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1. The need for on-line evaluation of instructional designs 
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Ideally, Ihe design of instructional material should include ample testing of preliminary 
designs so that design errors can be detected and repaired before the instruction is deployed. 
Such fonnative evaluations are rarer than they should be for several reasons: 

• Although the final polishing can be left off, all the little design details must be 
fully worked out before the instruction can be given to human students. It would 
be much better if fonnative evaluations could be conducted while the design was 
still in a rough, preliminary state. When design errors are detected early in the 
design cycle, less time is wasted worldng out the details of designs that will 
ultimately be discarded. 

• Testing instruction with human students can be difficult, time consuming and 
expensive. Allhough increasing the quality ()f instruction is always a desirable 
goal in principle, the time and money needed for fonnative evaluation may not 
always be justifiable. 

• Current testing methods often yield only two kinds of infonnation, neither of 
which is particularly helpful to designers. First, there is a overall assessment of 
instructional effectiveness, such as a difference between pre-test and pOSHeSt 
scores. Second, there are the panicipants' comments as to which pans of the 
instruction seem to work well, and which did not. 

In contrast to the situation in instructional design, consider the state of the an in mechanical 
and electrical design. After drafting blueprint or schematic of their design on a CAD station, 
designers can submit it to a simulation program for evaluation. Simulation programs provide 
very detailed repons on the design's perfonnance which allow the engineer to locate design 
errors early in the design process. They may not find all the errors, because the simulation 
programs and testing regimes are not always perfect, but catching errors early is much 
cheaper than catching them later or not catching them at all. 

The goal of the research described here is to develop simulation programs that can be used 
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fur fl)flnaliv~ ':I'aluation Juring thl! instrw;liunal (ksign prOCI!SS. SU4..:h simulalions are called 

f!.\t!//(/" · !illlt!t: IIIl". b':l.:ausl! Ihl!Y simulall! hum:lI1 slud<':llIs h:aming from Ihe given inSITUClion. 
I 10 \'01': I'.:r. unlik.: human sludellls. pseudo-sluJenls kecp a delail.:d trace of Ihe I.:arning so 
Ihal th.: Jesignl!r 4..:.111 disl.:ovo;:r Ihe 4..:auses of undesirabk pedagogical oul4..:omes. For inslance. 
olle pseuJo,slUdelli. Sjerra . hdp.:J demonstrale: thai many syslemalic arilhmelic errors are 
causl!J by incompi.:le and poorly sel(ul!nced in~lruclion (VanLehn. 1990a). Mosl of Ihese 
dc~igl\ defecl s would b.: e.lsy 10 fix now thaI Ihey havc b.:cn delected. 

2. TJpcs of pscudo,sludenls 
JU>I as IIl.:rc IIlIiSI be: Illuhiplt: silllulalion programs in IIlcchanical and eh:clrical engineering. 
Ih.:r.: >houlJ be Illuhipk ps.:uJo· stud.:nl progr,ulls. each ad:lpll!d for a parlicular class of 
ill>truct iollal d.:sign probh:ms. An inslru<': lional d.:sign probkm is framed by IWO impOl1anl 
choices : th.: dd ivery mode and Ihe subjecI malla. Then: are many differenl oplions for bolh. 
Fur inslan.;\!. instruction can b.: ddiver.:d by kctun:s . lexlbooks. simulalion-based tminers. 
pl' inl<:d tULOri .lls . human IUlors or peer leaching groups. SubjecI mailer can range from lexi 
c:di10r commands 10 alg.:braic probh:m solving (0 IlIl!chanical design. It is nOI praclical 10 
Jc:\'dop ps.:udo-slud.:nts thai can bl! applied to all problems in this vasl two-dimensional 
,(>.I .. e. Ilow.:ver. it is f.:asibl.: 10 adJr.:ss wdl-ddincd r.:gions characterized by parlicular 
d 'l>scs of ddivery mOlks anJ subjccl mailers. This papcr discusses two pseudo-stlld~nts. 
Sicrra ;lnd Cas,'ade. Th.: subj.:ct malla of Siena is arithm~tic algorithms. and the d.:livery 
Illode is standard t.:xtbook -bas.:d classroom instruction . Th.: subjcci mailer of Cascade is 
colkg~ physics problem solving. ;lnd th.: ddiv.:cy muJe is sdf-study of the h:Xlbook, 

Tha~ ar~ many individual Jifti:rences aillong slud~nts. and il would be poilllless for a 

p, .:uJO·SLUJclll 10 modd just on.: kind of stu(knl. Thus. a prop.:r pseudo-slUdcllI must have 
par;llnct.:fS for r.:prl!st!nting individual difkrcnccs among stud.: illS , A thorough evaluation of 

a proposcd piece of instTU(;tion r.:'luir.:s gathaing tht! rcactions of a whole "school" of 

ps.:uJO·S luJ':IlIS. wh.:n: diffcr~nt Ill.:mb.:rs of Ih~ sdlool have diffen:nt parameter s~lIings. 

110\1 cvcr. if th.:n: is too much vari;lbility among thl! stud.:nts. it may be! infeasible! 10 capture 

il ;a ll I I ilh Ill.:re paramcta variations , Structur,a1ly diffl!f(:11 pseudo-siudellls may be 
n': l' c" 'II), . In physics probkm ,olving. tha.: arc two rather distinct karning learning styks 
(Chi , Uassok. Lewis . R.:imann & Gl;asa. 19~~). so Ih.: curr':l11 v.:rsion of Cascade has two 

di .. .. a.:111 karning modds. Although le ss is known about 'Irithmetic karning styles, it appears 
th :1I tl l<: r.: 'IIC ,,( so 111'0 appru;,dlc·S. a "s)'nlacli..:" UIlC ,lIld a "scmantic" on.: (R~snick. 1982). 

Thc SClll;llllic or mcaningful appruach gcncrally k:aJs to 'K'luiring corr.:ct knowledge of the 
aigurithnh , TIi.: s),llladi..: '1j >(lm.Oc'h >ulllc t i m~s lea.1> to corrccl knowkdg~. but it oft.:n kads 
10 ;,,''lui ring inc'orre":l. "UIl ;;gy" algorilhms . SielT:t llluJds only the syntactic approach. 

Gil'c' n ;Illlhc rcccll! work in m:a..: hinc karning. it is c.:n;linly technologically feasible to build 

progr:II11S IIl:ot k;arn from th.: s;alll.: kind of instl'll ": liun Ihat human subjecls do. Mor.:ovcr. it 

would U.: a simple mailer to 'jdd a Irae.: to Ihe ir processcs so that one could find Ihe causes 
fur Ih .: learning outcomes proJuc'<:d while running Ih.: program. In fact . il would nOI even be 

nc..:c ssary 10 hav.: Ih.: pseudo,slIIdclll produce lIleasurabk outcomt!s. such as t.:st scor.:s. in 
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order to tell if it had learned correctly. One can simply inspect Ihe knowledge structures it 
produces inslead. If the acquired knowledge is incorrect. one can inspect the traces. find Ihe 
causes of the incorrect knowledge. and suggest changes in the instructional design. 

No one would trust such suggestions unless the pseudo-student had been very carefully 
validated with human sludents. Even if its learning processes were be consislent with what is 
known about human psychology, one would still need assurances that its predictions aboul 
learning outcomes are in fact accurate predictions of the learning outcomes from human 

studellls. In short. an important phase in the development of a pseudo-student is comparing 

its learning outcomes to human students. 

This introduces another important dimension along which pseudo-students can differ. They 

can produce different leaming outcomes for comparison with human students. They might 
predict achievement test results. Iransfer. the time require to learn 10 criterion. error profiles. 
or any otht!T outcome thaI is both measurable in bolh human and machine behavior. For 
instance. Sierra predicts syslemalic errors. and Cascade predicts problem solving prolocols. 

In summary. there are four dimensions along which pseudo-students differ: (1) Ihe subject 
matter area. (2) the delivery mode. (3) the class of learning styles or approaches. and (4) Ihe 
oUlcome measure used for assessing the accuracy of the pseudo-student as a model of human 

students. 

3. Sierra 
There are two big problems in teaching arithmetic procedures. The problem that has 

received the most research is how to get students to acquire a meaningful understanding of 
the procedures. However. a more basic problem is that some students do nOI learn the 

correct procedure at all. Instead they acquire a buggy procedure. which may resisl detection 

and remediation for years (Brown & Burton. 1978; VanLehn. 1982). Buggy procedures cause 

errors that are systemalic: Ihe sludent will produce the same incorrect answer when given Ihe 

same problem twice. Sometimes the class of problems thaI cause incorrecl answers is very 

small rdative to the whole class of arithmetic problems. so detecting a buggy procedure can 

be difficult. Worse still. there is evidence that bugs often spontaneously resurfaCe! even after 
apparently successful remediation (Resnick & Omanson. 1987). These difliculties in 

detecting and remediating bugs have led researchers to suggest that instruction be redesigned 

so Ihat bugs never have the opportunity to be lc:amed (Resnick & Omanson. 1987). This is 

the design probll!m that mOlivates Sierra. 

Sierra was originally int.:nded as psychological model of the learning processes that cau'se 

bugs and as an exercise in a new method of psychological investigation called compe!titive 

argumentation (VanLehn. Brown & Greeno. 1984). Now thaI it has been built • .its more 

practical bendils have become apparent. This paper explores its potential as a pseudo­
student. 
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There .Ire sewral assumplions alxlul karning Ihat are deeply ingrainl!d in Sil!rra. l1te most 

impurwnl on.: is Ih;1I only Ihc kinds of karning that can lead to bugs arc: moddl!d. In 

p;lfli.:ubr, Si.::rra do.:s nOI indud.: anYlhing IiI...: the kinds of mcaningful proc<!dural kaming 

. Ihal ar.: asnib.:d 10 spml! good slud':IIIS. ThaI kind uf learning prl!sumably produces only 

.:orr..:" prm:.:dur.:s. If w.: walll 10 d':lccI inslnlclional d.:sign errors that can cause: errors, it 
. docs no guod 10 induJ.: a kind of J.:arning Ihal is nUl sensitive to those errors. We want to 

design instruction so thaI .:v.:n slUdellls who C;lIInot or will not learn meaningfully can at 
kasl gel a correct procedurl! OUI of Ih.: in~lruction. 

A ,ccond assumplion is Iklt slud':lIls who '1CIJuin: bugs are drivl!n mostly by Ihl! examples 

and t:xcrciscs giv.:n to Ih..:m, and Ih.:y llIakt: lilll.: us..: of Ih.: natural language explanations 
Ihal lexlbuoks and teachers offer Ihem. This assumplion is consislent with many laboratory 
and tidd sluoi..:s (sc.: VanLe.:hn, 1,)~6, fur a r.;\'iew). 

In ord.:r III a,:luaUy us.: ;111 malhCIllOlli':;11 prucedure, olle musl kllow 1lI0re than Ihl! procedure 

il,dt'. One musl also undaSI;lIa! Ihe sYlllax of Ihe malhe.:malical notalion. For instance, the 
rows ano .:olumlls ;11'': imponanl ill sublracliun, but diagonals are not. For many kinds of 

malhemalics, onl: must also know Ihe adoition, sublla':lion and lIlultiplication tables (e.g .• 

Ihal 3+5=x) . Sierra moods only Ih.: proc.:ss of karning procl!dur.:s, so il is assumed thaI 
prerequisile kllowkdg.: of nowlion ;lIId number facls has b.:en masler.:d. 

Thes..: assumpliolls imply Ihal Sierra's karnillg las I.. is 10 indu':l! a procl!dur.: from examples 
of ils opa'llion. This learning task has been wid.:ly slUdkd in Ihe machinl! karning literalure 
(sce VanLehn, 19!i7, fur a review), and Iherl! ar.: IWO basic melhods for solving il. One is 

I!xpl,lIwion-b;lsI!J karning (EBL) . EIlL begins by explilining Iht: firsl of th.: given examples. 

lis explanalion is bas.:d on a complel': unoersl;ll1oing (call.:l.1 a domain tht:ory) of the subject 

m;IIICf. The explanalion is ge.:naillized slighlly and slor.:d in memory. The next lime it 

clK'OUlllas iI probkm Iklt is similar to Ihe ,:xilmpk's probkm, it can rl!trievl! the gent:ralizl!d 

cxampJ.: and re-use il s(.llIlion. This is more efficienl Ihan deriving the solUlion from firsl 

prilk·iplcs. Thus, E13L improves Ihe ovc.:rall dticiency of Ih.: probkm solver. allowing il to­
sol\'e prubkms Ihal mighl olherwise be beyond ilS reach. 

Th.: second Illilin Ic.:arning I.:chniqlle in machine learning is .:;lIlcd similarily-based learning 

(SilL). SilL compares ':X;lIllpks 10 each other, nOles Iheir similariti.:s and diffaences, and 
fOllm genaalizaliuns. 

Neilha EUL nur SBL ar..: e~ ;I,d)' ri:;111 for mudding how humans karn mathematical 

plll"dllr,s. Tt.l: prubklll is 1t. ;11 111",1 p,.u"dur.:s at, lallghl incr.:mentally. First a simple 

Velsiun lIf Ihe.: pruc.:dllre is 1;lIIghl. Fur ilb\;lnL'e, Ih.: firsl vcl',ion of a sublraclion procedure 

IlIi~hl oilly h;l/ldlt: prubl.:ms 11i:11 d" 11,,1 r.:quir..: borruwing (.:.g., Ihe simple procedure can 

,ul\'.: 31i·13 bill 11UI ] 1·1 l)). \\'/;,' /1 tI,is i, flu,lnl'l1 (lIIl1le.: or kss), sllidems arc introduced 10 

;1 IIll)I': l·Olllplic;II..:0 vl!rsinn of Ih..: pnx.:dllre, such ilS on.: Ihat can hilndk simpl.: C;tSI!S of 

b"rlU\\ IlIg (e.g., 31-11») bill nol l11"re.: cOlllplical.:d CIS,S (.: .g., 301-8). This incn:m.:ntal 
1':;ldling proL.'e.:,s of COlllillll":S IIlIlillhe.: l'lll11pkl': prucedur.: has bee.:n pres<!fll.:d. 
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The incremental nalurt: of procedural teaching makes SBL inappropriate because SilL has no 

way 10 utilize material thaI illearned earlier, When an SBL algorithm is trying to masler Ihe 

second lesson. iI has no way 10 use Ihe procedures thaI il acquired during Ihe first lesson. 

Clearly. Ihis is not how studems learn procedures . 

On Ihe other hand. EBL is also inappropriale. For procedural EBL, Ihe domain theory is a 

procedure. EBL creales spl!cialized versions of the procedurl! adaptcd for panicular types of 

problems. which may make problem solving more efficiem for those problems, However. il 

cannot actually learn Ihe procedure itself. Yelthat is exactly what mathematics students are 

doing, so EBL is not an appropriate mo(kl of their learning. 

In ordt:r to build Sierra. a new machine learning lechnique was invented (aclUally, it was 

invented concurremly by several invesligators -- see VanLehn. 1990a. for discussion). II 
combines EBL and SBL. The basic idea is to explain an example as much as possible using 

the current procedure, If the explanation cannol be compleled, which will happen whenever 

the lesson is inlroducing a new version of Ihe procedure, Ihen Ihe algorithm finds the smallesl 

gap in the explanation such Ihal if thaI gap were filled. Ihe explanalion would be complete. It 
collects such gaps from several examples. then il uses SBL to assess their similarities and 

differences, and make a generalization. The generalization is procedural. bUI il is nOI a whole 

procedure for solving the problem; rather it is solves only Ihe lillIe bil of Ihe problem 

spanned by Ihe gaps, So Ihis piece of procedure is called a subprocedure. The subprocedure 

generaled by SBL is added 10 Ihe old procedure. crealing a new procedure thaI is Pc able to 
explain all the Il!sson's examples because the new subprocedure suffices 10 fill all Ihe gaps 

leC! in the old explanations. This lechnique is called explanation complctidn (EC). 

In order to use Sierra. one provides two formal encodings. The first represents of the 

prerequisite nOlational and factual knowledge knowledge. The second represents Ihe 

instruction. Since Sil!rra ignores natural language. Ihe instruction consiSIS of a sequence of 

lessons. whcre each lesson cOOlains only examples and exercises. An example is a sequence 
. ~'f p~~bl~m- stales. The first problem slate is the· initial problem 10 be solved, and Ihe 

remaining slatcs show Ihe effects of conseculive writing actions. For instance, here is an 

example of a subtraction problem being solved: 

2 
~14 

.::....L1 

Exercist:s art: jusl unsolved problems. such as the initinl slatl! abov..:. 

Sierra represents individual differences among students by bl!ing non-dch:nninistic. In the 

learning algorilhm, there arc sevt:ral choice points . For instance. thae miglll be more. Ihan 

one way to g.:n.:raliz.: the S':I of gaps. Some studcllls may pick one gent:raliznlion, ami other 

slUdents might pick a different generalizalion. When Sierra encounters such a .:hoice point, 

il makes a copy of itself on another compuler. One copy lakes one of the choict:s, and the 

other copy lakt:s Ihe olher choice. Although Sicrm runs best if il has many compUIt:rs 
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dcdi.:alcd 10 ii, il can run on a singk compula by savins copies of ilsdf on disk and running 
Ih.:m laler. 

III orda 10 IIlcasurc Ihe accuracy of Sierra as a lIlodd of human siuderlls, ils learning was 

comparc:d Ih;1I of 1,1.:17 young slUdenls (ages 6 10 9) who w.:re karning sublraclion from Iwo 
siandard Amaican lexlboo[.;s. A .:ross -secliollal desiSIl was used. Siudellls al various siages 
in Ihdr Iraining were all giwn Ihe samc diagnoslic ICSI . Thdr answers were analyzed by 
Debuggy (Burlon, 19S2) and a bug IHotile was developed for each slUdenl. Meanwhile, Ihe 
exampks and exer.:iscs were eXlrach:d from Ihe lexlbooks and formalized. These Iwo 

inSifuclional designs ..... en: given 10 Sierra , which learned 63 disiinci procedures from il. 
These procedurcs "wok" Ihe s;ame diagnoslic leSI as Ihe sludenls, Ihe answers were analyzed 
by Debuggy, and bug profiks wae dcvelopcd . Depending on how exacdy how one 
compares Ihe IWO sels of bug prufik s, Siara lIlodded bClween 52% and 85% of Ihe slUdC:n1's 
bugs (VanLc:hll, 199001). Allhough Ihere is tkarly room for improvemenr, Ihis degree of 

accuracy is much bella Ihan Sic:rra's predecessors "nd probably good enough Ihal il could be 
usc:d as a 1001 for fonn;lIivc ev;alualion. Aha all, Il1cch"nical and eleclrical simulalors are 

nOI peri"cci modds, yel Ihey an: slill usdullO desigrh:rs nonelhch:ss. 

II Sierra had becn useJ as a design 1001, whal would il have sugge~.led 10 Ihe aUlhors of Ihe 

IWO sublraclion ksson SClIUClh:CS'! lis major suggeslion would be 10 avoid premalure 
probkm solving. Many of Ihe bugs ..... en: caused, according 10 Sic:rra, by having sludenrs 
solve problems bdore Ihey had maslI!Ccd Ihe v.:rsion of Ihe procedure needed for solving 
Ihe:m. These bugs could have: bce:n pre:vcllled by, for inslance, giving more examples or 
having a IUlor sup.:rvis.: Ih.: praclice of Ih.: inilial e:xcn:ises_ In particular, many bugs were 

g.:neraled by lesling ilsdf. On many lests, including our diagnoslic lesl, sludems are asked 10 
solve probkms Ihal are b.:yond Ih.:ir h:vel of Iraining. This causes Ihem 10 reach impasses, 

which Ih.:y surmount by invcllling simpl.: subprocedur.:s Ihal are usually incorreci (Brown & 
VanLehn, 1980). The result is Ihal Ihe:y kam a wrong way 10 handle Ihese problems, which 
in IUrns may make it more di(ficult 10 I.:arn Ihe right way later. 

Si.:rra made several 1Il0re lOCI I suggestiuns_ For instance, both texlbooks inlroduce Ihe 

burrowing subproc.:Jurc ova Ol Illulli -ksson sClluence Ihal gradually increases Ihe 
wmpkxity of Ihe problems. This caused 1Il00ny bugs. Sierra would build an overly specific 
proccdure: during Ihe first \.:,son, Ih.:n have lroubles g.:nccalizing il on laler lessons. It would 

be bell.:r 10 illlroJuce Ihc subplO.:edllfl! in a ksson Ih;1l comains bOlh simple and complex 
probkms. This would allow Sierra tu indu.:.: the righl I.:vd of gc:nc:ralily during Ihe inilial 
ksson. 

Allhollgh Si.:rra would in principk bc a us..:ful 1001 for instfUClional designers, Sierra was 

exploralory sufi \\';Ire , pu,hing lil..: limils of machille learning and anificial intelligence. II 
W;IS slow, unfriendly, alllJ IITIII,n ill a now -ub,eicle compuler langu;lge (Inlc:rlisp-D). II 
could p..:rhaps bc dcvdopeo illlu usable soflware, bUI il would lake a significalll effon. More 

importanlly, mUch has been karn.:J aboul human karning silll:e Sierra was compleled in 
I ~tl5 _ Som.: of Ihose r.: sulls should bc incorporatt:d inlo a rcvis.:J version. 
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4. Cascade 
The primary goal of Ihe Cascade projeci is to undc:rsrand the cognilive processes of slud.:nts 
who are learning physics problem solving by sludying examples arid solving exercises. One 
of Ihe products of this projeci will be a simulation of Ihe Icarning processes. EvenlUillly Ihis 

simulalion could become a physics pseudo-sludenl_ 

Several recent sludies have shown Ihal a major difference belween good learners and poor 
learners is how they sludy Ihe examples_ Chi, Bassok, Lewis, Reiman and Glaser (1989) 
were Ihe firsl to discover Ihis difference. They look protocols of 8 students as Ihey read a 

chapler on translalional dynamics in a siandard college lextbook, siudied 3 examples, and 
worked 19 problems. Subjecis were calegorized as eilher Good or Poor studenrs on the basis 
of a median splil on Iheir scores while solving Ihe problems_ Since sludenrs were nOI 
significalllly differem on pre-Iesls, we can infer Ihallhe Good sludc:nts were beller alleaming 

Ihan the Poor siudems. Chi el al. analyzed the protocols 10 see if Ihe Good sludenls were 

aCling differently from the Poor sludems as Ihey studied. Two significanl differences were 
found. First, the Good sludenls lended to explain the examples very Ihoroughly to 

Ihemselves. They would check each line of Ihe example'S solution 10 see if il could be 

derived from Ihe preceding lines. The Poor siudenls, on Ihe other hand, tended 10 simply 

paraphrase Ihe line, Ihen move on 10 Ihe nexl one. Oflen, they just read Ihe line wilhoul even 
paraphrasing il . There was a second significanl difference found by Chi el al. When 
sludenls commented aboul Iheir understanding of Ihe line Ihey were sludying, the Good 
sludems would lend 10 say thallhey did 1101 undersland the line, while the Poor siudems tend 

to say that they did undersland it. These IWO findings have been replicaled in two Olher 
domains: Lisp (Pirolli & Bielaczyc, 1989) and eleclrodynamics (Ferguson-Hessler & de 

long, 1990). The IWO findings are consistenr wilh Ihe hypothesis Ihal a major difference 

bclween Good and Poor studenls is Ihat only Ihe Good siudellls explain Ihe examples 10 

Ihemselves, checking Iheir knowledge by seeing if il is complele enough to regenerate Ihe 

example's solulion. Chi el al. callihis slralegy self-explanation. 

The main goal of Ihe Cascade project is 10 model Ihe learning processes of Ihe Good and 

Poor subjects. Chi el al. graciously gave us copies of their prolocols. which are being used 10 
evaluate Ihe accuracy of Ihe models_ The projeci is in progress, so only a preliminary repon 

can be given. 

The model of Ihe Poor studems is quite simple. As Ihey read Ihe examples, Ihey relain only 

Ihose lines Ih"l have equalions. These are added 10 Ihe siock of ellualions oblained by 
reading Ihe chapler's prose. When Ihe Poor studelll model solves examples. it sdcCls an 

equal ion Ihat contains the soughl quamilY, Ihen recurses to lind values for Ihe OIher quaillilic!s 

in Ihe ellualion. This means-ends slyle of problem solving is quile common and has been 
modeled before (Larkin, 1986; Bundy et al.. 1979)_ 

We have u'ied Ihree modds of self-explanalion so far. One was a simple fonn of 

explanalion-basl!d learning (van Harme!.:n & Bundy, 19t!H). II relluin:d such a complete: 

version of the domain knowJ.:dge Ihal il now seems quile implausible. For inslance, we had 



tu assume that th.: stud~nt ;11I·c:ldy kn.:w about certain forces laws (i.e., that a surface exerts 

on an obj.:ct a force thaI is pe:rp.:ndicu!;Jr to th.: sllr1";lce) b.:fore they stal1ed studying the 
exampks even thollgh the a(;tualtext first imroou(;l!s these laws in the midst of the examples. 
Of the III rllks in the knowkdg.: base:, 17 were introduced for the first time in the examples. 
l\·!o st of th.:sc: ruks were simply us.:d wilhout (;0111111':111 . Since EBL merdy opc:rationalizes 

knowledge: that it alr.:ady poss.:s~.:s , it could nut expLtin how stlld.:nts I.:arn these 17 rules. 

Th.: next mudd was b;lsed on explan;llillll cUlllpktion (EC), althollgh of il much simpler kind 

than tlle EC algorilhm used in Sierra . Wh.:n a gap is cnl"Ounicred, the EC algorithm selects a 

l<:mplat.: or "explanation patlan" (Schank, I ~t!6), fills in its slots so that it will bridge the 
g;lp, and saves this strllCWCI! as a new nile. This modd sufficed to karn 4 of the 17 rules. 

Th.: curr':lIt modd is a combination of EC and EBL, t.:alled ellplanation-base:d learning of 
COlTeCllh:SS (EfiLC). It suffit.:.:s to learn all 17 ruks (Vankhn,1990b) .. 

Th..: nexI step in the r.:se:an:h will be: 10 find a w;IY to combine the Good student model and 

the Poor stud.:m model. This is not as easy as it may S':CIll . The Good student modd "thinks" 

like a physicisl, in terms of fon:es and a(;cdcrations. The Poor student model "thinks" like a 

novice:, in terms of variab!.:s and cquations (Larkin, 1986). Although wc are fairly sure that 

this is an accurate characterization of th.: 8 human subjects towards the end of the 

experiment , we arc: quite: uncert;lin about. wh.:r.: it devdop.:d. We doubt Ihat the slUdems 

t.:alllC: to the expc:rimt:nt with a pres.:t algt:braic or physical approaches to the material since 

thc:ir score:. on the prt:t~st> arc: not significantly diffa.:nt. However, we do not see yet how 

sdf-..:xplanation can caust: on.: group 10 devdop a phy.ics approach while Ihe lack of sdf­

..:xpbn;llion causes the otha group to Jevdop an alg..:braic approach. 

It might se.:m that th.: major news for .:dUl:ation is simply that physics students should be 

.:m:ouragcd (or coc:rced) into I!xplaining ellampks 10 th.:mse\Vt:s. Perh;tps all the delail one 

gets from a pscudo-student analysis is nOl usdul for Ihis inslructional design problem. On 

Ihe mha hand, it could be: that gelling .tudl!nts to sdf-explain is only the beginning. Self­

..:xplanation is an improvement ova paraphrasing exampks, bUl Ihere will probably be ways 

to improvc it. For instance, it is d.:ar alr..:aJy from the Cascade simulalions that self­

.:xplanatioll. oftcn are much simpkr if on.: employs "sloppy" physics inferences, such as 

blurfing the distinction belwc.:n ilhlantall":ous v..:l(lI.:ity and vdodty ov.:r a period of time, or 

bet wcc:n weight as a scalar and wl!ight ;IS a vector. Thl!se kinds of sloppy inferences can 
bc:(;omc di fficult habits 10 br":~lk. I nu..:..:d , the .:onceptual blurrings jusl mentioned are a 

(;0111l1l0n source uf errors among physics stud.:nts. It \llay talt: (;arc:ful design in order to find 

exalllplc seqllcn(;t:s that block the d..:v.:lopm..:nt of slIch b;ld habits. A pseudo-studenl can help 

with this design problem. 

5. Conclusions 
Two ps..:udo-stlldt:l1ls have be':l1 bricfly (kscrib..:d hen:. Space does nOI permit discussion of 

I 

;1 third one , Ilhich is b..:ing dCl'd'up.:u in the dUlllain of .:kctfOnics by David Kiaas (personal 

l·L>llIllllllli.:ation). From a PLILtic";t\ Pl:fsp.:ctiv.:, pscuJo-stlld..:nts have both nl!ar-tenll and 
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long-term pOlential. In Ihe near-term, they help us understand how studems learn by proving 

del ailed computational models of the learning processes. This often brings new pedagogical 

insights even though the models themselves do not find direct use in the education 

community. Felicity conditions for skill acquisition (VanLehn, 199Oa; VanLehn, 1987) are 
an example of such an insight. In the long term, pseudo-students can probably play an 

imponant role in developing high qualilY inslruction. Even though not all instruction needs 

to be high quality, because its life cycle might be very short or it might be used by only a fc:w 

studenl, there are still many applications that demand high quality instruction. Pseudo­

sludenls could be a useful tool for providing it. 
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