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This chapter discusses an extra capability that few architectures have, even
though it is both vseful from a programming point of view and arguably a good
approximation to a human capabilitics. People can reconstruct goal structures
and other aspects of their internal state that have been forgotten. For instance,
suppose one is interrupted in the middle of solving a difficult problem by a long
involved phone call. When the phone call is over, one can eventually pick up the
problem solving where one left off. This capability is called goal reconstruction.
Because goal reconstruction requires no special training to acquire it and it does
not have to be acquired separately for each a new problem solving procedure one
learns, goal reconstruction is arguably a fundamental, task-general capability of
human problem solvers. Goal reconstruction is also a useful capability even for
an artificial problem solver. It permits recovery from interruptions of the problem
solving by processes that modify the body of procedural knowledge, such as an
inferential learning process or a programmer debugging the procedural knowl-
edge. In short, goal reconstruction is both a fundamental human capability and a
useful capability for Al architectures.

Goal reconstruction is- part of the larger process of maintaining a goal struc-
ture. Our analysis of goal reconstruction is based on the insight that goal mainte-
nance is a special case of the notorious frame problem in Al. The frame problem
is to keep a model of the world up to date as actions take place in the world.
Sometimes actions have unexpected and wide-ranging effects, which may make
it difficult to calculate how much of the model needs changing in order to reflect
the change wrought by the action on the real world. Of course, if the agent can
see the world, then perceptual processing can-be partially substituted for the
cognitive processing that calculate updates to the model. At first glance, the
frame problem has nothing to do with goal! maintenance. Goals are not usually
though of as being a part of the real world, so literally speaking, maintenance of
goals is not maintenance of an internal modei of the external world. However, the
agent’s knowledge, when viewed as a disembodied logical system, can be ap-
plied to the external world in order to generate a virtual or ideal goal structure.
For the sake of the analogy, we can pretend that this Platonic goal structure is “in
the real world”.! Now it is clear that maintaining the agent’s internal goal
structures is exactly a frame problem: it must manipulate its internal goal struc-
tures so that they accurately reflect changes in the external, Platonic goal struc-
tures. As always in the frame problem, perceptual processing can be substituted,
at least in principle, for internal calculations. This chapter discusses computa-

IMany Al problem solvers assume that high level descriptions, such as “block-1 supports
block-2,” are part of the real world. In fact, a robot would have to infer such relationships with the
aid of a sophisticated vision system. Goals are also produced by inferences. So it is not such a great
leap to consider goals as well as “block-1 supports block-2" relationships as being “in the real
world”.




6. GOAL RECONSTRUCTION 149

tional mechanisms for implementing this “in principle” tradeoff between percep-
tual and cognitive maintenance of goals.

THREE PROBLEMS TO BE SOLVED BY GOAL
RECONSTRUCTION

Goal reconstruction is a solution to three problems in cognitive theory. Two of
the problems stem from inadequacies in curent accounts of human working
memory for goals. The third problem is that current accounts of problem solving
overcmphasize planning and plan-following, because much of human behavior is
situated as opposed to being planned. This section contains a discussion of each
problem in turn.

The first problem has to do with working memory capacity for goals. People
cannot remember arbitrarily large goal structures for arbitrarily long times. For
instance, a telephone call often causes one to forget one’s place in a problem. An
early approach fo modeling this human trait was to assume that goals were held
in a capacity limited memory, called STM or working memory. For instance,
Newell and Simon (1972, p. 808} claimed that “STM holds about five to seven
symbols, but only about two can be retained for one task while another unrelated
task is performed.” Because working memory holds both goals and intermediate
results, and these can accumulate quickly while problem solving, it is difficult to
perform significant computations when working memory is strongly capacity
limited. Thus, it was assumed that people use the external world as a storage
place for temporary results while problem solving, and this makes it just like a
working memory. For instance, Newell and Simon say (p- 801) that the operative
“STM should be defined, not as internal memory, but as the combination of (a)
the internal STM (as measured by the usual psychological tests) and (b) the part
of the visual display that is in the subject’s foveal view.” Thus, instead of trying
to remember an intermediate result, such as T = 0, the person writes it down on a
worksheet. Things are not so simple for goals, however, because people do not
usually write goals on their worksheets. Anderson (1983, p. 161) showed how to
reconstruct Tower of Hanoi goals using task-specific knowledge about the
puzzle, but he did not present 2 general capability. Thus, goal reconstruction has
been thought for some time to be important as a way of increasing the effective
capacity of working memory, although a gereral model of goal reconstruction
was never developed.

Another problem in cognitive theory involves the access characteristics of
goal memory. In most models of human goal storage, goals are held in a last-in-
first-out goal stack (LLaird, Newell, & Rosenbloom, 1987; Newell & Simon,
1972; VanLehn, 1990). That is, when a person is done with a goal and needs to
sclect a new goal to work on, the only goals that can be selected are those that
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were most recently created and are not yet accomplished. This restriction is
called the LIFO (last—in—first—out) convention. Consider, for instance, a cog-
nitive procedure with the following goal structure: ‘

Top goal
Subgoal 1
Sub-subgoal A
Sub-subgoal B
Subgoal 2
Sub-subgoal C
Sub-subgoal D

Suppose all these goals are conjunctivély related, so that achieving the top goal
means that all the subgoals must be achieved. Suppose further that the lowest
goals, the ones with letters as their names, correspond to physical actions that an
experimenter could observe the subject doing. Let us see what kinds of goal
selection orders are allowed by the LIFO restriction. Suppose the top goal con-
structs subgoals 1 and 2 at the same time. Subgoal 2 is selected, and constructs
goals C and D at the same time. Goal C is selected. After it is finished by
performing some physical action, the subject must choose either goal 1 or goal
D, as these two have been constructed but not yet executed. The LIFO restriction
implies that goal D must be chosen, as it is younger. Thus, in a LIFO architec-
ture, the experimenter would never see actions in the sequence CADB, as this
interleaves subgoals of goals | and 2. Of the 24 possible permutations of the four
primitive goals, only 8 can be generated by a LIFQ architecture.

Intuitively, the LIFO restriction is quite implausible. It essentially says that
there are some subgoals that one can recall but cannot select. In the example
above, one can recall subgoal 1 (since it will be selected later) and yet one cannot
select it because subgoal D is younger. For instance, suppose the top goal is “do
evening chores” and subgoals 1 and 2 are, respectively, “clean breakfast dishes”
and “prepare dinner.” A LIFO restriction would mean that one would have to
clean all the breakfast dishes before starting the dinner preparation, or vice-
versa. ‘On this analysis, many people violate the LIFQ restriction nightly.

The problem with the evening—chores example is that we do not really know
what the goal structures of the subjects are. There are other goal structures than
the one above that would allow a LIFO architecture to interleave dish—cleaning
actions with dinner-preparing actions.

There are, however, good examples of the LYFO constraint being violated. We
discovered eight elementary school students (from a sample of 26) who executed
subtraction procedures in a non-LIFO order (VanLehn, Ball, & Kowalski, 1989).
The goal structure of subtraction procedures is quite well understood (VanLehn,
1990}, and there is no reason to believe that these students’ goal structures were
any different from their peers’. If the eight students did have one of the standard
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goal structures, then the sequence of physical actions they made could only be
accomplished by violating the LIFO constraint.

Moreover, there were strong regularities in the 8 students’ actions that make it
highly unlikely that their behavior is due to working memory failures wherein a
basically LIFO goal storage mechanism “accidentally” marks the wrong goal as
most recent. This source of non-LIFO execution should appear as random
“point” mutations to the standard execution sequence and it should also be fairly
infrequent. This was not what the eight students did. They generaily had two or
more stable execution orders, some of which could only be generated by a non-
LIFQ architecture. For instance, one student had three stable orders:

1. The standard order. Columns are processed right-to-left, and the borrow-
ing for one column is finished before the next column is begun.

2. Horizontal order. All the borrowing in the problem is done on a right-to-
left horizontal pass across the columns. Then the columns are answered on
a second horizontal pass, which may be either right-to-left or left-to-right.

3. Vertical order. Columns are processed in right-to-left order. However,
borrows are not completed before moving on to the next column. Instead,
all marks in column, including any marks caused borrows from earlier
columns, are done together.

The student used the standard order on four problems, the horizontal order on -
four problems, the vertical order on three problems, and a blend of the horizontal
and vertical orders on two problems. The systematicity of her behavior makes it
implausible that her non-LIFG orderings are based on working memory failure.?

These eight students provide clear examples of violations of the LIFO con-
straint. They allow us to conclude what was intuitively obvious all along: people
can select any goal for execution that they can recall. Whether or not it is sensible
to make a non—LIFO choice is, of course, task specific. The reason the LIFO
constraint has survived as fong as it has in models of the architecture is due to the
structures of the task domains, which generally require or encourage a LIFO
selection of goals. Subtraction, which is not one the task domains typically
studied in the architecture literature, does not have this LIFO property.

This work shows that the operative working memory is non-LIFO, bat as
Newell, Simon, Anderson, and others have pointed out, the operative working
memory is implemented in part by visual perception. It could still be the case that

ZOne might think that this subject has three distinct subtraction procedures, ene for each order.
However, this would not explain her ability to blend the horizontal and vertical orders, as she does on
two problems. For more discussion of this and other challenges to the conclusions, see VanLehn,
‘Ball, and Kowalski (1989).
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internal working memory is LIFO and that the non—LIFQ aspects of the subtrac-
tion subjects’ behavior is due to the way they infer or reconstruct goals from what
they sce. This led us to investigate the process of goal reconstruction.

A third problem in cognitive theory comes from recent work in robotics and
ethnomethodology. Several investigators have worried that real-time, adaptive
control of behavior does not allow for interleaving planning and plan following.
Instead, people just act. As Agre and Chapman (1987, p. 268) put it, “Rather
than relying on reasoning to intervene between perception and action, we believe
activity mostly derives from very simple sorts of machinery interacting with the
immediate situation. This machinery exploits regularities in its interaction with
the world to engage in complex, apparently planful activity without requiring
explicit models of the world.” This belief that action is derived by cursory
examination of the situation rather than reasoning is often called the situated
action paradigm (Suchman, 1987).

It would be wrong to think that the proponents of situated action claim

people’s mental apparatus makes it impossible for them to plan their actions. As
Agre and Chapman (1987, p. 272) put it, “We do not believe that the human
central system has no state. Qur point is simply that state is less necessary and
less important than is often assumed.” Currently developed computational mod-
els of situated action (Agre & Chapman, 1987; Brooks, chap. 8 in this volume)
are claimed to be interesting architectures for robotics and not literal models of
human cognitive capabilities. These architectures have so little internal state that
they cannot model simple tasks, such as counting or mental multiplication, that
humans can easily perform. Even mundane tasks, which are intended to be the
forte of these architectures, sometimes cannot be done in a purely situated way.
For instance, one of us once had a job washing glassware in a medical laboratory.
The procedure was to wash the glassware 6 times in tap water then 6 times in
distilled water. Since one cannot tell by looking at a piece of glassware how
many times it has been washed, the Pengi architecture {Agre & Chapman, 1987)
cannot solve this task.

Suchman (1987) does take situated action as an account of human behavior, so
her position is more complex than her robotics colleagues. Suchman points out
that people do plan, as for example, when they study a river rapids in order to
plot a course for their canoe. However, these plans “are constituent as an artifact
of our reasoning abour action, not as the generative mechanism of action.”
(Suchman, 1987, p. 39, emphasis original} Suchman is mostly concerned with
plans derived as post-hoc explanations of behavior, so her book does not contain
a clear statement about the causal entailments of plans made in advance of an
action. Her choice of a canoeing example suggests that she does believe that
advance planning can effect actions, albeit indirectly: planning to paddie to the
left around a boulder in the rapids is one factor involved in causing the ultimate
action of paddling to the left of the boulder. Suchman’s major point, however, is
that advance planning is rare, and even when it does occur, “plans are best




6. GOAL RECONSTRUCTION 153

viewed as a weak resource for what is primarily ad hoc activity” (bid, p. ix).

The situated action position is certainly partially right, because current models
of the human problem solving have emphasized planned action rather than site-
ated action. In part this is due to their historical roots, which lie in studies of
people working with puzzles, mathematical problems and other tasks where
planned actions are probably more common than situated actions. The problem
for cognitive modeling is to develop an architecture that can easily and seam-
lessly oscillate between planned action and sttuated action, since both occur in
human behavior and we are often not even aware, even in retrospection, of the
transitions between them (Suchman, 1987).

We believe that goal reconstruction is exactly what is needed for this seamless
oscillation between situated and planned action. We describe an architecture that
can operate with almost no internal state by rapidly reconstructing whatever
goals are necessary in the current situation. We demonstrate that these goal
reconstruction processes are formally identical to processes for perceptual pars-
ing of the situation, so goal reconstruction can be thought of as high-level
perception. This nicely captures the principal intuition of the situated action
paradigm, which is that much action is guided by perception. On the other hand,
when goals can be recalled or when they must be recalled, the architecture can do
that as well. So it can develop plans in memory and follow them. Moreover, this
sort of planned activity blends seamlessly into situated activity.

In short, goal reconstruction is claimed to be a solution to these three prob-
lems in cognitive modeling: How do people access more goals than they can
reliably store in memory? How do people implement a non-LIFO goal store?
How do people blend situated and planned action?

RECONSTRUCTION IN SEVERAL PROBLEM-SPACE
ARCHITECTURES

Goal reconstruction depends strongly on interpretation of visual scenes, so it
would seem that any model of goal reconstruction should include at least a
rudimentary model of perception. However, it is convenient to start the discus-
sion by ducking the question of perception entirely. In this section, an initial
mechanism for goal reconstruction is developed. In the next section, the initial
model is augmented with a rudimentary model of perceptual processing.

A standard way to avoid modeling perception {and motor control as well—~but
that is irrelevant to this paper) is to use a problem space. In order to model a
given task, the theorist specifies a set of primitive predicates and a way of
composing them into descriptions of a problem state. In the model, the curren:
problem state, which is one of these compositions of primitive predicates, repre-
sents that which the person infers from perceiving the real problem state. Thus,
the problem space technique avoids the perception issue by postulating the output
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from the perceptual interpretation processes without describing the processes
themselves.

There are many ways to implement a problem space. This section argues that
goal reconstruction is simple to implement in any of the implementations of
problem spaces. However, in order to make the argument easier to follow, an
implementation of goal reconstruction will be described for a particular imple-
mentation of problem spaces. This implementation depends crucially on a Truth
Maintenance System or TMS. Although this is a standard piece of technology in
Al it was developed fairly recently (deKleer, 1986; Doyle, 1979), so not all
readers may be familiar with it. The first subsection describes a TMS-based
implementation of problem spaces and how a TMS works. The second subsec-
tion presents a simple implementation of goal reconstruction. The third subsec-
tion argues that goal reconstruction is simple to add to other implementations of
problem spaces.’

Modeling State Changes with a TMS

The implementation of problem spaces presented here is the one pioneered by
Strips (Fikes, Hart, & Nilsson, 1972). The TMS—based implementation of Strips
problem spaces was developed more recently and is used by Prodigy (Carbonell
et al., chap. 9 in this volume) and other problem solvers. _

A state is represented by a set of literals in a first order logic. A literal is just a
single predicate which may or may not be negated. Thus, on {block56,block2)
and not (clear(top(block2)}) are both literals. Literals that are used to represent
states have no variables in them. They have only constants, such as bleck56, and
functions of constants, such as top(block?). We use the Prolog comvention of
capitalizing variables. Constants, functions and predicates are written in lower
case.

Perception (reading the state) is modeled by matching expressions against the
set of literals that represents the current problem state. To find out what block is
on block2, the expression on (X,block2) is compared to all the literals in the
current state until one is found that matches (unifies) with it. Matching causes the
variable x to be matched to a constant, say blockS6, thus answering the guestion
of which block is on block?. '

Action is represented by adding and deleting literals from the current state,
thus creafing a new state. A generic action is called an operator, and its generic
effects are represented by a list of literals to be added to the current state (the
add~list) and a list of literals to be deleted (the del-list).

In order to allow this economical description of actions to model complicated
state changes, rules are used to maintain logical -relationships that hold in all
states. For instance, suppose the problem space uses a literal indirectly-on (X,Y)
that means that X is directly on top of Y (i.e., on (X,Y)) or X is on top of
something that is indirectly-on Y. Two rules can be used to provide a formal
recursive definition of indirectly-on: '
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1. Ifon (X,Y)- then indirectly-on (X,Y).
2. If there is a Z such that on (X,Z} and indirectly-on (Z,Y), then indirectly-
on (X.Y). '

Given these rules, the operators need only mention their effects on the on
literals. They do not have to mention indirectly—on literals in their add-lists and
del-lists since the effects on those can be calculated with the two rules above.
For the sake of discussion, let us distinguish primitive literals from derived
literals. A primitive literal is one that is added directly to the problem space by an
operator’s execution because a generic version of it appeared in the operator’s
add-list. A derived literal is one that is added by the execution of a rule.

Although it is clear that the rules provide the knowledge that is required for
omitting derived literals from add-list and del-lists, it is not as simple as it might
seem to get the system to use this knowledge effectively. There are two basic
methods. The simpler one, which was used by Strips, is to create a new empty
state, add all the primitive literals specified by the operator’s add-list and copy all
the primitive literals from the old state that arc not mentioned by the operator’s
del-list. Now the new state has all the primitive literals that it should have. The
derived literals are added by repeatedly firing the rules until no new derived
literals are inferred. Many of these derived literals will be equal to ones in the
preceding state. For instance, if block A is on block B in the old state, and the
action does not effect that, then indirectly—on (A,B) is true in both the old state
and the new state. Thus, this method of modeling action amounts to reconstruci-
ing problem states.3

The other method of modeling, which is used by Prodigy (Carbonell et al.,
chap. 9 in this volume), achieves exactly the same result, but is more efficient
because it substitutes cheap copying and removal operations for expensive re-
derivation operations. The copying and removal operations use a TMS. The -
basic idea is to copy all the literals in the old state, including the derived ones,
then remove all the literals that should be removed and add all the literals that
should be added. The trick is to remove only the right literals. This happens in
two stages. First, all the primitive literals that are explicitly mentioned in the
operator’s del—list are retracted. Second, the TMS retracts derived literals whose
derivations depend on retracted primitive literals. In order to do this, the deriva-
tions of the literals have to be remembered.# If any of the primitive literals in the

3Although this description uses forward chaining, most problem solvers use backwards chaining.
Instead of drawing all possible inferences as soon as the state is created, backward chaining makes
inferences only when the problem solver poses a query, such as indirectly-on (X,block2). The
imporiant point is that in the recenstruction methed, only the primitive literals are copied from the old
state to the new state. Exactly when the derived literals are inferred does not matter.

*A derivation is a proof tree whose leaves are primitive literals. Thus, if rule 1 is used to derive C
from A and B, and rule 2 is used to derive E from C and D, then the dérivation for E is the tree
{E(C(AB))D).
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derivation are retracted, then the derived literal is also retracted. This retraction
process is guaranteed to retract all and only the appropriate derived literals.

Next, the TMS—based system adds the literals from the operator’s add-list and
runs rules untif quiescence. There is a trick that is used to speed this part of the
process up. It is often the case that one of the derived literals that was retracted
during the first phase is rederived during the second phase. Since the system has
to remember derivations anyway, it is can save work by looking up the deriva-
tions that depended on this literal and calculate which ones can now be reinstated
because the literal has been reasserted. Reinstating old retracted literals can be
computaticnally cheaper than reinferring them. This trick is called un—outing
(de Kleer, 1968; Doyle, 1979). .

An example of a TMS—based state maintenance may be helpful. Suppose that
whenever a block is supported directly or indirectly by the table, then X is stable.
This is expressed by the following rule

If indirectly—on(X table) then stable (X). -

Suppose that in the old state, block56 is indirectly on the table and stable because
it is on block2, which is directly on the table. That is, on (block56,block2) and
on{block2,table) imply that indirectly—on (block56,table) by the rules listed
carlier, and this implies stable (blockS6). Suppose that an operator applies, and
moves block56 off block2 and onto the table. The del-list of the operator will
retract on(block56,block2) and the TMS will thus retract indirectly—on
(block56,table) and stable (block56) because their derivations depended on the
retracted literal. Eventually, all the appropriate literals will be removed from the
state. Now the TMS adds literals from the add-list, including on (blocks6, table).
The rules are run, and they infer indirectly—on (block56,table). The TMS notices
that this literal is identical to one in the old state. It uses the un—outing mecha-
nism to reinstate stable.(block56) immediately without referring to the inference
rule. It knows that this is appropriate because the derivation of stable (blockS6),
which has to be saved anyway for retraction to work correctly, indicates that
stable (block56) depends only on indirectly—on (block36, rable).

Goal Reconstruction in a Problem-Space Architecture

Although both the reconstruction and TMS methods of implementing state
change are widely used in AI (see Charniak and McDermott’s (1986) textbook,
section 7.3), it is rarely recognized that they can also be used for maintaining the
problem solver’s goal structures. This section sketches a problem solver, similar
to Amord (de Kicer, Doyle, Stecle, & Sussman, 1977), that uses a TMS to
maintain its goal structures. )

A goal is usually defined to be a description (i.., logical expression) of a state
that is desired. A goal is satisfied if the current state matches the description. A_
pending goal is a logical expression that does not match the current state. Sup-
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pose probler solving starts with an initial state that contains a pending goal,
which is represented by wrapping the pseudo-connective pending—goal around a
logical expression. Thus, the goal of holding block37 in one’s hand can be
represented by pending—-goal (holding(block37)).

When pending goals are represented this way, the rule mechanism mentioned
above can be used to calculate what kinds of actions are appropriate for the given
goals. This is most easily demonstrated with an example. The following rules
indicate how to achieve a holding(X) goal given that the hand can only hold one
block at a time.

If pending-goal (holding(X}) and not (holding(Y)),
then executable (pick-up(X)).

If pending-goal (holding(X)) and holding (Y) and not (X=Y),
then pending-goal (not(holding(Y)}}.

If pending-goal (not(holding(Z})} and holding (Z)
then executable (put-down(Z)).

These rules use pseudo-literals of the form executable (Op), where Op is an
operator, in order to indicate that the specified operator is an appropriate action.
In this case, if the initial state is the literals

holding (block6)
pending-goal (holding(block37})
not (block37=block6)

then the second and third rules will add the following derived literals:

pending-goal (not(holding(block6)))
executable (put-down{block6))

This represents the process of deciding that putting down the block being held is
a good idea given the current goal and the current situation. Much more compli-
cated reasoning can also be represented.

When an action is finally taken, some or ali of the pending—goal literals must
be retracted because their predicates will now be true and only unsatisfied goals
are represented with pending—goal literals. Both the reconstruction methods and
the TMS method work just fine for updating pending—goal literals. Let us con-
sider reconstruction first. In order to model the state change caused by executing
the operation put—down (block6), reconstruction adds the litezal nor (hold-
ing(block6)) to the new state because that literal is mentioned in the operator’s
add-list. Then it copies over primitive literals from the old state that are not
mentioned in the del-list. ‘This adds pending-goal (holding(block37)} and not
(block37=>block6) to the new state. Notice that the old derived literal, pending-
goal (not{holding(block6)))}, is not copied over. Now the reconstruction method
runs the rules, which adds to the state the literal executable (pick-up(block37})).
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This demonstrates how the reconstruction method works to maintain goal struc-
tures. Essentially, it starts over from the top level goal, which is the only one that
is a primitive literal, and rederives as much of the goal structure as is still
relevant. In this very simple illustration, no old goals were reconstructed. Usu-
ally, many old goals will be reconstructed. :

The TMS method can be used in order to avoid some of the computation of
reconstruction. In order to use it, the derivation of a goal must be stored with the

goal. For instance, with executable(put—down(blocks )} the system associates the
tree

executable (put-down( block6))
pending-goal (nox. holding(block6)))
pending-goal (holding(block37 1)
holding (blocké)
not (block37=blocks)
holding (blocks)

which records its derivation via the rules listed earlier. In order to update the
state, the TMS method first retracts holding(blocks) becaise it is mentioned in
the operator’s del-list. Since this literal occurs in the derivations of both pend-
ing—goal (not(holding(blocks ))) and execurable (pu —down(block6)), those two
literals are retracted as well. Next the System adds not (holding(block6)) because
that literal is mentioned by the operator’s add-list. The rules run, and the Jiteral
executable (pick-up(block37)) is derived, This demonstrates how the TMS meth-
od can maintain goal structures,
The TMS method is more memory intensive than the reconstruction method.
It requires that the problem solver remember all the derived literals from the old
state and moreover, it should remember the derivations of each literal as well.
What would happen if memory failed? If a literal was completely forgotten and
the literal was going to be retracted anyway, then it does not matter that it was
forgotten. On the other hand, if the literal was not going to be retracted, then it
must still be derivable from literals in the new state, so the rules will end up
deriving it. So forgetting a literal does no harm. What if the literal is not
forgotten, but its derivation is, or worse yet, only part of its derivation is
forgotten? The problem solver must somehow detect this and treat the whole
literal as if it were forgotien, If it can do that, then the literal and its derivation
will be reconstructed if necessary and retracted (via: forgetting) otherwise. Al-
though the TMS-based method Tequires memory storage for the derivations, it is
quite robust because it can easily reconstruct forgotten derivations. '
From this perspective, the TMS method and the reconstruction methods are
Just two ends of a continuum. If all the derived literals can be recalled, then the
faster TMS method is used. If none of the derived literals can be recalled, then
the slower reconstruction method is used. If only some of the derived literals are
recalled, then TMS-based retraction and reconstruction are used jointly to pro-
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duce the appropriate goal structure. This is a seamless combination of recon-
struction and recall.

Notice that the primitive literals cannot be forgotten. If they are, then the
whole scheme falls apart, since there are no rules for deriving them from other '
literals.5 However, problem spaces are usually designed so that the primitive
literals model unforgettable information. For instance, the literals that describe
the current state are usually chosen to correspond to perceptually available infor-
mation (e.g., which block is my hand holding?), and are thus unforgettable. The
top level goals are assumed to be either perceptually available (e.g., from in-
structions written on a card handed to the subject) or very familiar. Literals that
reside unchanged in all states (e.g., not (block37=block6)) correspond to com-
mon sense or well-learned facts.

The next step in the argument is to show that this mechanism for maintaining
goals solves the three problems mentioned in the introduction: capacity limita-
tions on goal storage, non—LIFQ access to goals, and blending situated and
planned action. ‘

The capacity problem is that many computations seem to require more goals
than the human shori-term memory system has room to store. At first glance, it
seems that this mechanism completely solves the capacity problem. As long as
the top level goal is held in long term memory, any other goals that are forgotten
can be reconstructed. However, if we take an extremely simple model of the
short—term store, such as a buffer with seven cells, then it is possible for the goal
reconstruction mechanism to fail. As goals are reconstructed, the rules generate
literals that may be needed a few moments later by other rules. If more than 7 of
these literals are generated, then some may be lost from memory before being
used. It is important to note, however, that although the number of literals
requiring storage in STM may be large, they do not have to be stored there for
very long. It is well known that the number of chunks that can be recalled from
STM varies inversely with the delay between storage and recall. The simple
buffer model does not reflect this, although more complex buffer models could.

A standard mode! with the appropriate decay properties is based on spreading
activation. In this model, gaining access to a goal requires that the goal exist in
memory and that its activation level be above some threshold. In order to recall
anold goal, activation can be spread up through the derivation trees starting with
the literals that stand for perceptual chunks (which are presumably highly active
as they are the current focus of visual attention) and the top~level goal. This
corresponds to normat retrieval of an old goal. If the goal is inaccessible via
spreading activation, then it can be reconstructed. Some elements.of its dertva-
tion tree will be accessible (in the worst case, only the leaves can be retrieved).

SActually, some literals can be both primitive and derived because they appear in both the add-list
of operators and the conclusions of rules. These literats could be reconstiucted if forgotten, at least in
principle. They will continue to be ignored in order to simplify the discussion.
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These trigger rules whose execution creates new literals that are copies of the
forgotten ones. In most spreading activation theories (e.g., ACT*— Anderson,
1983), newly created elements are given high activation. Although activation
decays rather rapidly at first, as long as the goal reconstruction Process occurs
rapidly and without interruption, it should be possible to reconstruct large num-
bers of goals. Thus, the initial impression that a TMS-based mechanism solves
the goal capacity problem is actually correct, although there appear to be some
subtle interactions with the operation of the underlying memory system.

The second problem mentioned in the introduction is that people sometimes
execute goals that arc not the most recently created pending goal. In LIFO
architectures, this is not possible. The architecture sketched in this section is not
necessarily a LIFO architecture. If the rules are run to quiescence, then they will
find all pending goals whose preconditions are met and mark them as executable.
The problem solver is free to choose any of them for execution.

The last problem mentioned in the introduction is to find a way to blend
situated action and planned action. In a single-agent world, the above mechanism
suffices. If all goals are forgotten during a state change, then the agent can be
said to have no state, so it is a sitvated-action agent. The calculations that are
performed by goal reconstruction would have to be performed by any agent
possessing the same knowledge, and the above mechanism makes it seem that
the intermediate results of these calculations must be stored as literals, However,
one can replace the rules by gates in a combinatorial logic and the literals by
wires connecting gates. Seen this way, the goal reconstruction calculation re-
quires no more state than Agre and Chapman’s (1987) Pengi or Brook’s (chap. 8
in this volume) subsumption architecture. So in a world where the only source of
state change is the agent itself, the TMS—based goal maintenance mechanism
seamlessly blends situated and planned action.

If the world has multiple sources of state changes, then the agent must supple-
ment the add-list and del-list with perceptual operations. These have the same
effects as the lists do, in that they cause addition and retraction of literals. The
TMS propagates these through the goal structure in the usual way. Thus if
another agent helps our agent by satisfying ore of our agent’s pending goals, then
perception will add a literal to the state, and the TMS will ultimately retract that
goal. Similarly, if a hostile agent undoes a goal that our agent previously accom-

plished, then the un-outing mechanism of the TMS will quickly reinstate the
goal.® Thus, the agent will behave adaptively in a changing world where not all
of the changes are under its control. The TMS-based mechanism is adequate for
blending situated and planned action even in a multiple agent world.

SThis TMS-based goal maintenance mechanism does not model the process of deciding which
executable action to execute. This is called action arbitration by Agre and Chapman (1987) and
Brooks (chap. 8 in this volume). Their systems seem to use some ad hoc priority-based system to do
action arbitration. Presumably, such a system could be used here as well, or a more complex system,
tike the goal preferences of Prodigy (Carbonell et al., chap. 9 in this volume), could be used instead.
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In addition to solving the three problems mentioned in the introduction, the
TMS-based goal maintenance system bears striking similarities to the overall
human memory system. As noted earlier, when people are distracted from a task
by a long telephone call, they have the ability to reconstruct the goals and other

internal state that they have forgotten. On the other hand, if they are not dis- -

tracted, then they do not require similarly extended periods of time for recon-
structing their state after each action. Moreover, there seems to be no sharp
boundary between human retrieval and reconstruction. The seamless combina-
tion of TMS and reconstruction methods also has the same lack of a sharp
boundary. It is well known that human recall is facilitated by making the percep-
tual environment at recali similar to the perceptual environment at storage. This
is consistent with the TMS/reconstruction combination, where the accuracy and
availability of the whole state depends strongly on the accuracy and availability
of the primitive literals. In short, the combined TMS-reconstruction method of
state updating is qualitatively similar to human memory, at least as far as problem
solving is concerned.

Goal Reconstruction in Precondition-Based
Problem Solvers

The simplicity of the TMS-based goal maintenance system is due to its use of
rules for reasoning about goals. Although this is elegant and allows certain issues
to be presented clearly, rule—based representations of planning knowledge can be
awkward and redundant, especially for conjunctive goals. A more widely nsed
technique represents that knowledge in the operators themselves as a set of
preconditions on the operator. This is the representation used by Strips (Fikes,
Hart, & Nilsson, 1972) and its many descendants. The goal reconstruction ca-
pability of the Amord—style problem solver can also be implemented in a Strips-
style problem solver. The next few paragraphs demonstrate this.

An example will help in comparing Amord-~style and Strips—style problem
solvers. In a Strips—style problem solver, the pick—up operator could be repre-
sented as:

Name: pick—up

Arguments: X

Preconditions: rot(holding(Y))
Add-list: holding(X)
Del-list: on(X,Z)

This representation replaces the rules listed earlier for the Amord-style reasoning
about goals. For instance, one of the rules mentioned earlier says

If pending—goal (holding(X)) and holding(Y) and no{(X=Y),
then pending—goal (rot(holding(Y))). '

Let us use the Strips representation to do the example mentioned earlier, where

T oomoagEe W e
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the goal is holding(block37). The system searches for an operator whose add—list
maiches the goal. In this case, pick—up is found. Next, the preconditions are
checked. In this case, the precondition is false, because kolding(block6) is true.
Whenever a precondition is not satisfied, the system makes it into a subgoal.
Thus, the system makes not(holding(blocks)) a goal. Clearly, this Strips—style
reasoning has achieved the same effect as the inference rale from the Amord-
style problem solver. The knowledge representation, however, is more par-
simonious. ’

Most Strips-style problem solvers do not use 2 TMS for maintaining their goal
structures. In fact, we do not know of any that use a TMS. Instead, they use a
goal tree, or more frequently, just a part of the tree arranged in a goal stack.
Although less elegant than the TMS-based method, goal maintenance with a goal
tree has all the same properties. The next few paragraphs are a point—by—point
comparison of the goal tree and TMS methods of maintaining goals.

In TMS-based maintenance. of goals, the derivation of each goal must be
stored so that retraction and un-outing can function correctly. Instead of a deriva-
tion, a tree-based goal maintainer uses the goal tree itself. Instead of a TMS data
structure indicating that pending—goal ( not(holding(block6)}) was derived from
pending—goal (holding(block37)) and other literals, the goal tree has a data
structure indicating that pending--goal (not(holding(block6)})) is a subgoal of
pending—goal (holding(block37})) caused by an unsatisfied precondition,

In TMS-based maintenance of goals, executing an operator first causes all
satisfied goals to be retracted. In tree-based maintenance, the exact process of
finding satisfied goals seems to vary from ome problem solver to the next.
However, the gist of the method is to check goals in the tree and see if the goal’s
literal is now in the current state. If it is, then that goal is satisfied and all its
subgoals are now irrelevant. These goals are marked appropriately or removed
from the tree. If a goal stack is used instead of a goal tree, this phase can be
accomplished by popping the stack.

After the satisfied goals have been dealt with, the TMS method infers new
goals using its inference rules, whereas the tree—based method infers new goals
using the operators’ preconditions, :

One of the advantages of the TMS—based method of goal maintenance for
modeling humans is the seamless integration of reconstruction and recall. The
same advantage can be obtained with a goal tree. If parts of the goal tree are
forgotten, they can be reconstructed by starting at an ancestor goal and using the
usual precondition-based subgoal creation method. If subgoals are created that
are equal to ones that have not been forgotten, then the new tree can be attached
at this point to the tree rooted at the recalled subgoal. The goal indexing mecha-

nism used in GPS_ (Ernst & Newell, 1969) and most of its successors will cause
this reattachment (which is equivalent to un-outing) to happen automatically.
Thus, in most cases no new mechanisms need to be added to the system in order
to achieve a qualitative similarity to human behavior.
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This section has shown that goal reconstruction is a capability that can be
easily added to a problem—solving architecture. Moreover, the goal maintenance
mechanism shifts seamlessly from recall to reconstruction of goals, which makes
its performance qualitatively simiiar to human behavior. -

Goal Reconstruction in Procedure-Following Systems

In our vocabulary, a goal serves two purposes. It is both a description of a desired
state of the world, and it is a part of the control structure of the problem solver.
For some tasks, the description of desired states mention features that cannot be
detected by unaided perception. If a person has already washed a piece of
medical glassware 6 times in tap water, then washing it 6 times in distilled water
will achieve a state of cleanliness that is not distinguishably different from its
current state. The only simple description of the goal to be achieved is just the
procedure for achieving it: wash the glassware 6 times in distilled water. A large
number of tasks have this property. After a house is built or a tax form is filled
out, the results Iook to the visible eye like a house or a tax form. But the quality
of the house or the tax accounting can vary widely depending on which pro-
cedures were followed in achieving it. Properly cured concrete looks exactly the
same as an improperly cured concrete. The only way to know if the properly--
cured—concrete goal has been met is destructive testing (which partly undoes the
goal of having properly cured concrete) or checking that the proper curing pro-
cedure has been followed. Many goals in human culture have the property that
they are partly specified by the visible state to be achieved and partly specified by
the procedures that should be followed in achieving them.

Although most problem—solving architectures can only accept goals that are
specified by descriptions of the desired state, Sierra is one that is specifically
designed to follow procedures (VanLehn, 1987, 1990). Recently, it has been
augmented with the ability to accept goals specified as desired states. The result-
ing architecture, called Teton, is documented in an appendix to this chapter.

When goals are specified by procedures, reconstruction of goals becomes
more complicated. Teton can handle some cases (but not all) with a fairly simple
mechanism. Teton uses a Strips—like operator representation for procedural
knowledge. In addition to the usual slots for preconditions and so forth, operators
can have a shortcut condition. This condition is checked just before executing an
operator. If it is true, then the operator is not executed but its goal is marked
“satisfied” anyway. For cxample, in order to reconstruct the goals of the follow-
ing partiaily completed multiplication problem,

336
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Teton would run the multiplication procedure which causes an operator, call it
Single—digit—multiply, to be instantiated for each of the three digits in the muiti-
plier, 208. Suppose the operator has a shortcut condition that is true if the partial
product row to be filled already has some digits in it and there is something
~written underneath that row (i.e., another partial product row or a bar). In the
case of the units digit instantiation of Single—digit—multiply, the shortcut condi-
tion is true, so the operation is marked completed. However, the shortcut condi-
tions are false in the case of the tens digit, so execution resumes with that
operation. Thus, Teton reconstructs goals then judiciously takes “shortcuts™
instead of executing some of them.
As a quick check on the plausibility of this type of processing, we took a

protocol from a subject who was asked to complete the partially solved problem
shown above. She said:

Alright. Since there are two columns done [referring to the partial product rows], 1
know that the first digit on the right hand side of the bottom number has been
multiplied. Um. { would start the, um, since the second column is d Zero, some-
body has filled in the zero. I would now £0 to the third digit on the bottom column
and do all the multiplication involved there. Two times six is twelve, two times
three is six plus one is seven, two times three is six and then I would do the addition
starting from the right hand side, and get the answer.

The first sentence corresponds to taking the shortcut on the Single—digit—multi-
ply of the units digits of the multiplier. The second sentence corresponds to the
execution of the Single—digit—multiply of the tens digit. The rest of the protocol
corresponds to execution of Single—~digit—multiply for the hundreds digit. This
protocol corresponds quite well with the type of goal reconstruction used by
Teton.

Shortcut conditions are task-specific knowledge about how to reconstruct
specific goal trees, Sometimes people may have to learn shortcut conditions, and
sometimes they may be able to deduce them from general principles in the midst
of reconstructing a goal. .

There is another type of task—specific knowledge about goal reconstruction
that people sometimes use. If one can anticipate forgetting some goals, say
because the phone is ringing and one intends to answer it, then one can take steps
now that will make reconstruction much easier to do later. For instance, if one is
interrupted by a ringing phone in the middle of adding up a long column of
figures, one can write the subtotal down and mark the last number added in. This
will enable reconstruction Jater. Teton does not handle this sort of knowiedge. It
would be a fascinating behavior to simulate, because the agent must have a crude
model of forgetting in order to plan ways to prevent forgetting from happening. It

also must be able to tell what aspects of its state are worth saving, so it must
understand its capabilities for goal reconstruction.
As usual in cognitive modeling, we can model the most comimnon cases but the
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other cases are orders of magnitude harder to model. Goal reconstruction is
easily modeled when goals are descriptions of visible aspects of the state, as in
the case of the Amord-style problem solvers and

solvers. When goals are partially procedures, then f

, the remaining cases of goal
reconstruction present tricky problems that are likely to resist nodeling for some
time.

ARITHMETIC LEARNING: AN APPLICATION
REQUIRING PERCEPTION

The preceding account of goal reconstruction ignored perceptual processes and

assumed that their output was available in the form of literals in the current

problem state. Part of the novelty of situated action is the claim that perceptual
| processing handles most of the lo

ad in guiding activity. In this chapter we discuss
how to integrate perception and problem solving in such a way that goal recon-
struction retains all the good properties that it had when problem solving was
| based on problem spaces.

This investigation grew out of a study of how

equation solving and other written procedures. There is fairly good evidence that
! students pay close attention to the visual synt

ax of the written expressions and
may even induce visual features into their procedures that the teacher did not
| intend them to learn (VanLehn, 1986, 1990). This reliance of visual features is
the key to explaining many otherwise mysterious phenomena, as the following f
example illustrates. When students are introduced to borrowing, teachers usuaily - i
| use the simplest subtraction problems they can—ones with Just two columns.
Here is a borrowing problem that has been so

: ) |
Ived in the manner taught in many :,,,
| American textbooks:

people learn arithmetic, algebra

14 :
4 . l-f:
8 .

16

| Some students notice that the decrement action takes place in the leftmost col-

umn of the problem, and induce that alf such actions should take place in the

l leftmost column. This leads them to make errors like the following one:

1
Z 18
328
- 19
219

Early versions of Sierra simply postulated a problem space that includes leftmogi

— )
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and other relations that students induce. It would leave out relations that did not
seem to play any role in their learning. Thus, the initial state would contain the
literal leftmost (column3) but it would not contain the literals rightmost (col-
umnl ) or hundreds (column3)j. Although this allowed Sierra to explain the sys-
tematic errors of thousands of students, it also pushed the mystery of learning
back one more level. Sierra explained how procedures are learned, but what
explains how the problem spaces are learned? This comment is not meant to
denigrate the accomplishment—all models of learning bottom out on some kind
of assumptions about prior knowledge, and most models of procedure acquisition
bottom out on the problem space, just as early versions of Sierra did.

In the case of mathematics, it is particularly important to explain problem
spaces rather than assume them. The problem space embeds knowledge of math-
ematical notation, which is something that students learn (and mislearn!) in
school. Whereas someone might naturally think of a column of 3 wooden blocks
as something that is important enough to see and record in the problem space as a
composite structure, such as stack(block37, blockG, blockl3}, the habit of seeing
a subtraction problem as columns instead of rows is something that has to be
learned in school.

As a first step in determining how people acquire mathematical problem
spaces, and knowledge of notational syntax in particular, it is wise to determine
what the representation of that knowledge is like. This makes it easier to formu-
late learning models for notational knowledge.

Pursuit of these goals led us to the problem of devising a representation of
notational knowledge that could be nicely integrated with mathematical problem
solving. The first part of this section discuss some constraints on the representa-
tion of notational/perceptual knowledge. These were uncovered by trying simple
approaches and discovering that they were inadequate. The second part of the
section presents a system that seems to meet all the constraints. Moreover, its
structure sheds some light on the distinction between situated and planned ac-
tivity.

The Need for Global Parsing

The first attempt at representing notational/perceptual knowledge was to assume
that task—specific terms in the problem space were defined by task-general terms
using standard first-order logic. Thus, column (X) is defined to be a sequence of
three vertically aligned cells, and cell (Y) is defined to be a digit, a blank or a
digit that has been scratched out and written over. The column (X) definition
might be represented formally as: '

column (X) ::= part-offX,ClI) & part-oftX,C2) & part-of (X,C3) &

cell (C1) & cell (C2) & cell (C3) &

sequence (X) & first (X, C1) & last (X,C3) & middle (X,
C2) & :
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ordered (X,C1,C2) & ordered (X,C2,C3) & ordered
(X,C1,C3) &
adjacent (CI1,C2) & adjacent (C2,C3)

Learning mathematical notation is assumed to consist of learning definitions like
this one. There are a variety of machine learning algorithms sufficient for learn-
ing such concepts from exampies and a given set of primitive concepts (e.g.,
Vanlehn, 1987; Vere, 1975; Winston, 1975). In this case, the given concepts are
perceptual primitives, such as adjacent (X,Y). This is not the large loophole that
one might imagine because the set of perceptual primitives needed for mathe-
matical symbol manipulation is surprisingly small. For instance, one vocabulary
sufficient for arithmetic and algebra required only ten predicates (see p. 183,
VanLehn, 1983). A much more complex vocabulary would be needed for, say,
high school geometry or mechanical drafting.

It might seem that the major difficulty in this approach to explaining the
acquisition of mathematical probiem spaces would be determining how people
acquire concepts such as column. In fact, this approach failed vtterly before even
getting to that stage. Even when definitions are constructed by hand, it proved
impossible to find definitions that would perform like people do. For Sierra, the
visual world was represented as a Cartesian plane with characters centered at
particular x-y coordinates. One problem was to get a definition of “algebraic
formula” that is true of “2 + 3 when it stands alone in the plane, but to be false
of “2 + 37 when it is embedded in “2 + 3x.” Another problem is that adjacent
{(3,x) should be true of (a) below and false of (b) despite the fact that the two
symbols are closer in (b) than in (a):

a 3Ix=y
b. 3y =x
X = y/3

The problem here is that an interpretation of a subset of some mathematical
symbols is acceptable only if it participates in. a global interpretation which
includes all the symbols. This is analogous to many English words, such as
“run,” which can be interpreted either as a noun or a verb depending on the
global interpretation of the sentence it is a part of. Compare “I’m not going to
run today” with “I had a good run today.” In the analysis of both English and
mathematical syntax, better techniques are based on context—free grammars or
something like context—free grammars.

Grammatical Definitions of Task-Specific
Problem Representations

In order to use confext-free grammars as a representation for knowledge of
mathematical notation, a few augmentations to the standard formalisms were
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TABLE 6.1
A Simpilified Grammar for Arithmetic Notation

1. Problem «—  Sign Column$ ; horizontal
2. Sign — 4+

3. Sign — -

4. Sign - X

5. ColumnS «—  Column Column$S ; horizontal
6. ColumnS «—  Column

7. Column «—  Cell Celi Cell ; vertical
8. Cell «—  Digit

9, Cell «  Biank
10. Digit — 1
11. Digit — 2

needed. For instance, because mathematical notation is two-dimensional, rules
need to indicate whether their constituents are arranged horizontally, vertically or
diagonally. Table 6.1 shows a simplified grammar for arithmetic problems.

This grammatical formalism accomplishes what the first-order logical defini-
tions of terms could not. It can properly parse arithmetic and algebraic ex-
pressionse. Unfortunately, a very nasty problem was encountered when Sierra’s
problem space machinery was replaced with a parser for this formalism.

The problem occurs when states change. For Sierra, state changes are always
due to writing a new symbol on the visual page. When this happens, there is
usually not much change in the parse tree.” Filling a colurnn’s answer in a
subtraction problem only affects one small part of the parse tree—that which
concerns the particular blank cell that is filled by the new symbol. Sometimes,
however, writing a single symbol has effects on other parts of the tree. Writing

7A parse tree is a record of the derivation or parsing of a particular sentence, or in this case, of 2
particular mathematical expression. A parsc tree for the vertical form of 2 + 1 when parsed by the
grammar of table 6.1 would be:

Problem—Derived via rule 1 from:
Sign—Derived via rule 2 from:
+ (perceived)
ColumnS—Derived via rule 6 from:
Column—Derived via rule 7 from:
Cell—Derived via rule 8 from:
Digit—Derived via rule 11 from: o
2 (perceived)
Cell—Derived via rule 8 from:
Digit—Derived via rule 10 from:
1 (perceived)
Cell—Derived via rule 9 from:
Blank (perceived)
where indenting represents the hierarchical relationships in the tree.
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one symbol changes “2 + 3” into “2 + 3x,” which changes the interpretation of
the 3. In order to allow for arbitrary changes in the state, Sierra ignores the old
state’s parse tree and constructs a new one for the current state. This has the
unfortunate side-cffect of making obsolete most of the goals held in Sierra’s
working memory because most goals have arguments that mention nodes in the
parse tree. When the visual scene is parsed anew, a whole new parse tree is
produced, but the goals continue to mention nodes from the old parse tree. By
parsing the current state, Sierra makes obsolete all the goals with objects as
arguments.

Several years ago, this seemed like a nasty technical problem with no impor-
tant theoretical implication. It was circumvented with some subtraction-specific
hacks and banished to appendix 8 of the first author’s dissertation (VanLehn,
1983).

Annotated Grammars: Another Version
of Situated Action

In the intervening years, the situated action paradigm has begun exploring the
idea that people rarely plan by building up stacks or trees of pending goals.
Instead, they parse the situation so as to “see™ possibilities for actions. Thus,
goals are not held in memory, but perceived in the situation.

In order to better understand the implications of the situated action view, we
implemented an architecture, called Rocky. Instead of a procedure, Rocky has a
grammar that is just Iike the one used by Sierra to represent knowledge of
mathematical notation except that it has a few extra annotations. For instance, the
rule for parsing a column, rule 7 in table 3-1, is annotated to indicate the
numerical relationship among its the cells in the column:

7. Sub-column — Digit, Digity Digit; ; vertical
where: Digit; = Digit, — Digit,

We call this kind of knowledge representation an annotated grammar. With
proper interpretation, it seems quite likely that an annotated grammar can gener-
ate actions and solve problems just as well as a procedure.

By getting rid of goals, the annotated grammars approach solves the problem
of goals becoming obsolete. Each time the state changes, a new parse tree is
constructed and nodes that are capable of having actions taken on them are
marked as executable. The resulting parse tree quite literally wears the pos-
sibilities for action on its sleeve. Thus, an annotated grammar not only parses the
visual plane, it also does all the reasoning that would normally be done by the
rules mentioned earlier that compute with literals named goal and executable.

Annotated grammars seem to implement what Suchman (1987) had in mind
when she said, “We generally do not anticipate alternative courses of action, or
their consequences, until some course of action is already under way. It is
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frequently only on acting in a present situation that its possibilities become
clear.” (Suchman, 1987, p. 52, original emphasis)

Unfortunately, the annotated grammars approach ran into grave difficulties
when we tried to implement some of the less visually oriented mathematical
procedures. For instance, consider a common procedure for solving multiplica-
tion problems, which involves skipping zeros in the multiplier, as in the follow-
ing problem:

2345

X 1204
9380
469000
+2345000
2823380

There are four muitiplier digits, but only three partial products. In order to
properly pair off the multiplier digits and the partial products, an annotated
grammar must encode what amounts to a right—to—left traversal of the multiplier
digits. Similarly, it is difficult to differentiate the zeros that are inserted in order
to vertically align the partial procedures from the zeros produced by multiplica-
tions (see the second partial product above). Counting or some other kind of
iteration is needed in order to determine these mapping from the visual plane.
This cannot be done in the representation for grammars used by Rocky. Although
the representation could perhaps be augmented, this would go against the situ-
ated action paradigm, which tries to obtain action without explicit execution of
procedural knowledge, such as an iteration across a string of digits.

The underlying problem is that the only way to properly understand some
problem states is to know how they were derived, and this historical information
is sometimes not present in the perceptual information. In the task of washing
medical glassware, one cannot tell by looking at a piece of glassware how many !
times it has been washed. An annotated grammar cannot perform this task. ' ‘

In retrospect, it appears that Rocky’s version of situated action is too extreme. ;
It tries to keep no historical information about the problem solving and instead
work only with what it can infer from the current situation. This is a rather
implausible hypothesis, for surely a person in the middle. of a problem would
recall and use information about immediately preceding actions and decisions if
such historical information were useful. As argued earlier, most architectures
based on problem spaces have this property (or could have it given a few simple
augmentations). They recall goals when they can and reconstruct them otherwise.

Their reconstruction proceeds from primitive literals, which often represent out-
puts from perceptual processing. Somehow this useful and psychologically plau-
sible property has been lost in the attempt to deepen the mode] of perception so as
to allow for task-specific knowledge about mathematical notation.
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A TMS—Based Parser

Let us temporarily abandon the parsimony of unifying procedures and grammars
and return to the old assumption that procedures and grammars are two distinct
bodies of knowledge. This means that there are two types of internal state, a
parse tree and a goal structure. The parse tree nodes correspond to the objects
that would exist in the current problem state if a problem space approach were
being used.

This means we must solve the updating problem wherein all goals that refer to
parse nodes become obsolete with each state change because the parse trees for
different states share no nodes. What we would like is an updating technique that
will allow parse trees from consecutive states to share as many nodes as possible.
Only parse nodes for parts of the visual plane that are “really new” would be

built. However, the definition of “really new” depends on the task.

A solution that we think will work (it has only been partially implemented) is
based on the same TMS-reconstruction method that was used successfully with
regular problem spaces. The key idea is to note that parsing a visual scene is a
special kind of inference, where grammar rules correspond to inference rules and
parse nodes correspond to literals. A TMS is used to retract only those literals
{parse nodes) that are changed, directly or indirectly, by the writing of a2 new
symbol on the visual plane. In order to make this idea work for mathematical
notation, however, we must be very careful about the representation of blank
space in the visual plane.

As a running example, consider the change from “2 + 3” to “2 + 3x.” The
status of the 3 should be changed, but the parse node for the whole formula
should stay the same. Suppose that the grammar is just

sum — term + term ; horizontal
term — term term s horizontal
term — 2
term — 3
ferm — x

Let parse nodes be represented by unary ground literals. The predicate is the
category of the constituent and the argument is a region. For concreteness, let a
region be represented by four numbers in square brackets, corresponding to the
left, top, right and bottom boundaries of the region. Thus, term ([5,23,25,13])
represents a term occupying a certain region. With these definitions, the first
grammar riile becomes the following inference rule.

If there are three regions, R1, R2 and R3 such that
term(R1) & plus(R2) & term{(R3) &
right-boundary(R1) = left-boundary(R2) &
right-boundary(R2) = left-boundary(R3) &
region C is the union of regions RI, R2 and R3,

then sum(C).
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The visual plane is represented by primitive literals and the grammar (inference)
rules create derived literais.

in order to make the TMS—reconstruction method work, literals that mean the

same thing, relative to the task, should be syntactically equal. Recall that recon-
struction continues to run inference rules until no new literals are produced.
“New” is defined relative to syntactic equality. If a literal is produced that is
equal fo an existing literal, then we say that a new derivation was found for an old
literal; a new literal was not produced. Equality of literals depends crucially upon
the definition of regions. Let us define the top boundary of a region to be halfway
between that region and the next region in the positive y—direction, ¥ there is no
such region, then the boundary is set at infinity, which is represented by “*.”
Define the bottom, left and right boundaries similarly. Thus, “+” in the ex-
pression “2 + 3” would be represented by the literal plus ([35,%,45,*]) because
the top and bottom boundaries are at infinity. '

With this definition, the literal sum([™,*,* *1} represents either “2 + 3” or
“2 + 3x” written alone on a page. This makes the two terms syntactically equal,
which is just what we want. A goal whose argument refers to “2 + 3" will not be
made obsolete by stage change. Both before and after the state change, the goal’s
argument will be sum (f* * % ]},

Let us see how the TMS handles the state change from “2 + 3" to “2 + 3x.”
The parse tree for “2 + 3” consists of the following literals:

L. sum ([*,* % *])

2. term ({*,*,35,%])

3 two ({*,*,35,%])
4. plus ([35,%,45,%])

5 term ([45,*,*, %])

6 three ({45,%,%,*])

? o+ 2

primitive literals whose regions have been overlaid and assert new literals with
smaller regions. In this case, the literal on line 6 above must be retracted and a
new literal three ({45,%,55,*]) is asserted. Retracting the literal on line 6 causes
the TMS to retract the literals on lines 5 and 1, since their derivation depends on
the literal of line 6. However, the addition of the new literals for “x™ and “3”
causes reconstruction, which leads ultimately to a new parse tree, which is:

When the writing operator puts an “x” in region [55,* * *], it must retract

L. sum ([*,%*%])

2 term ([*,* 35,%])

3 two ([** 35,%])
4. plus ([35,%,45,%])
5 term ({45,%,* %)
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7. term ([45,%,55,%])

3. three ([45,%,55,%])
9, term ([55,%,*,%])

10. X([55,%,% %*])

The literal on line 5 has been reconstructed. Although it has a different derivation
now, it occupies the same region as before, so it is equal to the old version, The
un-outing mechanism of the TMS will detect this and cause the literal on line 1 to
be reinstated.®

It appears that the updating problem has at least been solved. By using a
TMS—based method, only parse nodes that are truly different are changed. This
means that only goals whose arguments have really changed must be recon-
structed. . .

Moreover, by using the TMS-based method of updating, we obtain the same
seamless blend of recall and reconstruction that characterizes human recall be-
havior. If parts of the parse tree are forgotten, then the TMS-based updating
method will simply reconstruct them without even “noticing” that they were
forgotten.

Summary: When Is Reasoning Really Perceptual?

In this section, we have descended into the ugly details of mathematical notation
in order to find out what would happen if the problem space approximation was
dispensed with and something more like real perception was modeled. It turned
out to be much more difficult than it first appeared. There were two interacting
sources of difficulty. The first was the fact that mathematical notation cannot be’
defined Iocally, but only by finding the most globally coherent parse of the visual
plane. _

The second difficulty occurs when updating the state after an operation is
executed. This problem, which includes the frame problem of Al, can be solved
in the problem space framework using Strips operators and a TMS. However, it
is more difficult when perception is modejed. The global coherence of a percep-
tual parse means that the individual parts of the parse depend on each other in
subtle ways. A change to one small piece of the visual plane can ripple through
the parse and change large amounts of it. After a noble but ill-fated attempt at
ducking the problem (the annotated grammars approach), a method was found
for representing mathematical notation so that the propagation of changes died

8The old parse tree, which treats “2 + 3" as a sum, is still available, but now it has
sum(f*,*,*,55]) as its root instead of sum([*,*,*,*#]). This literal does not pasticipate in a parse that
covers all the symabols. In order to avoid generating it, the inference mechanism should only produce
literals that participate in the derivation of a literal whose argument is [*,*,*,*]. This restriction
would be simple to implement i a backwards chaining control structure; a forwards chainer would
require a filter.
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out quickly. This allowed perceptual parsing to be updated by roughly the same
TMS-based method that successfully updates state changes when problem spaces
are used.

Stepping back still further, one sees that the two computations, one sup-
posedly procedural and the other supposedly perceptual, are nearly identical. The
perceptual calculation updates a “state,” which is a set of existing objects and
their relationships to each others. The procedural calculation updates a “goal
structure,” which is a set of desired things and their relationships to each other.
In order to obtain a reasonable solution to the frame problem, the same TMS-
based method is used to update both the state and the goal structure. This method
also yields robustness to forgetting, even the kind of massive forgetting caused
by answering long telephone calls. _

From a computational point of view, nearly the only way to tell that one
calculation is perceptual and the other is procedural is to read the English names
of the predicates, which is something that only a human observer can do. The
situated action theorist would probably call the whole calculation perceptual.
Traditional problem-solving theorists would call the whole calculation problem
solving. Planning theorists would call it planning or perhaps reactive planning.
As far as we can see, what you call it does not change what it is and does. As

- with many of the great binary distinctions in Al (e.g., procedural vs. declarative,
logic vs. knowledge engineering), the distinction between situated action and
planned action may turn out to be too ill-defined to be useful.

DISCUSSION: MULTIPLE LEVELS
AND EXTRA CAPABILITIES

Two claims are made in this chapter. One claim is that goal reconstruction solves
at least three problems: allowing intelligent problem solving within a limited
capacity store for goals, providing non-LIFO access to goals, and creating a
seamnless blend of situated and planned action. The other claim is that most
current problem-solving architectures already have the capability to do simple
goal reconstruction or could easily add that capability with a few changes. These
are primarily computational claims, although we have indicated at several points
the similarities of goal reconstruction and human cognition, and particularly the
way a TMS—based goal maintenance system mimics the way human memory
blends recall and reconstruction. Most of this section discusses the psychological
status of goal reconstruction, but first we present one further claim.

Goal reconstruction is useful in building Al systems. This claim is based on
our experience with our newest problem-solving architecture, Cascade. Cascade
is a simplified version of Teton. The major simplification is that it can only
Tepresent monotonic state changes (i.e., all the operators have empty del-lists).
While constructing an expert system in Cascade for solving physics problems,
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we discovered that goal reconstruction was quite useful during debugging. The
usual cycle during debugging is to try a computation, detect a mistake, find the
buggy piece of knowledge, correct it, and redo the computation. Goal recon-
struction makes redoing the computation much faster because the problem solver
can begin more—or—less from where it left off. We are currently adding a leaming
engine to Cascade that will act roughly like a programmer would in debugging
the knowledge base. We suspect that goal reconstruction will aid the learning
engine just as it aided the programmer. If our experience generalizes, then there
are some unexpected practical benefits to adding the little bit of extra code to
problem-solving architecture that ailows it to reconstruct goals. '

It is time to address the psychological status of goal reconstruction. Is it a
part of the real human cognitive architecture? Newell (1990} and Pylyshyn
(1984) define the cognitive architecture to be those parts of cognition that are
innate, subject-universal (i.e., commeon to all subjects) and cognitively impene-
trable. We think that goal reconstruction is subject-universal, but neither innate
nor cognitively imapenetrable. For instance, instructions to the subject can prob-
ably cause them to modify the way they do goal reconstruction, which would
imply that goal reconstruction is cognitively penetrable and hence not a feature
of the true cognitive architecture, according to Pylyshyn (1984). Thus, com-
putational architectures such as Teton that have goal reconstruction built into
thern are not good models of the cognitive architecture. A better computational
model would represent goal reconstruction as knowledge—a program in the
model’s library. ‘

However, there are problems with modeling goal reconstruction as a cognitive
procedure that has the same form as a procedure for arithmetic or physics. A
procedure for goal reconstruction would have to take two inputs, the perceptual
situation and the task’s procedure (e.g., multiplication), and produce- a goal
structure as output. This procedure would not only have to be a meta-level
procedure, because it reads other procedures and produces goal structures, but it
would have to duplicate most of the functionality of the architecture’s interpreter.
The goal reconstruction procedure would essentially be a copy of the interpreter
with a fév extra lines of code added. This position is not only unparsimonious,
but nearly self-contradictory. How could a person learn a procedure that is a copy
of their architecture when the architecture is not opex to introspection? In short,
there are grave technological and'developmental problems with the position that
goal reconstruction should be modeled as a cognitive procedure rather than a
feature of the architecture. ‘

The fact is that cognitive modelers are not free to set the architecture/program
boundary anywhere they want. Even the Soar group, with its emphasis on align-
ing Soar’s architecture with the human cognitive architecture, finds it convenient
to provide a selection problem space as part of the bare, “innate™ Soar. In its
format, the selection problem space is identical to problem spaces for acquired
capabilities, such as a solution procedure for a puzzle, but the selection problem -
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space is considered to be a model of a capability that is innate, subject—universal
and cognitively impenetrable.

Rather than label Soar, Teton and other architectures as failures, let us recon-
sider the research object proposed by Newell and Pylyshyn, which is to develop
an computational architecture that models all and only the human capabilities that
are innate, subject universal and cognitively impenetrable.

First, not everyone cares about innateness, universality and penetrability.
More typically, learning theorists begin by defining a set of tasks that they intend
to explain. For instance, Anderson (1983) chose memory tasks (mostly), Ber-
wick (1985) chose English syntactic analysis tasks and we chose problem solving
tasks. In order to explain the observed learning behaviors, the theories assume
specific prior cognitive capabilities. These are processes and structures that are
assumed to exist at the time the tasks’ acquisifion begins. For instance, one of
Anderson’s theory’s prior capabilities is a semantic network with specific func-
tions for spreading activation and strengthening connections. Berwick’s theory
assumes a fixed parser as one of its prior capabilities. We assume that goal
reconstruction is a prior capability. Although all these theorists seem to believe in
the subject—universality of their prior capabilities, none have addressed cognitive
penetrability and their claims about innateness are made tentatively if at all. This
is quite reasonable. The objective of their investigations is an explanation_of
human behavior in the chosen task domains. Assuming that a prior capability is
innate or impenetrable adds little to the explanatory adequacy of their theories.
Logicaily, an explanation for some acquisitional behavior does not have to in-
volve ascriptions of innateness and penetrability, but only assumptions about

what capabilities existed prior to the observation period. _ -

If the cognitive theorist expresses the learning theory as a computer model, it
often takes the form of an architecture and some programs. Some of the theory’s
prior capabilities are expressed as prograrns and some are features of the architec-
ture. There is no logical reasoning why the prior capabilities must be part of the
architecture alone. Indeed, it is hard enough to formulate a detailed computa-
tional model without being saddled with this superfluous restriction. What mat-
ters is developing a scientifically adequate explanation of the phenomena, and
that does not entail any particular alignment of prior capabilities with distinctions
inherent in the modeling technology.

Cognitive modeling has produced relatively isolated computer-based models,
which, as Newell (1973) points out, leaves psychology with no unified theory of
cognition. It seems to us that there are three approaches to a unifted theory:

1. Reduce all the models to the lowest common denominator. A model of the
lowest-level cognitive processes is selected (or developed) and models of higher
level processes are (te-)implemented on top of them. ACT* is an example of such
a unified theory of cognition. As Anderson discovered, actuaily implementing a
model of a higher level process on top of a model of lower-level processes is
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technologically difficult, to put it mildly. Even if it could be done, the modei
would produce unusably complex “explanations” of high level human behavior.
In order to achieve integration, this approach sacrifices the explanatory adequacy
of the higher level models.

2. Develop models at different levels, and indicate explicitly how they relate
to each other. This approach seems to characterize Anderson’s recent computa-
tional models (Anderson, 1989). Grapes and Pups are high-level architectures
that omit spreading activation and other memory mechanisms, but are intended
to be homomorphic to ACT* in all other respects. Exactly how these higher level
architectures map onto ACT* is not made fully explicit, although it should be if
the ensemble is to-quality as a unified theory of cognition.

3. Develop models at different levels, where each level is a copy of the one
below it. This approach seems to characterize the Soar work (Newell, 1990). Soar
has been used as a model of lower level processes, such as stimulus response
compatibility and transcription typing (John, 1988; Rosenbloom & Newell, 1987),
where its cycle times correspond roughly to the frequency of updates to human
memory. Soar has also been used for modeling computer configuration, algorithm
design and other higher level problem solving tasks (Rosenbloom, Laird, McDer-
mott, Newell, & Orchiuch, 1985), where its cycle times correspond to seconds or
minutes of real time. In principle, the primitives provided by the authors of these
higher level models could be replaced by Soar programs that are similar to those
used in the modeling of the lower level processes.

We think that the second approach is the best. It allows models of higher level
processes to be expressed in any way that optimizes the clarity and productivity |
of the explanations. The third approach forces the theorist to use the same
architecture for both low level and high level models, and that seems analogous
to forcing the quantum physicist and the biologist to use the same mathematics
for their models. In principle it could be done, but the clarity of the models
would be sacrificed. '

In summary, Teton and similar architectures should not be viewed as claims
about innateness, universality or penetrability. They should be viewed as part of a
model that explains problem solving and skill acquisition. The model contains
assumptions about what capabilities are possessed by subjects prior to training.
Some, but not all, of those capabilities are modeled by features of the architec-
ture. The others are modeled by pre—existing programs. Eventually, this model
should be related via explicit mappings to models of lower—level processes,
notably memery, attention, perception and motor control.

The remainder of this chapter contains another explanation of the psychologi-
cal status of goal reconstruction. We claim that goal reconstruction is a prior
capability of problem solving, which means that all subjects possess this ca-
pability prior to leaming the given problem solving procedure. One way to see
what this means is by seeing what other prior capabilities would be needed in a
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model of skill acquisition. The following sections list capabilities that, in our
estimation, are prior capabilities for the tasks usually studied in the problem-
solving literature: physics, blocks world, Tower of Hanoi, algebra, eight puz-
zle, etc.

Goal Reconstruction

The key property that makes goal reconstruction a candidate for a prior capability
is that it does not have to be learned, or at least that it does not have to be learned
each time a new procedure is learned. To demonstrate this, consider a gedanken
experiment. Suppose we train subjects in an entirely novel procedure, being
careful never to interrupt them while they are executing the procedure. When
they have mastered it, we perform the telephone test: we interrupt them in the
middle of solving a problem, have them engage in an interference task sufficient
to wipe out goal memory, then have them resume their original task. Presumably,
they would all be able to reconstruct their internal state for this procedure, even
though they had never done reconstruction on this procedure before. This
gedanken experiment shows that their reconstructive capablhty was acquired
prior to the acquisition of the procedure.

As the discussion earlier in the chapter indicated, some cases of goal recon-
struction seem to require task-specific knowledge. These kinds of goal recon-
struction would have to be acquired along with the task’s procedure. Although
we claim that some goal reconstruction is a prior capability, we are not claiming
that all goal reconstruction is due to prior capabilities. Teton’s architecture em-
beds specific claims about what kinds of goal reconstruction are prior and what
kinds would have to be learned.

Explanation of Worked Examples

Another capability that seems to come *for free” when one learns a procedure is
explanation of worked examples. A worked example is a problem that has been
solved in such a way that a partial trace of the solution process is available. Math
and physics textbooks have many worked examples. Usually, the textbooks print
only the results of visible actions of the procedure, the actions that the students
would write if they were solving the procedure. The invisible actions, such as
deciding which goal or strategy to pursue, arc usually left out. Often the exact
nature of the visible actions is underspecified, too. For instance, the textbook
might print an algebraic equation but not say what operation was used to pro-
duce it. Explaining a worked example entails producing all the information that
is necessary for solving the problem but has been left out of the printed mate-
rial.

There is ample evidence that people can explain worked examples even when
the procedure they are using to explain the example is new to them (Chi, Bassok,
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Lewis, Reimann, & Glaser, 1989; Piroili & Bielaczyc, 1989). This indicates that
the ability to explain a worked example is a prior capability. That is, after one has
learned a procedure well enough to execute it, then one can automatically explain
examples with it as well. The converse may also be true (Chi et al., 1989).

It could be objected that explaining an example is exactly the same as solving
the example’s problem. This is true only of simple cases. In more complicated
cases, the example might not use exactly the same order of steps as the subject
would use. It might produce intermediate steps that the subject would not, or use
less efficient strategics than the subject would. The subjects most control their
own processing so as to reproduce the same steps as the example. So example
cxplaining really is a different process than interpreting a procedure. Thus, it
should be viewed as a distinct prior capability.

impasse Handling

When people are executing a procedure, even a fairly weli-known procedure,
they sometimes get stuck. For instance, if you normally make a white sauce
using butter, flour and milk, and you discover, after mixing the butter and flour -
together and cooking them for a while, that you are out of milk, then you are at
an impasse. People seem to have a fairly standard set of capabilities for handling
impasses. For instance, one standard so—called repair strategy is substitution
{Brown & VanLehn, 1980). In the case of the white sauce procedure, the cook
might substitute for the milk something that is liquid, edible, mildly flavored and
otherwise quite similar to the milk. Another repair is backing up. In the case of
the white sauce, one might back up to the procedure that required the sauce (e.g.,
your favorite moussaka recipe) and reconsider the need for the sauce.

Repair strategies seem to be somewhat independent of the impasse and the
procedure that they are applied to (VanLehn, 1990). For instance, the two white
sauce repair strategies, substitution and backing up, are also applied by arith-
metic students to arithmetic procedures (VanLehn, 1990). This illustrates the
claim that people have a stock of general purpose repair strategies that can be
adapted for use with any procedure’s impasses. The impasse-repair process is a
prior capability because it does not have to be learned as each new procedure is
learned.

Rule Acquisition Events

It is often conjectured that human probiem solvers can interrupt their procedure,
reason azbout the procedure and its efficacy, make a modification to the pro-
cedure, and resume execution of the modified procedure. In early work, the
existence of these rule acquisition events was inferred from changes in the
person’s problem solving behavior (e.g., Anzai & Simon, 1979; Neches, 1987).
Recent fine-grained protocol analyses have shown that people tend to pause
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and/or make unusual verbal comments during a rule acquisition event (Siegler &
Jenkins, 1989; VanLehn, 1991, 1989). For instance, in one 90-minuie protocol
(VanLehn, 1991) there were 11 rule acquisition events of which 10 were accom-
panied by either long pauses, reflective comments (e.g., “It’s just like moving
four, isn’t it?”) or negative comments (e.g., “Wrong . . . this is the problem
and . . .”). These detailed analyses support the hypothesis that people can reason
about and modify their procedures even in the midst of using them.

We are currently developing detailed simulations of rule acquisition events
taken from protocols of students learning college physics. It is already clear that
the subjects have a large variety of rule acquisition methods that they use to
analyze and modify their procedures. For instance, a particularly powerful and
commeon method is explanation-based learning of correctness (VanLehn, Ball &
Kowalski, 1990). When subjecis try to explain a worked example and their
knowledge of the target procedure is incomplete, then they will sometimes be
unable to complete an explanation of the example. There will be segments of the
example’s solution that cannot be parsed by the stadent’s procedure. One rule
acquisition method is to invent new rules that will complete the example’s
explanation (Ali, 1989; Danyluk, 1989; Fawcett, 1989; Pazzani, 1988; Schank &
Leake, 1989; VanlLehn, 1987, Wilkins, 1988). In general, there are com-
binatorially many ways to build a syntactically correct an explanation (Nowlan,
1987). Rather than exhaustively searching for the semantically correct comple-
-tion, the physics students seem to specialize an overly general rule that they
would not normally use. For instance, one student couid not explain where a
certain minus sign came from in a physics equation. She eventually formed an
explanation after noting that the quantity bearing the minus sign came from a
vector whose x—projection lay along the negative x-axis. She said, “The reason
the negative is there is because the X component is in the negative direction on
the X axis.” Apparently this subject used the overly general rule that mathe-
matical manipulations conserve negations. On this reasoning, the negation in her
equation had to come, uvitimately, from some existing negation, such as the
negative part of the X—axis. This kind of explanation completion is halfway
between syntactic explanation completion (e.g., VanLehn, 1987), where comple-
tions are chosen based on their size or other structural characteristics, and expla-
nation-based learmning (Mitchell, Keller, & Kedar-Cabelli, 1986), where new
rules are created by specializing general rules that are used in an e;iplanation. In
explanation-based iearning of correctness, the subject normally avoids certain
rules because they are known to be overly general. However, such rules will be
used to bridge an impasse, and if this ultimately results in a correct solution, a
specialization of the overly general rule.is kept as a new, hopefully correct rule.

Explanation-based learning of correctness is just one of many rule acquisition
methods that seem to be used by people in order to improve their understanding
of a task domain. Sirce they are used in the course of acquiring a procedure, they
must have existed before the procedure. Thus, they are a prior capability.
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Conclusions

This list has illustrated just a few prior capabilities that a theory of skill acquisi-
tion would need to assume. Some capabilities, such as goal reconstruction and
explanation of worked examples, are best modeled as features of the architecture.
Other prior capabilities, such as reading and writing English, are best modeled as
procedural knowledge. Still other capabilities, such as repairing impasses, are
best modeled as a mixture of architectural features and procedural knowledge.

Whether a capability is modeled as procedural knowledge or a feature of the
architecture is independent of whether it is a prior capability or acquired during
the observation period. Indeed, we see no logical problems with hypothesizing
that some features of the architecture are acquired. (Although we do see interest-
ing technical chalienges in developing a learning mechanism that modifies the
architecture.)

Having distinguished prior capabilities from architectures, both computational
and cognitive, we hope we have clarified the main psychological claim of the
chapter, which is simply that goal reconstruction is a prior capability for classical
problem solving and skill acquisition.

APPENDIX: TETON

Teton is a von Neuman machine, so it has two kinds of memory. The knowledge
base is a large, slowly changing memory that holds general knowledge, such as
procedures for solving problems, inference rules and general facts. The working
memory is a rapidly changing memory that holds information produced in the
course of a computation. Like all von Neuman machines, Teton has an built-in
execution cycle that interprets procedural knowledge stored in its knowledge
base. The execution cycle consists of (a) deciding what to do, based on the
current states of the working memory and the knowledge base, and (b) doing
what it decided to do. The execution cycle is an algorithm that treats the informa-
tion in the working memory and the knowledge base as formatted data. The
format of the data is called the representation language.

This description of Teton has, so far, said nothing that would distinguish it
from any other von Neuman machine. To define Teton per se, the following three
sections will describe, respectively, its representation language, its execution
cycle and its memories. :

Knowledge Representation .

Teton’s representation language is appropriate for procedural knowledge, but
clumsy at best for representing declarative knowledge. For instance, it is simple
to represent addition and subtraction algorithms, but it is difficult to represent
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that addition and subtraction are inverses. This is nor intended to be a claim that
the mind has only clumsy ways to represent declarative knowledge. It means
only that we have not investigated tasks where declarative knowledge has a
major influence, so we have not yet included a language appropriate for repre-
senting declarative knowledge.

In working memory, the main unit of information is the goal. A goal serves
many purposes. It can represent an action that has already been completed, or an
action that is planned but not yet begun, or an action that is in progress. A goal
has slots for indicating a state to be achieved, an operation, the state resulting
from the operation, subgoals created by the operation, the supergoal of this goal,
* the time that the goal was created, and so on.

In the knowledge base, there are two kinds of knowledge: operators and
selection rules. Operators have the following parts:

I. A goal type, which indicates what kinds of goals this operator is appropri-
ate for. This description usually has variables that must be instantiated before the
operator can be executed.

2. A set of preconditions. If all these predicates hold of the current state of
working memory, then the operator can be executed. If not, then the architecture
will automatically create subgoals for each of the unsatisfied preconditions.
Operators may have an empty set of preconditions. '

3. A body, which describes what is to happen when the operator is executed.
If the operator is a primitive, the body describes the changes that will occur to the
situation and/or the rest of working memory. If the operator is non-primitive
(i.e., a macro—operator), the body describes what subgoals the operator will
create when it is executed.

4. A shortcut condition, which is true if the operator can be assumed to be
completed. ' '

Teton’s operators allow both deliberate subgoaling and operator subgoaling. The -
execution of the body of an operator can create subgoals (deliberate subgoaling),
and the architecture will create subgoals if an operator’s preconditions are un-
satisfied (operator subgoaling).

Selection rules are the other type of knowledge in Teton’s knowledge base.
They are used for selecting a goal to work on and for selecting an operator to use
for achieving the selected goal. There are three types of selection rules. Consid-
eration rules indicate that a goal or operator should be considered. These rules
are consulted first. They usually produce a large set of items. Rejection rules are
consulted next, and cause some of the item to be removed from the set of items
under consideration. Preference rules are consulted last. They partially order the
set of items under consideration. Normally, one item will be preferred over all
the others. It is the one selected. Teton’s selection rule mechanism is similar to
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the ones used by Soar (Rosenbloom et al., chap. 4, in this volume) and Prodigy
(Carbonell et al., chap. 9, in this volume). Alf three systems use this type of
mechanism because it makes it easy to implement the acquisition of strategic
knowledge: just add new selection rules.®

The Execution Cycle

The main loop of Teton’s interpreter is shown in Table 6.2. Most of it is quite
standard: Goals are selected by goal selection rules. Operators are selected by
operator selection rules. Unsatisfied preconditions cause subgoaling. Execution
of macro-operators causes subgoaling. Execution of primitive operators causes
state changes. However, there are two facilities, impasses and shortcut condi-
tions, that are not standard and deserved some explanation. ‘

Whenever the architecture needs to select a goal or operation, it enumerates
all possible candidates, filters this set with the rejection—type selection rules,
then rank orders the set with the remaining selection rules. If one choice is better
than afl the others, then Teton takes it. However, if the selection rules fail to
uniquely specify a choice (e.g., they reject all possibilities, or they cannot decide
between two possibilities), then an impasse occurs. As in Soar (Rosenbloom et
al., chap. 4 in this volume) and Sierra (VanLehn, 1987; VanLehn, 1990), an
impasse causes the architecture to automatically create a new goal, which is to
resolve the impasse. Typically, such resolve-impasse goals are tackled by task-
general knowledge. For instance, one of Sierra’s methods is: If the selection rules

TABLE 6.2
The Main Loop of Teton’s interpreter

1. Select a goal from working memory using the goal selection rules. if there is no
unique selection exists, then create an impasse goal describing that and select it,

2. If the selected goal has an operation selected for it atready, then skip the next step.

3.. Select an operation (a partially instantiated operator) for the current goal using the
operator selection rules. if there is no unique operation, then create an impasse
goal describing that, make it a subgoal of the selected goal, select it, and repeat this
step.

4. If the selected operation has unsatisfied preconditions, then create a hew goal for
each such precondition and link it to the selected goal as a subgoal, Leave the
selected goal marked “pending,” and return to step 1.

b. Ifthe selected operaticn has a shorteut condition and it is true, or it has subgols and

they are all completed, thers mark the seleited goal “completed” and return to step
1.

6. If the operation is primitive, then execute the operation, mark the selected goal
"completed”, and return to step 1.

7. Otherwise, the operation is non-primitive, so execute the operation and return to
step 1. Execution will cause new subgoals to be created and linked to the seleted
goal as subgoals.
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cannot decide among several possible candidates, then choose one randomly.
Another popular impasse-resolving method is: If the selection rules rejected all
operations for the current goal, then mark the goal as accompanied even though it
is not. This causes the architecture to “skip” planned actions that it does not
know how to accomplish. Brown and VanLehn (1980) exhibited a collection of
such impasse-resolving methods (called “repairs™) and showed how they couid
explain the acquisition of many students’ bugs (procedural misconceptions).

Shortcut conditions play an important role when Teton reconstructs goals that
have been forgotiten (i.e., deleted from working memory). In order to recover
from such working memory failures, Teton has to reconstruct some of the goals it
once had. It is assumed that there is some top-level goal that is not forgotten. The
remaining goals are reconstructed by simply executing the procedural knowledge
with the interpreter of Table 6.2. However, when the situation corresponds to a
half—completed problem, some of the goals created are superfluous because they
have already been achieved. In such cases, the appropriate shortcut conditions
are true, and goals are marked “completed” before any attempt is made to
execute them.

One mechanism that is common in other architectures is missing in Teton.
Teton goals need not be selected in last-in-first-out (LIFO) order. For instance, if
there are two pending goals, A and B, and A is selected and leads to a subgoal C,
then a LIFO restriction would rule out selecting goal B since C is more recently
created. Most architectures, including Soar and Grapes, place a LIFO restriction
on goal selection, but Teton does not. In the case just mentioned, it allows either
B or C to be selected.

Memories

As mentioned earlier, Teton has two memory stores, the knowledge base and the
working memory. Working memory is composed of four distinct memories:

I. The main working memory is the one that holds the goals and other data
structures generated by the execution cycle.

2. The siruation holds a representation of the external environment. Its con-
tents model the subjects’ interpretation of what they see, which is task-
specific, like a problem space’s current state. For instance, an arithmetic
problem is represented as a grid of rows and columns in the situation,
whereas an algebra equation is represented as a tree.

3. The scratchpad is just like the situation, except that the contents represént
something that the subject is imagining, rather than actually seeing. For
instance, some subjects imagine the result of a move during problem
solving before actually making the move in the real world. In order to
model such events, Teton distinguishes the situation from the imagination.
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4. The buffer is a limited capacity store for items that have simple verbal
encodings, such as numbers

The latter two memories are a novelty in computational models of the architec-
ture, so they are worth a little explanation. They are designed as simple versions
of the two slave memories described by Baddeley (1986) and called the artic-
ulatory loop and the visio-spatial scratchpad. According to Baddeley, the artic-
ulatory loop consists of a passive storage medium, called the phonological store,
and a mechanism for “rehearsing™ its contents (analogously to a dynamic RAM).
The phonological store can hold a phonological code for about 2 or 3 seconds
(Zhang & Simon, 1985). If it is not rehearsed in that time, it becomes inaccessi-
ble. The time required to rehearse a code is linearly related to the time required to
read the equivalent lexical item. Thus a person can store a given list of stimulus
items if the time required to rehearse them once is less than 2 or 3 seconds. This
accounts for the often-cited finding that untrained subjects can store and immedi-
ately recall about 7 plus or minus 2 chunks (Miller, 1956). Because rehearsal can
go on relatively independently of most cognitive tasks (Baddeley, 1986), the
articulatory loop acts like a short term store with a capacity of a few pho-
nologically encoded chunks. Teton uses this much simpler model, and allows N
chunks to be stored in the articulatory loop, where N is a parameter of the
architecture. Typically, the articulatory loop is used for temporary storage of
numbers.

The visual-spatial scratchpad contains the same kind of items as the situation
does, but it is meant to model a scene that the subject is imagining, rather than
the real world. Teton’s version of the scratchpad is only used for one purpose,
which is looking ahead during problem solving in order to project the conse-
quences of contemplated moves. Consequently, Teton supports only a simple
model of the scratchpad. There is a switch in the architecture, which can be set
by a primitive operation to either “normal” or “imaginary.” When the switch is
thrown from “normal” to “imaginary,” the scratchpad is initialized with a copy
of the items in the current situation. Thereafter, all reading and writing opera-
tions that would normally access the situation access the scratchpad instead. The
volatility of the scratchpad is modeled, again quite crudely, by counting the
number of operations applied to it. After a threshold is crossed (the threshold is a
parameter of the model), the contents of the scratchpad become inaccessible.

This facility was used to simulate look-ahead search in the Tower of Hanoi,
which plays a crucial role in Anzai and Simon’s (1979) account of strategy
acquisition. In the course of developing a similar account of strategy acquisition,
we discovered that learning the more advanced versions of the disk subgoaling
strategy would require looking ahead 12 moves in the scratchpad. Not only is this
implausible, but setting the stability parameter of the scratchpad to 13 caused
learning of carlier versions of the strategy to go awry. This led us to look for
methods of strategy acquisition that did not use the scratchpad. We found not one
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but several, along with good support for them in the protocol data (Vanlehn, in
press, 1989).
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