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During the past two · decades, artificial intelligence and linguistics have had a 
major impact on the form of theories in cognitive psychology. Prior to about 
1960, most theories in cognitive psychology considered information in relatively 
abstract terms, such as features, items, and chunks. Starting in the 1960s, and 
increasing during the 1970s, an additional theme in psychological theory has 
been to take into account the specific inf.;>rmation that is present in the tasks that 
provide the material for theoretical analyses . The difference can be seen, for 
instance, in psychological analyses of problem solving that were developed in 
the 1950s, compared with analyses that have been worked out in the I 970s . In 
the earlier analyses, problem solving was considered as seLection of a response 
(solution) that initially had low probability. Factors in the situation were exam­
ined for their facilitating or inhibiting effect on selection of the needed response. 
In computational models, specific task situations are represented, and programs 
are written that use the information in those representations to simulate processes 
of actually constructing solutions to specific problems. 

The capability of analyzing the details of processing specific information is 
clearly an advance. For example, it enables psychological analyses of human 
behaviors that one would label "understanding" that are much more detailed 
than those provided previously. However, there is a well known danger to such 
an approach . Analyses can become mired in their increased precision and detail , 
with the result that it is extremely difficult to separate fundamental principles 
from their supporting detail. Yet explicit principles are needed in order to define 
or at least constrain the classes of processes and structures that are postulated. 
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In particular, when such detailed analyses aspire to be empirical theories, they 
face difficulties in achieving an adequate treatment of individual differences. In 
most analyses, there has been considerable obscurity in the boundary between 
what is meant to be true of all subjects, and what is meant to be true of a 
particular subject. To modify the knowledge base, rules. or other structures in 
order to fit a model to an individual subject is often easy enough . but how to 
place well defined limitations on such changes is an open problem. Identifying 
the universal components of a model and the general principles that constrain the 
processes is a start toward assessing the .. degrees of freedom" of theories that 
tailor their predictions with non-numeric parameters (such as sets of rules). 
However, determining the tailorability of such models is at best vaguely under­
stood. Yet it is crucial. A model may have so much tailorability that it can be 
tuned to match almost any data, rendering it vacuous . 

Our concerns are similar to a number of recen! contentions that the methodol­
ogy of artificial intelligence (AI) and related fields is not productive for formulat­
ing and defending theories of mind (Dresher & Hornstein, 1976; Fodor. 
197811981; Pylyshyn, 1980, forthcoming; Winograd, 1977). Unlike early crit­
icism of AI (e .g . , Dreyfus. 1972). which centered on whether computers could 
ever be intelligent, these critics concentrate on AI's supposed contributions to 
psychology . They note that despite its potential. well supported cognitive theo­
ries based on AI technology have not been forthcoming. We tend to agree with 
their conclusion, and offer a brief analysis of why this is so. 

Approaches: top down, bottom up, neurological 

'AI has demonstrated that computer programs can behave with a certain degree of 
intelligence. However, no consensus has emerged concerning necessary or sutli­
cient design principles for creation of intelligent programs. or even on the limita­
tions imposed by the computational medium on intelligence. It currently appears 
that the goal of manifesting intelligence per .H' is not in itself constraining enough 
to force particular architectures or principles to be used . 

The failure of AI to demonstrate the existence of "top down" constraints on 
cognitive theories. principles inherent in the nature of cognition independent of 
the medium of its implementation, suggests searching "bottom up." starting 
with concrete instances of intelligent human behavior . That is. given that the 

. goal is to find out how human cognition works . it currently seems advisable 10 

ground the models/analyses in human data. In this chapter. we consider only 
empirical theories. or rather. the problems of obtaining empirical theories . that 
maintain the advantages of an AI-like treatment of task information while striv­
ing to meet scientific criteria for empirical theories . 

The technology of AI adapts readily to a bottom up approach. There are 
programs that simulate a subject's behavior quite faithfully and in considerable 
detail (e .g .• even eye movements during problem solving can be predicted . Cf. . 
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Newell & Simon, 1972) . However. despite the addition of empirical responsibil­
ity , the current methodology of employing simulation models is still weak in 
se.v~ral respects. There ~as been virtually no attention to the tailorability (degrees 
of freedom) of SImulatIon models . There has been little argumentation for the 
individual principles and components of the model . Because the entailments of 
each principle have not been separated from the performance of the model's 
simulation as a whole, one is asked to accept the model in toto with no elC.plana­
tion as to why it has the principles it does . Allhough questions of observational 
adequacy have been treated , questions of descriptive and elC.planatory adequacy 
have been almost universally ignored . Indeed. without the additional considera­
tion of tailorability, measures of descriptive and observational adequacy have 
little meaning . 

Some have asserted that it is necessary to add a third kind of constraint by 
moving to the periphery. where neurological data l'an be brought to bear on 
information processing theories . Allhough this has yielded some exciting results 
(Marr. 1976; Marr & Nishihara . I 97Hl, the findings obtained thus far seem not to 
provide strong constraints on the hypotheses about processes sueh as language 
comprehension or problem solving. 

The missing ingredient for scientific progress is not behavioral or neurological 
data, we believe. but scientific reasoning that explicates the principles underly­
ing successful models of cognition and connects them with the data. The empha­
sis must be on the connection; explication alone is not sufficient. Efforts at 
explicating programs have increased in response to lTitil's (e .g. Kaplan. 1981) 
who point out that a typical AI/Simulation" "explanation" of intelligent behavior 
is to substitute one black box, a complex computer program. for another. namely 
the human mind . Extracting the principles behind the dcsign of the l:lJlnputer 
program is a necessary first step. But many other questions remain to be ad­
dressed: What is the relationship between the principles and the behavior" Could 
the given cognition be simulated if the principles werc violated or replaced by 
somewhat different ones? Would such a change produn: inl'Onsistency . or a 
plausible but as yet unobserved human behavior. or merely a minor perturbation 
in the predictions? Which alternatives if any can now be relccted in favor of the 
chosen principles? This connection of explicit principles to the dala seem to be 
critical to progress in computational theories of cognition . 

Nature and Importance of Arguments 

Computer science has given psychology a new way of c)(prl"ssing models of 
cognition that is much more detailed and precise than Ih predecessors . But 
unfortunately, the increased detail and precision in .1/111;11.1: IlIlx.leb has not been 
accompanied by correspondingly detailed and precise argumcnh 1II1l1ll'zinR and 

l'upporring them. Consequently. the new. richly detailed models of cognitive 
science often fail to meet the traditional niteria of sl'Ientlfil' theones . Hy .1·Up -



238 VANLEHN, BROWN, GREENO 

PI~rt, . we. rc: fer to vari~~us traditional form~ of scientific reasoning such as showing 
that specified empirical phenomena proVide ~lsltlve or negative evidence regard­
Ing hypothes.es .. ~howmg that an assumption is needed to maintain empirical 
content and falsifiability. or showing that an assumption has consequences that 
are contradlcto.ry or at least implausible. It is of course not new to desire that 
cogOl~'ve theories have. this kind of support. Nor is it a new contribution to point 
out ~hat current theonzlng based on computational models of cognition has been 
lax '~ pr~)vldmg such support (Pylyshyn, 1980; Fodor, 1981) . Perhaps what is 
new IS diSCUSSing how such supporting argumentation could be developed .. . .or 
computational models of the mind . 

T~~ focus of this discussion is on the kinds of arguments that are applied to 
S~Clfl~d theoretical principles. We're not ·going to advocate building a particular 
k.ln~ of theory, no~ do we wish to dispute over criteria for theories (e .g., falsi­
fiability, ta.,lorabillty) . Instead, we discuss what kinds of tools are available or 
c~n be fashioned that will help one build computational theories of cognition that 
will meet some Widely accepted standards that have so far proved difficult for 
such theOries to meet. The prime tool of this discussion, actually a class of tools, 
IS the ('otnpetiti\'e arXuml'IlI . Unlike famous technological tools of scientific 
advance, such as microscopes or Golgi stains, which offered clearer views of 
tissue structure and other factual material, competitive argument seems to be a 
tool for analyzing and clarifying the theoretical issues implicit in a computational 
model 01 a cognitive faculty . 

There often is a great need for such a clarifying instrument when the model 
under developm~nt employs computations . The relationship between a principle 
and d.ata must often be an indirect one and can take several forms . For instance, a 
prinCiple might serve as a constraint on a class of processes, perhaps by defining 
a processing language and an interpreter; the processes in turn might have a 
mappl~g to observable hehavior defined . for example. by some grain-size as­
sum~tlons. T~e indirectness of the relationship between principles and data 
Provld~s addl~lonal reasons for providing dear and adequate supporting argu­
mentatIon , WHh appropriate argumentation, it is possible to show, among other 
things, that It IS the prinCiples that are responsible for the computations' empiri­
cal .coverage an~ not some obscure or accidental details of the particular comput­
er Implementation of the theory. Moreover, the arguments can show that the 
principles have some force in that they are refutable. 

. Of course, the idea of argumentation related to specific theoretical principles 
IS not new, and ~any ~xamples could be listed showing how psychologists have 
conSidered pr~ncl.ples ~n re.lation to their supporting evidence, their testability, 
and ~~e pl~uslblhty of their consequences. However, argumentation regarding 
speCifiC pnnclples has been relatively rare in computational theories. This is 
partl.Y . because theorists have spent their major effort coming to grips with the 
preCISion and subsequent detail of the computational medium and of course with 
the details of fine-grained, conceptual task analyses . 
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We view argumentation regarding specific principles as a part of a natural 
progression . The progression includes stages of task analysis, articulation of 
principles . and competitive argumentation . In the third section of the chapter, we 
give an example of the evolution of one particular theory through these stages. 

At the beginning of the study of a task domain, a great deal of analysis is 
necessary before even a crude simulation of behavior is possible, One must learn 
what details of the task should be included and what can be suppressed , Early 
examples such as Newell. Shaw, and Simon's ( 1963) model of proving theorems 
in logic, Bobrow's (1968) model of solving algebra word problems, and Evans' 
(1968) model of solving analogy problems (to name just a few examples) were 
valuable contributions partly because they showed that their mechanism,S were 
sl~fficient for producing correct solutions for an interesting variety of problems in 
their respective domains. In psychological studies such as Newell and Simon's 
(1972) models of performance in cryptarithmetic. logic exercises. and chess , and 
Simon and Kotovsky's (1963) model of solving series completion problems, the 
sufficiency criterion has been extended to require general similarity to perfor­
mance by human prohlem solvers. By and large, the first venture into a task 
domain does not yield a precise articulation of the principles that structure 
competence in it. But it is important to emphasize just how difficult it is to forge 
these first formalizations, and how much is learned from them . Furthennore, the 
understanding of processes involved in perfonnance provides an essential re­
source for subsequent investigation of the task domain . 

Such a subsequent investigation often aims at clarifying the general principles 
or c(Jm~lnents that mastery of the task involves . Often there is a separation of 
highly specific task information from more general information . Ernst and New­
ell's (1969) discussion of the General Problem Solver is a classic example . The 
general procedures of means-ends analysis were implemented as a distinct pro­
gram that was run in conjunction with representations of several different prob­
lem domains . Similar remarks apply to natural language understanding systems, 
such as Winograd's (1972) and Woods' (1972). that separated a general syntactic 
parser from a task specific lexicon and grammar. and a semantic representation 
language from some task-specific information written in it. Hypotheses that 
identify some of the components of a theory as being relatively more general than 
others provide a step in the direction of making a theory principled. in the sense 
that we propose. 

In our view, a significant strengthening of computation'al theories can be 
achieved by explicating their principles and the entllilm('f/ts of the principles. We 
believe that a substantial advance is achieved if a theory can be developed 
beyond being a black box with a certain measured adequacy . This involves 
laying bare the theory's principles and their entailments. showing how eaeh 
principle, in the context of its illlerll('tiollJ with the others, increases empirical 
coverage, or reduces tailorability. or improves the adequacy of the theory in 
some other way, With such developments, the theorist provides explanations of 
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why the particular principles were chosen. The support structure for each princi­
ple is laid bare. 

The internal strudure of the theory-the way the principles interact to entail 
empirical coverage and tailorabilitY~'omes out best when the theory is wm­
pared with other theories and with alternative versions of itself. That is, the key 
to supporting theories appears to he mmpetitil'e arRumentation . This style of 
support has succeeded in certain deep . non-computational theories. We suggest 
that it can be adapted to the increased rigor and detail of computational theories. 

In practice. most competitive arguments have a certain "king of the moun­
tain" form. One shows that a principle accounts for certain facts. and that certain 
variations or alternatives to the principle. while not without empirical merit, are 
nawed in some way. That is. the argument shows that its principle stands at the 
top of a mountain of evidence, then proceeds to knock the competitors down. 
The second section of this chapter illustrates the notion of such an argument with 
an example. 

Competitive arguments hold promise for establishing which principles are 
crucial for analyzing cognition . To show that some constraint is crucial is to 
show that it is necessary in order for the theory to meet some criteria of ade­
quacy . To show that it is suJj/cie'" is not enough . Indeed, any successful theory 
that uses some principle is a sufficiency argument for that principle . But when 
there are two theories, one claiming that principle X is sufficient and another 
claiming that a different. incompatible principle Y. is sufficient. sufficiency 
itself is no longer persuasive. One must somehow show that X is better than Y. 
Indeed. this sort of competitive argumentation is the only realistic alternative to 
necessity arguments. Competitive arguments form a sort of successive approx­
imation to lIecessity. 

Argumentation in non-computational fields 

Well reasoned. competitive argumentation occurs in non-computational fields. 
Linguistics is a particularly good example. Throughout its history. linguistics has 
had a strong empirical tradition . Prior to Chomsky. syntactic theories were rather 
shallow and almost taxonomic in character. The central concern was to tune a 
grammar to cover all the sentences in a given corpus. Arguments between alter­
native grammars could be evaluated by determining which sentences in the 
corpus could be analyzed by each. When Chomsky reshaped syntax by postulat­
ing abstract remote structures. namely a base grammar and transformations. 
argumentation had to become much more subtle. Because transformations in­
teracted with each other and the base grammar in complex ways. it was difficult 
to evaluate the empirical impact of alternative formulations of rules . 

As Moravcsik has pointed out (Moravcsik. 1980). Chomskyan linguistics is 
virtually alone among the social sciences in employing deep theories . Moravcsik 
(1980) labels theories "deep" (without implying any depth in the normative 
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sense) if they "refer to many layers of unobservables in their explanations. 
' Shallow' theories are those that try to stil'k as close to the ohservables as 
possible. landl aim mostly at correlations between observables ... . The history 
of the natural sciences like physics. chemistry. and biology is a clear record of 
the success story of 'deep' theories .. .. When we come to the social sciences. 
we encounter a strange anomaly . For while there is a lot of talk about aiming to 
be 'scientific,' one finds in the social sciences a widespread and unargued-for 
predilection for 'shallow' theories of the mind Ip. 2XI·" 

Computational theories of cognition are" deep" theories because much of the 
mechanism and representation that they postulate is quite unobservable. This 
depth is another reason that argumentation has been rare in computational theo­
ries . The principles and components that structure the theory's computation are 
remote from the data. The derivation of predictions from them is often so lengthy 
and convoluted that only hy executing the computation on the computer can the 
theorist tell what the current version of the theory predicts. To assign empirical 
responsibility to a component of the remote structure is possible only in rare 
cases. The depth of computational theories makes establishing the empirical 
necessity of their principles or architecture ex.tremely difficult. even given tha, 
their sufficiency has been demonstrated. 

When theories are "shallow," then argumentation is easy . In a sense, the 
data do the arguing for you . Most experimental psychology is like this. The 
arguments are so direct that the only place they can be criticized is at the bottom. 
where the raw data is interpreted as findings. Experimental design and data 
analysis techniques are therefore of paramount importance. The reasoning from 
finding to theory is often short and impeccable. On the other hand. when theories 
are deep in that the derivation of predictions from remote structures is long and 
complex., argumentation becomes lengthy and intricate . However. the effort 
spent in forging them is often repaid when the arguments last longer than the 
theory. Indeed, each argument is almost a micro-theory . An argument's utility 
may often last far longer than the utility of the theory it supports. This utility may 
take the form of a crucial fact. as discussed later. 

The transition from studying shallow theories to studying deep ones is some­
times accompanied by something like culture shock . The heightened concern 
with intricate argumentation from apparently casual empirical observations 
strikes some as totally unwarranted. Yet this concern can be highly significant. 
since it can show where the theoretical connections are weakest. It is here that 
theories draw fire from their critics. and rightfully so. for there are many trails 
between surface findings and remote structures. and the first one traversed is not 
always the best. 

There is another orientation that can block acceptance of argumentation. 
Cognitive science often equates the merit of a theory with the complexity of the 
task domain that it addresses . This is entirely appropriate when the theory con­
sists solely of a tlisk analysis . If the task domain is trivial. an analysis of its ... , .: . 
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information structun: i, often trivial. or at least less interestino than an analv .' . f' 
' I l'ornpl' t· k A . . t' . SIS 0 
, . . ex a.. . ." We suggested earlier . task analyses lire and will continue t 
be ~~ Imp0r1ant IIrs! step I". cognitive studies . They have dominated the fiel~ 
SI~(.C the 19';0 .. and dlstln~Ulsh cognitive psychology from its more task-infor_ 
matIOn-free predecessors. 1 heir dominance has made it almost inevitable that th 
compl~xlty 01 the the(~ry's tas~ domain has been strongly associated with th: 
theo?, s pefl~elved menl. even If that theory goes well beyond an analysis of its 
d()~laln : Ollen, the l'Omplexlly of argumentation forces the research to be con­
du~ted In :~mple tas~ domains. Sinc~.the task analysis is only a first step and a 
relatlv~lyc'lsy one lOmpared to ellclling principles and constructing supportin 
argument> .slJllple task domainS are a good choice for such research . Moreover~ 
the sllllplluty 01 the domain may allow discovery and sharpening of re h 
tool ' th . . . searc 

s, e cognllive eljulvalent of the stains of neuroanatomy or the restriction 
enzymes of microbiology . Such tools, developed in a simple domain, can be 
uS~d to illuminate a Whole area . Yet, choosing a 'simple domain makes it difficult 
to a/lract the a/lentum of the cognitive science community which often e t 
simpl' t'k . . h ' . I . 'qua es 
. . C as s WII triVia theOries. Yet this a/lention is sorely needed, not only to 
~n(o~rage the ~nveslJg~tors, but because competitive argumentation, even more 
S~) than (~ther f()~ms of suPpo~. thrives on challenge. The entirely appropriate 
hablls 01 th~ early years 01 cognllive science seem to be dampening the 
emergence of prinCIpled, well-argued theories. 

Crucial facts 

Ultimately, every theory is abandoned . In the long run, it might seem that the 
effort spent on carelul argumentation is wasted since argumentation is so thor­
oughly emoedded 111 the thcory's framework. We do not believe this is the case . 
A long term el Icl·t of an argument is to raise the promincnce of a certain set of 
ooservatlOns , makin)! Ihelll " crucial tal·ts," in the linguistic jargon . For exam­
pie, a prevllJUsly ohscure class of sentences (the ' 'promise-persuade" sentences) 
became lI11p0r1ant as. suppor1ing data tor two transformations of early transforma­
tional grammars (R.mlng and Equi-NP Deletion) . A typical pair from this class is 

Ronald promised Margaret to pay the hill. 
Ronald persuaded Margaret to pay the bill. 

P~omi~e-persuade data have. shaped el'err successor of transformational gram­
mars. fhey have hecome, like active/passive sentence pairs, crucial facts that 
any sefH)uS grammar must explain . 

Anoth~r example comes from hehavioral theory in the domain of instrumental 
condilloning . Hull (1t)4J) formulated a hypothesis in which the strength of a 
tendency to respond depends on a global motivational factor. drive . and a factor 
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depending on the organism's experience . habit strength . The habit strength of a 
response was assumed to depend both on the number of times the response had 
occurred and been followed hy reinforcement. and on the amount of reinforce­
ment received . In an ingenious experiment , Tolman and Honzik (1930) placed 
rats in a maze and permitted them to move about but provided no apparent 
reinforcement. Then food was placed in a specific location, and the rats were 
given learning trials . The rats with exploratory experience learned to go to the 
food more quickly than rats that had not received the experience . This phe­
nomenon of latent learninx played an impOr1ant role in the further development 
of behavior theory. 

Commonly, crucial facts play the role of deciding among two important 
hypotheses. They could almost bc called "dccisive" facts for this reason. The' 
two examples above were decisivc . Promise-persuade sentences demonstrate that 
there must be two distinct transformations operating in roughly the same syntac­
tic domain . Although the surface syntax is similar, advocating a single-transfor­
mation approach. the apparent differences in which noun phrase is the implicit 
subject of the subordinate clause (i .e., who pays the bill) shows that the more 
complex hypothesis of two transformations is necessary . Similarly, the fact of 
latent learning played a decisive role. It showed that the effects of experience 
may not be reflected directly in pcrformance. The distinction between learning 
and performance had to be madc morc complex. In Hull's theory, latent learning 
was accommodated by changing the assumption that habit strength grows as a 
function of the amount of reinf(lrl'ement. In later versions of the theory (e .g., 
1952) Hull assumed that habit strength depends only on the number of occur­
rences of the response that have been followcd by reinforcement, and not on the 
amount of reinforcement. To account for the affect of amount of reinforcement, 
Hull assumed it acts as a motivational factor, called incentive. which influences 
performance rather than learning . Hull was then able to account for latent learn­
ing by arguing that some small amount of reinforcemcnt probably was provided 
in the exploratory trials-for example, the rat likes going home to its cage, so it 
takes removal from the maze as rcinforcement for its last few moves . Since there 
was reinforcement. there was learning. But the amount of reinforcement was 
small. so the incentive to exhibit this learning was small. Hcnce. the rat's 
learning was not reflected in performance until food was introduced . 

Few, if any, crucial facts have emerged as yet in relation to computational 
theories of cognition. For example, SHROLU's famous sentence " Pick up the 
big red block," is not considered a necessary par1 of a parser' s repertoire, nor 
must a learner learn to recognize an arch made of blocks , despitc the centrality of 
these examples in Winograd's and Winston's work . The reason no old examples 
seem worth accounting for in new theories is that no theoretical issues hinged on 
them in the old theories . They were used for illustration, and not to argue 
principles . 
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Ar~um(,I/'s alll/ allcia/./ilcH oliell sUfI'ire [ollxer ,hall (hi'ories. Theorists 
~epeatedly appcalto crucial facts . we believe. because they already know quite a 
lew ways of ,Il"counting for these facts. most of which are somehow flawed. This 
makes them convenient tests for a new theory. Although the counter-arguments 
will most often not lift directly over to the new theory. they will at least hint at 
where to look for trouhle . 

We suggest that long term progress may be exactly the accretion of crucial 
facts . arguments. and possibly even techniques or types of arguments . Theories 
corne and go. Wherein lies our accumulated knowledge" Perhaps the knowledge 
that separates a "mature" field from a young one is the empirical ramifications 
and other entailments of its ideas-the arguments connecting them to the facts 
and til each other. 

Competence theories and star data 

Recently. efforts have heen increasingly directed at formulating theories of what 
people nUl do rather than what they dicl do in the given situation . In part, this 
follows from the realization that the pcrfomlance of subjects when confronted 
with a task is strongly determined hy the requirements of the task . To use 
Simon's metaphor (Simon . 11)1{ I)' studying the path of an ant across the beach 
tells one more ahout the beach than the anI. To learn something about general 
print' iples of cognition (the ant) . it is necessary to abstract detailed observations 
(the path) . This introduces a level of inference to that usually encountered when 
performann~ is used for inferences ahout underlying cognitive processes and 
structures. Founding this new level. of course. involves argumentation . 

Another reason for emphasizing competence «("(Ill do) over performance (cloes 
do) is that it allows side stepping. to a certain degree. the difficult issue of 
allowing some tuning of performance parameters around individual differences 
without introducing unlimited degrees of tailorability into the theory . 

Assessing the underlying competence is no easy empirical task . The conclu­
sions one draws can be colored by subtle variations in the task . An illustrative 
case is the controversy over the development of competence in counting . Gei­
man's classic "magic" experiments showed that the elements of number compe­
tence are present much earlier than strict Piagetian theory would predict (Gelman 
& Gallistel. 1978). 

A successful style of argumentation has emerged in service of competence 
theories. If one defines a performance theory as a theory of what the subject does 

do, and a competence theory as a theory of what the subject can do, then clearly 
evidence about what the subject call' ( do will be very imIXll1ant for narrowing the 
range of behavior allowed by a competence theory . Such evidence is called star 
daw . 

A star datum is a simulated behavior that no human's behavior would ever 
match . It is named after the lingustic convention of starring sentences that are not 
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in the language. How one ascertains the non-existence of a behavior may vary in 
different domains . By definition. star data are behaviors that are not found 
naturally. Thus, star data can not be observed in the same (JXltentia~ly) objec~ive 
ways that ordinary data are observed. In particular. in many domams. a sU~ject 
can easily perform the behavior when asked to (e.g .. uller "Funously sleep Ideas 
green colorless") even though they would nev~r do so naturally . In curr~nt 
linguistic practice, sentences are starred accordmg to the judgment ~f native 
speakers. For Repair Theory (the theory that the forthcommg examp~e IS dra,:"n 
from) . expert diagnosticians were the judges of whether the model s behaVIor 
represented a star datum or plausible human behavior that just hadn't been 

observed yet. 
Star data can be particularly useful in supporting claims atxlUt mental repr~-

sentations. One of the techniques that a theorist can use to structure knowledge IS 
to stipulate that it must be represented in a certain fomlalism. often called the 
representation language. A narrowly defined la~gu~ge reduces t~~ ways th~t a 
piece of knowledge can be decomIXlsed by forcmg It~ decompoSItion to fit mto 
the forms allowed by the representation language. ThiS techntque raises formal­
isms from the status of mere notations to bearers of important theoretical claims. 
Star data can be useful in supporting such claims: If it can be shown that the 
theory would generate certain star data if it were not constrained ~y the given 
representation language , then one has a strong argument for the utility. If not the 
actual psychological reality of that representation language . If the representation 
language is extremely successful in constraining knowledge structures, one 
might even be inclined to propose it as a mental representation (Fodor . 1975). 

AN EXAMPLE OF AN ARGUMENT 

In this section, we give an example of an argument. However, arguing is impos­
sible in vaccuo, so several paragraphs must be spent in describing the theory the 
argument is taken from and the data that SUPIXlrts it. L.ike most arguments, this 
one depends strongly on assumptions of the theory which themselv~s have sup­
porting arguments . This leads to rather involved, convoluted reasont~~-a char­
acteristic of competitive argumentation exacerbated by the complexitIes of pro-

tocol data. 
The argument presented here is taken from VanLehn (1983). It conce":,s 

Repair Theory (Brown & VanLehn, 1980). Re~air Theory ~xamines ~ertam 
cognitive aspects of procedural skills . The baSIC Idea of Repair Theory IS that 
while following a procedure students will barge through any trouble th.at they 
encounter by doing only a small amount of superficial "patching." That IS, they 
make a minimal change to the procedure's execution state in order to circumvent 
the trouble and get back on the track . Sometimes they perform different repairs 
for the same trouble , other times they use the same repair for periods of time , and 
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sometimes they seem to abstract the patch and make it a pan of their procedure . 
Repair Theory is wm:erned with formalizing this overall impression so that it can 
be tested. In doing so. it aims to aniculate a formal representation for knowledge 
about procedures-a ml'flWIi'Je for procedures (Fodor, 1975}-and an architec­
ture for interpreting that knowledge and for managing trouble during its 
interpretation . 

The procedural skill taken for study is ordinary multi-column subtraction. The 
subjects are elementary school students who are in the process of learning that 
procedure . The main advantage of these choices, from a psychological point of 
view, is that t'(lr the~e subjects, subtraction is a vinually meaningless procedure. 
Most elementary school students have only a dim conception of the underlying 
semantics of subtraction, which are rooted in the base-ten representation of 
numbers. When compared to the procedures they use to operate vending ma­
chines or play games , subtraction is as dry, formal, and disconnected from 
everyday interests as the nonsense syllables used in early psychological investi­
gations were different from real words . This isolation is the bane of teachers but 
a boon to the cognitive theorist. It allows one to study a skill formally without 
bringing in a whole world's wonh of associations. This isolation provides an 
elegant opponunity for building a microscope into the mentalese of procedural 
knowledge and the architecture for interpreting it. 

The data supponing the theories comes from the Buggy studies (Brown & 
Burton, 1978; VanLehn, 1981). From the errors of thousands of students taking 
ordinary pencil and paper subtraction tests. a hundred primitive bugs were infer­
red . Bugs are a formal device for notating systematic errors in a compact way . 
They are designed so that any of the observed systematic errors can be expressed 
by a set of one or more bugs . (Actually, bugs often do not combine linearly . The 
co-occurrence of two or more bugs is called a "compound" bug. ) This notation 
is precise in that it describes not only what problems are answered incorrectly, 
but what the contents of those answers were and what steps were followed in 
producing theln. The tel'hnicalities of this t'(lrm of data have been discussed in 
other papers (Brown & Hunon, 1978; Hunon. 1981). The behavioral data that 
suppon the argumcnts will be presented here as ideal protocols of the subject's 
local problem solving. This simplifies the exposition considerably. 

A critical distinction in Repair Theory is between regular execution and local 
"whlml .w/l'ill1{ . Regular execution depends of course on what the representation 
of pnx:edures is. If procedures are represented as pushdown automata. for in­
stance, regular execution is just following arcs. pushing and popping the stack, 
testing arc conditions, executin!! primitive arc actions, and so fonh. If the pro­
cedure is somehow tlawed. perhaps because the student misleamed it or forgot 
pan of it. then regular execution may get stuck . When a student executing a 
procedure reaches an impasse. the student is unlikely to just halt, as a pushdown 
automaton does when it can't execute any arcs leaving its current state. Instead, 
the student will do a small amount of problem solving, just enough to get unstuck 
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and resume regular execution . These local problem solving strategies are called 
repllirs despite the fact that they rarely succeed in rectifying the broken pro­
cedure . although they do succeed in getting past the impassc . Repairs are quite 
simple tactics, such as skipping an operation that can't be performed or backing 
up in the procedure in order to take a different path . Repairs do not in general 
result in a correct solution to the exercise the procedure is being applied to, but 
instead result in a buggy solution . The theory explains the large variety of 
observed subtraction bugs as the result of a few flawed underlying subtraction 
procedures being subjected to local prohlem solving involving a surprisingly 
small set of repairs. Local problem solving is twofold: detecting impasses, called 
criticism, and getting around them, called repair. Some bugs result from several 
instances of impasse/repair during the application of an underlying flawed pro­

cedure to a problem . 
There are strong constraints on criticism and repair . Both criticism and repair 

are very simple and local. Two main types of criticism are detecting when an 
action's precondition is violated (e .g . , trying to decrement a zero) and detecting 
when regular execution halts because none of its methods are applicable to the 
current situation. Repairs are also simple and local: for example, skipping an 
operation or backing up in the procedure . A basic principle of Repair Theory is 
that any repair can be applied at any impasse . subject only to the condition that it 
succeed in getting the procedure past the impasse. The empirical impact of this 
principle is that the theory predicts that the set of all possible bugs is exactly the 
set of all possible repairs applied to all pO.Hible impasses. To summarize: the 
student's observed behavior is a combination of regular execution and local 
problem solving, where local problem solving consists of detecting an impasse 

and applying one of a set of repairs to it. 

Assumptions 

Although a great deal more can be said ahout Repair Theory and bugs, it is time 
to tum to the illustrative argument. It concerns the architecture/representation 
that the thellry uses to model human conceptions of procedures. and in particular. 
the component of the architecture that is called the shon-term or working memo­
ry in production systems. This argument is pan of a longer argument that the 
representation should be an applicative language. The principle at issue here is 
how the model should represent focus of attention. As students solve a subtrac­
tion problem, they focus their attention on various digits or columns of digits at 
various times . This can be inferred from the information that students read from 
the paper, or perhaps from eye-tracking studies. For this chapter, it will be 
assumed that focus and focus shifting exist. The issue to discuss is how to 
represent them . A leading contender will be a "you are here" register that stores 
the focus , that is, where on the paper the attention is being focused . This register, 
in tandem with a " currently active goal " register, puts a clean division between 
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focus of attention and control state. However, register-based architectures will be 
shown to make focus 100 independent of control state . A different architecture 
one that unites f~us and control, will be shown to fit the facts more closely. It' ~ 
named schema/mstance for reasons that will become clear in a moment. 

We would like to speak .in an infonnal way of goals and subgoals, intending 
that these be taken as refernng to the procedural knowledge of subtraction itself 
rather than expressions in some particular representation (e.g., production sys~ 
tems, and-or graphs, etc.). In particular, we'll assume that borrowing is a sub­
goal of the goa~ of processing a column, and that borrowing has two subgoals, 
n.amely b()~owmg-from and borrowing-into. Borrowing-into is perfonned by 
~Imply. addmg ten to a certain digit in the top row. The borrowing-from subgoal 
IS reahzed etlher by decrementing a certain digit, or by invoking yet another 
subgoal, borrowing-across-zero. (This way of borrowing is not the only one, but 
Jl was the one taught to all our subjects.) These assumptions, or at least Some 
assumptions, are necessary to begin the discussions . They are, we believe, some 
of the mildest assumptions one can make and still have some ground to launch 
from. We've assumed that focus exists and that a goal-structured control regime 
eXIsts . One other assumption is needed before the main argument can be present­
ed. We'll assume that a repair called Backup exists . This repair is most easily 
descnbed wIth an example of its operation. 

The Backup repair in action 

Figure 9. 1 gives an idealized protocol. It illustrates a moderately common bug 
(Smaller From Larger Instead of Borrow From Zero). In a sample of 417 students 
With. bugs, five students had this bug (VanLehn, 1981). The (idealized) subject 
of FIg. 9. I does not know all of the subtraction procedure. In particular, he does 
not know about borrowing from zero . When he tackles the problem 305- 167, he 
begins by invoking a process-column goal. Since 5 is less than 7, he invokes a 
borrow subgoal (episode ll, see Fig. 9.1), and immediately the first of borrow­
ing's two subgoals, namely borrowing-from (episode b). At this point, he gets 
stuck because the digit to be borrowed from is a zero, which can not be decre­
mented in the natural number system . In Repair Theoretic tenns, he has reached an 
impasse. 

The theory describes several repair strategies that can be used at impasses to 
get unstuck. The one that interests us here is the Backup repair. It gets past the 
decrement-zero impasse by "backing up," in the problem solving sense, to the 
last goal that has some open alternatives. In this case, there are four goals active: 

borrowing-from 
borrowing 
processing a column 
solving the subtraction problem 

1 
! 

a. 

b. 

c. 

d. 

e. 

305 
-167 

305 
-167 

305 
-167 

2 
21 
'305 

-167 
2 

21 

'3D5 
-167 

142 
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In the units column, I can't take 7 from 5, so I'll have to 
borrow. 

To borrow, I first have to decrement the next column's top 
digit. But I can't take 1 from O! 

So "" go back to doing the units column. I still can't take 7 
from 5, so I'll take 5 from 7 instead. 

In the tens column, I can't take 6 from 0, so I'll have to 
borrow. I decrement 3 to 2 and add 10 to O. That's no 
problem. 

Six from 10 is 4. That finishes the tens. The hundreds is easy, 
there's no need to borrow, and 1 from 2 is 1. 

FIG. 9.1 An idealized pmtuI:lll of a student with the bug Smaller From Larger 
Instead uf Burrow From Zero. 

The borrowing-from goal has failed. The borrow goal has no alternatives: one 
always borrows-from then borrows-into. The next most distant goal, namely 
column-processing, has alternatives: one for columns that need a borrow, one for 
columns that do not need a borrow. So Backup returns control to the column­
processing goal. Evidence for backing up occurs in episode c. where the subject 
says "So I'll go back to doing the units column." In the units column he hits a 
second impasse. saying "I still can't take 7 from 5," which he repairs ("so I'll 
take 5 from 7 instead"). He finishes up the rest of the problem without difficulty . 

The crucial feature of the analysis above, for this argument, is that Backup 
caused a transition from a goal (borrowing-from) located at the top digit in the 
lens column to a prior goal (processing a column) located at the units column. 
Backup caused a shift in the focus of attention from one location to another as 
well as from one goal to another. Moreover, it happens that the location it shifted 
back to was the one that the pnx:ess-column goal was originally invoked on, 
even though that column turned out to cause problems in that further processing 
of it led to a second impasse. So, it seems no accident that Backup shifted the 
location back to the goal's original site of invocation . It is because Backup shifts 
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both focus and control that it is the preeminent tool to be used in the argument 
that follows. 

Overview 

The issue is how to represent focus. To keep the argument short. just two 
alternative architectures are discussed: register-based and schema/instance. As it 
turns out. just two facts are needed. One is the bug just described. The other will 
be introduced in a moment. The argument is organized around these two facts. 
Figure 9.2 is an outline of the argument. 

It will be shown that the schema/instance architecture generates the first bug 
(LA in the outline). but the simplest version of the register-based architecture. a 
single focus register. generates a star bug instead (I. B.I). Patching its difficulties 
by making the Backup repair more complex leads to problems with retaining the 
falsifiability of the theory (I. B. 2) . However. using several registers instead of 
just one register allows the bug to be generated simply (I.B.3). So the conclusion 
to be drawn from the first fact will be that the register approach will be adequate 
only if there is more than one focus register. 

The second part of the argument introduces a new bug involving the Backup 
repair. Once again, the schema/instance architecture predicts the fact correctly 
(II. A). Two different implementations of multiple registers fail (II.B.I and 
II .B.2) by generating star bugs. Smart Backup would fix the problem but re­
mains methodologically undesirable (II.B.3). Postulating various complications 
to the goal structure of the procedure (lI.B.4 and II.B.5) allow the correct 

I. Fact 1: Smaller From Larger Instead of Borrow From Zero 
A. The schema/instance architecture generates it 
B. Registers 

1. A single register architecture generates a star bug 
2. "Smart" Backup is irrefutable, hence rejected on methodological 

grounds 
3. Multiple register architecture allows generation of SFLlBFZ 

II. Fact 2: Borrow Across Zero 
A. The schema/instance architecture generates it 
B. Registers 

1. One register per goal: can't generate the bug 
2. One register per object: can't generate the bug 
3. "Smart" Backup is irrefutable, hence rejected on methodological 

grounds 
4. Duplicate borrow-from goals : entails infinite procedure 
5. Duplicate borrow goals: equivalent to schema/instance 

FIG. 9.2 Outline of the argument. 
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predictions to be generated. but they have problems of their own. So the second 
part concludes that the register-based alternative is inadequate even when various 
complex versions of it are introduced. 

In overview. the argument is a nested argument-by-cases where all the cases 
except one are eliminated. To aid in following it. the cases are labelled as they 
are in the outline of Fig. 9.2. 

I.A Schema/instance generates the bug 

The basic idea of a schema/instance architecture is that the location of a goal 
is very strongly associated with the goal at the time it is first set. That is. when a 
goal like borrowing is invoked. it is invoked at a certain column. or more 
generally at a certain physical location in the visual display of the subtraction 
problem. In a schemalinstancearchitecture . this association between goal and 
location. which is formed at invocation time. persists as long as the goal remains 
relevant. That is. the goal is a schema. which is instantiated by substituting 
specific locations. numbers. or other data into it. Most modem computer lan­
guages. such as LISP, have a schema/instance architecture: a function is instanti­
ated by binding its arguments when it is called, and its arguments retain their 
bindings as long as the function is on the stack. 

The schema/instance architecture allows the bug of Fig. 9.1 to be generated 
quite naturally. Suppose the process-column goal were strongly associated with 
its location, namely the units column. in some short-term memory. Then Backup 
causes the resumption of the goal at the stored location. Another way to think of 
this is that the interpreter is maintaining a short-term "history list" that tem­
porarily stores the various invocations of goals with their locations. In regular 
execution. when the borrowing goal finishes, the process-column goal is re­
sumed at the same place as it started. That is. in the long-term representation of 
the procedure. the process-column goal is a schema with its location abstracted 
out. It is bound to a location (instantiated) when it is invoked. It is the instanti­
ated goal that Backup returns to, not the schematic one . 

This schema/instance distinction, which is at the heart of almost all modem 
programming languages, entails the existence of some kind of short-tenn memo­
ry to store the instantiations of goals. and thus motivates this way of implement­
ing the Backup repair. But there are of course other ways to account for focus 
shifting during Backup. Several will be examined and shown to have fewer 
advantages than the schema/instance one. 

I.B.1 A single register architecture generates a star bug 

Suppose that instead of using the schema instances to implement focus stor­
age, the architecture used a single register, a "you are here" pointer to some 
place in the problem array. There would be no problem representing the subtrac-



252 VANLEHN. BROWN. GREENO 

tion pr~~dure in .such an architecture . In order to shift focus left. for example. 
an exphclI action 10 the procedure's representation would change the contents of 
this register as the various goals were invoked . 

S~ppose ~'irst off that Backup.is kept as simple as possible. and in panicular. 
that It doesn t go rootlOg around In the procedure in order to find out how to reset 
the register. Under this parsimonious account of Backup, the single register 
archllectu~e causes trouble. Because the "you are here" register is simply left 
alone dUring backup. a star bug is generated. II is illustrated in Fig. 9.3 . At 
epl~ode .b. Backup resumes the process-column goal , but the "you are here" 
reglste~ IS not restored to the units column. Instead, the tens column is processed. 
!he unlls column is left with no answer despite the fact that its top digit has been 
Incremented . In the judgment of several expen diagnosticians, this behavior 
would never be observed among subtraction students. II is a slar bug. The theory 
should not predict its occurrence. 

I.B.2 Smart Backup repair makes the theory too tailorable 

To avoid the star bug. the Backup repair would have to employ an explicit 
a~tlon to restore the register to the units column in episode c of the protocol of 
FIg. 9 . 1. But how would it know to do this? Backup would have to determine 
that the focus of attention should be shifted right wards by doing an analysis of 
the goal structure contained in the stored knowledge about the procedure. It 
would see that in normal execution , a locative focus shifting function was ex-

a. 

b. 

c. 

d. 

1 
402 

-106 

1 
402 

-106 ----
1 

402 
-106 '---o 

1 
402 

-106 
30 

In the units column, I can't take 6 from 2, so I'll have to 
borrow. First I'll add ten to the 2. 

I'm supposed to decrement the top zero, but I can't! So I 
guess I'll back up to processing the column. 

Processing it is easy: 0 - 0 is O. 

The hundreds is also easy. I'm done! 

FIG. 9.3 An idealized " protocol " for a Slar bug . 
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ecuted between the borrow-from goal and the process-column goal. For some 
reason, it decides to execute the inverse of this shift as it transfers control 
between the two goals . 

Not only does this implementation make unmotivated assumptions, but it 
grants Backup the power 10 do slatic analyses oj control structure . This would 
give it significantly more power than the other repair heuristics, which do sim­
ple, local things like skipping an operation, or executing it on slightly different 
locations. It gives the local problem solver so much power that one could "ex­
plain" virtually any behavior by cramming the explanation into the black boxes 
that are repair heuristics. That is. allowing repairs to do static analyses gives the 
theory too much tailorability. It is much better to make the heuristics as simple as 
possible by embedding them in just the right architecture. 

I.B.3 Multiple register allow generation of the bug 

Another way to implement Backup involves using a set of registers . The 
registers have some designated semantics, such as "most recently referenced 
column" or .. most recently referenced digit." That is, the registers could be 
associated with the type or visual shape of the locations referenced (e.g ., as 
Smalltalk's class variables are) . Alternatively. they could be associated with the 
schematic goals . (Some Fortran compilers implement a subroutine's local vari­
ables this way by allocating their storage in the compiled code, generally right 
before the subroutine 's entry poin!.) Process-column would have a register. 
borrow would have a different register, and so on. 

Given this architecture. Backup is quite simple . Returning to process-column 
requires no locative focus shifting on its part. Since the process-column register 
(or the column register •. if that's the semantics) was not changed by the call to 
borrow, it is still pointing at the units column when Backup causes control to 
return to process-column. This multi-register implementation is competitive with 
the schema/instantiation one as far as its explanatory power (i .e . . Backup is 
simple and local. and the architecture has motivation independent of the Backup 
repair in that is used during normal interpretation). However, it fails to account 
for cenain empirical facts that will now be exposed . 

/I.A Another bug, and schema/instance can generate it 

The argument in this section is similar to the one in the previous section. It 
takes advantage of subtraction's recursive borrowing to exhibit Backup occurring 
in a context where there are two invocations of the borrow goal active at the same 
time . This means there are two potential destinations for Backup. It will be 
shown that the schema/instance mechanism is necessary to make the empirically 
correct prediction. 

A common bug is one that forgets to change the zero when borrowing across 
zero. This leads to answers like: 
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2 
3 
4 10 12 

-13<) 

I 7 3 

(The small numbers stand for student's scratch marks.) The 4 was decremented 
once due to the borrow originating in the units column , and then again due to a 
borrow originating from the tens column because the tens column was not 
changed during the first borrow as it should have been . This bug is called Borrow 
Across Zero . It is a common bug. Of 417 students with bugs, 51 had this bug 
(VanLehn , 19H I J. 

An important fact is seen in Fig. 9.4. The bug decrements the I to zero during 
the first borrow . Thus , when it comes to borrow a second time, it finds a zero 
where the one was, and performs a recursive invocation of the borrow goal. This 
causes an attempt to decrement in the thousands columns , which is blank . An 
impasse occurs. The answer shown in the figure is generated by assuming the 
impasse is repaired with Backup. This sends control back to the most recently 
invoked goal that has alternatives. At this point the active goals are : 

borrow-from 
borrow-from-zero 
borrow-from 
borrow 
process-column 

(the recursive invocation located at the thousands column) 
(at the hundreds column) 
(at the hundreds column) 
(at the tens column) 
(at the tens column) 

In this procedure, the borrow-from-zero goal has no alternatives (it should al­
ways both write a nine over the zero and borrow-from the next column, although 
here the write-nine step has been forgotten) . The borrow-from goal has alterna­
tives because it has to choose between ordinary, non-zero borrowing and borrow­
ing from zeros . Since borrow-from was the most recently invoked goal that has 
alternatives left, Backup returns to it. Execution resumes by taking its other 
alternative, the one that was not taken the first time. Hence, an attempt is made 
to do an ordinary borrow-from, namely a decrement. Crucially, this happens in 
the hundreds column, which has a zero in the top, which causes a new impasse . 
We see that it is the hundreds column that was returned to because the impasse 
was repaired by substituting an increment for the blocked decrement , causing the 
zero in the hundreds column to be changed to a one. 

The crucial fact is that the Backup repair shifted the focus from the thousands 
column to the hundreds column, even though both the source and the destination 
of the backing up were borrow-from goals . This shift is predicted by the sche­
ma/instance architecture. However, the empirical adequacy of the register archi­
tecture is not as high . 
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II.B.1 One register per goal can't generate the bug 

Suppose each schematic goal has its own register . Borrow-from would have a 
register, and it would be set to the top digit of the thousands column ~t the ~rst 
impasse (episode b in Fig . 9.4) . Hence, if Backup returns to the first invocatIon 
of borrow-from, the register will remain set at the thousands column. Hence, 
Backup doesn't generate the observed bug of Fig. 9.4 . In fact , it can ' t gene~ate it 
at all: the only register focused on the hundreds column IS the one belonglOg to 
borrow-from-zero. That goal has no open alternatives, so Backup can't return to 
it. Even if it did, it wouldn't generate the bug of Fig. 9.4. So one register per 

goal is an architecture that is not observationally adequate. 

II.B.2 One register per object doesn't generate the bug 

Assuming the registers are associated with object types fail s for similar. rea­
sons. Both the impasses (episodes band cf) involve the same type of VIsual 

o 1 
a. '\02 Since I can't take 9 from 12, I' ll borrow. The next column is 0, 

so I'll decrement the 1, then add 10 to the 2. Now I've got 12 
take away 9, which is 3. 

b. 

c. 

- 39 ---
3 

o 1 '1.02 Since I can't take 3 from 0, I'll borrow. The next digit is 0, but 

39 there isn't a digit after that! 

--3 

o 1 
'\02 

1 

39 
3 

I guess I could quit, but I'll go back to see if I can fiX, things up. 
Maybe I made a mistake in skipping over that 0, so III go back 

there. 

II 1 
d. '102 When I go back there, I'm still stuck because I can't take 1 

39 from O. I'll just add instead. 
---

3 
1 
II 1 

e. '102 
- 39 

173 

Now I'm okay. I'll finish the borrow by adding 10 to the ten's 
column, and 3 from 10 is 7. The hundreds is easy, I just bring 
down the 1. Done! 

FIG. 9.4 An idealilcd prolocol of a sludenl wilh aversion of Ihe bug BOITOw 

Across Zero . 
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object. a digit. and hence the corresponding register would have to be reset 
explicitly by Backup in order to cause the observed focus shifl. 

II.B.3 Smart Backup makes the theory too tai/orable 

But providing Backup with an ability to explicitly reset registers would once 
again require it to do static analysis of control structure-an increase in power 
that should not be granted to repairs. 

II.B.4 Duplicate borrow-from goals 

One could object that we have made a tacit assumption that it is the same 
(schematic) borrow-from that is called both times. If there were two schematic 
borrow-froms. one for an adjacent borrow, and one for a borrow two columns 
away from the column originating the borrow, then they could have separate 
registers. This would allow Backup to be trivial once more. However, this 
argument entails either that one have a subtraction procedure of infinite size, or 
that there be some limit on the number of columns away from the originating 
column that the procedure can handle during borrowing. Both conclusions are 
implausible. 

II.B.5 Duplicate borrow goals 

But one could object that there is another way to salvage the multiple register 
architecture. Suppose that the schematic procedure is extended by duplicating 
borrow goals (plus registers) as needed. The bug could be generated, but this 
amounts either to a disguised version of schemata and instantiations, or an appeal 
to some powerful problem solver (which then has to be explained lest the theory 
lapse into infinite tailorability). So, this alternative is not really tenable either. 

This rather lengthy argument concludes with the schema/instance architecture 
the only one left standing. What this means is that representations that do not 
employ the schemata and instances, such as finite state machines with registers 
or flow charts, can be dropped from consideration. This puts us, roughly speak­
ing, on the familiar ground of "modem" representation languages for pro­
cedures, such as stack-based languages, certain varieties of production systems, 
certain message passing languages, and so on. 

The example illustrates the main points 

The preceding argument illustrates several of the main points of this chapter. The 
structure of the argument was to first establish a need, in this case for a data flow 
scheme, then to examine several alternative architectures that meet the need. 
This pattern of establishing a need and examining alternatives is characteristic of 
competitive argumentation. 

The argument introduced a crucial fact: Whenever problem solving backs up 
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to a previously invoked goal, the goal is resumed with ~he sa",le instantiati~g 
information that it had during its original invocation. ThiS was Illustrated WIth 
two bugs (Fig. 9.1 and Fig. 9.4). We can vouch for the truth of this observation 
in the local problem solving that accompanies subtraction perfo~ances, and we 
expect it to remain uncontradicted by evidence from other ~omams. In ~ewell 
and Simon's classic study of eye movements during the solutIon of cryptanthme­
tic puzzles, for example, there is ample evidence that backing up restores not 
only the goal, but the focus of visual attention that was current when the goal was 
last active (Newell & Simon. 1972, pp. 323-325). 

The arguments turned mostly on limiting the tail~rability of the t~eory and on 
avoiding star bugs. Since all the competing explanatl~ns for ~he cruCial fact ~ere 
able to account for it one way or another, it was theIr entailments that decided 
their relative merits . Sometimes the machinations necessary to account for the 
facts would introduce so much power into the theory that it could trivially 
account for any data; in these cases, the hypothesis was rejected as introducing so 
much tailorability as to make the theory irrefutable. In other cases, the hypoth­
esis entailed the generation of certain absurd behaviors: star bugs. Such genera­
tions were treated like the generation of false predictions despite the fact that 
empirical claims about existence can never be proven false . 

The emphasis on what people can and can't do as opposed to what the~ do do 
is apparent in the use of bugs rather than raw protocols as the ~ata supportmg ~ 
argument earlier. Bugs are an idealization of human .behavl~ .. They descnbe 
systematic errors and leave aside unsystematic errors ~\.~ .• s/tps m. the sense of 
Norman 1981) such as 7 - 5 = 3. Also, bugs isolate dlstmct behaVIOrs: The bug 
Smaller 'From Larger Instead of Borrow From Zero occurred five times in our 
sample but always in combination with various other bugs ~Va~~hn, "9~1). It 
never occurred alone . There is a layer of inference involved m thiS Ideahzatlon of 
the raw data that has not been presented here (Burton, 1981; VanLehn, 1981). In 
addition to these difficult sorts of idealization, there are simple ones such as 
choosing not to collect timing data or self-report data from .subjects as they 
solved problems. Although the objective of Repair Theory IS In part .to under­
stand the processes involved in applying procedures to problems, It call be 
successfully approached, we believe, within a competence theory f~~w~; 

Lastly, the argument illustrates what we mean for a .theory to have ~pth. 
This attribute correlates with the length and compleXity of the theory s argu· 
ments. In Repair Theory there are multiple layers-protocols, bugs, interpreter 
state and knowledge structures. There are precise relationships between these 
laye:S. The format of the structures at each layer as well as the nature of the 
relationships between them require supporting argumentation to. show .not only 
that the proposed architectures are sufficient to account for certal~ ~ruclal fac~s, 
but also that they are the leading edge of a convergence upon emplncal necessIty 
in that a careful drawing out of the entailments of competing proposals reveals 
that each of the competitors is flawed. 
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AN EXAMPLE OF THE PROGRESSION TOWARD 
COMPETITIVE ARGUMENTATION 

It was suggested earlier that cognitive science research is following a natural 
progression that IS entailed by its emphasis on precise and detailed use of task­
specific information. That emphasis necessitates an early phase where informa­
ti.on lat~nt in a new task domain is uncovered, often by creating a rough computer 
simulatIOn of the task behavior. These early formulations become refined as 
im~mant principles and components are separated from the more task-idiosyn­
cratic IOformatlon. These are put forward as a sufficient formulation of domain 
knowledge and skill . From these first articulations of principles , attention natu­
rally turns to supporting the principles and/or revising them. From competition 
a":,ong various analyses of the task domain, a successive approximation of what 
pnnclples and components are necessary emerges. It was toward this later stage 
that the bulk ~)f th.ls chapter was addressed . Yet, it seems appropriate to end by 
sh~wlng, again with an example, how this phase of competitive argumentation 
anses naturally from those that must precede it . 

A domain that illustrates this natural progression is young children 's under­
st~nding of principles of number and quantity. Until recently, based largely on 
P,aget's seminal investigations, most developmental psychologists accepted the 
~onclusion . that significant conceptual competence (in the sense of general abil­
Ity) regardmg number is not achieved until children are about seven or eight 
years old. Yet, children are able to count sets of objects well before they enter 
sc~ool at four or five years old . On the standard view, children's ability to count 
objects reflects a procedural knowledge of a rote, mechanical nature, rather than 
understanding. Changing the definition of " number competence" to exclude 
counting, which develops too earl} and hence offers a counterexample to classi­
cal stage theory. is exactly what Lakatos (1976) would call "monster barring." 
Just as Lakatos would predict. this caused considerable attention to be focused on 
counting. 

Observations by Gelman and Gallistell (1978), and others, provided evidence 
that significant conceptual competence underlies preschool children's perfor­
mance in counting tasks . One example of such evidence is the observation that 
although many preschoolers use idiosyncratic lists when they count, these lists 
are used consistently. For example. a child might count with the list , "one, two, 
three, six, ten ." The consistency of use of such lists is taken as evidence that 
children appreciate the need for a set of symbols with stable order, and that while 
they can sometimes acquire the wrong set, the principle of stable order is part of 
their conceptual competence . 

Another example involves performance in tasks where children count objects 
with an additional constraint superimposed on the counting task. In a typical 
experiment. the child is asked to count five objects arranged in a straight line, 
then the experimenter adds a constraint by saying, "Now count them again, but 
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make this the one." pointing to the second object in the line. Most five-year-old 
children make completely appropriate adjustments of their counting procedures 
in order to accommodate these constraints . Even children whose modified count­
ing is not completely appropriate still perform in ways that preserve some of the 
constraints of counting. Their performance provides quite strong evidence that 
counting reflects a good understanding of number, and is not a rote, mechanical 
procedure, because they generate novel procedures that conform to some, but not 
all, of the principles of counting . 

Given these results, it became untenable to bar counting from theories of the 
development of cognitive competencies. One response has been to construct a 
computational model for the development of number competency. This is where 
our example of the natural progression of computational analyses of cognition 
begins. 

An analysis of children's counting was conducted by Greeno, Mary Riley, 
and Rochel Gelman (forthcoming). First, a process model was fonnulated that 
simulates salient aspects of children's performance on a variety of counting 
tasks. This was necessary just to come to grips with the latent information that 
the tasks required. Next. an analysis was developed in which the procedur.es in 
the process model were derived from premises that correspond to certain princi­
ples of counting. These premises formalized and extended a particular decom­
position of counting competence proposed by Gelman and Gallistel (1978). The 
steps of the derivation involved use of planning rules for including procedural 
components in the counting procedure . The outcome of the analysis was a 
planning net (VanLehn & Brown, 1980) that showed how the various compo­
nents of the counting procedure are formally related 10 the counting principles. 
The result of this phase of the research was to articulate clearly the counting 
principles, indeed to formalize them as operable rules, and to show that they 
were sufficient to generate the kinds of counting performances observed by 
Gelman and others. 

From a clear articulation and a first demonstration of sufficiency, the research 
has begun to focus on supporting these particular principles in various ways . To 
argue thai the particular decomposition of competence chosen is correct. we have 
been investigating how removing certain principles from the set while adding 
constraints corresponding to the experimenter's request to "Make that one be 
one," results in the derivation of procedures corresponding to the various count­
ing performances observed under the stressed conditions. If successful, this 
demonstration could support the particular set of counting principles, and rule 
out others that are (hypothetically> equally successful at generating counting 
procedure in unconstrained situations. Thus begins a phase of competitive argu­
mentation, following on naturally after a first formulation of a principled, de­
tailed and precise analysis of counting competence. 

This example of natural progression also illustrates how experimental facts 
can become crucial. The fact that performances of children's counting degrade 
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along the lines predicted hy a certain set of principles is used to decide between 
that set of principles rather than some others . It also appears to preclude an 
ellplanation of counting as some indecomposable, "rote" procedure. Because 
these ellperiments have been used to decide important theoretical issues, we 
ellpect them to remain crucial facts. 

CONCLUSIONS 

The development of models that simulate the processing of specific information 
in detail has required large investments of time in developing tools for model 
building as well as obtaining a working understanding of the power and limita­
tions of computational concepts and theoretical methodology. Hence, many 
computational theories have lacked explicit principles, many have not used data, 
and virtually none have the argumentative support that we have discussed in this 
chapter. During the period of this early development, it has been inevitable and 
perhaps even desirable that computational theories should have been relatively 
unprincipled and unsupported. However, the rapid initial growth in computa­
tional experience, understanding and tool building seems to be leveling out now. 
We suggest that it is time to use that investment to initiate a parallel growth in our 
understanding of what constitutes principled computational theories of mind and 
what tools would facilitate their construction and especially their support . 

Some kind of defense of individual theoretical principles, whether competi­
tive or not. seems necessary to expedite scientific progress. If the support for a 
theory is not analyzed so that one can see how the evidence bears on each part, 
then the theory must be accepted or rejected as a whole. In contrast. argumenta­
tion allows the theory to be revised incrementally. Indeed, perhaps it is because 
of the infre4uent use of argumentation in cognitive science that its theories 
"have stood on the toes of their predecessors. rather than their shoulders" 
(Buhrow. 1~73). 

Competitive argumentation can have several advantages. In addition to its 
function of showing the lack of support for some theoretical principles while 
favoring other principles. it adds information at a more general level. enriching 
the understanding of the connection between facts and abstractions . A second 
potential advantage is that hy making explicit the reasons for rejecting a princi­
ple, when future development of the theory brings the chosen principle into 
connict with others or into connict with new facts. one can sometimes dust off 
one of the fallen competitors and patch its flaws, rather than searching for a 
replacement from scratch . In this respect . an argument functions like the "sup­
port" assertions that must be saved in order to do dependency-directed back­
tracking (c.f.. de Kleer & Doyle, 1981; Stallman & Sussman. 1977) . In short. 
the criticism of alternative explanations that a typical argument provides is value 
added to the demonstration of empirical support for the chosen principle . Third, 
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contrasting two alternative explanations sharpens both, making it easier to under­
stand the positions involved hy explicating the considerations that mutually 
support them as well as those that distinguish them . Fourth. argumentation 
guards against reinvention of the wheel. for if no argument can be found to split 
two proposals, one begins to suspect that they are equivalent in all but name. 
Finally, there is the possihility that arguments will outlive the theory they were 
crafted to support. They might survive not only as crucial facts. but also perhaps 
as argumentative techniques. Some of the most significant contributions to math­
ematics have been innovative proof techniques, techniques that have far out­
shown the theorems they supported. Perhaps cognitive science will also evolve a 
repertoire of argumentative techniques . 
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