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INTRODUCTION

It is widely believed that the best human tutors are morectiffe than the best computer tutors, in part
because Bloom (1984) found that human tutors could produaeyar difference in the learning gains,
2.0 standard deviations, than current computer tutors, (@gderson et al., 1995; VanLehn et al., 2005;
Graesser et al., 1999)), which typically produce a 1.0 stechdeviation gain. A major difference be-
tween human and computer tutors is that human tutors uséddaee spoken natural language dialogue,
whereas computer tutors typically use menu-based interecor typed natural language dialogue. This
raises the question of whether making the interaction mataral, such as by changing the modality
of the computer tutoring to spoken natural language diaowould decrease the advantage of human
tutoring over computer tutoring.

In fact, as will be detailed below, several potential besefftspoken tutorial dialogue with respect
to increasing learning have already been hypothesizedeititdrature. One hypothesis is that spoken
dialogue may be better at eliciting student behaviors thatb&lieved to accelerate learning, such as
student knowledge construction. A second hypothesistsg®ech allows tutors to infer a more accurate
student model, which similarly is believed to accelera@ning. A third hypothesis is that speech
primes a more social interpretation of the tutorial envinemt, which again is hypothesized to accelerate
learning.

It is thus important to test whether a move to spoken dialsgsiéikely to yield increased benefits
with respect to learning and other performance measurethdfmore, if the addition of speech can in-
deed increase learning gains, it is also important to utaetdsvhy spoken dialogue accelerates learning.
These are the overarching objectives of the work reportegl he

Itis particularly important given that natural languageting systems are becoming more common.
Although a few use spoken dialogues (Schultz et al., 2003tbMo & Aist, 2001), most still use typed
dialogues (e.g. (Rosé et al., 2001; Heffernan & Koedingg®22Ashley et al., 2002; Michael et al., 2003;
Zinn et al., 2002; Aleven et al., 2002, 2001; Rosé & Freedr2@00; Rosé & Aleven, 2002; VanLehn
et al., 2002; Aleven & Rosé, 2003)). As shown by our work iteshnically feasible to convert a tutor
from typed dialogue tutor to spoken dialogue. Indeed thptsswhat we have done. While the details
of this conversion are not covered in this paper, it took @lnie person-months of effort. Thus, many
developers may be wondering whether they should aim for kespor a typed dialogue tutoring system.

It is also important to study the difference between spokmh tgped dialogue in two contexts:
human tutoring and computer tutoring. As will be seen, ounan and computer tutoring results do
in fact differ somewhat. Given the current limitations oftbh@peech and natural language processing
technologies, computer tutors are far less flexible thanarutators, and also make more errors (e.g.,
in transcribing and interpreting student speech). The bb&iman tutors provides a benchmark for es-
timating the performance of an “ideal” computer system wébpect to speech and natural language
processing performance. That is, our analysis of humamitgfdelps us to understand how the com-
puter tutoring results might change as speech and natmglidme processing technologies continue to
improve.

We thus conducted two experiments compaittyygedand spokentutoring dialogues. One exper-
iment used an experiencéadimantutor who communicated with students either via speech ginty
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The other used the Why2-Atla®mputertutoring system (VanLehn et al., 2002) with either its origi
nal typed dialogue or a new spoken dialogue user interfabe.new spoken dialogue system is called
ITSPOKE (Litman & Silliman, 2004). Both experiments usedlifative physics as the task domain,
similar pretests and posttests, and similar training secee The experiments were designed to test
whether spoken interactions would yield better learninigpg¢éhan typed dialogues, whether different
dialogue characteristics would be predictive of learnimmgpoken versus typed dialogues, and whether
our findings would generalize across human and computeiirigto

This paper begins by reviewing the literature on both thepiidl benefits of spoken dialogue tutor-
ing and previous studies of what aspects of dialogue a@teltgarning. Next, we describe the common
aspects of both our human and computer tutoring experimérggask domain, the user interface, etc.
Included in this discussion are brief descriptions of Wiitias and ITSPOKE. Finally, the results of
our two experiments are presented. Our results show th&t whiuman tutoring, changing the modal-
ity from text to speech caused improvements in student ilegrand dialogue efficiency, in computer
tutoring it made less difference. However, in both human @rdputer tutoring, we find that changing
the modality caused differences in superficial dialogueatdtaristics, and differences in the type of dia-
logue characteristics that correlate with learning. In swiile our results suggest that there are indeed
potential payoffs for adding speech to text-based dialdgters, more research is still needed to fully
achieve this potential. We conclude with a more generaludision, followed by our conclusions and
current research directions.

MOTIVATION

In this section we review the literature regarding the twganguestions addressed in this paper: what
are the potential benefits of using a spoken rather than a tyyelality, and what aspects of dialogue
accelerate learning. We first review the research on mgddifferences from the perspective of several
communities: the dialogue tutoring community, the compstgported cooperative work community,
and the spoken dialogue community. We then discuss preaippi®aches to investigating what aspects
of dialogue accelerate learning.

The Role of Speech in Tutoring Dialogues

Tutorial dialogue is a natural way to provide students withaning environment that exhibits charac-
teristics that have been shown to correlate with studemtileg gains, such as student activity. Thus, as
natural language dialogue technology has improved oveyehes, the development abmputational
tutorial dialogue systentsas also become an increasingly active research area (Resge@man, 2000;
Rosé & Aleven, 2002; Aleven & Rosé, 2003). While most cursrstems are text-based (Evens et al.,
2001; Zinn et al., 2002; Aleven et al., 2001; VanLehn et &1Q2), with recent advances in speech tech-
nology, several research groups have started developaegrkghased natural language dialogue tutors.
For example, there are now “talking head” tutors that usé&epéanguage output (Graesser et al., 1999;
Rickel & Johnson, 2000), as well as (typically non-animat@idlogue tutors that both accept spoken
input and generate spoken output (Schultz et al., 2003; do8&t Aist, 2001). However, while it has
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been hypothesized that such additions of speech technaldggromote learning gains (due to rea-
sons described below), little empirical work has actuallestigated whether and how spoken language
capabilities should be added to dialogue-based intelfiggoring systems.

In particular, how important arepokendialogue interactions in natural tutoring situations? As
noted above, three main benefits of spoken tutorial dial@egtierespect to increasing learning have been
hypothesized. First, spoken dialogue may elicit more studegagement and knowledge construction.
Chi et al. (1994, 2001) found that spontaneous and promgiée:solanation improves learning gains
during human-human tutoring. However, when such studiéscfwinvolved spoken dialogue between
human tutors and students) were repeated with the pantitsg@mmunicating via typed text, content-
free prompting did not cause much increase in self-explanatr learning (Hausmann & Chi, 2002).
Instead, the studenttyped in paraphrases of the text. Petijaing requires additional cognitive capacity
and thus reduces the cognitive resources available fottapeaus self-explanation, or students preferred
the “safety” of a paraphrase when using the typing modaRiggardless of the cause, the finding itself
suggests that the benefits obtained from using promptingpgaed questions in a computer dialogue
system might be easier to achieve in spoken rather than ippedctions. Self-explanation is just one
form of student cognitive activity that is known to causeridag gains (Chi et al., 1994; Renkl, 1997;
Chi et al., 2001). If it can be increased by using speech,gperlother beneficial thinking can also be
elicited as well.

A second hypothesis is that speech allows tutors to infer @ moccurate student model, including
long-term factors such as overall competence and motivadiad short-term factors such as whether the
student really understood the tutor’s utterance. Havingoeemaccurate understanding of the students
should allow the tutor to adapt the instruction to the stiideras to accelerate the student’s learning. For
instance, while human tutors may not always choose to tditr instruction to the individual character-
istics of the knowledge state of their students, tutors vgmmie signs of student confusion may run the
risk of preventing learning (Wood et al., 1978; Chi, 1996)orkl recently, Siler (2004) has shown that
human tutors with a better understanding of their tuteesidedd produce larger learning gains, and this
occurs with both spoken and typed natural language diakdagarticular, spoken dialogue tutors and
typed dialogue tutors developed equally accurate assessmoitheir students’ concept mastery, com-
petence, motivation and confidence, perhaps because thersgialogue tutors exchanged more words
but the typed dialogue tutors had longer to reflect on theirroanications. Both sets of tutors produced
larger learning gains from tutees than tutors who had justth@r tutees for the first time. However,
this advantage disappeared after only a few minutes ofihgpsuggesting that tutors in both spoken
and typed modalities rapidly acquire assessments of thalests and increase their effectiveness. In
addition, we have shown in other work that the prosodic andstic information of speech can improve
the detection of student states such as confusion (Litmaar&ds-Riley, 2004), which may be useful for
adapting tutoring to the student. There has been increadieigst in developing more affectively-aware
systems throughout the tutorial dialogue systems comm(ist et al., 2002a; Craig & Graesser, 2003;
Bhatt et al., 2004; Johnson et al., 2004; Moore et al., 20@digi&t al., 2004).

Third, recent studies of artificial pedagogical agents hadse suggested that both voice and dia-
logue are crucial components of effective interactionscMaf this research is based on the hypothesis
that learning will be enhanced in computational environtadimat prime a more social interpretation of
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the teaching situation (as when an animated agent talkstempbnds contingently to a learner). In a
discovery environment for teaching plant design, when gractive agent’'s words are conveyed using
speech rather than text, student retention, transfer deckst increase; in contrast, the visual presence or
absence of the agent image does not impact performanceidetal., 2001). However, while Graesser
et al. (2003) found that the use of a dialogue agent improgathing, there was no evidence that out-
put media impacted learning. More recent work suggestsnbgaonly the presence or absence of an
agent’s spoken voice, but also the nature of the voice {ehether the voice is machine-generated using
a text-to-speech system, or a human voice that has beeegueded), can impact learnidgn experi-
ments in both laboratory and school settings using a compedening environment for teaching math,
a human voice is preferable even when the agent is animatederds learn more deeply compared to
when a machine-generated voice is used (Atkinson et al5)208s the authors note, however, future
work should investigate how this finding might change as rimeecgenerated voices improve, and/or if
students are first given practice listening to machine-gead voices.

Although not directly in the area of dialogue tutoring, @ in other computational learning
environments has also investigated potential advantaigaseonative modalities. For example, several
experiments have shown that when monologue is combinedwetting graphical information, speech
elicits larger learning gains than text (see Mayer (2002)afeummary). Note, however, that we are
interested in dialogues rather than monologues, and wedraterested in having students split their
attention between dialogues and graphics.

The Role of Speech in Computer-Mediated Interactions

Within the Computer Supported Cooperative Work (CSCW) caomity, there is an extensive literature
comparing the effects of differences in interaction mdgtaModalities that have been commonly com-
pared include face-to-face, video conferencing, synabusror asynchronous email or newsgroup style
interactions, and text-based chat with or without texspeech augmentation. Within the CSCW realm,
what is most closely related to our work on tutorial dialoggi#he large body of distance education liter-
ature, since it is concerned with both issues of commurinatffectiveness as well as learning, and the
interaction between the two. However, while concerns afutsional effectiveness are at the forefront
of our desiderata, in many published on-line learning &sitkarning gains are not formally evaluated.
Other evaluation measures that are often used include@otervolume, or depth of interaction, ability
to form a consensus opinion or to coordinate on intended mgastudent motivation, identification
with the learning community, feeling of copresence, satisbn with the interaction, level of formality
or likelihood of anti-social behavior, and longevity ordreency of voluntary participation.

With respect to the speech versus text question addresskis iarticle, in the CSCW community,
neither of these modalities has consistently demonstdéan advantages across the range of evaluation
metrics noted above. Some evidence from the computer-teedémmunication literature points to

lwith respect to other measures besides learning, in the idomfianstructional planning, students rate both visual and
non-visual agents as more engaging and human-like wheo agcbrdings of a human voice are used (Baylor et al., 2003).
Student motivation also increases when the human voiceeid with the non-visual version of the agent. However, with th
visual agent, the machine-generated voice increasesatiotiv
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advantages of text-based interaction over speech, due fat¢hthat the history of the dialogue is easy
to access during the ongoing conversation. Herring (1989 demonstrated that on-line communication
leads to less coherent interactions than one typically fimdpeech interactions, but that this reduction
in coherence does not seem to lead to a decrease in satisfattie permanence of the conversational
record compensates, and in fact, people seem to find nevegigatof interaction that are not possi-
ble in other settings. Gergle et al. (2004) have similarljndestrated an advantage for communication
effectiveness resulting from displaying the discourseexinduring a dialogue interaction. Other ev-
idence points to advantages of speech-based interactemsed et al. (2000) have demonstrated that
communication modality has a significant impact on cooj@nadnd trust between interacting partici-
pants, with natural voice being significantly better thad-teased interaction, but synthesized voice not
being reliably better than text-based interaction.

Besides the difference in evaluation metrics, anotheenfice from our research is that the CSCW
work is primarily concerned with computer-mediated hurhaman interaction, while we are also inter-
ested in communication between humans and computer ageigghus unclear as to what extent the
findings from computer-mediated communication can be tirapplied to the design of dialogue com-
puter tutors. For example, while asynchronous interadtesbeen shown to increase the volume and
depth of participation in on-line communication (Albredis 1995; Newlands & McKean, 1996), these
benefits may or may not carry into the context of interactietween humans and dialogue systems since
humans interacting with a system may not feel obligated¢paad to the agent in a timely fashion. As
another example, Chester & Gwynne (1998) have studied hoticipants in computer-mediated com-
munication are less hampered by social conventions, eadicipants have the opportunity to explore
identity issues that would not be possible to explore in a é&®nymous environment. In conversations
with computer agents, it is not clear that students would bevaited to engage in such explorations.

Nevertheless, despite such differences, we believe tredrestions from the CSCW community
could potentially lend insights for providing a larger aiaher context in which to evaluate experimental
results from the dialogue tutoring community.

Other Benefits of Spoken Dialogue Systems

Investigations of human-computer dialogue interactiartside the area of educational applications sug-
gest that speech might yield other benefits in addition tegtassociated with learning. Spoken language
is the most natural and easy to use form of human natural &gegimteraction, and preliminary evidence
suggests that spoken rather than typed dialogue might befergd modality in computer interactions
as well. A study of keyboard versus spoken input in a tas&red dialogue system evaluated the effect
of input modality on task success and user preference (Alieh., 1996). Subjects interacted with two
versions of the same system, where just the input modaligesh or keyboard) differed. Even though
keyboard input (with typos) is much less error prone tharesbgwith speech recognition errors), both
input modalities yield the same level of task performandé) speech input being more efficient. In ad-
dition, subjects prefer using speech when given the abdighoose. An experiment using a multi-modal
data-retrieval system also shows a user preference foclsmeer keyboard input, in this case despite
the fact that speech is less efficient (Rudnicky, 1994).



D. Litman et. al./Spoken Versus Typed Dialogue Tutoring 7

A second advantage of speech is that the hands-free aspgubkdin versus typed dialogues will
extend the applicability of computer tutoring dialogueteyss to new domains, such as those where
multi-modal (e.g., dialogue systems which involve patadiiking and pointing or clicking) and/or audio-
only capabilities (e.g., training systems for use in spédst et al., 2002b)) are more crucial.

Dialogue Features that Predict Learning

Even if it is shown that building a spoken dialogue tutoriggtem does have the potential to increase
learning, when it comes time to actually implement a systaamy design choices must be made that
will likely influence the style of interaction, which in tunmay influence a student’s ability to learn
from the system. Since it is not yet well understood how djasystem design choices impact student
learning, recent work has begun to try to determine whatataristics of tutoring dialogues positively
correlate with learning gains, in order to put system buaidin a more empirical basis. In the computa-
tional community, there has been particular interest ingisshallow” features to characterize dialogue
behaviors, as such features have the potential of beingreatitcally computable by a tutoring system
as it is operating. The studies described below, for example, have used feasueh as turn length,
percentages of words and turns, etc. In our work, we arecodatly interested in learning whether a
modality change from text to speech will cause the dialogaguires that correlate with learning to also
change. Understanding such differences is a prerequimiteoinstructing spoken language tutors that
can engage students in the types of dialogues most likelietd kearning gains.

Rosé et al. (2003) hypothesize that if a tutor is respondiregtly to a student’s revealed knowledge
state, the effectiveness of the tutor’s instruction shinddease as average student turn length increases,
as longer student answers to tutor questions reveal morestfdent’s reasoning. They indeed find a
correlation between average length of student turns (mdesf number of words) and learning, in a
corpus of typed human-human conceptual physics tutorialpgiies. This result complements findings
in a corpus of typed human-human basic electricity and ideitts dialogues (Core et al., 2003), which
examines studentlanguage production relative to tutguage production. In particular, the percentage
of words uttered by the student and the percentage of uttesgproduced by the student (as well as
the percentage of tutor utterances that are questiongjyabgicorrelate with learning. Again, learning
correlates with increased student language production.

These results also complement results found in physicsqmbgtion, reflective dialogues (Katz
et al., 2003). With respect to turn length, the more studsaysn response to reflection questions after a
solutionhas been reached, the more they learn. This resifttistically significant when response length
is measured using average number of words, and shows a tretaverage time is instead measured.
However, these results are based on an analysis of studgmin®es that are followed by canned rather
than human natural language dialogue feedback. A relately,sivhich does analyze human rather than
canned post-solution reflective dialogues, finds that theviing dialogue characteristics correlate with
learning: the number of post-solution dialogues, the nunatbesuch dialogues that abstract from the
particular problem, and the number of such abstractiomdigds that are initiated by the tutor. Note that

The use of “deeper” features requiring manual coding (ésginguishing between substantive contributions and gdeu
ings, between types of tutor moves such as scaffolding apldieing, etc. (Chi et al., 2001)) will be discussed below.
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more student initiative does not lead to more learning, tvliscalso a finding in Core et al. (2003). It
remains to be tested whether the “post” or “reflection” pdguch dialogues are more important (Katz
et al., 2003), and thus whether the findings will generalizproblem solving (pre-solution) reflective
dialogues.

THE COMMON ASPECTS OF THE EXPERIMENTS

In both our human and computer tutoring experiments of tyerdus spoken dialogue tutoring, the
students learned how to solve qualitative physics prohlemiéch are physics problems that can be
answered without doing any mathematics. A typical problenilf a massive truck and a lightweight
car have a head-on collision, and both were going the sanegl$pitially, which one suffers the greater
impact force and the greater change in motion? Explain yoswar.” The answer to such a problem is a
short essay. A correct answer to this question should meht@wton’s third law, which states that when
one object, such as the truck, exerts a force on anothertpbjezh as the car, then the forces have the
same magnitude. The answer should also mention Newtorndmddaw, which implies that when two
objects are acted on by forces of the same magnitude, themgehin motion (acceleration) is inversely
proportional to their mass, so a more massive object (eegrtick) will have a smaller acceleration than
a lighter object (e.g., the car).

The experimental procedure was as follows. Students whe hastaken any college physics were
first given a pretest measuring their knowledge of physicextNstudents read a short textbook-like
pamphlet, which described the major laws (e.g., Newtorss faw) and the major concepts. Students
then worked through a set of up to 10 training problems withtthior. Finally, students were given a
posttest that was similar to the pretest. The pre and pdstdash included 40 multiple choice questions,
and were isomorphic (that is, the problems on each testddfenly in the identities of the objects (e.g.,
cars versus trucks) and other surface features that shotigdfact the reasoning required to solve them).
The tests also included essay questions, but they did nobutrto be sensitive to learning, so they we
will not be discussed further here (see VanLehn et al. (stibd)ifor details). The entire experiment took
no more than 9 hours per student, and was usually performéeBisessions of no more than 4 hours
each. Subjects were university students responding taadsyere compensated with money or course
credit.

The interface used for all experiments was a variant of thaive in Figure 1, which is a screenshot
generated during an ITSPOKE interaction.

The studentfirst typed an essay answering a qualitativaghgsoblem, as in the middle and upper
right of Figure 1. The tutor then engaged the student in arabtanguage dialogue to provide feedback,
correct misconceptions, and to elicit more complete exatlans (as shown in the dialogue window). At
key points in the dialogue, the tutor asked the student tiseee essay. This cycle of instruction and
revision continued until the tutor was satisfied with thedstut’s essay, at which point the tutor presented
the ideal essay answer to the student.

For the studies described below, we compare character@dtstudent dialogues with both typed and
spoken computer tutors (Why2-Atlas and ITSPOKE, respelstivas well as with a single human tutor
performing the same task as the computer tutor for eachrmyat¢hy2-Atlas is aext-basedntelligent
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Why2 = Atlas = Mozita (Build 10: 2002052918) =181 x|
. Eile Edit View Go Bookmarks Tools Window Help

Q 0 @ Q [% nttgrgenton inde pittedusitspokes 7]

58, Suppose aman is in a free-falling elevator and is

holding his keys motionless right in front of his face. He
I I SPOKE then lets go. what will be the position of the keys relative
to the man's face as time passes? Explain.

Dialogee: Entar your assay hare:
Tutor said: What vou have [snet a sufficlent explanation, If The Kews will hit the floor of the elavator because of the force
gravity is the onlv force acting on an oblect, will it be moving of aravity.

or stayingstill?

You said: it will be moving

Tutor said; Correct. Not only are the person, kays, and elevator
meving they have only aravitational forces on them. when an
abiject is falling and has only gravitational forceon It it (s said
tobe Inwhat?

Yousaid: free fall

Tell Tutor!

SLBMIT

1| - -
Sppled irterface Wy starded == ]

Fig.l. Screenshot during ITSPOKE Human-Computer Spoken Dialogue

tutoring dialogue system (VanLehn et al., 2002), develdpquhrt to test whether deep approaches to
natural language processing elicit more learning thar®hiat approaches. A suite of natural language
processing components are provided by a Why2-Atlas to(dlit., sentence-level syntactic and seman-
tic analysis (Rosé, 2000), discourse and domain level peieg (Jordan et al., 2003), and a finite-state
dialogue manager (Rosé et al., 2001)). ITSPOKE (IntelliJeoring SPOKEnN dialogue system) (Lit-
man & Silliman, 2004) is apeech-enabledersion of Why2-ATLAS. Student speech is digitized from
microphone input and sent to the Sphinx2 recognizer (Huaay,e1993). ITSPOKE uses 56 dialogue-
state dependent stochastic language models for speeanitgp (initially trained using 4551 student
utterances from a 2002 evaluation of Why2-Atlas, then katéranced using utterances from ITSPOKE’s
pilot testing). The most probable “transcription” outpyt $phinx2 is sent to the Why2-Atlas natural
language processing “back-end”. Finally, the text respgmeduced by Why2-Atlas is sent to the Cep-
stral text-to-speech system (a commercial outgrowth oFtstival system (Black & Taylor, 1997)), then
played to the student through a headphone.
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HUMAN-HUMAN TUTORING: EXPERIMENT 1

Experimental Procedure

Experiment 1 compared typed and spoken tutoring, usingadhehumantutor in both conditions. In
the typed condition, the interaction was in the form dfypeddialogue between the student and tutor,
where the human tutor performed the same task that WhyZ st designed to perform. A text-based
chat web interface (as in Figure 1) was used, with student@iod in separate rooms; students knew
that the tutor was human. A sample typed dialogue excerpsjgayed in Figure 2.

PROBLEM: Suppose that you released 3 identical balls of clay in a vacatuexactly the same instant. They
would all hit the ground at the same instant. Now you stick bithe balls together, forming one ball that
is twice as heavy as the remaining, untouched clay ball. Balis are released in a vacuum at exactly the
same instant. Which ball hits the ground first?

ESSAY: Both balls will hit the ground at the same time. The balls arfrée fall (only gravitational forces). The
ratio of the masses and weight are equal.

...excerpt from 2.0 minutes intotypeddialogue . ..

Tutor: You have correctly said the balls are in free fall. What do goaoclude from this fact?
Student: There is no air resistance and the balls’ accelerationsargtant in regards to one another

Tutor: Right, so the conclusion is that they both have the sameexetign, the free fall acceleration. Now you
have to show that time taken by them to reach the ground witheesame. How do you do that?

Student: F (net forces) / mass = f/m because F = m*a therefore ratioldlemual one another

Tutor: But that does not tell you anything about the time taken. Vyhgsical quantities will determine the time
taken. Will the initial velocity of the balls matter?

Student: yes, assuming starting at rest? sorry, kind of at a loss ahtiment

Tutor: The initial velocity will matter, and here they both have Haene initial velocity, zero. What else, will the
height through wich (sic) they fall matter?

Student: not so much as long as they are both dropped from the sametheigh

Tutor: Height of fall will determine the time of fall, and here the et of fall is the same for both the balls. Now
on the basis of these facts can you conclude about the tirea takthem to reach the ground?

Student: since initial velocities are equal and the height of falls equal, then the time taken is equal

Tutor: How about acceleration, if they had different acceleratjaven if they fall through the same height and
have same initial velocity , will they reach the ground atshme time?

Fig.2. Excerpt from Human-Human Typed Dialogue
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PROBLEM: Suppose that you released 3 identical balls of clay in a vacatuexactly the same instant. They
would all hit the ground at the same instant. Now you stick bithe balls together, forming one ball that
is twice as heavy as the remaining, untouched clay ball. Balls are released in a vacuum at exactly the
same instant. Which ball hits the ground first?

ESSAY: The balls will hit the ground at exactly the same instant.
...excerpt from 8.3 minutes intospokerdialogue ...

Tutor: So the accel- the- both the balls will have same acceler&igthat right?
Student: Yeah.
Tutor: OK. So now, can you uh argue about the time?

Student: Yeah. Uh the reason the two balls hit the ground at exactlystime instant is because the net forces
acting on it, which is acceleration due to gravity, are equal

Tutor: Force is gravity and acceleration is the same, ok, and whaPel
Student: Um -(sniff)

Tutor: What other factors determine the time taken are the same?
Student: Uh, the height at which they're dropped -

Tutor: mm-hm

Student: Uh, the the acceleration due to gravity. Uh -

Tutor: What other factor did we say will determine time taken for @yo¢o fall to the ground? Height is one
factor acceleration is another.

Student: And -

Tutor: Initial velocity, isn't it?

Student: Ok, yeah, starting from rest it’s initial velocity. Thatfght.
Tutor: Right. Now are all these factors same for these two balls?
Student: Are the factors all the same?

Tutor: Uh-huh.

Student: Yeah.

Tutor: Ok so that is the reason why they will take the same time tdheitground, and they were dropped at the
same instant so they will hit the ground also at the samenhsta

Fig.3. Excerpt from Human-Human Spoken Dialogue
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In the spoken condition, the interaction was in the form spakerdialogue, where the human tutor
performed the same task that ITSPOKE was designed to perfakfile the dialogue was changed to
speech, students still typed the essay.) The tutor andrstegeke through head-mounted microphones,
allowing all speech to be digitally recorded to the computée student and tutor were in the same room
(due to constraints of speech recording), but separategbbytiion. The same web interface was used as
in the typed condition, except that no dialogue history wiapldyed (this would have required manual
transcription of utterances). In contrast to the typed dosrg where strict turn-taking was enforced,
interruptions and overlapping speech were permitted irspioden condition. This was because we plan
to add “bargein” to ITSPOKE, which will enable students tteimupt ITSPOKE. A sample dialogue
excerpt from the spoken human tutoring condition is dispdbiy Figure 3. Note that turns ending in “-”
indicate speech overlapping with the following turn.

The same human tutor was used in both conditions. The tutsawatired physics professor who
had logged hundreds of hours tutoring students in a set adrarpnts preceding this study (VanLehn
et al., submitted). He was thus quite familiar with the t@p&tudents, and experimental set up used in
our studies. The tutor was instructed to cover the expectafor each problem, to watch for the specific
set of expectations and misconceptions associated witprtitdem, and to end the discussion of each
problem by showing the ideal essay to the student. He wasieaged to avoid lecturing the student and
to attempt to draw out the student’s own reasoning. He knatthnscripts of his tutoring would be
analyzed. Nevertheless, he was not required to follow aegquibed tutoring strategies.

Pre and posttest items were scored as right or wrong, witrarnttapcredit. Students who were not
able to complete all 10 problems due to lack of time took tretiest after only working through a subset
of the training problems.

Experiment 1 resulted in two human tutoring corpora. Typeddialogue corpus consists of 171
physics problems with 20 students, while §yokendialogue corpus consists of 128 physics problems
with 14 students. In subsequent analyses, a “dialoguefsédehe transcript of one student’s discussion
of one problem with the tutor.

Results

Table 1 presents the means and standard deviations for pes tf analyses, learning and training time,
across conditions. Based on the literature discusse@dearié hypothesized that both of these analyses
would show higher levels of performance in our spoken as ewethto our typed dialogue tutoring
conditions.

With respect to learning, the pretest scores were not tglidifferent across the two conditions,
F(1,32) = 1.574, p = 0.219, MSe = 0.009. In an ANOVA with coralitby test phase factorial design,
there was a robust main effect for test phase, F(1,66) = 9058 0.000, MSe = 0.012, indicating that
students in both conditions learned a significant amourihduutoring. However, the main effect for
condition was not reliable, F(1,32) = 1.823, p = 0.186, MSe040, and there was no reliable interaction.
Inan ANCOVA, the adjusted posttest scores (where pretese seas factored out) showed a strong trend
of being reliably different across conditions, F(1,31324, p=0.053, MSe = 0.01173. Our results thus
suggest that the human speech tutored students learnedimaoréthe human text tutored students; the



D. Litman et. al./Spoken Versus Typed Dialogue Tutoring 13

effect size was 0.74.

Tablel
Learning and Time: Human Tutoring Spoken (14) and Typed Cjditions

Dependent Measure Human Spokenq  Human Typed
Pretest Mean (standard deviation) 42 (.10) .46 (.09)
Posttest Mean (standard deviation) 72 (.11) .67 (.13)
Adjusted Posttest Mean (standard deviatign) .74 (\11) .66 (.11)
Dialogue Time (standard deviation) || 166.58 (45.06)] 430.05 (159.65)

With respect to training time, students in the spoken camitompleted their dialogue tutoring in
less than half the time than in the typed condition, wheréodize time was measured as the sum over
the training problems of the number of minutes between the that the student was shown the problem
text and the time that the student was shown the ideal esbayextra time needed for both the tutor and
the student to type (rather than speak) each dialogue tuheityped condition was a major contributor
to this difference. An ANOVA shows that the difference in meacross the two conditions was reliably
different, with F(1,32) = 35.821, p = 0.00, MSe = 15958.787.

In sum, for human tutoring, our results thus support our lypsis that spoken tutoring is indeed
more effective than typed tutoring, for both learning arairting time.

It is important to understand why the change in modality (emterruption policy) increased learn-
ing. Table 2 presents the means for a variety of measureaatharing different aspects of dialogue,
to determine which aspects differ across conditions, arexamine whether different dialogue charac-
teristics correlate with learning across conditions @lidph the utility of correlation analysis might be
limited by our small subject pool). For each dependent nrea@xplained below), the second through
fourth columns present the means (across students) fopthes and typed conditions, along with the
statistical significance of their differences. The fifthahigh eighth columns present a Pearson’s correla-
tion between each dialogue measure and raw posttest scoreevdr, in the spoken condition, the pre
and posttest scores are highly correlated (R=.72, p =.008e typed condition they are not (R=.29,
p=.21). Because of the spoken correlation, the last fourmnbk show the correlation between posttest
and the dependent measure, after the correlation withgtristeegressed out.

The measures in Table 2 were motivated by previous work siigmgthat learning correlates with
increased student language production, as discussed.dhqitot studies of the typed corpus, average
student turn length was found to correlate with learning.tNvs computed the average length of student
turns in words (Ave. Stud. Wds/Turn), as well as the total bamof words and turns per student,
summed across all training dialogues (Tot. Stud. Words, $tud. Turnsf. We also computed these
figures for the tutor’s contributions (Ave. Tut. Wds/TurmtTTut. Words, Tot. Tut. Turns). The slope
and intercept measures will be explained below. SimildHg, studies of Core et al. (2003) examined

3In the spoken data, turn boundaries were manually anndbgtacbaid transcriber. The transcriber added a turn boundary
when: 1) the speaker stopped speaking and the other pattg tidlogue began to speak, 2) the speaker asked a quedtion an
stopped speaking to wait for an answer, 3) the other partijéndialogue interrupted the speaker and the speaker pamsed t
allow the other party to speak.
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Table2
Dialogue Aspects & Learning: Human Spoken (14) & Typed (26hditions

Dependent Spoken| Typed p Zero Order Controlled for Pre-

Measure mean mean Correlations Test Correlations

Spoken Typed Spoken Typed
R p R p R p R p
Tot. Stud. Words 2322.43| 1569.30| .03 || -473 | .09 | .065| .78 | -.261| .39 | .013 | .96
Tot. Stud. Turns 424.86| 109.30| .00 || -.340| 24| -.148 | 53 | -.016 | .96 | -.213 | .38
Ave. Stud. Wds/Turn 5.21 1445| .00 || -.167 | .57 | .491| .03 | -209 | .49 | .515| .03
Slope: Stud. Wds/Trn -01 -05| .04 -275| .34 | -375| .10 .379| .20 | -.291 | .23
Int: Stud. Wds/Trn 6.51 16.39| .00 || -.176 | .55 | .625| .00 | -.441| .13 | .593| .01
Tot. Tut. Words 8648.29| 3366.30| .00 || -.482 | .08 | .027| 91| -.164| .59 | -.034 | .89
Tot. Tut. Turns 393.21| 12290| .00 (| -.436 | .12 | -171| 47| -110| .72 | -.239 | .32
Ave. Tut. Wds/Turn 23.04 28.23| .01 -139| 64| .496| .03 | -.086| .78 | .536 | .02
S-T Tot. Wds Ratio .27 45 .00 | .067| .82 | .275| .24 | -202| 51| .268| .27
S-T Wd/Trn Ratio .25 51| .00 .026| .93 | .283| .23 | -.237 | .44 | .277| .25

student language production relative to tutor languageymtion, and found that the percentage of words
and utterances produced by the student positively coaehaith learning. This led us to compute the
number of students words divided by the number of tutor w8d$ Tot. Wds Ratio), and a similar ratio
of student words per turn to tutor words per turn (S-T Wd/Tati&.

Table 2 shows interesting differences between the spok@typed corpora of human-human dia-
logues. For every measure examined, the means acrossioardite significantly different, verifying
that the style of interactions is indeed quite different.spoken tutoring, both student and tutor take
more turns on average than in typed tutoring, but these spoikas are on average shorter. Moreover, in
spoken tutoring both student and tutor on average use maaswmcommunicate than in typed tutoring.
However, in typed tutoring, the ratio of student to tutorgaage production is higher than in speech.

The remaining columns attempt to uncover which aspectdoffisl dialogue in each condition were
responsible for its effectiveness. Although the zero ombgrelations are presented for completeness,
our discussion will focus only on the last four columns, whige feel present the more valid analysis.

In the typed condition, as in its earlier pilot study, thesaipositive correlation between average
length of student turns in words and learning (R=.515, p 3..08e hypothesize that longer student
answers to tutor questions reveal more of a student’s r@agoand that if the tutor is adapting his
interaction to the student’s revealed knowledge stateeffestiveness of the tutor’s instruction might
increase as average student turn length increases. Notaéhais no correlation between total student
words and learning; we hypothesize that how much a studetaies (as estimated by turn length) is
more important than how many questions a student answemss(asated by total word production).
There is also a positive correlation between average lewfgtintor turn and learning (R=.536, p=.02).
Perhaps more tutor words per turn means that the tutor igiipd) more or giving more useful feedback.
A deeper coding of our data would be needed to test all of thgsetheses. Finally, as in the typed pilot
study (Rosé et al., 2003), student words per turn usuallyedsed gradually during the sessions. In
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speech, turn length decreased from an average of 6.0 wamdlést the first problem to 4.5 words/turn
by the last problem. In text, turn length decreased from amaae of 14.6 words for the first problem
to 10.7 words by the last problem. This led us to fit regresfifoes to each subject and compare the
intercepts and slopes to learning. These measures indaagbly how verbose a student was initially
and how quickly the student became taciturn. Table 2 indicatreliable correlation between intercept
and learning (R=.593; p=.01) for the typed condition, susiigg that inherently verbose students (or at
least those who initially typed more) learned more in typathan dialogue tutoring.

Since there were no significant correlations in the spokerition, we have begun to examine
other measures that might be more relevant in speech. Forpdgathe mean number of total syntactic
guestions per student is 35.29, with a trend for a negativeledion with learning (R=-.500, p=.08).
This result suggests, that as with our text-based coroslatiour current surface level analyses (which
had the advantage of being automatically computable framrdnscriptions) will need to be enhanced
with deeper codings before we can fully interpret our res{dtg., by manually coding non-interrogative
form questions, and by distinguishing question types).

In sum, our results suggest that a change in modality infleeetie dialogue features found in human
tutoring. However, it is still an open question as to how sdifferences might explain our finding that
spoken dialogue is superior to text-based dialogue withaesto learning. That is, while our results
demonstrate differences across our typed and spoken mngjifurther experimentation is still needed
to understand why these differences cause higher leargiing q our spoken condition.

HUMAN-COMPUTER TUTORING: EXPERIMENT 2

Experimental Procedure

Experiment 2 compared typed and spoken tutoring using thg2dtilas and ITSPOKEomputetutors,
respectively. The experimental procedure was the same Exferiment 1, except that students worked
through only 5 physics problems, and the pretest was takentak background reading (allowing us to
measure gains caused by the experimental manipulatiomouticonfusing them with gains caused by
background reading). Strict turn-taking was now enforedoldth conditions as bargein had not yet been
implemented in ITSPOKE.

While Why2-Atlas and ITSPOKE used the same web interfacenduhe dialogue, Why2-Atlas
students typed while ITSPOKE students spoke through a headited microphone. In addition, the
Why2-Atlas dialogue history contained what the studentaltt typed, while the ITSPOKE history
contained the potentially noisy output of ITSPOKE's spessdognizer. The speech recognizer’s hy-
pothesis for each student utterance, and the tutor uttesan@re not displayed until after the student or
ITSPOKE had finished speaking.

A sample Why2-Atlas dialogue excerpt is shown in Figure 4ileva sample ITSPOKE dialogue
excerpt is shown in Figure 5. Note that for ITSPOKE, the otgfithe automatic speech recognizer (the
ASR annotations) sometimes differed from what the studetuadly said. Thus, ITSPOKE dialogues
contained rejection prompts (when ITSPOKE was not confidémthat it thought the student said, it
asked the student to repeat, as in the third ITSPOKE turnpv@rage, ITSPOKE produced 1.4 rejection
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prompts per dialogue. ITSPOKE also misrecognized uttasinghen ITSPOKE heard something dif-
ferent than what the student said but was confident in its thygsis, it proceeded as if it heard correctly.
While the ITSPOKE word error rate was 31.2%, semantic aimlygsed on speech recognition versus
perfect transcription differed only 7.6% of the time. Setimaccuracy is more relevant for dialogue
evaluation, as it does not penalize for unimportant wordrsrr

Experiment 2 resulted in two computer tutoring corpora. TWpedWhy2-Atlas dialogue corpus
consists of 115 problems (dialogues) with 23 students,enthié ITSPOKEspokencorpus consists of
100 problems (dialogues) with 20 students.

PROBLEM: Suppose a man is in a free-falling elevator and is holdindgéjs motionless right in front of his
face. He then lets go. What will be the position of the keystiet to the man’s face as time passes?
Explain.

ESSAY: The keys will be in front of his face, because he and his kejldx@imoving in the same direction.
...excerpt from 3.0 minutes intotypeddialogue . ..

Why2-Atlas: You have answered the problem correctly except that whahygwa in your essay is not a sufficient
explanation. Before the release, what is the relationshiywéen the man’s velocity and the keys’ velocity?

Student: They are the same
Why2-Atlas: Uh huh. If gravity is the only force acting on an object, wilbie moving or staying still?
Student: Moving

Why2-Atlas: Good. Not only are the person, keys, and elevator moving,ithee only gravitational forces acting
on them. When an object is falling and has only gravitatidoade on it, it is said to be in what?

Student: Free fall

Why2-Atlas: Yes. Thus, after the release the only force on the keys andisrizme downward force of earth’s
gravity, so they are in freefall. What force acts on all obgesithin close proximity to earth?

Student: The earths gravity

Why2-Atlas: Good. Besides the Earth’s gravitational force, are theyeo#imer forces acting on the person, keys,
and elevator after the release?

Student: No

Why2-Atlas: Fine. Thus, keep in mind that after the release, the onlyeforcthe person, keys, and elevator is
the force of gravity. We know that after the release, the kéysperson, and the elevator are in freefall. Is
freefall acceleration near earth a constant? Or does itdgpgnding upon which object is in freefall?

Fig.4. Excerpt from Why2-Atlas Typed Dialogue
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PROBLEM: Suppose a man is in a free-falling elevator and is holdindgéjs motionless right in front of his
face. He then lets go. What will be the position of the keystiet to the man’s face as time passes?

Explain.

ESSAY: As time passes, the keys will have gotten higher than thegrfane. The reason the keys would have
moved, is due to force and direction acting on the keys. The will have stayed where he was, but the
keys, which are smaller in mass, would have been forced upv&nce the direction of the elevator is south,
the opposite direction will be forced on the keys, which isgthoTherefroe, the keys will have traveled north
and have passed the man’s face.

...excerpt from 11.1 minutes intospokerdialogue ...

ITSPOKE: If you push on the same box with three times the force, whapéapto the acceleration of the box?
Student: it increases (ASR: itincreases)

ITSPOKE: Terrific. OK, what is the box’s acceleration when you are [glthree times relative to its accelera-
tion when you were only pushing with one-third the force?

Student: it decreases (ASR: it decreases since)
ITSPOKE: Could you please repeat that?
Student: it increases (ASR: itincreases)

ITSPOKE: Well... The acceleration will be three times the accelerafrom before. Given several different
forces acting on the box, what must you do to the forces to fiecatceleration of the box?

Student: have a constant (ASR: out the instant)
ITSPOKE: Could you please repeat that?
Student: have mass stay the constant (ASR: i have the mass stay adosdus)

ITSPOKE: That'’s not right. Are forces vector or scalar quantities?

Student: vector (ASR: vector)

Fig.5. Excerpt from ITSPOKE Spoken Dialogue
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Results

Table 3 presents the means and standard deviations fotimérlg and training time measures previously
examined in Experiment 1. The pre-test scores were nototglidifferent across the two conditions,
F(1,41) = 0.037, p= 0.848, MSe = 0.036. In an ANOVA with coralditby test phase factorial design,
there was a robust main effect for test phase, F(1,84) = 28.570.000, MSe = 0.032, indicating that
students learned during their tutoring. The main effectdondition was not reliable, F(1,41)=0.029,
p=0.866, MSe=0.029, and there was no reliable interactioan ANCOVA of the multiple-choice test
data, the adjusted post-test scores were not reliablyrdiffe F(1,40)=0.004, p=0.950, MSe=0.01806.
Thus, the Why-Atlas tutored students did not learn reliabtyre than the ITSPOKE tutored students.

Table3
Learning and Time: Computer Tutoring Spoken (20) and Ty2&J (

Dependent Measure Computer Spoken Computer Typed
Pretest Mean (standard deviation) A48 (.17) 49 (.20)
Posttest Mean (standard deviation) .69 (.18) .70 (.16)
Adjusted Posttest Mean (standard deviatign) .69 (.13) .69 (.13)
Dialogue Time (standard deviation) I 97.85 (32.8) 68.93(29.0)

With respect to training time, students in the spoken ciomitook more time to complete their
dialogue tutoring than in the typed condition. In the spo&endition, extra utterances were needed to
recover from speech recognition errors; also, listenirtgtior prompts often took more time than reading
them, and students sometimes needed to both listen to, ¢aen the prompts. An ANOVA shows that
this difference was reliable, with F(1,41)=9.411, p=0.00%e=950.792.

In sum, while adding speech to Why2-Atlas (in the form of IT8€E) did not yield the hoped
for improvements in learning, the degradation in tutor usténding due to speech recognition (and
potentially in student understanding due to text-to-shialso did not decrease student learning. In fact,
although many ITSPOKE students experienced problems wibah recognition, in other research we
have found no correlation between learning and numeroustigative measures of speech recognition
error (including number of rejection prompts, word errderand semantic error rate) (Litman & Forbes-
Riley, 2005).

Table 4 presents the means for the measures used in Expefirteecharacterize dialogue, as well
as for a new “Tot. Subdialogues per KCD” measure for our caemputors. A Knowledge Construction
Dialogue (KCD) is a line of questioning targeting a specifimecept (such as Newton’s Third Law).
When students answer questions incorrectly, the KCDs cbthem through a “subdialogue”, which
may involve more interactive questioning or simply a rerakdiatement. Thus, subdialogues per KCD
is the number of student responses treated as wrong. Wehegiped that this measure would be higher
in speech, due to the previously noted degradation in séorecturacy.

Compared to Experiment 1, Table 4 shows that there are |#egetices between spoken and typed
computetutoring dialogues. The total words produced by studehésatverage length of turns and initial
verbosity, and the ratios of student to tutor language petida are no longer reliably different across



D. Litman et. al./Spoken Versus Typed Dialogue Tutoring 19

Table4
Dialogue & Learning: Computer Spoken (20) & Typed (23) Caiodis

Dependent Spoken| Typed p Zero Order Controlled for Pre-

Measure mean mean Correlations Test Correlations

Spoken Typed Spoken Typed
R p R p R p R p
Tot. Student Words 296.85| 238.17| .12 || .043| .86 | -.354 | .10 | .394| .10 | .050| .82
Tot. Student Turns 116.75 87.96| .02 || -.093| .70 | -549 | .01 | .210| .39 | -.168 | .46
Ave. Student Words/Turn 2.42 277| .29 .061| .80 .167| .45| .119| .63 | .202| .37
Slope: Student Wds/Trn -.02 .00 | .02 -179| 45| -.084 | .70 | -.287 | .23 | -.102 | .65
Intercept: Stud. Wds/Trn| 3.21 288 | 40| .246| .30 | .250| .25 | .321| .18 | .281| .21
Tot. Tutor Words 6314.90| 4972.61| .03 || -.100 | .68 | -.576 | .00 | .283 | .24 | -.159 | .48
Tot. Tutor Turns 148.20| 110.22| .01 | -061| .80 | -.529 | .01 | .252| .30 | -.133 | .56
Ave. Tutor Words/Turn 4211 44.33| .06 || -.261 | .27 | -565| .01 | .-062 | .80 | -.164 | .47
Stud-Tut Tot. Word Ratio .05 .05| 57| .219| .35 | .238| .27 | .281| .25| .201| .37
Stud-Tut Wds/Trn Ratio .06 .06 | .64 .089|.71| .278| .20 | .094 | .70 | .212| .35
Tot. Subdial/lKCD 3.29 198 .01 | -304| .19 | -732| .00 | -.018 | .94 | -.457 | .03

conditions. As hypothesized, Tot. Subdialogues per KC2ligbly different (p=.01). Finally, the last
four columns show a significant negative correlation betwEst. Subdialogues per KCD and posttest
score (after regressing out pretest) in the typed conditMe hypothesize that as the argumentation
in the dialogue becomes increasingly embedded and thus coonplex (due to the tutor’'s addition of
subdialogues when student responses are incorrect) giieecmore difficult for studentsto learn. There
is also a trend for a positive correlation with total studsotds in the spoken condition, consistent with
previous results on learning and increased student lamgpiegguction. Note that although the same
measure was examined in Experiment 1, we did not see a sitoileglation. We hypothesize that this is
due to the fact that in the human tutoring condition, a higilercentage of a student’s words correspond
to disfluencies (e.gum) and other lexical phenomena not related to physics. Asheilliscussed below,
in future work we plan to determine the impact of coding faztsphenomena (for example, by removing
the associated words from the total word count).

DISCUSSION

Our two experiments provide first results in generating apigoally-based understanding of the impli-
cations of adding spoken language capabilities to tex¢édbd&alogue tutors, and how these implications
might differ across human-human and human-computer di@egWith respect to performance evalua-
tion, our main result was that while changing the modalibnfrtext to speech caused improvements in
the learning gains and time in human tutoring, for computtrtng it made less difference. In contrast,
with respect to dialogue correlations with learning, ourmmasult was that in both human and computer
tutoring, changing the modality from text to speech did eadiferences in both the nature of the di-
alogues (at least as quantified by our shallow measures)inahe set of dialogue characteristics that
correlated with learning.



20 D. Litman et. al./Spoken Versus Typed Dialogue Tutoring

One hypothesis for the lack of improvement in our spoken agemtutoring condition is that sim-
ply adding a spoken “front-end”, without also modifying theorial dialogue system “back-end”, is
either not enough to change how students interact with a atengutor, or doesn’t exploit that fact that
different types of dialogues might be required to accedel@drning in each modality (as suggested by
our findings). For example, the same natural language psomesomponents (e.g. sentence level se-
mantic analysis, knowledge construction dialogues) weealin both Why2-Atlas and ITSPOKE, even
though these components were originally authored with trdyWhy2-Atlas text-based system in mind.
Another hypothesis is that the limitations of the particulatural language technologies used in Why?2-
Atlas (or the expectations that the students had regardioly Bmitations) are inhibiting the modality
differences. Finally, if there were differences betweenditions, perhaps the shallow measures used in
our experiments and/or our small number of subjects predems from discovering them. In sum, while
the results of human tutoring suggest that spoken tutosigg@romising approach for enhancing learn-
ing, more exploration is required to determine how to prdigdaty incorporate speech into computer
tutoring systems.

By design, the modality change left the content of the compdialogues completely unchanged —
the tutors said nearly the same words and asked nearly thee gaestions, and the students gave their
usual short responses. On the other hand, the content ofitharhtutoring dialogues probably changed
considerably when the modality changed. This suggestsnibaility change makes a difference in
learning only if it also facilitates content change. We willestigate this hypothesis in future work by
coding for content and other deep features. For examplizegself-) construction has been shown to
enhance student learning in human tutorial contexts,qudatily in response to certain tutor moves (Chi
et al., 2001); in peer learning contexts, collaboration eméraction have also been shown to enhance
student learning. We plan to apply some of the codings uséitbise studies (e.g., substantive versus
non-substantive contributions, type of tutor move, cosa&ton act) to better measure both student self-
construction and dialogue interactivity.

In addition, we had hypothesized that the spoken modalityldvencourage students to become
more engaged and to self-construct more knowledge. Althaudeeper coding of the dialogues would
be necessary to test this hypothesis, we can get a preliygease of its veracity by examining the total
number of words uttered. Student verbosity (and perhapagermgent and self-construction) did not
increase significantly in the spoken computer tutoring grpent. In the human tutoring experiment,
the number of student words did significantly increase, tvisconsistent with the hypothesis and may
explain why spoken human tutoring was probably more effedtian typed human tutoring. However,
the number of tutor words also significantly increased, Wtiaggests that the human tutor may have
“lectured" more in the spoken modality. Perhaps these loegaanations contributed to the benefits of
speaking compared to the text, but it is equally conceivdtdethey reduced the amount of engagement
and knowledge construction, and thus limited the gainss hggests that although we considered how
the modality might effect the student, we neglected to amrdiow it might effect the tutor, and how that
might impact the students’ learning. Clearly, these issi@s&rve more research. Our goal is to use such
investigations to guide the development of future verswi&/hy2-Atlas and ITSPOKE, by modifying
the dialogue behaviors in each system to best enhance thibjlities for increasing learning.

Finally, note that for each of the spoken and typed modalitige specific dialogue characteristics
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that correlated with learning differed in Experiment 1 wer€Experiment 2. This suggests that it is
unclear to what extent findings regarding effective studer tutor behaviors in human tutoring are
directly applicable when designing computational tutiatialogue systems.

CONCLUSION AND CURRENT DIRECTIONS

In this paper we presented the results of both human and demglialogue tutoring experiments, inves-
tigating whether adding spoken language capabilitiesdstiased tutoring yields performance gains and
along what metrics, and whether the dialogue charactesipteviously shown to correlate with learning
gains in text also correlate with increased learning in spee

The results of Experiment 1 on human tutoring suggest thokespdialogue (allowing interruptions)
is more effective than typed dialogue (prohibiting intg@tians), with mean adjusted posttest score in-
creasing and training time decreasing. We also find thatttygpel spoken dialogues are very different
for the surface measures examined, and for the typed condite see a benefit for longer turns (ev-
idenced by correlations between learning and average dtial student turn length and average tutor
turn length). While we do not see these results in speectkespatterances are typically shorter than
written sentences (Jurafsky & Martin, 2000) (and in our expent, turn length was also impacted by
interruption policy), suggesting that other measures irighmore relevant. We are in fact starting to
explore the use of more sophisticated measures, as willdmided below.

While the results of Experiment 1 offer the hope that a shifatspoken dialogue modality can
yield an increase in the effectiveness of tutorial dialotgehnology, the results of Experiment 2 on
computer tutoring are less conclusive than expected. Omdtyative side, we do not see any evidence that
replacing typed dialogue in Why2-Atlas with spoken dialegu ITSPOKE improves student learning.
However, on the positive side, we also do not see any eviddratehe degradation in understanding
caused by speech recognition decreases learning (sed_dlrar{ & Forbes-Riley, 2005)). A similar
result showing that speech recognition errors did not @serdearning was found in an evaluation of
the SCoT spoken dialogue tutoring system (Pon-Barry e2@04). Furthermore, compared to human
tutoring, we see fewer stylistic difference between spakahtyped computer dialogue interactions, at
least for the dialogue aspects measured in our experiments.

We are currently continuing our studies in several ways. idsutsed above, one hypothesis as to
why we failed to find some of our predicted differences wastiaset of shallow measures used in our
experiments just prevented us from discovering them. Récatin our spoken corpora, our “shallow”
ways of characterizing dialogue particularly failed toretate with learning. We have thus started to
investigate the use of measures derived from “deeper” tgpésalogue codings (as discussed above),
and are indeed starting to find more significant correlatisitl learning (Forbes-Riley et al., 2005).
Similar types of analyses are also starting to be produgtivged in the Autotutor system (Jackson et al.,
2004). Based on the promising results from both projectsplae to annotate our text-based corpora
with such deeper measures, to enable a more sophisticatgzhdgon of correlations across modalities.
In our spoken corpora we also plan to investigate whethetegpphenomena such as disfluencies and
grounding might also explain the lack of correlations with shallow s@@s. Such phenomena increase

4Example disfluencies in Figure 3 include filled pausés (m), word repetition the the, and a false starSp the accel-
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the word count in the spoken condition and generally do nouonn the typed condition. Further
analysis is needed to determine the impact of coding for phelmomena, and removing the associated
words from the total word count.

We also hypothesized that we might not have seen learnifgyelifces across modalities in com-
puter tutoring, because either the limitations of our attr language technologies - or the expectations
that students had regarding these limitations - might hakéited the potential modality differences.
In Experiment 2, for example, there was a paucity of studeplamation behavior, perhaps creating a
situation in which the gains observed in human tutoring dithvave the opportunity to be demonstrated.
Thus, exploring and ameliorating both perceived and acystem limitations is an important step in
demonstrating whether speech interaction yields benefitsiforial dialogue systems.

To this end, we have started to investigate whether the ¢xfie@cs that students bring with them
to a computer interaction contributes to our observed ldcktuwdent explanation. In a recent study,
we had students interact with a computer using the same K&intdogy used in Experiment 2, and
found that students who believed they were interacting eitluman offered more explanation behavior
than students who believed they were interacting with a ecdgerp(Rosé & Torrey, 2005). Issues of
how student expectations affect behavior, and how pattfrbehavior do or do not take advantage of
affordances of the technology, are very complex and requireh further investigation.

In addition, although we found that the errors introducedspgech recognition did not decrease
student learning in computer tutoring, perhaps thesesmnonetheless inhibited any potential increases
in learning. We have recently completed the implementaifd SPOKE Version 2, to improve both its
input and output spoken language components. We have usddtifrom Experiment 2 to enhance our
language models, to increase the accuracy of our speedhtigec. We have also replaced ITSPOKE’s
original machine-generated voice (using a text-to-spegstem) with a human voice (using pre-recorded
audio), and plan to evaluate if improving ITSPOKE's voicergases student learning.

We hope that the results of studies such as those reportedwiktimpact the development of
future dialogue tutoring systems incorporating speechtnigilighting the performance gains that can be
expected, and the requirements for their achievement. Niewial strategies optimized for speech can
then be incorporated into future systems for experimemtati
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