
An Efficient Incremental Architecture for Robust
Interpretation

Carolyn P. Rosé
LRDC, University of Pittsburgh

3939 Ohara St.
Pittsburgh, PA 15260 USA

rosecp@pitt.edu

Antonio Roque
LRDC, University of Pittsburgh

3939 Ohara St.
Pittsburgh, PA 15260 USA

roque@pitt.edu

Dumisizwe Bhembe
LRDC, University of Pittsburgh

3939 Ohara St.
Pittsburgh, PA 15260 USA

bhembe@pitt.edu

ABSTRACT
In this paper we describeROSENHEIM, the RObust SENtence level
arcHitecture for Efficient Incremental Multi-sentence interpretation.
Its efficiency is the result of its novel layered scheduling algorithm.
This scheduling algorithm makes it possible to ensure that when ed-
its are made to already processed portions of text, only the mini-
mum changes are made to the chart. Thus, it allows the parser to
take advantage of the user’s typing or speaking time so that it can
complete the majority of the work of parsing an input text before
the user enters the last word. Our evaluation demonstrates that this
layered architecture makes the parser’s response time almost imper-
ceptible. We also show that our incremental parser performs more
efficiently than other well known incremental parsers [34] [20]. An
implementation of the ROSENHEIM architecture is currently part
of the WHY Conceptual Physics Tutoring System [28], one of sev-
eral recent dialogue based tutoring systems [23] [1] [7] [11].

General Terms
robust incremental interpretation

Keywords
robust sentence level interpretation, incremental parsing

1. INTRODUCTION
In this paper we describe ROSENHEIM, the RObust SENtence

level arcHitecture for Efficient Incremental Multi-sentence interpre-
tation. An implementation of the ROSENHEIM architecture is cur-
rently part of the WHY-Atlas Conceptual Physics Tutoring System
[28], one of several recent dialogue based tutoring systems [23] [1]
[7] [11]. The WHY-Atlas system assists students in creating and re-
vising multi-sentence, typed physics explanations while receiving
feedback from the system during each revision cycle.

One obstacle that currently makes it impractical for dialogue sys-
tems to make use of sophisticated natural language understanding
technology, such as deep syntactic and semantic analysis, and dis-
course level analysis, is the tremendous computational expense in-

HLT 2002, San Diego, California USA
.

volved, especially for long input texts. This type of processing is
desirable, however, for applications like intelligent tutoring where
the goal is to detect the subtle ways in which student misconcep-
tions are encoded in their explanations. The ROSENHEIM archi-
tecture overcomes this obstacle by processing the users’ utterances
as they are being spoken or typed, thus hiding as much of the neces-
sary processing time as possible, and drastically reducing the time
in between when the user’s turn is finished and when the system can
respond.

The ROSENHEIM architecture is general purpose for applica-
tions with natural languageinput, whether typed or spoken. ROSEN-
HEIM’s incremental parser has been demonstratedto complete pars-
ing input texts within a third of a second of when they have been
finished being entered even at a word input rate of 180 words per
minute, which is roughly the average rate of human speech. It has
also been demonstrated to perform more efficiently than other well
known incremental parsers [34] [20]. Our goal is to achieve a good
balancebetween the precisenessof symbolic approachesand the im-
perviousnessof text classificationapproaches. In particular we make
use of both a version of the previously introduced LCFLEX robust
parser [24] for symbolic processing that we have incrementalized
as well as Rainbow [18], a Bayesian text classification package, as
a fail-soft fall-back strategy when the parser fails. Additionally, this
architecture has provided us with a test bed for developing an effec-
tive hybrid approach, which outperforms both the symbolic and the
statistical approach alone [22]. In all cases, ROSENHEIM’s target
representation is a set of one or more first order propositions. The
form of the output representation is easily adaptable, however, for
use in other systems.

2. THE WHY-ATLAS CONCEPTUAL PHYSICS
TUTORING SYSTEM

Recent studies of human tutoring suggest that a productive activ-
ity for teaching is to have students explain physical systems qual-
itatively [5]. The goal of the WHY-Atlas project [28] is to coach
students as they explain physics systems in natural language in re-
sponse to short essay questions such as, “Suppose you are running
in a straight line at constant speed. You throw a pumpkin straight
up. Where will it land? Explain.” The WHY-Atlas system has at its
disposal a library of knowledgeconstruction dialogues (KCDs), i.e.,
interactive directed lines of reasoning, each of which is designed ei-
ther to elicit a specific idea (i.e., an elicitation KCD) or to remediate
a specific misconception (i.e., a remediation KCD) [23].

Students interact with WHY-Atlas through a GUI interface with
an essayinput area, a dialogue input area, and a dialogue history dis-
play. The student is presented with an essay question. After read-
ing the essay question, the student types in an initial essay in the



essay input area. The system then analyzes the student’s essay in or-
der to detect the presence of misconceptions and required concepts,
which are determined when each of WHY-Atlas’s problems are de-
signed. The system then uses KCDs both for coaching students to
insert missing required concepts (elicitation KCDs) and to remove
the expression of misconceptions (remediation KCDs). KCDs are
conducted through the dialogue input area and displayed in the di-
alogue history display.

ROSENHEIM is responsible only for sentencelevel analysis. We
use the CARMEL grammar and semantic interpretation framework
[21] along with the COMLEX lexicon [12] for sentence level anal-
ysis. It takes natural language as input and produces a set of first
order logical forms to pass on to the discourse language understand-
ing (DLU) module [13]. The LCFLEX parser using the CARMEL
grammar builds a deep syntactic functional analysis of input texts.
Syntactic feature structures producedby the CARMEL grammar fac-
tor out those aspects of syntax that modify the surface realization of
a sentence but do not change its deep functional analysis. These as-
pects include tense, negation, mood, modality, and syntactic trans-
formations such as passivization and extraction. In order to do this
reliably, the component of the grammar that performs the deep syn-
tactic analysis of verb argument functional relationships was gener-
ated automatically from a feature representation for each of COM-
LEX’s verb subcategorization tags.

We verified that the 91 verb subcategorization tags documented
in the COMLEX manual were covered by the encodings, and thus
by the resulting grammar rules. These tags cover a wide range of
patterns of syntactic control and predication relationships. Each tag
corresponds to one or more case frames. Each case frame corre-
spondsto a number of different surface realizations due to passiviza-
tion, relative clause extraction, and wh-movement. Altogether there
are 519 syntactic patterns covered by the 91 subcategorization tags,
all of which are covered by the CARMEL grammar.

Rainbow [18], our naive Bayes classifier, assigns sentencesto sta-
tistical classes that correspond to lists of logical forms in the same
representation language as CARMEL produces. Additionally, a hy-
brid classificationapproach, CarmelTC [22], performs a similar clas-
sification making use both of the symbolic analysis as well as the
Rainbow classification. Since in both the purely symbolic approach
as well as the classification approach, the result is in the same for-
mat, the output from either source is appropriate input for the DLU
module. However, the classificationapproachhas the drawbackthat
it embodies the underlying simplifying assumption that students al-
ways expressrequired points in a single sentence, which is normally
true, but not always the case.

3. MOTIVATION
At the heart of ROSENHEIM is a new incremental version of the

LCFLEX robust parser [24]. LCFLEX is a flexible left-corner parser
designed for efficient, robust interpretation. Its basic parsing algo-
rithm is similar to that of other left corner parsers described previ-
ously [25, 4, 24]. It uses the reflexive and transitive closure of the
left-corner relation [27] both for top-down filtering and bottom-up
prediction in order to limit ambiguity and thus enhance efficiency.
The underlying graph representation of LCFLEX’s chart allows words
to be easily inserted or deleted at any point in the chart. The underly-
ing grammar formalism used by LCFLEX is a unification-augmented
context-free grammar formalism originally developed for the GLR
Parser/Compiler [26]. It is a similar formalism to that used for LFG
and PATR-II. However, it is not limited to cycle-free context free
grammars as is the preliminary work adapting PATR-II to incremen-
tal parsing described in [34].

From an efficiency standpoint, it is the fine grained incremental-

ity of this new version of LCFLEX that makes it uniquely appropri-
ate for the ROSENHEIM architecture. Here we use incrementality
to refer to the process of parsing text as it is entered and edited rather
than waiting to begin processing until it has been typed in its final
form. As the text is progressively revised, only minimal changes
are made to the chart. The challenge of fully incremental parsing
of text as it is being typed and revised is effectively coordinating
the parallel tasks of keeping the lexical edges in the chart consistent
with the text as it is being entered and modified at the interface, de-
tecting when edges in the chart become invalid and removing them,
and proceeding with the analysis of the lexical edges currently in
the chart. If these tasks are not managed effectively, then the parser
may inadvertently build analyses using invalid edges that have not
been identified yet as invalid.

Some previous incremental parsers are described in [30] [31] [29].
However, these parsers are only weakly incremental. Although they
revise their internal representations on successive analyses as their
input is revised, they do not process their input as it is being entered.
Instead they process their input text as a whole when an explicit
command is given. Thus, they do not have to solve the problem of
avoiding building analyses using invalid edges. But this simplifi-
cation of the problem comes with a computational expense. In par-
ticular, they waste the time the user spends entering text, time that
could be used to absorb the majority of the processing time.

Two previously described incremental parsers claim to be fully
incremental [20] [34]. The approach described in [20] adds two op-
erations to standard bottom-up chart parsing in order to project com-
plete, albeit underspecified,syntactic structures from initial segments
of input sentences. These two operations include (1) applying gram-
mar rules to active edges, and (2) replacing the leftmost undecided
term of a rule with an active edge. This approach is only feasible
with very small, purely context free grammars. For example, be-
cause the algorithm applies grammar rules to active edges, it would
get into an infinite loop with recursive rules.

Furthermore, let us consider what would happen if we used this
algorithm with the CARMEL grammar. As mentioned above, the
91 COMLEX verb subcategorization tags cover 519 configurations
of a verb in relation to its arguments. Considering also that it is com-
mon for nouns and verbs to be indistinguishable out of context (i.e.,
take as in “take an apple in your lunch” and take in “what’s your take
on that?”), a huge number of useless junk edges would be routinely
created for each parse. Most of these junk analyses are not produced
in the course of ordinary chart parsing since edges are only created
where grammar rules match up with completed edges as their chil-
dren and where the unification augmentation does not fail. Thus,
only the configurations that are both appropriate for a verb, based
on the subcategorization tags found for it in the lexicon, and that
match the completed edges found in the sentence would be built.
Another drawback of the [20] approach is that it makes the simpli-
fying assumption that all words in the input stream are included in
the final parse. This is an invalid simplifying assumption where ro-
bustness techniques are used such as those described in [24]. Ro-
bustness techniques, most notably skipping over some unparsable
portions of input, have been demonstrated to significantly improve
the performance of parsers over speech input, which may contain
many ungrammaticalities and disfluencies.

Wirén’s incremental parsing approach in [34] claims to be fully
incremental. However, the degree of incrementality of that algo-
rithm is evaluated only in terms of the percentage of chart edges
that are invalidated by a single macro edit operation, i.e., inserting
or deleting � contiguous words in the chart. What this measure does
not take into account is the interaction between separate macro edit
operations. In Wirén’s algorithm, whenever one or more consecu-



tive words are insert into or deleted from a position � in the chart,
after all of the invalidated edges are removed, every chart position
from � until the end of the chart is reprocessed. If at any time after
the edit operation at position � occurs an edit operation is performed
at a position ����� in the chart, then any resources having been spent
reprocessingchart positions greater than or equal to ����� for the edit
operation at � will have been wasted since those positions will now
have to be recomputed again. The layered ROSENHEIM approach
addresses this problem by checking for new edit operations after
each chart position is processed. All performed edit operations are
processed on the lexical level before the next chart position is fully
processed. What this means is that all lexical insertions and dele-
tions are performed, and all invalid edges are removed. The Wirén
algorithm and the ROSENHEIM algorithm are indistinguishable in
the case where the parser will have finished reprocessing the whole
chart before the next edit operation is performed. But in the case
that one or more new edit operations are performed before a previ-
ous edit operation is completely processed, the ROSENHEIM algo-
rithm creates fewer new edges. In particular, our evaluation demon-
strates that in practice the layered ROSENHEIM approach is at least
12% more efficient than the Wirén approach. More details about
this comparison are described in the Evaluation section of this pa-
per.

The advantageof the ROSENHEIM architecture is that it was de-
signed to uniquely avoid inadvertently building analyses using in-
valid edges that have not yet been identified as invalid or unneces-
sarily redundantly reprocessing chart positions as in [34] while also
avoiding building the unnecessary junk edges required by [20]. Ad-
ditionally, it is not constrained to purely context free rules with no
recursion. Our evaluation demonstrates that it behaves efficiently
even with the large scale CARMEL grammar.

Furthermore, the new incrementalized version of LCFLEX is also
unique among incremental parsers in that it has been enhanced with
robustness techniques in order to address the major types of disflu-
encies that plague spontaneously produced language input. These
robustness techniques give it the ability to skip words, the ability
to consider insertion of missing words and categories, which can
also be thought of as partial rule matching, and finally the ability
to relax grammatical constraints expressed within the parser’s uni-
fication augmentations. All of these robustness techniques are con-
trolled by thresholds that limit how much flexibility is allowed at
parse time. For example, a skip beam controls how many words
from the input are allowed to be skipped within an analysis. Very
few modifications to the original LCFLEX robustness techniques
described in [24] were necessary in order to adapt them for the new
incremental version, full description beyond the scope of this short
paper. Our evaluation demonstrates that these robustness techniques,
becausethey necessarily create more ambiguity in the parser’s anal-
ysis, make the difference between the ROSENHEIM approach and
the Wirén approach even more striking.

4. SCHEDULING
Let us first consider what is involved in analyzing an input text.

After that we will divide this task into sub-tasks and lay out an effi-
cient scheduling algorithm for them. Figure 1 contains an inventory
of the sub-tasks that are involved.

The interface collects edit operations as they are either typed or
spoken. An edit operation consists of (1) the name, i.e., either add
or delete, (2) the position in the input buffer, and (3) in the case of
an add, the lexical item added. To process an edit operation, first the
chart is modified at the lexical level. For an add operation, a lexical
edge is inserted into the indicated position. For a delete operation,
a lexical edge is deleted. Whenever one or more edges are deleted,

Cheap Operations:
Insert a Lexical Edge
Delete a Lexical Edge
Delete Invalid Edges

Semi-Expensive Operations:
Perform Chart Parsing Algorithm

at One Chart Position
Very Expensive Operations:

Statistical Disambiguation
Discourse Level Processing

Region Level Operations:
Bayesian Classification

Figure 1: Inventory of Sentence Level Interpretation Tasks

each dependent edge, i.e., such that one or more of the deleted edges
were used in the derivation of that edge, must also be deleted. As
indicated in Figure 1, the time it takes to perform these very cheap
tasks is negligible.

Next, at each position in the chart, the chart parsing algorithm
must be applied so that any edge that can be created that does not
duplicate an edge already in the chart is created and inserted into
the chart. Edit cycle markers on edges and chart positions make it
very quick to determine which, if any, new edges must be created at
each chart position. When this process is finished, a complete all-
paths parse for the entire input buffer will have been computed. In
line with Figure 1, the bulk of parse time is spent on these Semi-
Expensive tasks.

The input buffer is automatically divided into regions roughly at
sentence boundaries. After a region is parsed, it is disambiguated
using LCFLEX’s statistical disambiguationalgorithm. At this point,
a parse quality heuristic [17] can be applied to that parse to deter-
mine whether it is an acceptable analysis. If an acceptable analysis
is found, it is reformatted into a set of first order propositions. The
Rainbow statistical text classification program [18] or CarmelTC
[22] are used to deal with cases where the parser fails to construct
a full analysis. Rainbow uses a statistical word model trained on
a corpus of tutoring dialogues to classify text using a Naive Bayes
classification method with Laplace smoothing and a unigram event
model. Input sentencesare assignedby Rainbow to semantic classes
that have been paired with sets of first order propositions. Thus, the
result is in the same form regardless of whether it comes from the
parser or the statistical classifier. Applying the Bayesian Classifier
is very cheap. It is classified as a Region Level task in Figure 1 be-
cause it is only applied after a region has been fully parsed and dis-
ambiguated. CarmelTC is a rule learning approach where rules for
classifying units of text rely on features extracted from CARMEL’s
syntactic analysis of that text as well as on the Rainbow “Bag of
Words” classification of that text. Similar to Rainbow, it is trained
over hand classifiedexample texts. In the initial version of CarmelTC,
we have used a simple decision tree learning algorithm [19] with ex-
cellent results.

The interface is continually available for the user to manipulate.
As a separate process, ROSENHEIM’s scheduling algorithm loops
continuously until the student’s turn is complete and all of the edit
operations have been fully processed at all levels. On each loop, it
retrieves all of the new edit operations from the interface and per-
forms all the tasks classified as Cheap in Figure 1. Next the one
Semi-Expensive task is performed at the next chart position where
it is necessary. If there is a region that has been fully parsed but not
disambiguated, then the Very Expensive tasks as well as the Region
Level task if necessary are performed for that region. Whenever an



edit operation is performed in a region that had been fully parsed, it
loses the status of being fully parsed. Thus, when it becomes fully-
parsed again, the region will be disambiguated again to keep the re-
sult consistent with the user’s text.

5. HYBRID UNDERSTANDING APPROACHES
As mentioned, the ROSENHEIM architecture employed by the

WHY-Atlas tutoring system uses both a symbolic (i.e., CARMEL)
and a “Bag of Words” statistical (i.e., Rainbow) approach to sen-
tence level language understanding, as well as the hybrid CarmelTC
approach. Many successful tutoring systems that accept natural lan-
guage input employ shallow approaches to languageunderstanding.
For example, CIRCSIM-TUTOR [10] and Andes-Atlas [23] parse
student answers using shallow semantic grammars to identify key
concepts embedded therein. The AUTO-TUTOR [32] system uses
Latent Semantic Analysis (LSA) to process lengthy student answers.
“Bag of Words” approaches such as LSA [16, 15], HAL [2, 3], and
Rainbow [18], have enjoyed a great deal of success in a wide range
of applications. Recently a number of dialogue based tutoring sys-
tems have begun to employ more linguistically sophisticated tech-
niques for analyzing student language input, namely the Geome-
try tutor [1], and BEETLE [7]. Each approach has its own unique
strengths and weaknesses. “Bag of Words” approachesrequire rela-
tively little development time, are totally impervious to ungrammat-
ical input, and tend to perform well because much can be inferred
about student knowledge just from the words they use. On the other
hand, symbolic, knowledgebased approachesrequire a great deal of
development time and tend to be more brittle than superficial “Bag
of Words” types of approaches, although robustness techniques can
increase their level of imperviousness [24, 21]. To their credit, lin-
guistic knowledge based approaches are more precise and capture
nuances that “Bag of Words” approaches miss. For example, they
capture key aspects of meaning that are communicated structurally
through scope and subordination and do not ignore common, but
nevertheless crucial, function words such as ’not’.

Let us consider some shortcomings of a pure “Bag of Words” ap-
proach for our application that CarmelTC overcomes. Using our
text classification approach, in order to compute which set of key
points, i.e., “correct answer aspects”, are included in a student es-
say, we first segment the essay at sentence boundaries. Note that
run-on sentences are broken up. Once an essay is segmented, each
segment is classified as corresponding to one of the set of key points
or “nothing” if it does not include any key point. We then take an
inventory of the classifications other than “nothing” that were as-
signed to at least one segment. As an example, let us consider es-
says collected from students interacting with our tutoring system in
response to the question “Suppose you are running in a straight line
at constant speed. You throw a pumpkin straight up. Where will it
land? Explain.”, which we refer to as the Pumpkin Problem. Thus,
there are a total of six alternative classifications for each segment:

Class 1 Sentence expresses the idea that after the release the only
force acting on the pumpkin is the downward force of gravity.

Class 2 Sentence expresses the idea that the pumpkin continues to
have a constant horizontal velocity after it is released.

Class 3 Sentence expresses the idea that the horizontal velocity of
the pumpkin continues to be equal to the horizontal velocity
of the man.

Class 4 Sentence expresses the idea that the pumpkin and runner
cover the same distance over the same time.

Class 5 Sentence expresses the idea that the pumpkin will land on
the runner.

Class 6 Sentencedoes not adequatelyexpressany of the above spec-
ified key points.

Note that this classification task is strikingly different from those
typically used for evaluating text classification systems. First, these
classificationsrepresent specificwhole propositions rather than gen-
eral topics, such as those used for classifying web pages [8], namely
“student”, “faculty”, “staff”, etc. Secondly, the texts are much shorter,
i.e., one sentence in comparison with a whole web page, which is a
disadvantage for “bag of words” approaches.

In some cases what distinguishes sentences from one class and
sentences from another class is very subtle. For example, “Thus,
the pumpkin’s horizontal velocity, which is equal to that of the man
when he released it, will remain constant.” belongs to Class 2 al-
though it could easily be mistaken for Class 3. Similarly, “So long
as no other horizontal force acts upon the pumpkin while it is in the
air, this velocity will stay the same.”, belongs to Class 2 although
looks similar on the surface to either Class 1 or 3. A related prob-
lem is that sentences that should be classified as “nothing” may look
very similar on the surface to sentences belonging to one or more of
the other classes. For example, “It will land on the ground where the
runner threw it up.” contains all of the words required to correctly
express the idea corresponding to Class 5, although it does not ex-
press this idea, and in fact expresses a wrong idea.

Recent work demonstrates that symbolic and “Bag of Words” ap-
proaches can be productively combined. For example, syntactic in-
formation can be used to modify the LSA space of a verb in order
to make LSA sensitive to different word senses [14]. Along sim-
ilar lines, syntactic information can be used, as in Structured La-
tent Semantic Analysis (SLSA), to improve the results obtained by
LSA over single sentences [33]. CarmelTC makes use of features
extracted from CARMEL’s syntactic analysis of the text [21]. These
features encodefunctional relationships between syntactic heads (e.g.,
(subj-throw man)), tense information (e.g., (tense-throw past)), and
information about passivization and negation (e.g., (negation-throw
+) or (passive-throw -)). Like [9], we also extract word features
that indicate the presence or absence of a root form of a word from
the text. Additionally, for CarmelTC one of the features for each
training text that is made available to the rule learning algorithm
is the classification obtained using the Rainbow naive bayes clas-
sifier [18]. Because the texts classified with CarmelTC are so much
shorter than those of [9], the feature set provided to the learning al-
gorithm was small enough that it was not necessary to use a learning
algorithm as sophisticated as RIPPER [6]. Thus, we used ID3 [19]
instead with excellent results. In a 50 fold cross validation evalua-
tion over 126 previously unseenstudent essays, CarmelTC achieves
an 80% recall and 90% precision, where recall for an essaywas com-
puted by dividing the number of correctly identified required points
over the total number of required points present in the essay, and
precision was computed by dividing the total number of correctly
identified required points in the essay by the total number of iden-
tified required points. The syntactic features make CarmelTC sen-
sitive to those features of student input that tend to be glossed over
by purely “Bag of Words” approaches.

6. EVALUATION
To evaluate the overall effectiveness of the ROSENHEIM schedul-

ing algorithm and the LCFLEX incremental parsing algorithm, we
ran two separate evaluations. In the first evaluation we demonstrate
that the ROSENHEIM approach creates fewer edges than the Wirén



0

5

10

15

20

25

30

0 20 40 60 80 100 120

R
es

po
ns

e 
T

im
e 

(in
 s

ec
on

ds
)

Turn Length (in words)

Non-Incremental
Incremental

Figure 2: Response Time

0

100

200

300

400

500

600

0 20 40 60 80 100 120

Id
le

 T
im

e 
(in

 s
ec

on
ds

)

Essay Length (in words)

Idle Time

Figure 3: Idle Time

approach, thus demonstrating the advantage of its more fine grained
incremental approach. Secondly, we evaluated the response time of
ROSENHEIM between the time when a student finishes typing and
when the system has completed its analysis in order to demonstrate
its ability to keep up with the student’s typing, thus hiding the ma-
jority of the processing time in the student’s typing time.

6.1 Comparison with Wirén Algorithm
To compare the efficiency of the Wirén approach with the more

finely incremental ROSENHEIM approach, we compared the to-
tal number of edges generated in to process of parsing 200 student
essays collected during their interaction with the WHY-Atlas sys-
tem. The essays were parsed using the CARMEL syntactic gram-
mar (with 419 rules) and the COMLEX lexicon [12] (with 40,000
lexical entries). Note that in this evaluation only a syntactic analy-
sis was constructed. Each individual edit operation (i.e., insertion
or deletion of a single word at the interface) was recorded along
with the time at which the edit operation was performed so that the
student’s typing could be simulated realistically during the evalua-
tion. On average the essays used in the evaluation contained 87.7
individual edit operations, or 19.4 macro edit operations, where a
macro edit operation is defined as the insertion or deletion of � con-

tiguous words. When the two algorithms were run over this corpus
with the parsers in non-robust mode, the Wirén algorithm generated
1,806,763 edges altogether, while the ROSENHEIM algorithm gen-
erated only 1,589,070, a savings of 12%. In robust mode, the sav-
ings is quite a bit larger. For example, even with the parser’s skip
limit set only to allow skipping of at most two words, the Wirén
algorithm generates a total of 3,480,989 edges while the ROSEN-
HEIM algorithm generates only 2,789,558, a savings of 20%. On
the majority of essays, the difference between the two algorithms
was very small. However, in caseswhere there were multiple macro
edit operations in quick succession, the difference was very signifi-
cant, thus leading to a noticeable overall advantagefor the ROSEN-
HEIM approach.

6.2 Evaluation of Parser Response Time
We ran an additional evaluation over 44 student essays to mea-

sure the time in between when students finish typing and when the
parser is finishedparsing a student’s sentence. Theseresults confirm
that ROSENHEIM is able to keep up with student’s typing time in
the context of a realistic system. As in the previous evaluation, each
edit operation had been previously recorded in a log file along with a
time stamp so that the log file could be replayed in order to simulate
the student’s typing. The essays were parsed using the CARMEL
syntactic grammar (with 419 rules), the COMLEX lexicon [12] (with
40,000 lexical entries), and the WHY ontology (with 123 semantic
concepts).

We compared the ROSENHEIM approach with a serial process-
ing approachusing the non-incremental version of LCFLEX. In each
case, we measured the time in seconds in between when the student
finished typing and when WHY completed its sentence level pro-
cessing of the input (including statistical disambiguation and clas-
sification where necessary). The results are displayed in Figure 2.
Note that since LCFLEX using the CARMEL grammar constructs
the syntactic and semantic analysis for a text in parallel, parse times
on essays of similar length can vary widely depending upon how
much uninterpretable text the student types. However, the ROSEN-
HEIM architecture is a clear win, often responding almost 6 times
faster than the serial approach. The test set is small, but the differ-
ence even with this small test set is quite striking.

In order to isolate the performance of our sentence level under-
standing approach, we did not pass the results from sentence level
understandingon to our discourse level understandingmodule. How-
ever, we did evaluate how much of student typing time is used by
ROSENHEIM for building a sentence level analysis, and thus how
much time is left over for discourse level processing. Figure 3 demon-
strates that only a very small part of the student’s typing time is be-
ing used for ROSENHEIM’s incremental sentencelevel understand-
ing, which leaves a great deal of time, even up to 5 or 10 minutes on
longer essays, to absorb a large amount of discourse level process-
ing time as well.

7. ACKNOWLEDGEMENTS
This research was supported by the Office of Naval Research, Cog-

nitive Science Division under grant number N00014-0-1-0600 and
by NSF grant number 9720359 to CIRCLE, the Center for Interdis-
ciplinary Research on Constructive Learning Environments at the
University of Pittsburgh and Carnegie-Mellon University.

The first author would like to dedicate this paper to her maternal
grandmother, Olive Rosenheim, whose industriousnessand strength
have always been so inspirational.



8. ADDITIONAL AUTHORS
Additional authors: Kurt VanLehn, University of Pittsburgh, email:

vanlehn@pitt.edu

9. REFERENCES
[1] V. Aleven, O. Popescu, and K. Koedinger. Pedagogical

content knowledge in a tutorial dialogue system to support
self-explanation. In Papers of the AIED-2001 Workshop on
Tutorial Dialogue Systems, 2001.

[2] C. Burgess, K. Livesay, and K. Lund. Explorations in context
space: Words, sentences, discourse. Discourse Processes,
25(2):211–257, 1998.

[3] C. Burgess and K. Lund. Modeling parsing constraints with
high-dimensional context space. Language and Cognitive
Processes, 12(2):177–210, 1997.

[4] J. A. Carroll. Practical Unification-Based Parsing of Natural
Language. PhD thesis, University of Cambridge, Computer
Laboratory, 1993.

[5] M. Chi, N. de Leeuw, M. Chiu, and C. LaVancher. Eliciting
self-exsplanations improves understanding. Cognitive
Science, 18(3), 1981.

[6] W. W. Cohen. Fast effective rule induction. In Proceedings of
the 12th International Conference on Machine Learning,
1995.

[7] M. G. Core, J. D. Moore, and C. Zinn. Initiative management
for tutorial dialogue. In Proceedings of the NAACL
Workshop Adaption in Dialogue Systems, 2001.

[8] M. Craven, D. DiPasquio, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. Learning to extract
symbolic knowledge from the world wide web. In
Proceedings of the 15th National Conference on Artificial
Intelligence, 1998.

[9] J. Furnkranz, T. M. Mitchell, and E. Riloff. A case study in
using linguistic phrases for text categorization on the www.
In Proceedings from the AAAI/ICML Workshop on Learning
for Text Categorization, 1998.

[10] M. S. Glass. Broadening Input Understanding in an
Intelligent Tutoring System. PhD thesis, Illinois Institute of
Technology, 1999.

[11] A. Graesser, K. Wiemer-Hastings, P. Wiemer-Hastings,
R. Kreuz, and the Tutoring Research Group. Autotutor: A
simulation of a human tutor. Journal of Cognitive Systems
Research, 1(1):35–51, 1999.

[12] R. Grishman, C. Macleod, and A. Meyers. COMLEX syntax:
Building a computational lexicon. In Proceedings of the 15th
International Conference on Computational Linguistics
(COLING-94), 1994.

[13] P. W. Jordan, M. Makatchev, M. Ringenberg, and
K. VanLehn. Engineering the Tacitus-lite weighted abductive
inference engine for use in the Why-Atlas qualitative physics
tutoring system. submitted, 2002.

[14] W. Kintsch. Predication. to appear in the Cognitive Science
Journal, 2002.

[15] D. Laham. Latent semantic analysis approaches to
categorization. In Proceedings of the Cognitive Science
Society, 1997.

[16] T. K. Landauer, P. W. Foltz, and D. Laham. Introduction to
latent semantic analysis, 1998. To Appear in Discourse
Processes.

[17] A. Lavie. A Grammar Based Robust Parser For Spontaneous
Speech. PhD thesis, School of Computer Science, Carnegie

Mellon University, 1995.
[18] A. K. McCallum. Bow: A toolkit for statistical language

modeling, text retrieval, classification and clustering.
http://www.cs.cmu.edu/ mccallum/bow, 1996.

[19] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
[20] D. Mori, S. Matsubara, and Y. Inagaki. Incremental parsing

for interactive natural language interface. In Proceedings of
the 2001 IEEE International Conference of Systems, Man,
and Cybernetics, 2001.

[21] C. P. Rosé. A framework for robust sentence level
interpretation. In Proceedings of the First Meeting of the
North American Chapter of t he Association for
Computational Lingusitics, 2000.

[22] C. P. Rosé, D. Bhembe, A. Roque, S. Siler, R. Srivastava,
and K. VanLehn. A hybrid language understanding approach
for robust selection of tutoring goals. In Proceedings of the
Intelligent Tutoring Systems Conference, 2002.

[23] C. P. Rosé, P. Jordan, M. Ringenberg, S. Siler, K. VanLehn,
and A. Weinstein. Interactive conceptual tutoring in
atlas-andes. In Proceedings of Artificial Intelligence in
Education, 2001.

[24] C. P. Rosé and A. Lavie. Balancing robustness and efficiency
in unification augmented context-free parsers for large
practical applications. In J. C. Junqua and G. V. Noord,
editors, Robustness in Language and Speech Technologies.
Kluwer Academic Press, 2001.

[25] D. J. Rosenkrantz and P. M. Lewis. Deterministic left corner
parsing. In Procedings of the IEEE Conferenc eof the 11th
Annual Symposium on Switching and Automata Theory,
1970.

[26] M. Tomita. The Generalized LR Parser/Compiler - Version
8.4. In Proceedings of International Conference on
Computational Linguistics (COLING’90), pages 59–63,
Helsinki, Finland, 1990.

[27] G. Van Noord. An efficient implementation of the
head-corner parser. Computational Linguistics, 23(3), 1997.

[28] K. VanLehn, P. Jordan, C. P. Rosé, and The Natural
Language Tutoring Group. The architecture of why2-atlas: a
coach for qualitative physics essay writing. submitted, 2002.

[29] M. Vilares Ferro and M. A. Alonso Pardo. Exploring
interactive chart parsing. Procesamiento del Lenguaje
Natural, 17:158–170, 1995.

[30] M. Vilares Ferro and B. A. Dion. Efficient incremental
parsing for context-free languages. In Proceedings of the 5th
IEEE International Conference on Computer Languages
(ICCL’94), 1994.

[31] T. A. Wagner and S. L. Graham. History sensitive
incremental parsing. In ACM Transations on Programming
Languages and Systems, 1995.

[32] P. Wiemer-Hastings, A. Graesser, D. Harter, and the Tutoring
Research Group. The foundations and architecture of
autotutor. In B. Goettl, H. Halff, C. Redfield, and V. Shute,
editors, Intelligent Tutoring Systems: 4th International
Conference (ITS ’98), pages 334–343. Springer Verlag, 1998.

[33] P. Wiemer-Hastings and I. Zipitria. Rules for syntax, vectors
for semantics. In Proceedings of the Twenty-third Annual
Conference of the Cognitive Science Society, 2001.

[34] M. Wirén. Studies in Incremental Natural Language
Analysis. PhD thesis, Linkoping University, S-581 83
Linkoping, Sweden. ISBN 91-7870-027-8, 1992.


