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1. The need for on-line evaluation of instructional designs
Ideally, the design of inswuctional material should include ample testing of preliminary
designs so that design errors can be detected and repaired before the instruction is deployed.
Such formative evaluations are rarer than they should be for several reasons:
o Although the final polishing can be left off, all the little design details must be
fully worked out before the instruction can be given to human students. It would
be much better if formative evaluations could be conducted while the design was
still in a rough, preliminary state. When design errors are detected early in the
design cycle, less time is wasted working out the details of designs that will
ultimately be discarded.

e Testing instruction with human students can be difficult, time consuming and

. expensive. Although increasing the quality of instruction is always a desirable
goal in principle, the time and money needed for formative evaluation may not
always be justifiable.

o Current testing methods often yield only two kinds of information, neither of
which is particularly helpful to designers. First, there is a overall assessment of
instructional effectiveness, such as a difference between pre-test and post-test
scores. Second, there are the participants’ comments as to which parts of the
instruction seem to work well, and which did not.

In contrast to the situation in instructional design, consider the state of the art in mechanical
and electrical design. After drafting blueprint or schematic of their design on a CAD station,
designers can submit it to a simulation program for evaluation. Simulation programs provide
very detailed reports on the design's performance which allow the engineer to locate design
errors early in the design process. They may not find all the errors, because the simulation
programs and testing regimes are not always perfect, but catching errors early is much
cheaper than catching them later or not catching them at all.

The goal of the research described here is to develop simulation programs that can be used



for formative evaluation during the instructional design process. Such simulations are called
pyetido-students, because they simulate human students leamning from the given instruction.
However, unlike human students, pseudo-students keep a detailed trace of the leaming so
that the designer can discover the causes of undesiruble pedagogical outcomes. For instance,
one pseudo-student, Sierra, helped demonstrate that many systematic arithmetic errors are
caused by incomplete und poorly sequenced instruction (VanLehn, 1990a). Most of these
design defects would be casy to fix now that they have been detected.

.

2. Types of pseudo-students

Justas there must be muliiple simulation programs in mechanical and elecirical engineering,
there should be mukiple pseudo-student programs, cach adapted for a particular class of
instructional design problems.  An instructional design problem is framed by two important
choices: the delivery mode and the subject matter. There are many different options for both.
For instance, instruction can be delivered by lectures, textbooks, simulation-based trainers,
prinied tutorials, human ttors or peer teaching groups. Subject matter can range from text
editor commands to algebruic problem solving 1o mechanical design. It is not practical to
develop pseudo-students that can be applied to all problems in this vast two-dimensional
space. However, it is feasible to uddress well-defined regions characierized by particular
classes of delivery modes and subject matters. This paper discusses two pseudo-students,
Sierra and Cascade. The subject matter of Sierra is arithmetic algorithms, and the delivery
mode is standard textbook-based classroom instruction.  The subject matter of Cascade is
college physics problem solving, and the delivery muode is self-study of the textbook.

There ure many individual differences among students, and it would be pointless for a
pseudo-student to model just one kind of student. Thus, a proper pseudo-student must have
purameters for representing individual differences among students. A thorough evaluation of
4 proposed piece of instruction requires gathering the reactions of a whole “school” of
pseudo-students, where different members of the school have different parameter seltings.
However, if there is 1oo much variability among the students, it may be infeasible to capture
it ull with mere parameter variations. Structurally different pseudo-students may be
necessary. I physics problem solving, there are two rather distinet learning learning styles
(Chi, Bussok, Lewis, Reimann & Glaser, 1989), so the current version of Cascade has two
ditferent leurning models. Although less is known about arithmetic learning styles, it appears
that there ate ulso two approaches, a "syntactic” one and a "semantic” one (Resnick, 1982).
The semantic or meaningful approach generally leads 10 acquiring correct Kknowledge of the
algorithms. The syntactic approach sometimes leads 10 correct knowledge, but it often leads
1o acyuiring incorrect, "buggy” algorithms. Sicrra models only the syntactic approach.

Given all the recent work in muchine learning, it is certainly technologically feasible to build
programs that learn from the sume kind of instruction that human subjects do. Moreover, it
would be a simple nutier 10 ydd a trace 1o their processes so that one could find the causes
for the learning outcomes produced while running the program. In fact, it would not even be
necessary (o have the pscudo-student produce measurable outcomes, such as test scores, in
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order to tell if it had learned correctly. One can simply inspect the knowledge structures it
produces instead. If the acquired knowledge is incorrect, one can inspect the traces, find the
causes of the incorrect knowledge, and suggest changes in the instructional design.

No one would trust such suggestions unless the pseudo-student had been very carefully
validated with human swudents. Even if its learning processes were be consistent with what is
known about human psychology, one would still need assurances that its predictions about
learning outcomes are in fact accurate predictions of the learning outcomes from human
students. In shom, an important phase in the development of a pseudo-student is comparing
its learning outcomes to human students.

This introduces another important dimension along which pseudo-students can differ. They
can produce different leaming outcomes for comparison with human students. They might
predict achievement test results, iransfer, the time require to learn to criterion, error profiles,
or any other outcome that is both measurable in both human and machine behavior. For
instance, Sierra predicts systematic errors, and Cascade predicts problem solving protocols.

In summary, there are four dimensions along which pseudo-students differ: (1) the subject
matter area, (2) the delivery mode, (3) the class of learning styles or approaches, and (4) the
outcome measure used for assessing the accuracy of the pseudo-student as a model of human
students.

3. Sierra

There are two big problems in teaching arithmetic procedures. The problem that has
received the most research is how to get students to acquire a meaningful understanding of
the procedures. However, a more basic problem is that some students do not learn the
correct procedure at all. Instead they acquire a buggy procedure, which may resist detection
and remediation for years (Brown & Burton, 1978; VanLehn, 1982). Buggy procedures cause
errors that are systematic: the student will produce the same incorrect answer when given the
same problem twice. Sometimes the class of problems that cause incorrect answers is very
small relative to the whole class of arithmetic probiems, so detecting a buggy procedure can
be difficult. Worse still, there is evidence that bugs often spontaneously resurface even after
apparently successful remediation (Resnick & Omanson, 1987). These difficulties in
detecting and remediating bugs have led researchers to suggest that instruction be redesigned
so that bugs never have the opportunity to be leamned (Resnick & Omanson, 1987). This is
the design problem that motivates Sierra.

Sierra was originally intended as psychological model of the learning processes that cause
bugs and as an excrcise in a new method of psychological investigation called competitive
argumentation (VanLehn, Brown & Greeno, 1984). Now that it has been built, .its more
practical benefits have become appurent. This paper explores its potential as a pscudo-
student.



20

There are several assumptions about learning that are deeply ingrained in Sierra, The most
important one¢ is that only the Kinds of learning that can lead 10 bugs are modeled. In
particular, Sierra does not include anything like the Kinds of meaningful procedural leaming

that are aseribed 1o spme good students.  That kind of learning presumably produces only

correct procedures. 1f we want to detect instructional design errors that can cause errors, it

- does no good to include a kind of learning that is not sensitive to those errors. We want to

design instruction so that even students who cannot or will not learn meaningfully can at
least get a correct procedure out of the instruction.

A second assumption is that students who acquire bugs are driven mostly by the examples
and exercises given to them, and they muke linle use of the natural language explanations
that textbooks and teachers offer them. This assumption is consistent with many laboratory
and field studies (see Vanbehn, 1986, for a review).

I order 1o actually use an mathematical procedure, one must know more than the procedure
itself. One must also understand the syntax of the mathematical notation. For instance, the
rows and colunms are importunt in subtraction, but diagonals are not. For many kinds of
mathematics, one must also know the addition, subtraction and muliiplication tables (e.g.,
that 3+5=8). Sierra models only the process of learning procedures, so it is assumed that
prerequisite knowledge of notation and number facts has been mastered.

These assumptions imply that Sierra’s learning task is 1o induce a procedure from examples
of its operution. This learning task has been widely studied in the machine leurning literature
(sce VanLehn, 1987, for a review), and there are two basic methods for solving it. One is
explunation-bused learning (EBL). EBL begins by explaining the first of the given examples.
Its explunation is bused on a complete understanding (called a domain theory) of the subject
matier. The explanation is generalized slightly and stored in memory. The next time it
encounters i problem that is similar 1o the example’s problem, it can retrieve the generalized
example and re-use it solution. This is more efficient thun deriving the solution from first

principles. Thus, EBL improves the overall efficiency of the problem solver, allowing it to

solve problems that might otherwise be beyond irs reach.

The sccond main learning technique in machine learning is called similarity-based learning
(SBL). SBL compures examples 1o euch other, notes their similaritics and differences, and
forms generalizations,

Neither EBL nor SBL are exactly right for modeling how humans learn mathematical
procedures. The problem is that most procedures are wught incrementally. First a simple
version of the procedure is taught. For instance, the first version of a subtraction procedure
might only hundle problems that do not require borrowing (c.g., the simple procedure can
solve 38-13 but not 31-185. When this is mastered Gnore or less), students are introduced 1o
a more complicated version of the procedure, such as one that can handle simple cases of
borrowing (e.g., 31-18) but not more complicated cases (e.g., 301-8). This incremental
teaching process of continues untit the complete procedure has been presenied.
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The incremental nature of procedural teaching makes SBL inappropriate because SBL has no
waly to utilize material that it learned earlier. When an SBL algorithm is trying to master the
second lesson, it has no way to use the procedures that it acquired during the first lesson.
Clearly, this is not how students learn procedures.

On the other hand, EBL is also inappropriate. For procedural EBL, the domain theory is a
procedure. EBL creates specialized versions of the procedure adapted for particular types of
problems, which may make problem solving more efficient for those problems. However, it
cannot actually learn the procedure itself. Yet that is exactly what mathematics students are
doing, so EBL is not an appropriate model of their learning.

In order to build Sierra, a new machine learning technique was invented (actually, it was
invented concurrently by several investigators -- see VanLehn, 19904, for discussion). It
combines EBL and SBL. The basic idea is to explain an example as much as possible using
the current procedure. If the explanation cannot be completed, which will happen whenever
the lesson is introducing a new version of the procedure, then the algorithm finds the smallest
gap in the explanation such that if that gap were filled, the explanation would be complete. It
collects such gaps from several examples, then it uses SBL to assess their similarities and
differences, and make a generalization. The generalization is procedural, but it is not a whole
procedure for solving the problem; rather it is solves only the little bit of the problem
spanned by the gaps. So this piece of procedure is called a subprocedure. The subprocedure
generated by SBL is added 10 the old procedure, creating a new procedure that is be able to
explain all the lesson’s examples because the new subprocedure suffices to fill all the gaps
left in the old explanations. This technique is called explanation completidn (EC).

In order to use Sierra, one provides two formal encodings. The first represents of the
prerequisite notational and factual knowledge knowledge. The second represents the
instruction. Since Sierra ignores natural language, the instruction consists of a sequence of
lessons, where each lesson contains only examples and exercises. An example is a sequence

of problem states. The first problem state is the initial problem to be solved, and the

remaining states show the effects of consecutive writing actions. For instance, here is an
example of a subtraction problem being solved:

2 2 2

34 4 24 A4
-17 ~1% -1 1 -11
E; 17

Exercises are just unsolved problems, such as the initial state above.

Sierra represents individual differences among students by being non-deterministic. In the
learning algorithm, there are several choice points. For instance, there might be more, than
one way to generalize the set of gaps. Some students may pick one generalization, and other
students might pick a different generalization. When Sierra encounters such a choice point,
it makes a copy of itself on another computer. One copy takes one of the choices, and the
other copy takes the other choice. Although Sicrra runs best if it has many computers



dedicated 1o it, it can run on a single computer by saving copies of itself on disk and running
them luter,

In order 1o measure the accuracy of Sicrra as a model of human students, its learning was
compared that of 1,147 young students (ages 6 10 9) who were learning subtraction from two
stundard American textbooks. A cross-sectional design was used. Students at various stages
in their raining were all given the same diagnostic test. Their answers were analyzed by
Debuggy (Burton, 1982) and 4 bug profile was developed for each siudent. Meanwhile, the
examples und exercises were extracted from the texibooks and formalized. These two
instructional designs were given to Sierra, which learned 63 distinct procedures from it.
These procedures "took” the sume diagnostic test as the students, the answers were analyzed
by Debuggy, and bug profiles were developed.  Depending on how exacily how one
compares the two sets of buy profiles, Sierra modeled between 52% and 85% of the student’s
bugs (VanLehn, 1990a). Although there is clearly room for improvement, this degree of
accuracy is much better than Sierra’s predecessors and probably good enough that it could be
used as a tool for formative evaluation. After all, mechanical and electrical simulators are
not perfect models, yet they are still useful to designers nonetheless.

It Sierra had been used as & design tool, what would it have suggested to the authors of the
two subtruction lesson scequences?  Its major suggestion would be to avoid premature
problem solving. Many of the bugs were caused, according to Sierra, by having students
solve problems before they had mastered the version of the procedure needed for solving
them. These bugs could have been prevented by, for instance, giving more examples or
huving a wtor supervise the practice of the initial exercises. In particular, many bugs were
generated by testing itself. On muany tests, including our diagnostic test, students are asked 1o
solve problems that are beyond their level of training. This causes them to reach impasses,
which they surmount by inventing simple subprocedures that are usually incorrect (Brown &
VanLehn, 1980). The result is thut they leamn a wrong way to handle these problems, which
in turns may make it more ditficult to learn the right way later,

Sierra made several more local suggestions.  For instance, both textbooks introduce the
borrowing subprocedure over a muli-lesson  sequence that gradually increases the
complexity of the problems. This caused many bugs. Sierra would build an overly specific
procedure during the first Jesson, then huve roubles generalizing it on later lessons. It would
be better 10 introduce the subprocedure in a lesson that contains both simple and complex
problems. This would allow Sierra to induce the right level of generality during the initial
lesson.

Although Sicerra would in principle be a useful wol for instructional designers, Sierra was
explorutory software, pushing the limits of muchine learning and antificial intelligence. It
wis slow, unfriendly, and writien in 4 now-obsclete computer lunguage (Interlisp-D). It
could perhaps be developetl into usable software, but it would take a significant effon. More
importanily, much has been learned about human learning since Sierra was completed in
1985. Some of those results should be incorporited into a revised version,

4. Cascade

The primary goal of the Cascade project is to understand the cognitive processes of students
who are learning physics problem solving by studying examples and solving exercises. One
of the producis of this project will be a simulation of the lcarning processes. Eventually this
simulation could become a physics pseudo-student.

Several recent studies have shown that a major difference between good learners and poor
learners is how they study the examples. Chi, Bassok, Lewis, Reiman and Glaser (1989)
were the first 1o discover this difference. They took protocols of 8 students as they read a
chapter on translational dynamics in a standard college textbook, studied 3 examples, and
worked 19 problems. Subjects were categorized as either Good or Poor students on the basis
of a median split on their scores while solving the problems. Since students were not
significantly different on pre-tests, we can infer that the Good students were better at leaming
than the Poor students. Chi et al. analyzed the protocols to see if the Good students were
acting differently from the Poor students as they studied. Two significant ditferences were
found. First, the Good students tended to explain the examples very thoroughly to
themselves. They would check each line of the example’s solution to see if it could be
derived from the preceding lines. The Poor students, on the other hand, tended to simply
paraphrase the line, then move on to the next one. Often, they just read the line without even
paraphrasing it. There was a second significant difference found by Chi et al. When
students commented about their understanding of the line they were studying, the Good
students would tend 10 say that they did not understand the line, while the Poor students tend
1o say thut they did understand it. These two findings have been replicated in two other
domains: Lisp (Pirolli & Biclaczyc, 1989) and electrodynamics (Ferguson-Hessler & de
Jong, 1990). The 1wo findings are consistent with the hypothesis that a major difference
between Good and Poor students is that only the Good students explain the examples to
themselves, checking their knowledge by seeing if it is complete enough 1o regenerate the
example’s solution. Chi et al. call this strategy self-explanation.

The main goal of the Cascade project is to model the learning processes of the Good and
Poor subjects. Chi et al. graciously gave us copies of their protocols, which are being used 1o
evaluate the accuracy of the models. The project is in progress, so only a preliminary repont
can be given,

The model of the Poor students is quite simple. As they read the examples, they retain only
those lines that have equations. These are added 1o the stock of eyuations obtuined by
reading the chapter’s prose. When the Poor student model solves examples, it selects an
equation that contains the sought quantity, then recurses to find values for the other quantities
in the equation. This means-ends style of problem solving is quite common and has been
modeled before (Larkin, 1986; Bundy et al., 1979).

We have wied three models of self-explanation so far. One was a simple form of
explanation-based learning (van Harmelen & Bundy, 1988). It required such a complete
version of the domain knowledge that it now seems quite implausible. For instance, we had
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10 assume that the student already knew about certain forces laws (i.e., that a surface exerts
on an object a force that is perpendicular 10 the surface) before they started studying the
examples even though the actual text first introduces these laws in the midst of the examples.
Of the 111 rules in the knowledge base, 17 were introduced for the first time in the examples.
Most of these rules were simply used without comment.  Since EBL merely operationalizes
knowledge that it already possesses, it could not expliain how students learn these 17 rules.

The next model was based on explanation completion (EC), although of a much simpler kind
thun the EC algorithm used in Sicrra. When a gap is encountered, the EC algorithm selects a
template or “explanation pattern™ (Schank, 1986), fills in its slots so that it will bridge the
wap, and saves this structure as a new rule. This model sufficed to learn 4 of the 17 rules.
The current model is a combination of EC and EBL, called explanation-based learning of
correctness (EBLC). It suttices 1o learn all 17 rules (Vaniehn, 1990b)..

The next step in the research will be to find a way to combine the Good student model and
the Poor student model. This is not as easy as it may seem. The Good student model "thinks”
like a physicist, in terms of forces and accelerations. The Poor student model “thinks” like a
novice, in terms of variubles and equations (Larkin, 1986). Although we are fairly sure that
this is an accurate characterization of the 8 humun subjects towards the end of the
experiment, we are quite uncertain about. where it developed.  We doubt that the students
came 1o the experiment with a preset algebraic or physical approaches to the material since
their scores on the pretests are not significantly different. However, we do not see yet how
self-explanation can cause one group to develop a physics approach while the lack of self-
explunation causes the other group to develop an algebraic approach.

It might seem that the major news for educution is simply that physics students should be
encouraged (or coerced) into expluining examples to themselves. Perhaps all the detail one
gets trom a pscudo-student analysis is not useful for this instructional design problem. On
the other hand, it could be that getting students 1o sclf-explain is only the beginning. Self-
expluanation is an improvement over paraphrasing examples, but there will probably be ways
to improve it. For instance, it is clear already from the Cascade simulations that self-
explanations often are much simpler if one employs "sloppy” physics inferences, such as
blurring the distinction between instantancous velocity and velocity over a period of time, or
between weight as a scalur and weight as a vector. These Kinds of sloppy inferences can
become difficult hubits to breuk. Indeed, the concepual blurrings just mentioned are a
common source of errors among physics students. It may take careful design in order to find
example sequences thut block the development of such bad habits. A pseudo-student can help
with this design problem.

3. Counclusions

Two pscudo-students hive been brietly described here. Space does not permit discussion of
a third one, which is being dcvcf'upcd in the domain of ¢lectronics by David Kieras (personal
communication).  From a practical perspective, pscudo-students have both near-term and
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long-term potential. In the near-term, they help us understand how students learn by proving
detailed computational models of the learning processes. This often brings new pedagogical
insights even though the models themselves do not find direct use in the education
community. Felicity conditions for skill acquisition (VanLehn, 1990a; VanLehn, 1987) are
an example of such an insight. In the long term, pseudo-students can probably play an
important role in developing high quality instruction. Even though not all instruction needs
to be high quality, because its life cycle might be very short or it might be used by only a few
student, there are still many applications that demand high quality instraction. Pseudo-
students could be a useful tool for providing it.
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