be stated. The first defines what it means for a 
core procedure to be " perfect" vis a vis a certain prefix of the instruction: 

Perfect prefix Learning: If x is an example or exercise problem of segment s, and 
core procedure p is paired with s by perfect prefix learning, then p solves x 
correctly and without reaching an impasse. 

The remaining two constraints describe the fact that subtraction learning is incre
mental. It is plausible that an individual subject moves through the sequence of 
core procedures as he or she moves through the curriculum. One would expect 
the structure of each core procedure to somehow embed the structure of its 
predecessor. That is, newly learned components are added on top of the existing 
components without changing them, or perhaps with only minimal changes. This 
kind of learning is usually called assimilation, to distinguish it from more radical 
kinds of learning. The hypothesis that core procedure learning is assimilation is 
expressed formally by the following constraint: 

The assimilation constraint: If segment s' is the successor of s in the teaching 
sequence and pairs (P,s) and (p' ,s') are generated by perfect prefix learning, 
then core procedure p is a proper subgraph of core procedure p' . 

This constraint (and the next one as well) uses the fact that a core procedure 
as represented in the formal knowledge representation language happens to be a 
labeled, directed graph. Hence, the convenient notions of subgraph and subgraph 
difference can be appealed to in order to express formally the relationship be
tween the old core procedure and the newly acquired one that is built on top of it. 
(Actually, a much more technical definition is necessary to be completely accu
rate. See the discussion of "maximal partial isomorphism" in VanLehn & 
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Brown, 1980.) Whereas the assimilation constraint says that learning makes only 
small changes to existing structure, the next constraint says that the amount of 
new material that can be learned is simple, in a certain sense. 

The disjunction-free learning constraint: If segment s' is the successor of s in 
the teaching sequence and pairs (P,s) and (p' ,5') are generated by perfect 
prefix learning, then the difference subgraph p' - p contains at most one 
disjunctive goal, namely the one adjoining it to p. 

What this constraint says is that the new material can contain no disjunc
tions, although a disjunction can be used to attach it to the old material. The 
intuition behind the disjunction-free learning constraint is that when teaching a 
conditional or "branch statement" in a procedure, one must first teach one side 
of the conditional, then the other; they can't both be taught at once. In subtrac
tion, for example, one teaches borrowing from a nonzero digit in one segment 
and borrowing from a zero in another. A new disjunctive test for zero adjoins the 
new borrow-from-zero subprocedure, which is free of disjunctions, to the old 
material as an alternative to borrowing from a nonzero digit. 

Stepping back to look at these three constraints as a whole, one sees that the 
perfect prefix learning constraint sets up a well-defined relationship between core 
procedures and instruction, whereas the other two, assimilation and disjunction
free learning, deliver the punch line. They begin to suggest something about 
potential learning mechanisms. The disjunction-free learning constraint is partic
ularly provocative. Computational experiments with a variety of knowledge 
representations have shown that induction from examples is simple when the 
language does not allow disjunction (Dietterich & Michalski, 1980; Hayes-Roth 
& McDermott, 1976; Mitchell, 1978; Vere, 1978; Winston, 1975). However, 
when disjunction is entertained, domain-specific constraints are needed to select 
among the multitude of inductions that can be made-domain independent con
straints, such as "simplicity," appear to be too weak (Feldman, 1972; Pinker'; 
1979). Combinatorial explosion continues to be a problem even when the input 
to the inductive algorithms contains feedback from a teacher concerning negative 
examples (i.e . , the learner is told that the given instance is not an example of the 
concept being induced). In theory, negative examples are sufficient to guarantee 
convergence of induction in the limit (Gold, 1967). In practice, they have been 
found to be helpful, but not helpful enough at taming the combinatorics of 
learning when disjunction is allowed (Knobe & Knobe, 1976). In short, there is 
every reason to believe from an algorithmic point of view that induction must 
either be disjunction-free or subject to strong domain-specific constraints. By 
hypothesis, nonnatural knowledge does not have strong domain-specific con
straints on its acquisition. Therefore, if an inductive algorithm is the underlying 
learning mechanism, there would have to be a disjunction-free learning con-
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straint on acquisition. To put it differently, if no constraint like disjunction-free 
learning can be sustained, then doubt will be cast on any inductive explanation 
for learning nonnatural knowledge. 

There are two comments to make with respect to testing these constraints. 
First, the data collection procedures for bugs did not record the instructional 
segment that each subject was in at the time of testing. Consequently, it has been 
necessary to guess which segments go with which core procedures. In one 
respect, this is just a mistake which has weakened the inferences that can be 
drawn from the data. On the other hand, it is a stroke of luck. Relying on 
anecdotal evidence, I suspect that the teacher's instruction to the class as a whole 
may be in a certain segment, but some students behave as if they are in some 
earlier segment. For some reason, they either did not learn or chose not to use the 
subskills that were taught most recently. If this phenomenon exists, it would not 
affect the constraints on core procedure generation. The same set of core pro
cedure/segment pairs could be used. However, being unable to use the class
room's segment as the segment of each student in the classroom would compli
cate the mapping between data and predictions . 

The second comment is that these constraints are highly dependent on the 
representation used for core procedures . Indeed, all parts of the theory depend 
strongly on the knowledge representation for core procedures. Not only are the 
acquisition constraints highly sensitive to the syntax of the expressions (pro
cedures) of this language, but the interpreter is designed specifically to execute 
procedures written in the language, and the repairs (and the critics) operate on the 
run-time state of the interpreter, which is in turn specified by the language. The 
influence of the language is felt everywhere in the model. Indeed, the key point 
of this chapter is that: Getting the knowledge representation language' 'right" 
allows the model to be made simple and to obey strong principles. 

My experience has been that incremental redesign of the representation 
language was absolutely necessary to bring the model into conformance with 
psychologically interesting principles. The evolution of the principles of the 
theory went hand in hand with the evolution of the representation language. The 
objective of this chapter is to analyze the crucial points in that evolution. 

THE GOAL STACK 

One of the earliest and most fundamental changes in computer program
ming languages was the move from register-oriented languages to stack-oriented 
languages . In register-oriented languages, one represents programs as flow 
charts or their equivalent. The main control structure is the conditional branch. 
Data flow is implemented as changes to the contents of various named registers. 
Stack-oriented languages added the idea of a subroutine-something that could 
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be "called" from several places and when it was finished, control would return 
to the "caller" of the subroutine. Although the register-oriented languages need 
only a single register to keep track of the control state of the program, stack
oriented languages need a last-in-first-out stack so that the interpreter can tell not 
only where control is now (the top of the stack), but where it is to return to when 
the current subroutine gets done (the next pointer on the stack), and so on. Stack
orientation also augmented the representation of data flow . A new data flow 
facility was to place data on the stack, as temporary information associated with 
a particular invocation of a subroutine. In particular, subroutines could be called 
with parameters (arguments). 

The fundamental distinction between register-orientation and stack-orienta
tion has lapsed into historical obscurity in computer science, but surprisingly, 
psychology seems ignorant of it. When a psychologist represents a process, it is 
frequently a flow chart, a finite state machine, or a Markov process that is 
employed. Even authors of production systems, who are often computer scien
tists as well as psychologists, give that knowledge representation a register 
orientation: Working memory looks like a buffer, not a stack, and productions 
are not grouped into subroutines. For some reason, when psychologists think of 
temporary memory, whether for control or data, they think only of registers. 

There are well known mathematical results concerning the relative power of 
finite state automata, register automata, and push-down automata. Some of these 
results have been applied to mental processes such as language comprehension 
(see Berwick, in press, for a review). However, I find myselfrather unconvinced 
by such arguments. As Berwick and others have pointed out, these arguments 
must make many assumptions to get off the ground, and not all of them are 
explicitly mentioned, much less defended. 

The project of this section is to argue for a stack-based representation of 
core procedures based on a -rich structure of motivated assertions: the principles 
and architecture of Repair Theory as presented in the preceding two sections. 
Those sections did not make assumptions about the representation language 
because they dealt with the facts at a medium-high level of detail. The arguments 
in this section and the next show what must be assumed of the representation 
language in order to push the structure of the preceding sections down to a low 
enough level that precise predictions can be made, and made successfully. That 
is, they show what aspects of the mental representation are crucial to the theory. 

The basic tools of complexity-based arguments on mental representations 
(cf Berwick, in press) are time and space bounds on the computation. These are 
risky precisely because we do not know what the processor and memory of the 
mind are like, or even if VanNeuman machine architecture (i.e., one processor, 
one memory, serial computation) is appropriate for measuring resource limita
tions on mental processing. In the near future, it appears that computers will be 
available with radically different architectures. For example, instead of one 
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processor and a large memory, there may be thousands of processors , each with a 
small amount of memory. These architectures are expected to radically change 
the speed and memory characteristics of computations. Crucially, they are not 
expected to change what can be computed but only what can be computed within 
certain resource limitations. So, one can assume a VonNeuman architecture is 
safe from technologically stimulated changes in metaphors, as long as one only 
cares about what the computations are and not what resources they require. 

In the following sections , resource limitations are never used as tools of 
argumentation. Instead, the tools are two operators that, by hypothesis , manipu
late the mental representation directly . One is a certain repair that manipulates 
the execution state, and the other is the deletion operator that mutates core 
procedures . By studying the kinds of changes they make, their computations, 
one can understand what requirements must be placed on the mental representa
tions that they manipulate. 

The Backup Repair is Necessary 

Control structure is not easily deduced by observing sequences of actions. 
Too much internal computation can go on invisibly between observed action 
steps for one to draw strong inferences about control flow. What is needed is an 
event that can be assumed or proven, in some sense, to be the result of an 
elementary, indivisible control operation. The instances of this event in the data 
would shed light on the basic structures of control flow. Such a tool is found in a 
particular repair called the backup repair. It bears this name since the intuition 
behind it is the same as the one behind a famous strategy in problem solving: 
backing up to the last point where a decision was made in order to try one of the 
other alternatives. This repair is so crucial in the remaining arguments that it is 
worth a few pages to defend its existence . 

The existence argument begins by demonstrating that a certain four bugs 
should all be generated from the same core procedure. There are two arguments 
for this lemma, one based on explanatory adequacy, the other on observational 
adequacy . From the lemma, it is argued that the backup repair is the most 
observationally adequate way to generate the four bugs. 

For easy reference, the four bugs will be broken into two sets called big
borrow-from-zero and little-borrow-from-zero. Big-borrow-from-zero bugs 
seem to result from replacing the whole column processing subprocedure when 
the column requires borrowing from a zero. Its bugs are 

Smaller-From-Larger-Instead-of
Borrow-From-Zero: 
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4 0 x 

When a column requires borrowing from zero, as the units column does in the 
last problem, the first bug takes the absolute difference instead of borrowing and 
taking a regular difference, whereas the second bug just answers the column with 
the maximum of zero and the difference, namely zero. 

The little-borrow-from-zero bugs have a smaller substitution target. Only 
the operations that normally implement borrowing across the zero are replaced, 
namely the operations of changing the zero to nine and borrowing from the next 
digit to the left. Its bugs are 

Borrow-Add-Decrement
Instead-of-Zero: 

Stops-Borrow-At-Zero: 
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In the first case absolute difference has been substituted for decrementing. 
Hence, the zero in the third problem is changed to the absolute difference of zero 
and one, namely one, during borrowing. The second bug, Stops-Borrow-At
Zero, is generated by substituting the max-of-zero-and-difference operation for 
decrement. This causes the bug to cross out the zero of the last problem, and 
write a zero over it. (Both these bugs, by the way, have other derivations than the 
ones discussed here .) 

The cross product relationship between these four bugs is exactly the kind of 
pattern that the repair process captures. The most straight forward way to formal
ize it would be to postulate two core procedures, one for big-borrow-from-zero 
and another for little-borrow-from-zero. However, all four bugs miss the same 
kind of problems, namely just those problems that require borrowing from a 
zero. Intuitively, they seem to have the same cause: The subskill of borrowing 
across zero is missing from the subject's knowledge. It is a fact that subtraction 
curricula generally contain a segment that teaches borrowing from nonzero dig
its. Now the perfect prefix learning constraint implies that all core procedures 
associated with a certain segment of instruction will miss just the problems that 
lie outside the set of examples and exercises of that segment. If two core pro
cedures were used and the perfect prefix learning constraint is to be obeyed, then 
both core procedures would have to be paired with the instructional segment that 
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teachers borrowing from nonzero digits . This means that whatever the mecha
nism is that implements perfect prefix learning, it must explain how it could 
generate two core procedures that differed only by how much of the procedure 
was repaired. Imposing this added task on the learner could make it more 
complex. So, in order to simplify the learner and maintain the perfect prefix 
learning constraint, the four bugs should be generated from the same core 
procedure. 

The previous argument was based on explanatory adequacy . There is a 
second based upon observational adequacy. It stems from the empirical claim 
that all bugs in a bug migration class are generable from the same core pro
cedure. Figure 5.3 shows the first six problems of a subtraction test taken by 
subject 19 of classroom 20. This third-grader gets the first four problems right, 
which involve only simple borrowing. He misses the next two, which require 
borrowing from zero. Crucially, these two problems are solved as if the subject 
had two different bugs from the cross product pattern. This is an instance of 
intratest bug migration. The fifth problem is solved by a little-borrow-from-zero 
bug: He hits the impasse (note the scratch mark through the zero) and repairs it 
by skipping the decrement, a repair that generates the bug stops-borrow-at-zero. 
He finishes up the rest of the problem without borrowing-Apparently he wants 
to "cut his losses" on that problem. On the next problem, he again hits the 
decrement zero impasse, but repairs it this time by backing up and taking the 
absolute difference in the column that originated the borrow, the units column. 
These repairs generate the bug Smaller-From-Larger-Instead-of-Borrow-From
Zero. Since both bugs are in the same bug migration class, both are somehow 
derived from the same core procedure via repair. 

Two arguments have forced the conclusion that all four bugs come from the 
same core procedure. Now the problem is to find repairs that will generate all of 
them, given that they all stem from the same impasse. One way to do that would 
be to use four separate repairs. However, that would not capture a fact about 
these bugs that was highlighted in their description: They fall into a cross product 
pattern whose dimensions are the "size" of the patch (i.e., just the decrement 
versus the whole borrowing operation) and its "function" (i .e ., absolute dif
ference versus maximum of zero and difference). It will be shown that this 
pattern can be captured by postulating a backup repair, and hence that approach 
is more descriptively adequate. 

As mentioned earlier, the backup repair resets the execution state of the 
interpreter back to a previous decision point in such a way that when interpreta-
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Figure 5.3. The first six problems show bug migration. 
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tion continues, it will choose a different alternative than the one that led to the 
impasse that backup repaired. The backup repair is used for the big-borrow
from-zero bugs but not the little-borrow-from-zero bugs. Using backup in those 
cases causes a secondary impasse. The secondary impasse is repaired with the 
same two repairs that are used for the little-borrow-from-zero bugs. This is 
perhaps a little confusing, so it is worth a moment to step through a specific 
example. 

Figure 5.4 is an idealized protocol of a subject who has the bug Smaller
From-Larger-Instead-of-Borrow-From-Zero. The (idealized) subject does not 
know about borrowing from zero. When he tackles the problem 305 - 167, he 
begins by comparing the two digits in the units column. Since 5 is less than 7, he 
makes a decision to borrow (episode a in the figure), a decision that he will later 
come back to . He begins to tackle the first of borrowing's two subgoals, namely 
borrowing-from (episode b). At this point, he gets stuck since the digit to be 
borrowed from is a zero and he knows that it is impossible to subtract a one from 
a zero. He's reached an impasse. The backup repair gets past the decrement-zero 
impasse by "backing up," in the problem-solving sense, to the last decision 

a 

b. 

c. 

d 

e. 

305 
-167 

305 
- 167 

305 
-167 

2 

2 

S05 
- 167 

2 

2 

&05 
-167 

142 

[n the units column, [can't take 7 from 5, so I'll 

have to borrow. 

To borrow, [ first have to decrement the next 

column's top digit But [ can't take 1 from O! 

So I'll go back 10 doing the units column. I still can't 

take 7 from 5, so I'll take 5 from 7 instead 

In the tens column, I can't take 6 from 0, so I'll have to borrow. 

I decrement 3 to 2 and add 10 to O. That's no problem. 

Six from 10 is 4. That finishes the tens. The hundreds is 

easy, there's no need to borrow, and 1 from 2 is 1. 

Figure 5,4, Pseudo-protocol of a bug generated with backup repair. 
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which has some alternatives open. The backing up occurs in episode c where the 
subject says, "So I'll go back to doing the units column." In the units column he 
hits a second impasse, saying, "I still can ' t take 7 from 5," which he repairs 
("so I'll take 5 from 7 instead"). He finishes up the rest of the problem without 
difficulty. His behavior is that of Smaller-From-Larger-Instead-of-Borrow
From-Zero. The other big-borrow-from-zero bug would be generated if he had 
used a different repair in episode c. (e.g, He might say, " I still can't take 7 from 
5, but if I could, I certainly wouldn't have anything left , so I'll write 0 as the 
answer. " ) 

It has been shown that the backup repair is the best of several alternatives 
that generate the four bugs . Needless to say, it plays an equally crucial role in the 
generation of many other bugs, but the argument stuck with just four bugs for the 
sake of simplicity. Backup is the tool that will be used to reveal constraints on 
core procedures. 

Flexible Execution State is Necessary 

There are several important aspects of the preceding example that indicate 
something about the kind of execution environment that backup operates within. 
The decrement-zero impasse that backup repaired occurred when the focus of 
attention was on the tens column. After backup had returned control back to an 
earlier decision (the decision about whether to borrow) , the focus of attention 
was on the ones column. Somehow, backup knew to shift not only the flow of 
control , but the data flow as well. (I am assuming that the control and data flow 
are distinct , and that the column that is the focus of attention is held in a data 
flow construct- a register, variable, message, local binding, etc. There is an 
argument for this assumption, which is based on the ability of a competent 
subtractor to answer problems requiring borrowing across arbitrarily many zeros, 
but it will not be presented here.) 

An even more impressive example of the power of backup to shift data and 
control flow occurs with a common core procedure that forgets to change the 
zero when borrowing across zero. This core procedure produces answers like (a): 

2 0 

0 0 0 

(a) 4 10 12 (b) POl2 (c) 1 0 12 (d) POl2 
-139 =----U - 39 =----U 

173 173 3 7 3 

The 4 was decremented once due to the borrow originating in the units column 
and then again due to a borrow originating from the tens column because the tens 
column was not changed during the first borrow as it should have been. 

The crucial fact is seen in (b). Because this example is such a critical one 
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Since I can't take 9 from 2, I'll borrow. The next column is 0, so 

I'll decrement the I, then add 10 to the 2. Now I've got 12 take 

away 9, which is 3. 

Since I can't take 3 from O. I'll borrow. The next digit is 0, 

but there isn't a digit after that! 

I guess Lcould quit, but I'll go back to see if I can fix things up. 

Maybe I made a mistake in skipping over that 0, so ('II go 

back there. 

When I go back there, I'm still stuck because I can't take 1 from O. 

I'll just add instead. 

:'>low I'm okay. I'll finish the borrow by adding 10 to the ten's 

column, and 3 from 10 is 7. The hundreds is easy, I just bring 

down the 1. Done! 

Figure 5.5. Pseudo-protocol of Borrow-Across-Zero with backup. 

throughout this section, it is illustrated in Figure 5,5 with by a pseudo-protocol. 
The procedure decrements the one to zero during the first borrow (episode a in 
the figure) . Thus, when it comes to borrow a second time, it finds a zero where 
the one was and borrows across it. This causes an attempt to decrement in the 
thousands columns, which is blank, An impasse occurs (episode b). The most 
common repair to this impasse is quit-a repair that just gives up on the problem, 
This would give the answer shown in (c). The answer shown in (b) and in Figure 
5.5 is generated by assuming the impasse is repaired with backup, Backup 
returns to the decision made in the hundred's column concerning the zero-ness of 
its top digit (episode c in the figure), It takes the open alternative to this decision, 
which causes an attempt to decrement the top digit in the hundred's column, This 
causes a secondary impasse (episode d) , If it is repaired one way, one sees the 
decrement replaced by an absolute difference as in (b) and the figure, If it is 
repaired a different way, one sees the familiar maximum of zero and difference 
patch, as in (d), The existence of several repairs to this secondary impasse 
confirms its existence, So, the assertion that backup returns to the decision at the 
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hundreds column is well-motivated. The crucial fact is that the backup repair 
shifted the focus even though both the source and the destination of the backing 
up were highly similar: They both concerned borrowing-from (as opposed to 
borrowing-into) and they both involved single digits rather than columns. 

The stage has been set to uncover what kind of execution state the interpret
er and backup are using. The execution or "run time" state of an interpreter 
holds whatever temporary information the interpreter needs to execute the pro
cedure. Three alternatives will be contrasted: (a) minimal state, (b) fixed state, 
and (c) flexible state. 

At a minimum, the execution state requires a register to indicate the current 
locus of control in the procedure. Since data flow is assumed to be independent 
of control flow, at least one more register would be needed to hold a pointer to 
the column or digit being operated on . However, this minimal control state puts 
an enormous burden on backup if it is to account for the facts. Since the only 
thing that backup has at the time that an impasse occurs is a control pointer to the 
action that is stuck and a data flow pointer to the column or digit that was being 
focused on when the impasse occurred, it can only use these as a starting point in 
a search through the core procedure to locate a decision point to go back to. That 
is, it must analyze the core procedure enough to "walk control backward" 
through it, and thus locate a decision to return to. Moreover, it must pay special 
attention to any data flow manipulations that it passes since these will have to be 
undone. Only by reversing the data flow can backup account for the shift in focus 
of attention that was observed in the examples above. Giving backup this much 
analytic ability means repairs cannot be considered weak and local. If one were 
to give repairs as much power as this version of backup requires, then it would be 
possible to account for virtually any subject behavior by postulating a complex 
enough repair. This much tailorability would render the theory vacuous. 

An alternative to minimal state is to have a certain fixed number of regis
ters, say one per "subprocedure." The idea is that each suprocedure would have 
its own control and data registers. Thus, instead of analyzing the core procedure, 
backup would search through the registers in the execution state . It doesn't 
matter much what a subprocedure is, but to account for the facts just stated, 
borrow-from and process-column would have to be distinct subprocedures. To 
account for the first example (Figure 5.4), the impasse happens at borrow-from, 
and backup shifts back to process-column. Because they have separate data flow 
registers, this effects a shift from the tens column to the units column. Although 
multiple registers suffice to account for the first fact, they fail on the second 
(Figure 5.5). There the impasse occurs at borrow-from in the thousands column, 
but backup shifts to borrow-from in the hundreds column. Since borrow-from 
has only one data flow register, backup would have to do some clever analysis of 
the core procedure (which should not be allowed in the theory) . 

Other possible finite execution states are to assign a register to each data 
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type, which in this case means roughly one register for columns and one for 
digits. But this fails to account for the shift of the second example since both the 
impasse (decrementing a blank) and the decision point returned to (testing a digit 
for zero-ness) involve the digit data type. Hence, there can be only one register 
involved, and one is again forced to give backup the intelligence necessary to 
change it in order to account for the facts. 

A further alternative still is to assign one control register to each column. 
The basic idea (which is inspired by object-oriented programming languages 
such as Smalltalk and Simula) is that when an impasse occurs in one column, 
backup moves rightward and resumes with whatever action that column's control 
register indicates. However, this could not account for cases where the impasse 
and the decision that backup returns to are in the same column. There are 
examples of this, but for the sake of brevity, they will not be presented here. 
Anyway, one could go on in this spirit, using a fixed set of registers with various 
semantics. However, I think the point has been made that the whole fixed state 
approach is flawed observationally. If it could be made to work at all, its register 
semantics would probably be quite implausible. 

A third option for the execution state involves a capacity to hold an arbitrary 
amount of state that is not determined in advance of the procedure's execution. 
Given this faculty, one can stipulate that each time a decision is made, the 
control flow and the data flow are saved in a safe place in the execution state. By 
"safe," I mean that as control flow and data flow change later, these saved 
values will not be affected. This allows backup to be very simple. It searches 
among the saved decision points for one meeting its criterion (e.g., the most 
recent one). Not only does this allow backup to account for the facts just exhib
ited, but it makes the strong prediction that whenever backup restores control to a 
past decision, the data flow must be reset to whatever it was at the time of that 
decision. Whereas the other schemes allowed the possibility that control could be 
shifted independently of data-backup could choose not to reverse the data flow 
as it walked control backward through the core procedure-this one forces them 
to be shifted together, if at all. That is, instead of just accounting for the fact that 
control and data flow are shifted together, the flexible-state architecture explains 
it. 

This kind of argument is a familiar one in computer science . It trades off 
increased storage of information against decreased processing on the part of 
backup. The more information is saved in the run time state, the less information 
backup has to compute. Since there are good methodological reasons for making 
repairs as simple as possible, this tilts the tradeoff in favor of increasing execu
tion state. The fact that this end of the tradeoff netted us an explanation rather 
than a mere description of the facts of backing up indicates that this tradeoff is 
more than a free parameter of the theory, but integral to it. 

There is a second argument for flexible execution state, which turns on 
explanatory adequacy. The argument shows that recursive control flow is neces-
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sary for disjunction-free learning. That is , if execution state is not flexible, thus 
allowing the language to use recursion, then the disjunction-free learning con
straint cannot be imposed on the perfect prefix learning. The argument involves 
learning a certain way to borrow across zero, which is exemplified in the follow
ing problem: 

2 9 

3 10 15 
-1 29 

176 

The zero has ten added to it , then the three is decremented, then the newly 
created ten is decremented. The claim is that the only way to learn this way of 
borrowing in a nonrecursive language violates the disjunction-free learning con
straint. To make the argument crisp, a particular nonrecursive language , namely 
flowcharts, is used. Figure 5.6a shows borrowing from a core procedure that 
only knows how to borrow from nonzero digits. Figure 5.6c shows borrowing 
after borrowing across zero in the fashion shown earlier has been learned. Clear
ly, there are two branches to learn. One moves control leftward across a row of 
zeros , and the other moves back across them until the column originating the 
borrow is found (i.e., the "Home?" predicate is true of the column B). There are 
many other ways that borrowing could be implemented, but if recursive control 
is not available, they would all have to have two loops-one for searching 
leftward, one for searching rightward. 

a. b. c . 

Figure 5.6. Finite state version of borrowing. 
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a. b . 

Figure 5.7. Recursive versions of borrowing. 

Now disjunction-free learning sanctions the acquisition of at most one 
branch, and this must be one that adjoins the newly learned steps to the older 
material. A formal definition of branches and adjunction depends on the syntax 
of the language, but the essence of it should be clear by examining the difference 
between Figure 5.6a and 5.6b. Functionally, the difference is that the core 
procedure of Figure 5.6b has learned how to borrow from one zero. Syntac
tically, there is one branch, and it is an adjoining branch because one arm of the 
branch skirts the new material. The essence of adjunction is that one arm of the 
new conditional replicates the old procedure's control pathway. 

It should be clear that the transition from Figure 5.6a to 5.6c requires adding 
two disjunctions and thus violates the disjunction-free learning constraint. Yet, if 
the language allowed recursion, then the borrowing-from-zero goal could be 
represented as in Figure 5.7b , with a recursive call to itself (the heavy box 
labeled "Borrow"). This representation allows the transition from nonzero bor
rowing (5.7a) to borrowing-from-zero (5.7b) to obey the disjunction-free learn
ing constraint. Recursion requires a flexible execution state because the control 
state must be saved across the recursive call to borrow. In short, the language 
must have a flexible-state control structure so that a certain acquisitional transi
tion obeys the disjunction-free learning constraint. 

A Goal Hierarchy and a Stack Are Necessary 

The backup repair sends control back to some previous decision. The ques
tion is, which decision? There are three well-known backup regimes used in 
Artificial Intelligence (AI): 
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Chronological backup: The decision that is returned to is the one made most 
recently, regardless of what part of the procedure made the decision. 

Dependency-directed backup: A special data structure is used to record which 
actions depend on which other actions. When it is necessary to backup, the 
dependencies are traced back to find an action that doesn't depend on any 
other action. This means a decision was made (an "assumption" in the 
jargon of dependency-directed backtracking) whose first effect was this 
action. That decision is the one returned to. 

Hierarchical backup: To support hierarchical backup, the procedure representa
tion language must be hierarchical in that it supports the notion of goals with 
subgoals. In order to find a decision to return to, it searches up the hierarchy 
starting from the current goal, going up from goal to supergoal. The first 
(lowest) goal that can "change its mind" is the one returned to . (NB: In 
A.I., this is not usually thought of as a fonn of backup. It is usually referred 
to by the LISP primitives used to implement it, e.g ., Catch and Throw in 
Maclisp.) 

The argument that follows shows that the first two backup regimes have 
observational and descriptive problems. Hierarchical backup is the only one of 
the three that can generate the crucial bugs while avoiding the generation of star 
bugs. This conclusion has consequences for the representation language, namely 
that the language must force a modular or goal-subgoal structure on procedures, 
and furthennore, that this kind of backup forces the execution state to be a stack. 

Chronological backup is able to generate the bugs mentioned earlier. The 
walk-through of Figures 5.4 and 5.5 should be evidence enough of that. Howev
er, by the impasse/repair independence principle, it can be used to repair any 
impasse, and here it has problems. When it is applied to the impasses of certain 
independently motivated core procedures, it generates star bugs. This point will 
be made with an example of one of them. It is a core procedure that is needed to 
generate bugs like: 

19 

Smaller-From-Larger- 345 345 207 
With-Borrow: -102 -129 -169 

243 j 214 x 32 x 

3 19 

Zero-After-Borrow: 345 345 207 
-102 -129 -169 

243 j 210 x 30 x 

After completing the borrow-from half of borrowing these bugs fail to add 
ten to the top of the column borrowed into. Instead, Smaller-From-Larger-With
Borrow answers with the absolute difference of the column, and Zero-After-
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Borrow answers the column with zero. Apparently, and quite reasonably, the 
core procedure is hitting an impasse when it returns to the original column after 
borrowing. Since the column has not had ten added to the top digit as it should, 
the bottom digit is still larger than the top. This causes the impasse, which is seen 
being repaired two different ways in the two bugs. 

When the core procedure thus independently motivated, one should find 
that a bug is generated when chronological backup is applied to the impasse. But 
since the core procedure knows how to borrow across zero, at the time it reaches 
the impasse, its most recent decision was that the digit that it was to borrow from 
was nonzero and hence could be decremented, thereby finishing up the borrow 
(I'm making assumptions about the order of steps during borrowing, but these 
are not essential to the argument-somewhere in the middle of borrowing there 
will be a decision point). Since this is the most recent decision, chronological 
backup causes control to go back and " continue" the borrowing, even though it 
already has borrowed. Worse, when it gets done with this superfluous borrow
ing, it comes right back to the backup patch, which sends it back to borrow 
again! The chronological backup patch results in an infinite loop, and a rather 
bizarre one at that . Clearly, this is a star bug and should not be predicted to occur 
by the theory. Chronological backup is ruled out on grounds of descriptive 
inadequacy. 

Dependency-direct backup is really not a precise proposal for this domain 
until the meaning of actions depending on other actions is defined. Considera
tion of the star bug that was just described leads to a plausible definition. Part of 
what makes the star bug absurd is its going back to change columns to the left of 
the one where the impasse occurred. It seems clear that difficulties in one column 
don't depend causally on actions in a different column. If dependency between 
actions is defined to mean that the actions operate on the same column (or more 
generally, have the same locative arguments), then dependency-directed backup 
would not make the mistake that chronological backup did. It would never go to 
another column to fix an impasse that occurs in this column. However, even this 
rather vague definition limits dependency-directed backup too strongly. Several 
examples of backup were presented earlier (Figures 5.4 and 5.5) where the 
location was shifted, and hence dependency-directed backup cannot generate 
these bugs. As it is presently defined, it is observationally inadequate. 

In essence, these two approaches to backing up show that neither time nor 
space suffice. That is, such natural concepts as chronology or location will not 
support the kind of backing up that subjects apparently use. That leaves one to 
infer that they must be using some knowledge about the procedure itself. The 
issue that remains is what this extra knowledge is . A goal hierarchy is one sort of 
knowledge that will do the job, as the following demonstration shows. 

The basic definition of hierarchical backup is that it can only resume deci
sions which are supergoals of the impasse that it is repairing. With this stipula-
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tion, anyone of a number of goal structures will suffice to block the star bug that 
chronological backup generated (as well as to generate all the backup bugs that 
have been presented so far) . One such goal structure is shown in Figure 5.8. This 
figure shows the goal-subgoal relationships with arrows. In this goal structure, 
the borrow-from goal (the goal that tests whether the digit to be borrowed from is 
zero) is not a supergoal of the take-difference goal (the operation that reaches an 
impasse in the star bug's generation). There would be a chain of arrows from 
borrow-from to take-difference if it were . Hence, when backup occurs at the take 
difference impasse, it cannot go to the borrow-from decision even though that 
decision is chronologically the most recent . 

In the previous section, it was shown that decisions must be saved in the 
execution state so that backup doesn't have to analyze the core procedure. But 
now a new constraint has been added to backup, namely one that it only return to 
decisions that are supergoals of the impasse. To maintain the constraint that the 
control information that repairs need is in the execution state, the set of saved 
decision points must be structured to reflect the goal structure. One way to do 
this is to remove decision points from the execution state when control ascends 
through their goal in the goal structure. This guarantees that the only decisions 
that are left in the execution state are ones that are supergoals of whatever goal is 
currently executing. This amounts to keeping goals in a last-in-first-out stack. 

Of course, there are many more powerful control regimes than stack-based 
ones. As an example of the trouble more powerful control regimes cause, consid-

17' col um,n_s ___ _ 

7ss,c~ 

/rro~ take·difference 

lOw.~ borrow· into 

write9 

Figure 5.S. A goal-subgoal hierarchy . 
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er a simple one: Coroutines are a control structure that allows independent 
processes, each with their own stack. But this control structure increases the 
expressiveness of the language, which allows perfect prefix learning to generate 
absurd core procedures. To demonstrate this point, suppose the language allowed 
coroutines, and consider perfect prefix learning of simple borrowing. The in
structional sequence would perhaps have pictures or blackboard demonstrations 
presenting the actions of borrowing in a sequence, such as: 

4 15 
-2 9 

4 15 
-2 9 

4 15 
-2 9 

6 

4 15 
-2 9 

I 6 

Given that coroutines are allowed, one way to construe the first two actions, the 
new ones, is that they are a new coroutine. It happens that the example has this 
coroutine executing before the old one, but the learner need not take that as 
necessary . The core procedure could execute the coroutines interleaved, as in: 

4 15 
-2 9 

4 15 
- 29 

6 

4 15 
- 29 

6 

4 15 
-2 9 

I 6 

Because this core procedure can execute either interleaved or correctly, it seems 
an absurd prediction to make , a star bug. Yet with the addition of few minor 
constraints on sequencing the two coroutines, it meets the perfect prefix learning 
constraint and , I suppose, the others as well if the notion of subgraph can be 
defined for coroutines. In short, the use of a more powerful control regime 
allows perfect prefix learning to generate core procedures that it should not. 
Restricting the control regime to be a stack improves the descriptive adequacy of 
the theory by blocking the star bug. In addition, the stack constraint is in itself a 
restriction on acquisition and so increases explanatory adequacy as well. 

SATISFACTION CONDITIONS, DELETION, AND THE 
APPLICA TIVE CONSTRAINT 

In the previous section, it was shown that the execution state should be a 
stack, which entails that the knowledge representation for core procedures has a 
goal-subgoal calling hierarchy. That is, a goal should have explicit subgoals that 
it can call. But this constraint leaves many issues unsettled. One open question 
is, when should a goal be popped from the stack? Certainly a goal is finished 
when all the subgoals have been tried, but are there occasions when it should exit 
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before trying all its subgoals? If there are, how should such information be 
represented? There are three reasonable possibilities: 

I . Pop after one subgoal has been successfully executed . 
2. Pop only after all applicable subgoals have been tried. 
3. When to pop is controlled by a special information associated with each 

goal. 

The first possibility cannot be the only exit convention used by the control 
structure because it will not allow expression of conjunctive goals, such as 
borrow, which has two subgoals that must both be executed. Consequently, it 
must be used along with some other exit convention, and goals must be typed to 
indicate which one applies. It is simplest to use it together with the second exit 
convention, a control regime equivalent to AND/OR graphs (Nilsson, 1971). So 
this control structure really amounts to giving goals either an AND or an OR type. 

On the other hand, the second convention for when to pop goals can be used 
alone. Indeed, it is the one used by most production systems (i.e. , those that use 
the recency and refractoriness conflict resolution principles (McDermott & For
gy , 1978) and do not erase goals from working memory). Goals do not need to be 
typed. Because it is simpler in that it does not require typing of goals, it is 
preferable to the AND/OR control regime. 

The third option is a generalization of the other two. As it stands , it is just a 
catchall category and would have to be fully defined before it can be evaluated 
empirically. However, it is clearly more powerful and less constrained than the 
other two and should be considered only if the data force abandonment of the 
others (which they do, as it turns out) . So, the three options, ranked in order of 
simplicity, are 

I. AND: pop when all applicable subgoals have been tried. 
2. AND/OR: goals have a binary type . 
3. Otherwise. 

The theme of this section is determining which of the three control struc
tures optimizes the theory's adequacy. However, the route to resolving this 
question is in many ways more interesting than its answer. The preceding section 
uncovered some of the structure of the internal execution state by examining how 
repairs manipulated it. The details of how backup changed "short-term memo
ry" revealed its structure. Here the task is similar. The exit conventions for goals 
are, in a sense, part of the "long-term memory" structure of goals. Repairs have 
been excluded from changing this structure by the core procedure immutability 
principle. To see into this "long-term" structure, one needs something that 
manipulates it or in some way depends on its form. Two will be used: perfect 
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prefix learning and deletion. So, part of the argumentation that resolves the exit 
convention controversy involves taking a stand on certain aspects of two formal 
devices for describing acquisition. 

The AND Exit Convention 
Is Not Compatible with Assimilation 

As a result of adopting a stack architecture in the previous section, a subset 
of the subtraction core procedures directly mirrors the structure of the teaching of 
subtraction. The segments of the subtraction curriculum are linearly ordered. It is 
plausible that an individual subject moves through some sequence of core pro
cedures as he or she moves through the curriculum, assimilating new material on 
top of the old, with relatively little change to the old material. In order to capture 
this hypothesis formally as the assimilation constraint, the representation of 
knowledge must have a certain format . The argument that follows shows that 
capturing assimilation formally is incompatible and with the AND exit conven
tion, the one used by production systems. It forces too much of the existing core 
procedure to be changed in order to assimilate the new material. 

The problem with the AND exit convention is due to the cumbersome way 
that disjunctive goals must be expressed. To express the fact that two subgoals 
are mutually exclusive, one must put mutually exclusive "applicability" condi
tions on them. For example, to express the fact that there are two mutually 
exclusive ways to process column, depending on whether it is a two-digit column 
or a one-digit column, one would write 

To process-column (X): 
1. (blank? (bottom X) ~ (bring-down-top X) 
2. (not (blank? (bottom X) ~ (take-difference X) 

(In this example and the ones following it, a rule-oriented syntax has been 
adopted. Each subgoal is a rule, with its name and arguments on the right side . 
The conditions determining when the subgoal is applicable are separated from 
the rest of the subgoal to come a set of "applicability conditions," which are 
shown on the left side of the rule. The locally bound data flow that was argued 
for in the preceding section is implemented by giving goals arguments; in this 
case, X is a variable (argument) standing for the column being processed. Lisp 
function/argument syntax is used instead of the usual mathematical notation 
(Le., f(x) is written (f x).). Nothing in the following argument depends on the 
adoption of a rule-oriented syntax as opposed to, for example, networks or 
schemata.) 

Both rules must have applicability conditions in order that they by mutually 
exclusive. In the following problem: 
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37 
- 4 
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the fIrst rule must be prevented from applying to the units column, so its ap
plicability condition is necessary. The second rule's applicability condition is 
necessary to prevent it from applying to the tens column. Because the AND exit 
convention tries to execute all subgoals, one can only get mutual exclusion by 
using mutually exclusive applicability conditions. 

This implies that assimilating a new alternative method of accomplishing a 
goal involves rewriting the applicability conditions of the existing subgoals. If 
the applicability conditions are not changed, then the new subgoal will not tum 
out to be mutually exclusive of the old subgoa\. For example, to assimilate a new 
method of processing columns, say one that handles columns whose top and 
bottom digits are equal, one would have to modify the previous goal to become 

To process-column (X): 
1. (= (top X)(bottom X)) ::::} (write-zero-in-answer X) 
2. (blank? (bottom X)) ::::} (bring-down-top X) 
3. (and (not (blank? (bottom X)) 

(not (= (top X)(bottom X)) ::::} (take-difference X) 

Adding the new subgoal forced the applicability conditions of one of the 
existing subgoals to be changed (the italicized material was added). The essential 
point here is that the AND convention forces mutually exclusive alternatives to be 
highly interdependent. This lack of modularity defeats assimilation since assim
ilation is forced to modify existing material even though that material's function 
has not changed. 

Despite the elegance of having just one exit convention and the simplicity of 
leaving goals unannotated, the AND exit condition must be abandoned. This 
implies that goals must be annotated with at least a single bit, discriminating 
between AND and OR, and perhaps with something rather complex. 

This annotation is welcome in that it simplifIes the backup repair. The 
function of the repair is to pop the goal stack back to the fIrst goal that has some 
alternatives left to try. When goals are typed, it is trivial to tell whether a 
supergoal has any alternatives left. If it is an AND goal, by defInition it does not. 
Jf it is an OR goal, then only one of its alternatives has been tried (because it 
normally pops after trying one subgoal), so all the rest must be open. If the 
representation language adds the syntactic constraint that all OR goals must have 
more than one subgoal, then backup's search becomes trivial: Pop the stack back 
to the fIrst OR goa\. In short, typing goals allows us to strengthen the locality 
constraints on repairs even more, reducing tailorability and leading perhaps to 
insight into the processes underlying local problem solving. 
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Finally, the AND/OR distinction allows the disjunction-free learning con
straint to be formalized as a constraint on syntax rather than domain-dependent 
predicates, which is how disjunction must be represented under the AND exit 
convention. 

Conjoined Rule Deletion 

Perfect prefix learning is characterized by the constraint that all core pro
cedures generated by it from a given prefix of the instructional sequence can 
answer all the exercises of that prefix correctly, without hitting impasses. If core 
procedures that are apparently the products of forgetting or partial learning were 
included in the output of perfect prefix learning, the constraint would be false . 
So, in order to increase the explanatory adequacy of the theory, they are gener
ated by a separated operator. The issue is, what should that operator be? To 
motivate it empirically, consider the form of the following goal: 

To borrow-from-zero (X) , do all of: 
I. (borrow-from (next-column X» 
2. (write9 (top X) 

This goal is an AND goal. When the first rule is deleted, a core procedure is 
generated that happens to survive application without reaching any impasses to 
become the bug Borrow-From-Zero: 

Borrow-From-Zero: 345 
-1 0 2 

2 4 3 j 

9 

2 0 17 
-1 6 9 

I 3 8 x 

This bug only changes the zero to nine during borrowing across zero. It doesn ' t 
borrow recursively to the left since rule I has been deleted . On the other hand, if 
rule 2 were deleted instead, it would be the writing of nine that is omitted, 
generating the bug borrow-across-zero 

Borrow-Across-Zero: 345 
-1 0 2 

2 4 3 j 

3 4 15 
-1 29 

2 I 6 j 

o 

The basic idea is that rule deletion of any of the rules under the AND goal 
seems to generate core procedures that not only lead to bugs, but are core 
procedures that one cannot generate with perfect prefix learning because they do 
not reflect perfect learning of any known segment in the subtraction curriculum. 
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So, deleting rules under AND goals is good. But look what happens when rule 
deletion is applied under the following OR goal 

To borrow-from (X), do one of: 
1. (zero? (top X» ::::} (borrow-from-zero X) 
2. ()::::} (decrement (top X» 

Deleting the first rule generates a familiar core procedure, namely one that 
impasses whenever it is asked to borrow from a zero. Because the rule that 
handles borrowing from zero is missing, it tries to decrement the zero. (This 
happens despite the fact that rule deletion has left the goal borrow-from-zero 
intact; only the call to it has been deleted.) But there is no need to generate this 
core procedure via deletion since it is already generated by perfect prefix learn
ing. Even worse things than redundant generation happen when the second rule 
or the OR goal is deleted. The following star bug is generated: 

*OnIy-Borrow-From-Zero: 345 
-1 02 

2 4 3 j 

3 4 15 
-1 29 

2 2 6 x 

9 

2 0 17 
-1 69 

I 3 8 x 

This star bug misses all problems requiring borrowing because it never performs 
a decrement, despite the fact that it shows some sophistication in borrowing 
across zero in that it changes zeros to nines. The juxtaposition of this competency 
in borrowing across zero with missing knowledge about the simple case makes 
the behavior highly unlikely. 

One possible deletion operator is to delete any rule (subgoal) of an AND 

goal. The rules of OR goals are not to be deleted. As the examples just given 
implied, this operator fits the data rather well. Note that it cannot be formulated 
without appealing crucially to the AND/OR distinction. Hence, this deletion oper
ator cannot be used in a control structure that uses only the AND exit condition 
(i .e., it won't work with production systems). Its name reflects this dependence: 
conjoined rule deletion. 

Satisfaction Conditions 

This deletion operator is a little too unconstrained. Some of its deletions 
lead to star bugs. For example, the main loop of subtraction, the one that 
traverses columns can have the following goal structure: 

To process-all-columns (X), do one of: 
1. (not (blank? (next-column X») ::::} (column-traverse X) 
2. ()::::} (process-column X) 
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To column-traverse (X), do all of: 
1. (process-column X) 
2. (process-all-columns (next-column X» 

The second goal is an AND goal , so either of its subgoals can be deleted. Deleting 
rule 1 creates a core procedure which only answers the leftmost column in a 
problem. This is a star bug. Deleting rule 2 creates another stag bug , one that 
only does the units column. 

Similar problems occur with other conjunctive goals. If the only goal types 
are AND and OR, borrowing must be represented with an explicit subgoal for 
taking the column difference after the modifications to the top row are made. 
This causes problems with the deletion operator. Specifically, when borrowing is 
represented with AND/OR control structure, as in: 

To process-column (X), do one of: 
1. (blank? (bottom X)) ~ (bring-down-top X) 
2. (less? (top X) (bottom X)) ~ (borrow&take-difference X) 
3. () ~ (take-difference X) 

To borrow&take-difference (X), do all of: 
1. (borrow-from (next-column X)) 
2. (addlO (top X)) 
3. (take-difference X) 

deleting the third rule of the AND goal means borrow&take-difference will do all 
the setting up necessary to take the column difference, but will forget to actually 
take it. This leads to the following star bug: 

*Blank-With-Borrow: 3 4 5 3 4 15 
-102 - 129 
243 / 21 x 

I 9 

2 017 
-1 69 

3 x 

It is perhaps possible to put explicit constraints on conjoined rule deletion in 
the same way that deletion blocking principles were used in Brown and VanLehn 
(1980). This approach would probably collapse into a nest of unmotivated con
straints . However, a second way to prevent overgeneration is to make the opera
tor inapplicable by changing the type of the goal so that it is not an AND . That is , 
one changes the knowledge representation rather than the operator. 

The proposed change is to generalize the binary AND/OR type to become 
"satisfaction conditions." The basic idea of an AND goal is to pop when all 
subgoals have been executed, whereas an OR goal pops when one subgoal has 
been executed. The idea of satisfaction conditions is to have a goal pop when its 
satisfaction condition is true. Subgoals of a goal are executed until either the 
goal's satisfaction condition becomes true or all the applicable subgoals have 
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been tried. (Note that this is not an iteration construct-an "until" loop---since a 
rule can only be executed once.) AND goals become goals with FALSE satisfaction 
conditions. Since subgoals are executed until the satisfaction condition becomes 
true (which it never does for the AND) or all the subgoals have been tried, giving 
a goal FALSE as its satisfaction condition means that it will always execute all its 
subgoals . Conversely, OR goals are given the satisfaction condition TRUE. The 
goal exits after just one subgoal is executed . 

With this construction in the knowledge representation language, one is free 
to represent borrowing in the following way: 

To process-column (X), do until (not (blank? (answer X))) : 
1. (blank? (bottom X)) ::} (bring-down-top X) 
2. (less? (top X) (bottom X)) ::} (borrow X) 
3. ( ) ::} (take-difference X) 

To borrow (X), do until FALSE: 

1. (addlO (top X)) 
2. (borrow-from (next-column .X)) 

The AND goal borrow now consists of two subgoals. After they are both 
executed, control returns to process-column. Because process-column's satisfac
tion condition is not yet true-the column's answer is still blank-another sub
goal is tried. Take-difference is chosen and executed, which fills in the column 
answer. Now the satisfaction condition is true, so the goal pops. 

Given this encoding of borrowing, conjoined rule deletion does exactly the 
right thing when applied to borrow. Deleting the first rule generates a core 
procedure that hits an impasse which repair amplifies to generate several bugs, 
such as: 

Smaller-From-Larger
With-Borrow: 

Zero-After-Borrow: 

345 
-102 

243 

345 
-102 

243 

345 
-129 

.j 214 

345 
-129 

j 210 

' 9 
207 

-169 
x 32 x 

' 9 
207 

-169 
x 30 x 

(These bugs are generated because skipping the add IO operation causes an im
passe when control returns to process the column that initiated the borrow. The 
top digit of that column is still larger than the bottom digit , so a repair is 
necessary. Different bugs result from different repairs .) Deleting the second rule 
generates the bug Borrow-No-Decrement: . 

Borrow-No-Decrement: 345 
-1 0 2 

2 4 3 j 

3 4'5 
-129 

2 2 6 x 

2'0'7 
-1 6 9 

I 4 8 x 
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The point is that it is no longer possible to generate the star bug. Similarly, 
the star bugs associated with column traversal can be avoided by structuring the 
loop across columns as: 

To process-alI-columns (X), do until (blank? (next-column X»: 
I. ( ) ~ (process-column X) 
2. ( ) ~ (process-alI-columns (next-column X» 

By using a satisfaction condition formulation here, generation of the star bugs is 
avoided. From this example and the preceding ones, it is clear that augmenting 
the representation with satisfaction condition and using conjoined rule deletion 
creates an observationally and descriptively adequate treatment of perfect prefix 
learning and deletion. 

Satisfaction conditions also play a crucial role in the formulation of em
pirically adequate critics. It turns out that one of the problems with critics, the so
called' 'blank answer critic" problem mentioned in Brown and VanLehn (1980), 
can be solved using satisfaction conditions. The details of this argument will be 
omitted here in favor of some comments of a different kind. 

The Applicative Constraint 

Having an operator that mutates the knowledge representation allows one to 
"see" the structure of the representation. An important use of this tool is to 
uncover one of the tacit constraints on data flow. One of the prominent facts 
about bugs is that none of them requires deletion of locative focus shifting 
functions. For example, if one knows about borrowing-from, one knows to 
borrow from a column to the left. No bug has been observed that forgets to move 
over before borrowing-from. This fact deserves explanation. 

In all the illustrations so far , focus shifting functions such as (next-column 
X) have been embedded inside calls to actions, predicates, or subgoals. This is no 
accident. Suppose one did not embed them, but instead made them separate 
subgoals themselves, as in: 

To borrow (X), do all of: 
I. (add 10 (top X» 
2. (X ~ (next X» 
3. (borrow-from X) 

where "~" means to change the binding (value) of the local variable X. A star 
bug could be generated by deleting rule 2. This star bug would borrow from the 
column that originates the borrow: 

*Borrow-From-Self: 345 
-I 0 2 

2 4 3 j 

14 9 16 

3 4 15 
-I 2 9 

2 2 5 x 

2 ' 0 ' 7 
-1 69 

I 3 7 x 
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In order to avoid such star bugs, focus shifting functions must be embedded, 
so a constraint upon the knowledge representation is needed to make this ex
plicit. About the strongest constraint one can impose is to stipulate that the 
language be applicative. That is, data flows by binding variables rather than by 
assignment. There are no side effects: A goal cannot change the values of another 
goal's variables, nor even it's own variables. The only way that information can 
flow "sideways" is by making observable changes to the external state , that is, 
by writing on the test page. 

The applicative constraint is extremely strong, forcing data to flow ver
tically only in the goal hierarchy. The procedure can pass information down from 
goal to subgoal through binding the subgoal's arguments . Information flows 
upward from subgoal to goal by returning results. No counterexamples to the 
applicative constraint have been found in the subtraction domain. 

The applicative constraint could have a profound effect on learning. It 
seems to make learning context-free. That is, learning a procedure becomes 
roughly equivalent to inducing a context-free grammar. The basic idea is that the 
applicative constraint together with the stack constraint force data flow and 
control flow to exactly parallel each other. To put in terms of grammars, the data 
flow subcategorizes the goals. This in tum makes it possible to induce the goal 
hierarchy from examples. Inducing hierarchy for procedures from examples has 
been an unsolved problem. Neves (1981) had to use hierarchical examples to get 
his procedure learner to build hierarchy. However, subtraction teachers do not 
always use such examples. Badre (1972) recovers hierarchy by assuming exam
ples are accompanied by a written commentary; each instance of the same goal is 
assumed to be accompanied by the same verb (e.g., borrow) . This is a somewhat 
better approximation to the kind of input that students actually receive, but again 
it rests on delicate and often violated assumptions. The applicative constraint 
cracks the problem by structuring the language in such a way that hierarchy can 
be learned via a context-free grammar induction algorithm (subject to the dis
junction-free learning constraint, of course). 

VARYING THE REPRESENTATION LANGUAGE 
IS THE KEY 

As mentioned previously, the main methodological point of this chapter is 
that: Getting the knowledge representation language "right" allows the model 
to be made simple and to obey strong principles. 

There have been five major changes in Repair Theory's representation 
language (so far). Each one had far-reaching effects on the simplicity and prin
cipledness of the model. In contrast, there has been only one change on the basic 
processes of the model, when perfect prefix learning was separated from rule 
deletion . There are several personal observations to make about this 
development. 
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Although it was intuitively obvious all along that "perfect learning" and 
"forgetting" could be separated, the need for changes in the representation 
language was never immediately obvious. The impact of knowledge representa
tion was very subtle. Its structure was not at all apparent from the data, and 
intuition was no guide either. It was only by reimplementing the model to use the 
new representation that its effect could be evaluated. 

The changes in the representation language were absolutely necessary for 
bringing the model into conformance with psychologically interesting principles. 
A typical scenario was to note a particularly ugly part of the model that could be 
simplified and made more elegant by changing the representation language; after 
the change was made, reflection upon the new elegance of the model uncovered a 
principle that the model now conformed to. Hard on the heels of that insight 
would often come several more ideas, usually of the form that changing a certain 
component process of the model to take advantage of the new construct in the 
representation language would allow it also to become simpler and to obey a new 
principle. In short, the evolution of the principles of the theory went hand in hand 
with the evolution of the representation language. 

The process model and the deletion operator were implemented in a com
puter program--called the "workbench"-in such a way that, given a core 
procedure, all possible deletions and all possible repairs could be applied and 
evaluated automatically. The evaluation was carried out by having the param
eterized model "take" a highly diagnostic subtraction test and submit its an
swers to DEBUGGY (Burton, 1981). DEBUGGY would diagnose the pseudo-stu
dent's answers to determine which bugs, if any, were exhibited. This program 
could be given a set of core procedures and left to run overnight. The morning's 
results revealed the observational adequacy of that set of core procedures. Al
though the initial investment in constructing this automatic theory evaluation 
system was high, it more than repaid that investment in facilitating the evaluation 
of subtle changes in the representation language as well as varying expressions of 
individual core procedures. 

Although changing the representation language allows discovery of its im
pact on the theory, quite a bit more work was required to separate these effects 
from the context of their discovery in order to make well-formed arguments. To 
put it graphically, the journey that the model and I took through the space of 
representations was a single twisted path. A great deal of thought was required 
not only to uncover the critical junctions along that path, but to understand the 
dimensions of the space. The analysis sought to free the choices in alternative 
representational structures from their discovery context and present them in a 
neutral context, so they could be evaluated independent of each other. Once put 
in a neutral context, use of the medium-level of detail of Repair Theory as a rich 
structure of starting assumptions enabled competitive argumentation in most 
cases to settle the choice, establishing the particular set of choices that constitutes 
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the representation language at the end of the path as a global maximum, rather 
than as a local one, in the space of mental representations. 
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