
Analyzing Completeness and Correctness
of Utterances Using an ATMS

Maxim Makatchev 1 and Kurt VanLehn

Learning Research and Development Center, University of Pittsburgh

Abstract. Analyzing coverage of a student’s utterance or essay (completeness) and
diagnosing errors (correctness) can be treated as a diagnosis problem and solved us-
ing a well-known technique for model-based diagnosis: an assumption-based truth
maintenance system (ATMS). The function-free first-order predicate logic (FOPL)
representation of the essay is matched with nodes of the ATMS that are then ana-
lyzed for being within the sound part of the closure or relying on a particular mis-
conception. If the matched nodes are sound they are analyzed for representing a
particular required physics statement. If they do not represent the required state-
ment, a neighborhood (antecedent and consequent nodes within N inference steps)
of these nodes can be analyzed for matching the statement, to give a measure of
how far the student utterance is, in terms of a number of inferences, from the desired
one.

Keywords. Dialogue-based intelligent tutoring systems, formal methods in natural
language understanding, ATMS

1. Introduction

Analyzing student input to an intelligent tutoring system for coverage (completeness)
and errors (correctness) is essential for generating adequate feedback. When the student
input is spoken or typed natural language (NL), analysis of the input becomes a signifi-
cant problem. While statistical methods of analysis in many cases are sufficient [2], our
tutoring system, Why2-Atlas [11], must analyze coverage and errors at a fine grain-size
so that it can pinpoint students’ mistakes and help students learn from them. This finely
detailed analysis requires a large number of classes whose representatives have nearly
the same bags of words and syntactic structures. This makes it very difficult for statistical
classifiers to determine which classes best fit the student’s input. Thus, Why2-Atlas is
relying increasingly on non-statistical NLU in order to produce an adequately detailed
analysis of student input.

In previous work [6], we demonstrated the feasibility of using an abductive reasoning
back-end for analyzing students’ NL input. A major part of this work involved defining
and refining the knowledge representation language. As the development progressed, it
became clear that adequate tutoring depended on being able to make fine distinctions, so
the language became increasingly fine-grained. As the granularity decreased, the number
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of inferences required to connect utterances increased. The abductive reasoning back-
end would make these inferences at run-time using the Tacitus-lite+ theorem prover. As
the number of inferences to be made at run-time increased, it became more difficult to
provide a guaranteed bound on the response time of the tutoring system.

In order to improve the response time of Why2-Atlas and to increase the maintain-
ability of the knowledge base, we have switched to precomputing as much of the rea-
soning as possible. In particular, Why2-Atlas now precomputes all the reasoning that de-
pends only on the problem and not on the student’s solution to the problem. Reasoning
that depends on the student input is of course still done at runtime. Because so much
reasoning is done in advance, we can check each problem’s precomputed reasoning thor-
oughly in order to guarantee that no flaws have crept into the knowledge base.

For this purpose, we adopted an augmented assumption-based truth maintenance
system (ATMS) to precompute the desired reasoning [1]. Essentially, the precomputa-
tion requires computing the deductive closures of a set of rules of physics (e.g., “zero
net force implies zero acceleration”) and a set of propositions representing a particular
problem (e.g., “the truck has a larger mass than the car”). However, our knowledge repre-
sentation includes rules for student misconceptions, such as “zero force implies velocity
decreases.” Including both buggy rules and correct ones in the same deductive closure
introduces inconsistencies. Thus, each student misconception is treated as an assumption
(in the ATMS sense), and all conclusions that follow from it are tagged with a label that
includes it as well as any other assumptions/misconceptions needed to derive that conclu-
sion. This labeling essentially allows the ATMS to represent many interwoven deductive
closures, each depending on different misconceptions, without inconsistency.

This also makes is much easier to check the precomputed reasoning for flaws. By
examining the labels, one can easily figure out how a conclusion was reached, which
facilitates debugging the knowledge base. Moreover, it allows us to automate regression
testing. Whenever a significant change is made to the knowledge base, one compares
the newly computed conclusions to those saved just before making a change. Similar
advantages have driven other ITS projects to use precomputed reasoning as well [12,9].

This paper begins by reviewing the NLU task of Why2-Atlas and its knowledge rep-
resentation in Sections 2 and 3. We then discuss the design choices for the ATMS (Sec-
tion 4) and the structure of the completeness and correctness analyzer (Section 5). We
end with the preliminary evaluation results in Section 6 and the conclusions in Section 7.

2. Role of NLU in Why2-Atlas tutoring system

The Why2-Atlas tutoring system is designed to encourage students to write their answers
to qualitative mechanics problems along with detailed explanations supporting their ar-
guments [11]. A typical problem and a student explanation is shown in Figure 1.

Each problem has an ideal “proof” designed by expert physics tutors that contains
steps of reasoning, i.e. facts and their justifications, and ends with the correct answer.
The proof for the Clay Balls problem from Figure 1 is given in Figure 2. Not all of the
proof facts and justifications are required to be present in an acceptable student essay.
The task of the NLU module is to identify whether the required points have been men-
tioned and whether any of the essay propositions are related to a set of known common
misconceptions.



Problem: A heavy clay ball and a light clay ball are released in a vacuum from the same
height at the same time. Which reaches the ground first? Explain.
Explanation: Both balls will hit at the same time. The only force acting on them is gravity
because nothing touches them. The net force, then, is equal to the gravitational force. They
have the same acceleration, g, because gravitational force=mass*g and f=ma, despite having
different masses and net forces. If they have the same acceleration and same initial velocity of
0, they have the same final velocity because acceleration=(final-initial velocity) elapsed time.
If they have the same acceleration, final, and initial velocities, they have the same average
velocity. They have the same displacement because average velocity=displacementtime. The
balls will travel together until the reach the ground.

Figure 1. The statement of the problem and a verbatim student explanation.

Step Proposition Justification

1 Both balls are near earth Unless the problem says otherwise, assume
objects are near earth

2 Both balls have a gravitational force
on them due to the earth

If an object is near earth, it has a gravitational
force on it due to the earth

3 There is no force due to air friction
on the balls

When an object is in a vacuum, no air touches
it

4 The only force on the balls is the
force of gravity

Forces are either contact forces or the gravita-
tional force

5 The net force on each ball equals the
force of gravity on it

[net force = sum of forces], so if each object
has only one force on it, then the object’s net
force equals the force on it

6 Gravitational force is w = m*g for
each ball

The force of gravity on an object has a mag-
nitude of its mass times g, where g is the
gravitational acceleration

...
...

...

18 The balls have the same initial ver-
tical position

given

19 The balls have the same vertical po-
sition at all times

[Displacement = difference in position], so if
the initial positions of two objects are the same
and their displacements are the same, then so
is their final position

20 The balls reach the ground at the
same time

Figure 2. A fragment of an ideal “proof” for the Clay Balls problem from Figure 1. The required points are in
bold.

After the essay analysis is complete the tutoring feedback may be a dialogue that
addresses missing required points or erroneous propositions. During a dialogue an anal-
ysis similar to that performed during the essay stage may be required for some student
turns: does the student’s dialogue turn include a required point or is it related to a known
misconception.



3. Knowledge representation

The difficulty of converting unconstrained natural language into a formal representation
is one of the main obstacles to using formal reasoning techniques for NLU. We designed
FOPL representation that is expressive enough to cover the physics domain propositions
we are interested in, and is able to preserve formal and informal descriptions of the do-
main concepts (for example, “the force is downward” versus “the horizontal component
of the force is zero and the vertical component is negative”, “the balls’ positions are the
same” versus “the balls move together”) [5], and can incorporate algebraic expressions
(for example, “F=ma”). This relatively fine granularity of representation for degrees of
formality in NL is useful for providing more precise tutoring feedback, and can be gen-
erated by language understanding approaches that include statistical classifiers [3].

To demonstrate the flexibility of the KR with an example, we include a few slightly
abridged representations below:

“the balls’ positions are the same”

(position p1 big-ball ?comp1 ?d-mag1 ?d-mag-num1

?mag-zero1 ?mag-num1 ?dir1 ?dir-num1 ?d-dir1 ?time1 ?time2)

(position p2 small-ball ?comp1 ?d-mag1 ?d-mag-num1

?mag-zero1 ?mag-num1 ?dir1 ?dir-num1 ?d-dir1 ?time1 ?time2)

“the balls move together”

(motion m1 big-ball ?comp2 ?traj-shape2 ?traj-speed2 ?d-mag2

?d-mag-num2 ?mag-zero2 ?dir2 ?dir-num2 ?d-dir2 ?time3 ?time4)

(motion m1 small-ball ?comp ?traj-shape ?traj-speed ?d-mag2

?d-mag-num2 ?mag-zero2 ?dir2 ?dir-num2 ?d-dir2 ?time3 ?time4)

In these examples the equality of arguments of two predicates is represented via the
use of shared variables.

4. ATMS design

ATMS’s have been used for tasks that are closer to the front end of the NLU processing
pipeline such as for parsers that perform reference resolution (e.g. [7]), but there are few
systems that utilize an ATMS at deeper levels of NLU [4,13]. In our view, given that a
formal representation of student input is obtained, the task of analyzing its completeness
and correctness can be treated as a diagnosis problem and solved by methods of model-
based diagnosis. In this section we describe in detail the ATMS we designed for the task
of diagnosing formal representations of NL utterances.

For the description of ATMS features below we adopt the terminology from [1]:

• Premises are givens of the physics problem (“initial positions of balls are the
same,” etc.)

• Assumptions are statements about student beliefs in a particular misconception
(“Student believes that heavier objects fall faster”).

• Deduction rules are the rules of inferences in the domain of mechanics (“zero
force implies zero acceleration”).



• Nodes are the atoms of the FOPL representation that are derived from the givens
and assumptions via forward chaining with the deduction rules.

• Labels are assumptions that were made on the way to derive the particular node.
• Environment is a consistent set of assumptions that are sufficient to infer a node.

Our implementation of the ATMS relaxes the usual requirement of consistency of the
deductive closure, because in our context students may hold inconsistent beliefs. While
this certainly increases the size of the deductive closure, it may potentially provide a
better explanation of the student’s actual reasoning. The degree of ATMS consistency
needed to best match with the observed student’s reasoning is a topic we will explore
during a future evaluation.

5. Completeness and correctness analyzer Cocoro

All domain statements that are potentially required to be recognized in the student’s ex-
planation or utterances are divided into principles and facts. The principles are versions
of general physics (and “buggy physics”) principles that are either of a vector form (for
example, “F=ma”) or of a qualitative form (for example,“if total force is zero then ac-
celeration is zero”), while facts correspond to concrete instantiations of the principles
(for example, “since there is no horizontal force on the ball its horizontal acceleration
is zero”) or to derived conclusions (for example, “the horizontal acceleration of the ball
is zero”). As a natural consequence of the fact that the ATMS deductive inferences are
derived from the problem givens, which are instantiated facts, the ATMS includes only
facts. Therefore the recognition of both general principles and facts must be restricted
to the actual input representations, while the ATMS is used only for recognizing and
evaluating the correctness of facts closely related to the student’s utterances, as shown in
Figure 3 and elaborated below.

The nodes of the ATMS that match the representation of the input utterance are an-
alyzed for correctness by checking whether their labels contain only environments with
buggy assumptions. If there are no environments that are free of buggy assumptions in
the label of the node, the node can only be derived using one of the buggy assumptions
and therefore represents a buggy fact. These buggy assumptions are then reported to the
tutoring-system strategist for possible remediation. If the nodes are correct (labels con-
tain assumption-free environments) they are matched with required statements and the
list of matched statements is then reported to the tutoring-system strategist for possible
elicitation of any missing points. Additionally, a neighborhood of radius N (in terms of
a graph distance) of the matched nodes can be analyzed for whether it contains any of
the required principles to get an estimate of the proximity of a student’s utterance to a
required point.

For example, given the formal representation for the student utterance “the balls have
the same vertical displacement,” Cocoro attempts to both directly match it with stored
statement representation (the right branch in the diagram in Figure 3) and find a set of
matching nodes in the ATMS (the left branch in the diagram in Figure 3). If the direct
match succeeds this already provides information about whether the student statement is
correct or not. If the direct match fails, namely we do not have a stored representation for
this fact, then we arrive at a conclusion about the correctness of the student’s statement
by examining the labels of the ATMS nodes that matched the input statement, if there are
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Figure 3. Completeness and correctness analyzer Cocoro. A description of the diagram is in the text.

any (represented by the black circle in the ATMS block in Figure 3). The neighborhoods
of the matched ATMS nodes can also be examined for matching with stored statements.
For example, the nodes for the stored required fact “The balls have the same vertical
position” would be within distance 1 from the set of nodes that matched the student
utterance “The balls have the same vertical displacement.” This information can lead to
an encouraging feedback to let the student know that she is one inference away from the
desired answer.

Formal representations are matched by a version of a largest common subgraph-
based graph-matching algorithm (due to the need to account for cross-referencing atoms
via shared variables) proposed in [10], that is particularly fast when one of the graphs
to match is small and known in advance, as is the case with all but one of the Matcher
blocks shown in Figure 3. In case of the Matcher for the formal representation of the NL
input, which is not known in advance, the set of ATMS nodes is known but large. For
this case we settle for an approximated evaluation of the match via a suboptimal largest
common subgraph.

6. Preliminary evaluation

The Cocoro analyzer is being deployed in an ongoing evaluation of the full Why2-Atlas
tutoring system. Figure 4 shows results of classifying 135 student utterances for two
physics problems using only direct matching (66 utterances with respect to 46 stored
representations and 69 utterances with respect to 44 stored representations). To generate
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Figure 4. Average recall and precision of utterance classification by Cocoro. The size of a group of entries is
shown relative to the size of the overall data set. Average processing time is 0.46 seconds per entry on a 1.8
GHz Pentium 4 machine with 2Gb of RAM.

these results, the data is divided into 7 groups based on the quality of conversion of
NL to FOPL, such that group 7 consists only of perfectly formalized entries, and for
1 ≤ n ≤ 6 group n includes entries of group n + 1 and additionally entries of somewhat
lesser representation quality, so that group 1 includes all the entries of the data set. The
flexibility of the matching algorithm allows classification even of utterances that have
mediocre representations, resulting in 70.6% average recall and 81.6% average precision
for 42.2% of all entries (group 4). However, large numbers of inadequately represented
utterances (at least 47%) result in 44.3% average recall and 87.4% average precision for
the whole data set (group 1). Note that Cocoro analyzes only utterances for which some
representation in FOPL has been generated. Figure 4 does not include data on utterances
for which no formal representation has been generated; such utterances are classified
relying on a statistical classifier only [8].

At the same time we are investigating the computational feasibility of utilizing the
full Cocoro analyzer with ATMS. One of the concerns is that as the depth of the infer-
encing increases, ATMS size can make real-time matching infeasible. Our results show
that an ATMS of depth 3, generated using just 11 physics inference rules, and containing
128 nodes, covers 55% of the relevant problem facts. It takes about 8 seconds to analyze
an input representation consisting of 6 atoms using an ATMS of this size, which is a
considerable improvement over the time required for the on-the-fly analysis performed
by the Tacitus-lite+ abductive reasoner [6]. The knowledge engineering effort needed to
increase the coverage is currently under way and involves enriching the rule base.

7. Conclusions

In this paper we described how we alleviate some of the performance and knowledge en-
gineering drawbacks associated with using an on-the-fly abductive reasoner by deploying
a precomputed ATMS as a back-end for an analyzer of completeness and correctness of
student utterances. Besides the improvement in time response, the ATMS-based analysis
provides the additional possibility of evaluating an “inferential neighborhood” of the stu-
dent’s utterance which we expect to be useful for providing more precise tutoring feed-
back. The preliminary evaluation provided encouraging results suggesting that we can
successfully deploy the ATMS-based reasoner as an NLU back-end of the Why2-Atlas
tutoring system.
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