
Machine Learning 2: 39~74, 1987
© 1987 Kluwer Academic Publishers, Boston - Manufactured in The Netherlands

A Version Space Approach to Learning
Context-free Grammars

KURT VANLEHN (VANLEHN@A.PSY.CMU.EDU)
WILLIAM BALL (BALL@A.PSY.CMU.EDU)

Department of Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213 U.S.A.

(Received: June 17, 1986)

(Revised: January 21, 1987)

K e y w o r d s : Induction, grammatical inference, version space, context-free grammars,
learning from examples.

Abstract . In principle, the version space approach can be applied to any induction
problem. However, in some cases the representation language for generalizations is so
powerful that (1) some of the update functions for the version space are not effectively
computable, and (2) the version space contains infinitely many generalizations. The
class of context-free grammars is a simple representation that exhibits these problems.
This paper presents an algorithm that solves both problems for this domain. Given a
sequence of strings, the algorithm incrementally constructs a data structure that has
nearly all the beneficial properties of a version space. The algorithm is fast enough to
solve small induction problems completely, and it serves as a framework for biases that
permit the solution of larger problems heuristically. The same basic approach may be
applied to representations that include context-free grammars as special cases, such as
And-Or graphs, production systems, and Horn clauses.

1. Introduct ion

The problem addressed here arose in the course of studying how people
learn arithmetic procedures from examples (VanLehn, 1983a; VanLehn,
1983b). Our data allowed us to infer approximations of the procedures
the subjects had learned and the examples they received during training.
Thus, the inputs and outputs to the learning process were known, and the
problem was to describe the learning process in detail. However, because
the subjects' learning occurred intermittently over several years, we were
not immediately interested in developing a detailed cognitive simulation of
their learning processes. Even if such a simulation could be constructed,
it might be so complicated that it would not shed much light on the basic
principles of learning in this task domain. Therefore, our initial objective
was to find principles that could act as a partial specification of the learn-
ing process. The principles we sought took the form of a representation

40 K. VANLEHN AND W. BALL

language for procedures, together with inductive biases that would post-
diet the procedures learned by our subjects. More precisely, our problem
w a s :

• Given:
o a training sequence, consisting of examples of a procedure being

executed, and

o a set of observed procedures, represented in some informal lan-
guage (i.e., English),

• Find:

o a representation language for procedures, and

o a set of inductive biases, expressed as predicates on expressions in
the representation language,

such that the set of all procedures that are consistent with the examples
and preferred by the biases

o includes the observed procedures, and

o excludes implausible procedures (e.g., ones that never halt).

This method for studying the structure of mental representations and pro-
cesses has much to recommend it (VanLehn, Brown & Greeno, 1984; Fodor,
1975), but here we wish to discuss only the technical issues involved in im-
plementing it. The central technical problem is calculating the sets men-
tioned above. The calculation must be done repeatedly, once for each
combination of representation language, biases and training sequence. Al-
though the calculations could be done by hand, it is probably easier to
program a computer to perform them. Rather than build one program
that could handle all combinations, or one program for each combination,
we chose a hybrid approach.

The approach was to build a different program for each representation
language. The programs are induction programs, in that they take a se-
quence of training examples and calculate expressions in the representation
language that are generalizations of those examples. The inducers are un-
biased, in that they produce all expressions in the language consistent with
their inputs. An unbiased inducer provides a framework on which we can
install explicit biases in an attempt to fit its output to the data. The ad-
vantage of this approach is that tuning an unbiased inducer is much easier
than building a different biased inducer for each set of biases. The main
technical problem of implementing this approach is devising an unbiased
inducer for each of the hypothesized representation languages.

It is very important to understand that these inducers are merely tools
for generating certain sets that we are interested in studying. They are not
meant to be models of human learning processes.

A VERSION SPACE FOR GRAMMARS 41

This approach works fine for some representation languages, but not
for others. Some procedure representation languages (e.g., those used by
Anderson, 1983, and VanLehn, 1983c) are based on recursive goal hier-
archies that are isomorphic to context-free g rammars) For several rea-
sons, it is impossible to construct an inducer that produces the set of all
context-free grammars consistent with a given training set. First, such
a set would be infinite. Second, the standard technique for represent-
ing such a set, Mitchell's (1982) version space technique, seems inapplica-
ble because the crucial 'more-specific-than' relationship is undecidable for
context-free grammars. 2 The proofs for these points will be presented later.
Although we could have abandoned exploration of procedure representa-
tion languages with recursive goal hierarchies, we chose instead to attack
the subproblem of finding a suitable induction algorithm for context-free
grammars.

The impossibility of an unbiased inducer means that a biased one must
be employed as the framework on which hypothesized biases are installed
for testing their fit to the data. Because we will not be able to test the
fit with the built-in bias removed, the built-in bias must be extremely
plausible a priori. Moreover, there must be an algorithm for calculating
the set of grammars consistent with it, and that set must be finite.

We found such a bias and called it reducedness. A grammar is reduced if
removing any of its rules makes it inconsistent with the training examples.
Later, we will argue for the plausibility of redueedness and, more impor-
tantly, we will prove that there are only finitely many reduced grammars
consistent with any given training sequence. This proof is one of the main
results presented in this paper.

The proof contains an enumerative algorithm for generating the set of
reduced grammars consistent with a training sequence, but the algorithm
is far too slow to be used. In order to experiment with biases, we needed an
algorithm that could take a training sequence of perhaps a dozen examples,
and produce a set of reduced grammars in a day or less time.

The obvious candidate for a faster algorithm is Mitchell's (1982) ver-
sion space strategy. Applying the strategy seems to involve conquering
the undecidability of the 'more-specific-than' relationship for grammars.
However, we discovered that it was possible to substitute a decidable re-
lationship for 'more-specific-than' and thereby achieve an algorithm that
had almost all the beneficial properties of the version space technique. In
particular, it calculates a finite, partially ordered set of grammars that can
be represented compactly by the maximal and minimal grammars in the

1A context-free grammar is a set of rewrite rules, similar to a simple production
system. The next section gives precise definitions of the relevant terms from formal
language theory.

2The version space technique is explained in the next section.

42 K. VANLEHN AND W. BALL

order. Unfortunately, the set is not exactly the set of reduced grammars,
but it does properly contain the set of reduced grammars. We call it the
derivational version space.

The derivational version space satisfies our original criterion: it is a set of
consistent grammars which is arguably a superset of the set of grammars
qua procedures that people learn. Moreover, the algorithm for calculat-
ing it is fast enough that small training sequences can be processed in a
few hours, and the structure of the algorithm provides several places for
installing interesting biases. The derivational version space is the second
result to be presented in the paper.

The main interest for machine learning researchers lies in the generality
of the techniques we used. The reducedness bias can be applied directly
to many representation languages. For instance, an expression in disjunc-
tive normal form (i.e., a disjunction of conjunctions) is reduced if deleting
any of its disjuncts makes the expression inconsistent with the training
examples. The finiteness result for reduced grammars suggests that sets of
reduced expressions in other representations are also finite and effectively
computable. 3 Moreover, the technique of substi tuting an easily computed
relation for the 'more-specific-than' relation suggests that such sets of re-
duced expressions can be efficiently computed using the derivational version
space strategy.

Indeed, the fact that substituting another relation for 'more-specific-
than' leads to a useful extension of the version space strategy suggests
looking for other relationships that provide the benefits of version spaces
without the costs. This idea is independent of the idea of reducedness.
Both ideas may be useful outside the context of grammar induction.

There are four main sections to the paper. The first introduces the
relevant terminology on grammars, grammar induction and version spaces.
The second discusses reducedness and the finiteness of the set of grammars
consistent with a set of examples. The third discusses the derivational
version space, while the fourth presents the induction algorithm for this
structure and demonstrates the results of incorporating certain biases. The
concluding section speculates on the larger significance of this work.

3It might be argued that although the bias can be applied to other representation
languages, one might not want to. However, reducedness is already obeyed by all con-
structive induction programs that we are familiar with, including the systems of Quin-
lan (1986), Michalski (1983), and Vere (1975). (Reducedness is not usually obeyed by
enumeration-based induction algorithms, such as those found in the literature on lan-
guage identification in the limit (Osherson, Stob & Weinstein, 1985).) Apparently, the
designers of constructive inducers believe that it is natural for an induced generaliza-
tion to include only parts (e.g., rules, disjuncts) that have some support in the data.
Reducedness is a precise statement of this belief.

A VERSION SPACE FOR GRAMMARS 43

2. T e r m i n o l o g y

2.1 Introduct ion to g r a m m a r s and g r a m m a r induct ion

A grammar is a finite set of rewrite rules. A rule is wri t ten c~ -~ ~, where
and fi are strings of symbols. Grammars are used to generate strings by

repeatedly rewriting an initial string into longer and longer strings. In this
article, the initial string is always 'S'. For instance, the following grammar

S - ~ b
S --*aS

generates the string 'aab' via two applications of the second rule and one
application of the first rule:

S ~ aS --* aaS --* aab

Such a sequence of rule applications is called a derivation. There are two
kinds of symbols in grammars. Terminals are symbols that may appear in
the final string of a derivation, whereas nonterminals are not allowed to
appear in final strings. In the above grammar, a and b are terminals, and
S is a nonterminal.

The g rammar induction problem is to infer a grammar that will generate
a given set of strings. 4 The set of strings given to the learner is called the
presentation. It always contains strings that the induced grammar should
generate (called positive strings) and it may or may not contain strings
that the induced grammar should not generate (called negative strings).
For instance, given the presentation

- a , + a b , + a a b , - b a

the grammar given earlier (call it Grammar 1) could be induced because
it generates the two positive strings, 'ab' and 'aab,' and it cannot generate
the two negative strings, 'a' and 'ba'. A grammar is said to be consistent
with a presentation if it generates all the positive strings and none of the
negative strings. 5

There are usually many grammars consistent with a given presentation.
For instance, here are two more grammars consistent with the presentation
mentioned above:

4 G r a x n m a r induction is studied in at least three fields - p h i l o s o p h y , linguistics, and
artificial intelligence. For reviews from the viewpoints of each, see, respectively, Osher-
son, Stob and Weinstein (1985), Pinker (1979), and Langley and Carbonell (1986). In
addition, Cohen and Feigenbaum (1983) give an excellent overview.

5Some authors use 'deductively adequate' (Homing, 1969) or 'consistent and com-
plete' (Miehalski, 1983) for the same concept. We use the term 'consistent' in order to
bring the terminology of this paper into line with the terminology of Mitchell's (1982)
work on version spaces.

44 K. VANLEHN AND W. BALL

Grammar 2 Grammar 3
S ~ A S ~ S b
A ~ b S b ~ a b
A ~ aA S ~ aa

Grammar 2 is equivalent to grammar 1 in that it generates exactly the
same set of strings: {b, ab, aab, aaab, aaaab, . . . }. The set of all strings
generated by a grammar is called the language generated by the grammar.
The language in this case is an infinite set of strings. However, languages
can be finite. The language generated by Grammar 3 is the finite set {ab,
aa, aab}.

Grammar induction is considerably simpler if restrictions are placed on
the class of grammars to be induced. Classes of grammars are often defined
by specifying a format for the grammars that are members of the class. For
instance, grammars 1 and 2 obey the format restriction that the rules have
exactly one nonterminal as the left side. Grammars having this format are
called context-free grammars. Grammar 3 is not a context-free grammar.

2.2 Vers ion spaces

One of the most widely studied forms of machine learning is learning
from examples, or induction, as ~it is more concisely called. The following
is a standard way to define an induction problem: 6

• Given:

o A representation language for generalizations;

o A predicate of two arguments, a generalization and an instance,
that is true if the generalization matches the instance;

o A set of 'positive' instances (which should be matched by the
induced generalizations) and a set of 'negative' instances (which
should not be matched);

o A set of biases that indicate a preference order for generalizations;

• Find: One or more generalizations that are

o consistent with the instances; and

o preferred by the biases;

where 'consistent' means that the generalization matches all the positive
instances and none of the negative instances.

This formulation is deliberately vague in order to encompass many spe-
cific induction problems. For instance, the instances may be ordered. There
may be no negative instances. There may be no biases, or biases that rank

6Throughout, we follow Mitchell's (1982) choice of terminology, with two exceptions.
First, we use Generalizes(x,y) instead of more-specific-than(y,x). Second, i fx Generalizes
y, then we visualize x as above y; Mitchell (1982) would say that x is below y.

A VERSION SPACE FOR GRAMMARS 45

generalizations on a numerical scale, or biases that partially order the set
of generalizations. Much work in machine learning is encompassed by this
definition.

Mitchell defines a version space to be the set of all generalizations con-
sistent with a given set of instances. This is just a set, with no other
structure and no associated algorithm. However, Mitchell also defines the
version space strategy to be a particular induction technique, based on a
compact way of representing the version space. Although popular usage
of the term 'version space' has drifted, this paper will stick to the original
definitions.

The central idea of the version space strategy is that the space of gener-
alizations defined by the representation language can be partially ordered
by generality. One can define the relation Generalizes(x,y) in terms of the
matching predicate:

Definition 1 Generalizes(x,y) is true if and only if the set of instances matched
by x is a superset of the set of instances matched by y.

Note that the Generalizes relationship is defined in terms of the denota-
tions of expressions in the representation language, and not the expressions
themselves. This will become important later, when it is shown that the
Generalizes relation is undecidable for context-free grammars.

It is simple to show that the Generalizes relation partially orders the
space of generalizations. Thus, no mat ter what the specific induction prob-
lem may be, one can always imagine its answer as lying somewhere in a
vast tangled hierarchy which rises from very specific generalizations that
cover only a few instances, all the way up to generalizations that cover
many instances.

Given a presentation, the version space for that presentation will also be
partially ordered by the Generalizes relation. Given some mild restrictions
(e.g., that there are no infinite ascending or descending chains in the partial
order), the version space has a subset of maximal elements and a subset of
minimal elements. The maximal set is called G, because it contains the set
of maximally general generalizations. The minimal set is called S, because
it contains the maximally specific generalizations. The pair IS,G] can be
used to represent the version space. Mitchell proved that

Given a presentation, x is contained in the version space for that pre-
sentation if and only if there is some g in G such that g Generalizes x
and there is some s in S such that x Generalizes s.

Three algorithms are usually discussed in connection with the [S,G] rep-
resentation of version spaces:

46 K. VANLEHN AND W. BALL

• Update (i , [S , G]) --. [S ' ,G ']
The Update function takes the current version space boundaries and
an instance that is marked as either positive or negative. It returns
boundaries for the new version space. If the instance makes the version
space empty (i.e., there is no generalization that is consistent with the
presentation, as when the same instance occurs both positively and
negatively), then some marker, such as Lisp's NIL, is returned. The
Update algorithm is the induction algorithm for version space bound-
aries. Its implementation depends on the representation language.

• DoneP([S,G]) --+ true or false

Unlike many induction algorithms, it is possible to tell when further
instances will have no effect because the version space has stabilized.
DoneP is implemented by a test for set equality, S = G.

• Classify(i,[S,G]) -~ +, -, or 7

Classify an instance that is not marked positively or negatively, using
the version space boundaries. It returns '+ ' if the instance would be
matched by all the generalizations in the version space. It returns ' - '
if it would be matched by no generalizations. It returns '?' otherwise.
Classify is useful for experimental design. If instances are marked
by some expensive-to-use teacher (e.g., a proton collider), then only
instances that receive '?' from Classify are worth submitting to the
teacher.

Applying the version space strategy to a representation language means
that one must devise only an appropriate Update function, because the
Classify and DoneP functions come for free with the strategy. This is
sometimes cited as the chief advantage of the version space approach. In
our work on skill acquisition, we make only minor use of them. Our main
reason for preferring the version space strategy over other induction strate-
gies is that it computes exactly the set we need, the version space, and
represents it compactly.

3. R e d u c e d vers ion spaces

The first problem encountered in applying the version space strategy
to grammar induction is that the version space will be always be infinite.
This does not necessarily imply that the version space boundaries will be
infinite; a finite S and G can represent an infinite version space. However,
for grammars, the boundaries also turn out to be infinite. To begin, let us
consider a well-known theorem about grammar induction, which is:

Theorem 1 For any class of grammars that includes grammars for all the finite
languages, there are infinitely many grammars in the class that are consistent with
any given finite presentation.

A VERSION SPACE FOR GRAMMARS 47

That is, the version space is infinite for any finite presentation. This theo-
rem has a significance outside the context of version space technology. For
instance, it has been used to justify nativist approaches to language acqui-
sition (Pinker, 1979). This section is written to address both the concerns
of version space technology and the larger significance of this theorem.

3.1 N o r m a l v e r s i o n s p a c e s are in f in i te

Three ways to prove the theorem will be presented. Simply amending the
statement of the theorem to prevent the use of each of the proof techniques
yields a new theorem, which is one of the results of this article.

All three proofs employ mathematical induction. The initial step in all
the proofs is the same. Because the class of grammars contains grammars
for all finite languages, and the positive strings of the presentation consti-
tute a finite language, we can always construct at least one grammar that is
consistent with the presentation. This grammar initializes the inductions.
The inductive steps for each of the three proofs are, respectively:

1. Let a be any string not in the presentation. Add the rule S ~ a to
the grammar. The new grammar generates exactly the old grammar's
language plus c~ as well. Since the old language was consistent with
the presentation, and (~ does not appear in the presentation, the new
grammar is also consistent with the presentation. Because there are
infinitely many strings a that are not in the presentation, infinitely
many different grammars can be constructed this way. One might
object that the rule S ~ a may be in the grammar already. However,
because a grammar has finitely many rules, there can be only finitely
many such (~, and these can be safely excluded when the a required
by the proof is selected.

2. Let A be a nonterminal in the grammar, and let B be a nonterminal
not in the grammar. Add the rule A ~ B to the grammar. For
some or all of the rules that have A as the left side, add a copy of
the rule to the grammar with B substi tuted for A. These additions
create new grammars that generate exactly the same strings as the
original grammar. Because the original grammar is consistent with the
presentation, so are the new grammars. This process can be repeated
indefinitely, generating an infinite number of grammars consistent with
the presentation.

3. Form a new grammar by substituting new nonterminals for every non-
terminal in the old grammar (except S). Create a union grammar
whose rules are the union of the old grammar's rules and the new
grammar's rules. The union grammar generates exactly the same lan-
guage as the original grammar, so it is consistent with the presentation.

48 K. VANLEHN AND W. BALL

The union process can be repeated indefinitely, yielding an infinite set
of grammars consistent with the presentation.

It is hard to imagine why a machine or human would seriously entertain
the grammars constructed above. The grammars of the last two proofs are
particularly worthless as hypotheses, because they are notational variants
of the original grammar. In a moment, we will add restrictions to the class
of grammars that will bar such irrational grammars.

We have mentioned that an infinite version space can, in principle, be
represented by finite boundaries. Unfortunately, this does not work for
grammars. The second two proofs above will generate infinitely many
grammars that generate exactly the same language as the initial grammar.
If the initial grammar is from S, then S can be made infinite; similarly, G
can be made infinite. The G set can also be made infinite by the first proof
above. These comments prove the following theorem:

Theorem 2 If the representation language for generalizations specifies a class
of grammars that includes grammars for all finite languages, then for any finite
presentation, the version space boundaries, S and G, are each infinite.

3.2 R e d u c e d n e s s makes the vers ion space finite

One way to make the version space finite is to place restrictions on the
grammars to be included in it. As some of these restrictions are most
easily stated as restrictions on the form of grammar rules, we will limit our
attention to context-free grammars, although the same general idea works
for some higher order grammars as well (as shown in Appendix 1). The
first restriction blocks the grammars produced by the second proof:

Definition 2 A context-free grammar is simple if (1) No rule has an empty right
side, 7 (2) if a rule has just one symbol on its right side, then the symbol is a
terminal, and (3) every nonterminal appears in a derivation of some string.

The class of simple grammars can generate all the context-free languages.
Hopcroft and Ullman (1979) prove this (theorem 4.4) by showing how to
turn an arbitrary context-free grammar into a simple context-free grammar.
For our purposes, the elimination of rules of the form A --* B, where both
A and B are nonterminals, blocks the second proof.

Proofs 1 and 3 can be blocked by requiring that all the rules in an induced
grammar be necessary for the derivation of some positive string in the given
presentation. To put this formally:

~This reduces the expressive power of the class somewhat, because a grammar without
such epsilon rules, as they are commonly called, cannot generate the empty string.

A VERSION SPACE FOR GRAMMARS 49

Definit ion 3 Given a presentation P, a grammar is reduced if it is consistent with
P and if there is no proper subset of its rules that is consistent with P.

Removing rules from a g rammar will only decrease the size of the language
generated, not increase it. So removing rules from a g rammar will not
make it generate a negative string that it did not generate before. However,
deleting rules may prevent the grammar from generating a positive string,
thus making it inconsistent with the presentation. If any deletion of rules
causes inconsistency, the g rammar is reduced.

In proof 1, adding the rules S ~ c~ creates a new grammar that is
reducible. Similarly, the union grammar formed by proof 3 is reducible.
This leads to the theorem:

Theo rem 3 Given a finite presentation, there are finitely many reduced simple
context-free grammars consistent with that presentation.

The proof of this theorem is presented in Appendix 1. We call the version
space of reduced, simple grammars a reduced version space for grammars.

Any finite partially ordered set has a finite subset of minimal elements
and a finite subset of maximal elements. Define the reduced G and S as
the maximal and minimal sets, respectively, of the reduced version space
under the partial order established by the Generalizes relation. It follows
immediately that:

Theo rem 4 Given a finite presentation, the reduced G and S sets are each finite.

3.3 T h e b e h a v i o r o f r e d u c e d v e r s i o n s p a c e s

This subsection describes some of the ways in which a reduced version
space differs from a normal version space.

Normally, a version space can only shrink as instances are presented. As
each instance is presented, generalizations are eliminated from the version
space. With a reduced version space, negative instances cause shrinking,
but positive instances usually expand the reduced version space. To see
why, suppose that at least one of the grammars in the current version space
cannot generate the given positive string. There are usually several ways
to augment the g rammar in order to generate the string. For instance, one
could add the rule S ~ a, where a is the string. Or one could add the rules
S ~ Aft and A ---* "7, where a = "Tfl. Each way of augmenting the current
g rammar in order to generate the new string contributes one grammar to
the new version space. So positive strings cause the reduced version space
to expand.

Because presenting a positive string can cause the reduced version space
to expand, the equality of S and G no longer implies that induction is

50 K. VANLEHN AND W. BALL

done. That is, the standard implementation of DoneP does not work. We
conjecture that Gold's (1967) theorems would allow one to show that there
is no way to tell when induction of a reduced version space is finished.

The S set for the reduced version space turns out to be rather boring.
It contains only grammars that generate the positive strings in the presen-
tation. We call such grammars trivially specific because they do nothing
more than record the positive presentation. The version space Update al-
gorithm described below does not bother to maintain the S set, although
it could. Instead, it maintains P+ , the set of positive strings seen so far.
In order to illustrate the efficiency gained by this substitution, consider
the Classify function, whose normal definition is: where i is an instance
to be classified, if all s in S match i, then return '+'; else if no g in G
matches i, then return ' - ' ; else return '?'. With P+, the first clause of the
definition becomes: if i is in P+, then return '+ ' . Because S contains only
the trivially specific grammars, these two tests are equivalent. Clearly, it
is more efficient to use P + instead of S. Similar efficiencies are gained in
the implementation of the Update algorithm. Nowlan (1987) presents an
alternative solution to this problem with some interesting properties.

3.4 W h y choose r e d u c e d n e s s for an i nduc t ive bias?

The basic idea of reducedness applies to other representation languages.
For instance, suppose the representation is a first order logic whose ex-
pressions are in disjunctive normal form (i.e., a generalization is one large
disjunction, with conjunctions inside it). The rules in a grammar are like
disjuncts in a disjunction. Therefore, a disjunctive normal form expression
is reduced if removing a disjunct makes it inconsistent with the presenta-
tion. We conjecture that the reduced version space for disjunctive normal
forms will turn out to be finite. There may be a general theorem about re-
ducedness and finiteness that would apply, at the knowledge level perhaps
(Newell, 1982; Dietterich, 1986), to many representation languages.

As mentioned earlier, it seems that reducedness is a 'common sense'
restriction to place on induction. All heuristic concept induction programs
with which we are familiar (e.g., Michalski, 1983; Vere, 1975; Quinlan,
1986) consider only reduced concepts. Reducedness seems to be such a
rational restriction that machine learning researchers adopt it implicitly.

There are other ways to restrict grammars so that there are only finitely
many grammars consistent with a finite presentation. For instance, there
are only finitely many simple, trivially specific grammars consistent with
a finite presentation. However, the restriction to reduced, simple gram-
mars seems just strong enough to block the procedures that produce an
infinitude of grammars without being so strong that interesting grammars
are blocked as well. This makes it an ideal restriction to place on version

A VERSION SPACE FOR GRAMMARS 51

spaces for grammars. The chief advantage of version spaces is that they
contain all the generalizations consistent with the presentation. In order to
retain the basic spirit of version spaces while making their algorithms effec-
tive, one should add the weakest restrictions possible. For grammars, the
conjunction of reducedness with simplicity seems to be such a restriction.

4. Apply ing the version space s trategy to reduced version
spaces

The proof of theorem 3 puts bounds on the size of reduced grammars
and their rules. In principle, the reduced version space could be generated
by enumerating all grammars within these bounds. However, such an al-
gorithm would be too slow to be useful. This section discusses a technique
that yields a much faster induction algorithm.

4.1 The undecidability of the Generalizes relationship

The version space strategy is the obvious choice for calculating a reduced
version space, but it cannot, we believe, be applied directly. The problem
is that the version space strategy is based on the Generalizes relationship,
which is defined by a superset relationship between the denotations of two
generalizations. If the generalizations are grammars, then the denotations
are exactly the languages generated by the grammars. Implementing Gen-
eralizes(x,y) is equivalent to testing whether the language generated by x
includes the language generated by y. This test is undecidable for context-
free grammars or grammars of higher orders (Hopcroft & Ullman, 1979,
theorem 8.12). This means that there is no algorithm for implementing
Generalizes(x,y) over the context-free grammars.

This result does not prove that the version space strategy is inapplicable,
because only the Update algorithm is required in order to construct a
version space, and there is no proof (yet) that a computable Generalizes
is necessary for a computable Update. On the other hand, we have never
seen a version space Update algorithm that did not call Generalizes as a
subroutine, and we have no idea how to build a Generalizes-free Update
algorithm for grammars. So the undecidability of the Generalizes predicate
is a practical impediment, at the very least.

The Generalizes predicate may be decidable if its arguments are re-
stricted to be reduced granunars for the same presentation. If so, then
it may be possible to use Generalize in an Update algorithm that only
works for the reduced version space, and not the normal version space. We
did not explore this approach. Instead, we sought a way to apply the spirit
of the version space strategy while avoiding the troublesome Generalizes
predicate entirely.

52 K. VANLEHN AND W. BALL

The 'trick' to the version space strategy is using the boundaries of a
partial order to represent a very large, partially ordered set. In principle,
this trick can be based on any partial order, and not necessarily on the
partial order established by Generalizes. This idea led us to seek a partial
order that was 'like' Generalizes and yet was computable. Moreover, the
partial order had to be such that there was an Update algorithm for the
sets of maximal and minimal elements in the order.

It was not difficult to find a computable partial order on grammars, but
we never found an Update algorithm that could maintain sets that were
the boundaries of exactly the reduced version space. Instead, we discovered
one for a superset of the reduced version space. In particular, we found:

• A set, called the derivational version space, that is a superset of the
reduced version space and a subset of the version space.

• A computable predicate, called FastCovers, that is a partial order over
grammars in the derivational version space.

• An Update algorithm for the maximal and minimal elements in Fast-
Covers of the derivational version space.

The remainder of this section presents the derivational version space and
the FastCovers relation. The next section discusses the Update algorithm.

4.2 T h e d e r i v a t i o n a l v e r s i o n space

In order to define the derivational version space, it will be helpful to
define some ancillary terms first. A derivation tree is a way to indicate the
derivation of a string by a grammar. (These are sometimes called parse
trees.) The derivation tree's leaves are the terminals in the string. The
non-leaf nodes of the tree are labelled by nonterminals. The root node is
always labelled by the root nonterminal, S. An algorithm can 'read off'
the rules used by examining mother-daughter subtrees. If the label of the
mother is A and the labels of the daughters are B, C and D, then the rule
A ~ B C D has been applied. This reading off process can be used to
convert derivation trees into a grammar.

For simple grammars, derivation trees are constrained to have certain
possible shapes. Simple grammars have no rules of the form A ---* B, where
both A and B are nonterminals. Therefore, if a node in the derivation tree
has a single daughter, that daughter must be a terminal, because a rule
may have a singleton right side only if that side consists of a terminal.
Let us call trees with this shape simple trees. The definition of simple
grammars makes it impossible for a simple tree to have long, unbranching
chains. Consequently, there are only finitely many unlabelled simple trees
for any given string.

A VERSION SPACE FOR GRAMMARS 53

1. 0

b a b

. 0 0
I / \
b 0 b

I
a

3. O

b a O

J
4. 0 [f b

b 0 0
I I

a b

Figure 1. The simple tree product for the presentation 'b', 'ab'.

If a string has more than one element, then there is more than one
unlabelled simple tree. Given a finite sequence of strings, one can calculate
all possible sequences of unlabelled simple trees by taking the Cartesian
product over the sets of unlabelled simple trees for each string. Let us
call this set of simple tree sequences the simple tree product of the strings.
Because there are only finitely many unlabelled simple trees for each string,
the simple tree product will be finite. The definition of the derivational
version space can now be stated:

Definition 4 Given a set of positive strings, the derivational version space is the
set of grammars corresponding to all possible labellings of each tree sequence in
the simple tree product for those strings. Given a set of positive and negative
strings, the derivational version space is the derivational version space for the
positive strings minus those grammars that generate any of the negative strings.

An example may clarify this definition. Suppose the positive strings are
'b' and 'ab.' The construction of the derivational version space begins by
considering the simple tree product for the strings. There is one unlabelled
tree for 'b.' There are four unlabelled trees for 'ab.' So there are four tree
sequences in the Cartesian product of the trees for 'a' and the trees for
'ab.' These four tree sequences constitute the simple tree product, which
is shown in Figure 1. For each of the four tree sequences, the construction
process partitions the nodes in the trees and assigns labels. Figure 2 il-
lustrates how the fourth unlabelled tree sequence is treated. At the top of
the figure, the unlabelled tree sequence is shown with its nodes numbered.
Trees 1 through 5 show all possible partitions of the four nodes and the
labellings of the trees that result. Because the root nodes of the trees must

54 K. VANLEHN AND W. BALL

always receive the same node label, S, they are given the same number,
which forces them to be in the same partit ion element, and hence receive
the same labelling. Each of the resulting labelled tree sequences is con-
verted to a grammar. These grammars are shown in the third column of
the figure. The derivational version space is the union of these grammars,
which derive from the fourth tree sequence, with the grammars from the
other tree sequences.

The motivation for the derivational version space is the following: If a
grammar is going to parse all the positive strings, then there must be a
sequence of simple derivation trees, one for each string. Such a sequence
must be some possible labelling of some possible sequence of unlabelled
simple trees. The derivational version space is constructed from all such
sequences, i.e., from the simple tree product. Consequently, it must some-
how represent all possible grammars, except those grammars which have
rules that were not used during the parsing of those strings. Those gram-
mars are, by definition, the reducible grammars. So the derivational version
space contains all the reduced grammars. These observations lead to the
following theorem, which is proved in Appendix 2:

Theorem 5 The derivational version space for a given presentation contains the
reduced version space for that presentation.

Usually, the reduced version space is a proper subset of the derivational
version space. That is, the derivational version space often contains re-
ducible grammars. In the illustration discussed earlier, where the positive
strings (P+) were 'b' and 'ab,' no reducible grammars would be generated.
However, if P + was {'b,' 'ab,' 'ab'} or if P + was {'b,' 'ab,' 'abb'}, then
many reducible grammars would be generated. In general, if a subset of
P + is sufficient to produce grammars that will generate all of it, then the
derivational version space will contain reducible grammars.

The following theorem shows that the 'version space' component of the
name 'derivational version space' is warranted:

Theorem 6 The derivational version space for a given presentation is contained
in the version space for that presentation.

The proof follows from the observation that the grammars in the deriva-
tional version space were constructed so that each positive string has a
derivation, and grammars that generate negative strings are filtered out.
Consequently, the grammars are consistent with the presentation. Lastly,
we note that:

Theorem 7 The derivational version space for a finite presentation is finite.

The proof follows from the earlier observation that the simple tree product
is finite. Because each tree sequence in the product has only finitely many

A VERSION SPACE FOR GRAMMARS 55

Unlabelled trees: 1 1

I / \
b 2 3

I I
a b

4.1

Partition

{1,2,a}

Labelled Trees Grammar

S S S + b
I /\ S ~ a

b S S S ----+ SS

I I
a b

4.2 {1,2} {3} S S S - + b
I / \ S ~ a

b S A S ---+ SA
I I A ~ b
a b

4.3 {1,3} {2} S S S ---+ b
l / \ s ---, As

b A S A - - + a

I I
a b

4.4 {1} {2,3} S S S - - + b
I / \ S --+ AA

b A A A ~ a
I I A - - + b
a b

4.5 {1} {2} {3} S S S - - + b

b A B A ---+ a
I I B - + b
a b

Figure 2. Parti t ions, labelled trees, and grammars of tree sequence 4.

56 K. VANLEHN AND W. BALL

nodes and there are only finitely many ways to par t i t ion a finite set into
equivalence classes, there are only finitely many ways to label each of the
finitely many simple tree sequences. Hence, the derivational version space
for P + is finite. The derivational version space for the whole presentat ion
is a subset of the one for P + , so it too is finite.

The derivational version space is a finite set t ha t contains all the reduced
simple grammars , and moreover, all its members are consistent wi th the
presentat ion. This set suffices for the purposes we out l ined in the introduc-
tion. It contains all the 'plausible' g rammars and it is finite. We show next
tha t there is a part ial order for the set t ha t allows a boundary upda t ing
algori thm to exist.

4.3 The FastCovers predicate

The definition of the part ial order is simplified if g rammars in the deriva-
tional version space are represented in a special way, as a triple. The first
element of the triple is a sequence of unlabelled simple derivation trees,
with the nodes numbered as in Figure 1. The second element of the triple
is a par t i t ion of the trees' nodes. The th i rd element is the grammar ' s rules.
For instance, g r ammar 4.4 of Figure 2 is represented by the following triple:

Tree sequence:
(1 b), (1 (2 a)(3 b))

Partition:
{1}, {2 3}

Rules:
S ~ b
S---* AA
A ~ a
A ~ b

The triple representat ion allows the FastCovers relation to be defined as
follows:

Defini t ion 5 Given two grammars, X and Y, in triple form, grammar X Fast-
Covers grammar Y if (1) both grammars are labellings of the same tree sequence
(i.e., the first elements of their triples are the same), and (2) the partition (i.e.,
second element of the triple) of Y is a refinement s of the partition of X.

For instance, a g r ammar whose par t i t ion is ({1},{2},{3}) is FastCovered
by the g rammar above. In contrast , a g r ammar whose par t i t ion is ({1
2},{3}) is not FastCovered by the above grammar , nor does it FastCover
tha t grammar .

SA partition PY is a refinement of another partition PX if and only if every partition
element of PY is a subset of some partition element of PX.

A VERSION SPACE FOR GRAMMARS 57

FastCovers is named after Covers, a partial order used in early work on
grammar induction (Reynolds, 1968; Horning, 1969; Pao, 1969). Although
we will not pause to define Covers, it can be shown that FastCovers(x,y)
implies Covers(x,y), but Covers(x,y) does not imply FastCovers(x,y). Fast-
Covers is used instead of Covers for ordering the derivational version space
because it is faster to compute than Covers and it makes the Update algo-
rithm simpler.

It is simple to show that the FastCovers relationship is transitive and
reflexive, because these hold for the refinement relationship. Moreover,
because every grammar in the derivational version space has a triple form,
FastCovers applies to every pair of grammars in a derivational version
space. Thus, FastCovers partially orders the derivational version space.

A second property of FastCovers is needed to show that the Update
algorithm is correct:

Theorem 8 For any two grammars, X and Y, in triple form, FastCovers(X,Y)
implies Generalizes(X,Y).

The proof follows from observing that the refinement relationship between
the nonterminals (= partition elements) of X and the nonterminals of Y
establishes a mapping that takes Y's nonterminals onto X's nonterminals.
Every derivation in grammar Y can be turned into a derivation in grammar
X by mapping Y's nonterminals onto X's nonterminals. Thus, every string
that has a derivation in Y must have a derivation in X as well. So the
language generated by Y is a subset of the language generated by X, i.e.,
Generalizes(X,Y).

Given a derivational version space, there is always a finite set of maximal
elements in FastCovers and a finite set of minimal elements. The finiteness
of the boundaries follows from the finiteness of the space itself. We will
call the maximal and minimal sets the derivational G and S, respectively.
From the preceding theorem, it follows immediately that:

Theorem 9 The derivational G (S) includes the subset of the derivational version
space that is maximal (minimal) with respect to the Generalizes relationship.

Given a derivational [S,G], the FastCovers relationship can be used to de-
termine whether a given grammar is contained in the derivational version
space represented by the pair.

Theorem 10 Given a grammar x in triple form and a derivational [G,S], x is in
the derivational version space represented by [G,S] if and only if there is some g
in G such that g FastCovers x, and some s in S such that x FastCovers s.

The proof of the theorem is given in Appendix 3.

58 K. VANLEHN AND W. BALL

5. A n U p d a t e a lgor i thm for the derivat ional vers ion space

The preceding section discussed the definition of the structure that we
wish to generate. This section presents the algorithm that generates the
structure, then reports the results of several experiments with it. It begins
by presenting an informal account of what happens as positive and negative
strings are presented.

5.1 The 'sliced bread' metaphor for derivational version spaces

The derivational version space under FastCovers is a set of partit ion
lattices, 9 one lattice for each tree sequence in the simple tree product. One
can visualize the space as a loaf of sliced bread, one slice for each tree
sequence. All the FastCovers relationships run inside slices; none cross
from one slice to another. Each slice is a parti t ion lattice. It has one
maximal parti t ion on top and one minimal partit ion on the bottom. The
top partition has just one element, and the element has all the nodes in the
tree sequence for that slice. The top parti t ion for tree sequence of Figure 2
is ({1, 2, 3}). The bot tom partit ion in each lattice has a singleton partit ion
element per node in the tree sequence. The bot tom partit ion for the tree
sequence of Figure 2 is ({1},{2},{3}). All the slices/lattices have unique
top and bot tom partitions.

If there are no negative instances in the presentation, then G consists of
the top parti t ion in each lattice. As negative instances are presented, the
maximal set for each lattice may descend. Thus, the G set expands and
the derivation version space shrinks as negative strings are presented. The
S set always consists of the bo t tom parti t ion in each lattice. Presentation
of negative instances does not effect the S set.

When a new positive instance is presented, the derivational version space
grows horizontally, so to speak (i.e., the loaf gets more slices, and the slices
get larger). If the newly added positive string has more than one member,
there will be more than one unlabelled simple derivation tree for it. Hence,
the simple tree product will increase in size and the set of partition lattices
will increase as well (i.e., the loaf gets more slices). Moreover, each of the
new tree sequences is longer than the corresponding old one, because some
unlabelled derivation tree for the new string has been added to it. The new,
longer tree sequence will have more nodes (again, assuming that the string
has more than one member). With more nodes available for partitioning,
the partit ion lattices will expand. Thus, the loaf's slices get larger. In

9A lattice is a part ial order with the additional property that every pair of nodes in
the lattice has a singleton maximal set and a singleton minimal set. A part i t ion lat t ice
consists of the set of all part i t ions of some finite set of objects, ordered by the refinement
relationship.

A VERSION SPACE FOR GRAMMARS 59

short, presenting a positive string increases the number of partition lattices
and the sizes of the partition lattices.

Presenting a new positive string affects the derivational S and G sets
in the following ways. The increase in the number of partitions implies
that the derivational S grows because its members are always the bottom
partitions of the partition lattices. The effect on the derivational G is
more subtle. If there are no negative instances, then G grows because
its members are the top elements of the partition lattices. If there are
negative instances, then G may grow as positive instances are presented,
but we have no proof that it must grow. Although the number of maximal
sets grows, the size of the sets may decrease, leaving the overall G set the
same size, or perhaps even decreasing it.

5.2 The Update algorithm

As mentioned earlier, our algorithm does not bother to maintain the S
set, although it could easily do so. Instead, it maintains P+, the set of
positive strings seen so far. This makes the algorithm more efficient.

The Update algorithm is incremental. It takes an instance and the cur-
rent [P+, G] pair and returns a revision of the pair that is consistent with
the given instance. If there is no such revision, then the algorithm returns
some error value, such as NIL. The following describes the top level of the
algorithm:

1. If the string is positive and a member of P+, then do nothing and
return the current version space. If the string is not a member of P+,
then add it to P + and call Update-G+.

2. If the string is negative and a member of P+, then return NIL. If the
string is not a member of P+, then call Update-G- .

The subroutine Update-G- is simpler than Update-G+, so it will be de-
scribed first.

The task of Update-G- is to modify G so that none of the grammars
will parse the negative string. The easiest way to do this is with a queue,
which is initialized to contain all the grammars in G. The basic cycle is to
pick a grammar off the queue, and see if it parses the negative string. If
it does not, then it can be placed in New-G, the revised version of G. If it
does parse the string, then the algorithm refines the node partition once,
in all possible ways. That is, it takes a partition such as ({1 2 3},{4 5}),
and breaks one of the partition elements in two. In this case, there are four
possible one-step refinements:

60 K. VANLEHN AND W. BALL

1. {1}, {2 3}, {4 5}
2. {1 2}, {3}, {4 5}
3. {1 3}, {2}, {4 5}
4. {1 2 3}, {4}, {5}

Each of these corresponds to a new grammar. These grammars have the
property that they are FastCovered by the original grammar, and there is
no grammar that FastCovers them and not the original grammar. That
is, they are just below the original grammar in the partial order of Fast-
Covers. This process is called splitting in the grammar induction literature
(Homing, 1969). 10

All the grammars produced by splitting are placed on the queue. Even-
tually, the new grammars will be taken off the queue, as described above,
and tested to see if they parse the negative string. Those that fail to parse
the negative string are placed in New-G. Such grammars are maximal in
the FastCovers order in that there is no grammar above them that fails
to parse the negative string. The basic cycle of testing grammars, split-
ting them, and queuing the resulting new grammars continues until the
queue is exhausted. At this point, New-G contains the maxima] set of the
grammars that fail to parse the negative string.

There is one technical detail to mention. It is possible for the same
grammar to be generated via several paths. Before queuing a new graznmar,
the queue and New-G are checked to make sure the new grammar is not
FastCovered 11 by some existing grammar.

New-G should contain only grammars that are (I) simple, (2) consistent
with the positive presentation, (3) consistent with the negative presen-
tation, and (4) maxima] in the FastCovers partial order. The following
comments prove that the Update-G- algorithm satisfies those criteria.

i. The grammars are simple, because the unlabelled derivation trees from
which they are constructed are simple.

2. The grammars are consistent with the positive presentation, because
they are a labelling of a set of derivation trees for those strings. There-
fore, they are guaranteed to parse those strings.

1°Normally, splitting takes one nonterminal (i.e., a partition element), and divides all
its occurrences in two. Some of the occurrences are replaced by a new nonterminal.
Thus, the old nonterminal is 'spli t ' in two. The triple representation presented earlier
allows a very simple implementation of splitting, but it applies only to grammars that
can be represented as triples, and it generates only a subset of the grammars that normal
splitting would produce.

11In order to make the algorithm function correctly, FastCovers must be used for
this and not Covers. Fil tering grammars that are covered by grammars from distinct
unlabelled tree sequences will prune search paths that may lead to valid New-G members.
This is the main reason for working with FastCovers rather than Covers.

A VERSION SPACE FOR GRAMMARS 61

3. The grammars are consistent with the the negative string just received,
because the test puts the grammars in New-G only if they fail to parse
that string. The grammars are consistent with the negative strings
received prior to this one, because the grammars from the old G were
consistent, and splitting moves down the FastCovers order, so splitting
reduces the language generated by a grammar and never expands it.

4. The grammars are maximal in the FastCovers order because splitting
moves down the order one step at a time, and the movement is stopped
as soon as the grammar becomes consistent with the presentation. ~

This completes the discussion of Update-G-. We now turn to Update-G+,
the function that revises the G set when some of the grammars in it do not
parse a newly received positive string.

The easiest way to explain Update-G+ is to first describe an algorithm
that is not incremental: it takes the whole presentation at once and builds
the appropriate G set. The non-incremental algorithm proceeds in the
following steps:

1. Form the simple tree product by taking the Cartesian product of the
unlabelled simple derivation trees for each positive string.

2. For each such tree sequence in the simple tree product, form a triple
to represent the grammar that has only one nonterminal, S. The par-
titions for these grammars all have just one partition element, and the
element contains all the nodes in the derivation tree sequence. These
grammars are the maximal grammars in the FastCovers partial order.
They would be the G set if the presentation had only the positive
strings.

3. For each string in the set of negative strings, apply Update-G-.

This algorithm is not incremental, since it must process all the positive
strings before it processes any of the negative strings. An incremental
Update algorithm must be able to handle strings in the order they are
received. The incremental algorithm should take a G set whose grammars
may have already been split somewhat by Update-G- , and modify it to
accommodate a new positive string.

In the non-incremental algorithm, the effect of adding a new string is
to increase the length of the sequences of unlabelled derivation trees, and
hence to increase the number of nodes in the partitions. In the incremental
algorithm, this must be done in all possible ways, so the resulting Update
algorithm is:

12A complete proof would require using the fact that the derivational version space is
a set of lattices, and lattices are particularly well-connected.

62 K. VANLEHN AND W. BALL

1. Given a positive string, form the set of all unlabelled simple derivation
trees for that string.

2. For each grammar in the old G and for each tree for the new positive
string,

(a) append the tree onto the end of the tree sequence of the gram-
roar's triple, and

(b) allocate the new tree's nodes to the partition elements in all possi-
ble ways. Thus, if there are N partition elements in the partition,
then there are N choices for where to put the first tree node, N
choices for where to put the second tree node, etc. If the tree has
M nodes, then N M new partitions will be generated. Each one
becomes a grammar that is a candidate for New-G.

3. Place all the candidate grammars generated in the preceding step on
the queue for the Update-G- algorithm. However, instead of testing
that a grammar is consistent with just one negative string, as the
Update-G- algorithm does, test that the grammar is consistent with
all the negative strings in the presentation that have been received so
far.

The first two steps generalize the old grammars by adding rules to them.
The new grammars might be too general, in that they may parse some of
the negative strings given earlier in the presentation. Hence, the last step
must check all the negative strings. This requires saving all the negative
strings as they are presented. Thus, the version space needs to be a triple:
IF+, P - , G].

This means that one of the usual benefits of the version space technique
is lost. Usually, version space induction allows the learner to forget about
an instance after having processed it. This algorithm requires the learner
to remember the instances in the presentation. However, it is still an
incremental algorithm. After each string is presented, an up-to-date G
set is produced. Moreover, it is produced with less processing and memory
than would be required to generate that same G set completely from scratch
using the entire presentation. In short, the algorithm is an incremental
version space update with respect to computation, but not with respect to
instance memory.

5.3 Illustrations of the algorithm's operation

In order to illustrate the operation of the algorithm, this subsection
presents a simple example. The next subsection will continue this example
by showing how the algorithm performs when it is modified to incorporate
certain biases.

A VERSION SPACE FOR GRAMMARS 63

Table 1. Learning a command language.

Instances Size of G set CPU seconds

+ delete all-of-them
- all-of-them delete
- delete delete
+ delete it
- it it
+ print it
+ print all-of-them

4
5
5

25
25

197
2580

0.03
0.25
0.52

11.80
0.32

526.00
20300.00

The illustration is based on learning a command language for a file sys-
tem. The algorithm receives strings of command words, marked positive
or negative, and from these data it must infer a grammar for the command
language. Suppose the first string is positive: 'delete all-of-them.' There
are four possible unlabelled simple trees for this string, and they lead di-
rectly to four grammars for the G set. These grammars are listed below in
their triple representation.

1. (1 delete all-of-them)
{1}
(S ~ delete all-of-them)

2. (1 delete (2 albof-them))
{12}
(S --+ delete S) (S --+ all-of-them)

3. (1 (2 delete)(3 all-of-them))
{12}
(S ~ S all-of-them)(S --+ delete)

4. (1 (2 delete)(3 all-of-them))
{123}
(S --+ S S)(S --+ delete)(S --+ all-of-them)

The first three grammars generate the finite language consisting only of
the single string 'delete all-of-them.' The fourth grammar generates all
possible strings over the two word vocabulary of 'delete' and 'all-of-them.'
Suppose the next string is a negative string, 'all-of-them delete.' This string
cannot be parsed by grammars l, 2 or 3, so they remain unchanged in the
G set. The fourth grammar is overly general, so it is split. There are only
three legal partitions. Two of them survive, becoming grammars 5 and 6
shown below. The other partition, {1}{2 3}, yields a grammar that parses
the negative string, so it is split further, into {1}{2}{3}. This partition is
FastCovered by the two survivors, so it is abandoned. The survivors are:

64 K. VANLEHN AND W. BALL

5. (1 (2 delete)(3 all-of-them))
{1 2}{3}
(S ---} S A)(S ~ delete)(A ~ all-of-them)

6. (1 (2 delete)(3 all-of-them))
{1 3}{2}
(S ~ A S)(A ~ delete)(S ~ all-of-them)

Suppose the next string is 'delete delete,' a negative instance. None of
the grammars in G parse this string, so the G set remains unchanged. This
illustrates that the algorithm has made an inductive leap while processing
the preceding strings. This string is new, but there is no change in the
version space.

Suppose the next string is positive, 'delete it.' There are four possible un-
labelled simple derivation trees for this string. Each is paired with each of
the five grammars in the current G, yielding 20 combinations. The result-
ing 20 grammars are queued for testing against P - . Some splitting occurs
during the processing of the queue. When the queue is finally exhausted,
New-G has 25 grammars.

Table 1 summarizes the results so far and shows what happens as more
instances are presented. As a rough indication of the practicality of the
algorithm, the table shows the number of CPU seconds used in processing
each instance by a Xerox 1109 running Interlisp. The combinational explo-
sion inherent in the Update-G+ algorithm is quite evident. However, the
algorithm is fast enough to construct small version spaces.

Table 2. A bias for minimum number of nonterminals.

Instances Size of G set CPU seconds

+ delete all-of-them
- all-of-them delete
- delete delete
+ delete it
- it it
+ print it
+ print all-of-them

4
3
3
7
7

17
55

0.03
0.28
0.05
1.66
0.09
5.87

19.40

5.4 B i a s i n g t h e U p d a t e a l g o r i t h m

Better performance can be obtained by using the Update algorithm as
a framework upon which biases can be mounted. There are several places
in the algorithm where biases can be installed. One place is in the queue-
based loop of Update-G- . Currently, new grammar triples are placed on
the queue only if they are not FastCovered by existing grammar triples.

A VERSION SPACE FOR GRAMMARS 65

Table 3. The effects of limiting the splitting ply.

Instances one ply two ply

G Secs. G Secs.

+ delete all-of-them
- all-of-them delete
- delete delete
+ delete it
- it it
+ print it
+ print all-of-them

4 0.02
5 0.39
5 0.09

25 6.99
25 0.31

4 0.01
5 0.54
5 0.08

25 13.50
25 0.32

197 204.00
2580 3460.00

188 75.20
2406 1110.00

This filter can be made stronger. For instance, suppose we queue only
grammars that have a minimal number of nonterminals, that is, grammar
triples with partitions of minimal cardinality. Table 2 shows the results of
running the previous illustration with this bias installed.

The bias reduces the G set from 2580 grammars to 55 grammars. All of
these grammars happen to use a single nonterminal, e.g.,

S --* S all-of-them
S ~ S i t
S -* delete
S -+ print

Processing time is drastically reduced since many grammar triples those
with partitions having cardinality larger than that of some existing consis-
tent grammar triple - are not even generated.

Another filter that can be placed on the Upda t e -G- loop is one which
limits how deeply into the partition lattice the search may delve. We
implemented a filter which allows the user to set a 'ply.' If a grammar triple
with partit ion of cardinality m needs to be split, the search will proceed
only to partitions of cardinality m+n, where n is the ply set by the user.
Table 3 indicates that this bias approximates the results of the unbiased
algorithm more closely than does minimizing the number of nonterminals.
Note especially that for a ply of two, all the grammars of the unbiased
algorithm were produced at a fraction of the processing time.

The desirability of these biases will depend on the task domain. The
point is only that the algorithm provides a convenient framework for im-
plementing such biases.

Another place to install biases is in the subroutine of Update-G+ that
generates unlabelled derivation trees. This placement allows the biases
to control the form of the grammars. For example, if the tree generator
produces only binary trees, then the induced grammars are in Chomsky
normal form. If the tree generator is constrained to produce only right

66 K. VANLEHN AND W. BALL

branching trees, then only regular grammars are considered. In the latter
case, there is only one right branching simple tree for each string. Conse-
quently, there is only one unlabelled tree sequence for any given presenta-
tion. Under these circumstances, FastCovers is equivalent to Covers, and
our algorithm becomes similar to Pao's (1969) algorithm for learning finite
state machines. The main difference is that Pao's algorithm employs an
explicit representation for the whole version space, whereas our algorithm
uses the more compact [P+, P - , G] representation. Table 4 shows the
results of our algorithm on the test case discussed above when the bias for
regular grammars is introduced. Tables 5 and 6 show the results for a more
challenging case, inferring the syntax of Unix file names.

The point of this section is that the Update algorithm is good for more
than just exploring induction problems. It can be used as a framework for
the development of practical, task-specific learning machines.

Table 4. Inducing regular grammars for file system commands.

Instances Size ofGset CPUseconds

+ delete all-of-them
- all-of-them delete
- delete delete
+ delete it
- it it
+ print it
+ print all-of-them

0.07
0.02
0.01
0.07
0.02
0.11
0.12

6 . C o n c l u s i o n s

The introduction motivated the results presented here from a narrow
perspective, viz. their utility in our research on cognitive skill acquisition.
However, they may have wider application. This section relates the results
to more typical applications of grammar induction, which, for purposes of
discussion, can be divided into three classes:

• Grammar induction is used as a formal account of natural language ac-
quisition (Osherson, Stob & Weinstein, 1985; Berwick, 1985; Langley
& Carbonell, 1986; Pinker 1979). Learning the syntax of a language
is regarded by some as an important component of learning a lan-
guage, and grammar induction is one way to formalize the syntactic
component of the overall language-learning task.

A VERSION SPACE FOR GRAMMARS 67

Grammars are sometimes used in software engineering; e.g., for com-
mand languages or pat tern recognition templates (Gonzalez & Thoma-
son, 1978). Some applications require that the grammars change over
time or in response to different external situations. For instance, a
command language could be tailored for an individual user or a pat-
tern recognizer might need to learn some new patterns. Grammar
induction may be useful in such applications (Fu & Booth, 1975; Bier-
mann & Feldman, 1972).

Knowledge bases in AI programs often have recursive hierarchical
structures, such as calling structures for plans or event schemata for
stories. The hierarchical component of such knowledge is similar to a
grammar. Grammar induction can be used to acquire the hierarchical
structure, although it must be used in combination with other induc-
tion engines that acquire the other structures. For instance, the Sierra
learner (VanLehn, 1987) represents knowledge as hierarchical produc-
tion rules. It uses a grammar induction algorithm to learn the basic
skeleton of its rules, a BACON-like function inducer (Langley, 1979)
to learn details of the rules' actions, and a version space algorithm
(Mitchell, 1982) to learn the exact content of the rules' conditions.

In all these applications, the problem is to find an algorithm that will infer
an 'appropriate' grammar whenever it receives a 'typical' training sequence.
The definition of 'appropriate grammar' and 'typical training sequence'
depends, of course, on the task domain. However, it is usually the case that
only one grammar is desired for any given training. If so, then the Update
algorithm for derivational version spaces is not immediately applicable,
because it produces a set of grammars. In fact, the set tends to grow
larger as the training sequence grows longer. This is why we do not claim
that the algorithm models human learning, even though it was developed as
part of a study of human learning. The algorithm produces a set, whereas
a person probably learns only one (or a few) grammars qua procedures.
Similarly, the algorithm is not a plausible model of how children learn
natural language, even in the liberal sense of 'plausible' employed by studies
of language identification in the limit. 13

13It might seem that after a large number of examples had been received, all the
grammars in the derivational version space will generate exactly the same language, and
that language is the target language. This would imply that our algorithm identifies
languages in the limit, even though it produces a set of grammars instead of a single
grammar. Kevin Kelly and Clark Glymour (personal communication) have proved this
conjecture false. Kelly (personal communication) has shown that any identifiable class of
context-free grammars is identifiable by a machine whose conjectures are always reduced,
simple grammars that are consistent with the data. Kelly and Glymour conclude, along
with us, that our results have little bearing on the language identification literature.

68 K. VANLEHN AND W. BALL

Table 5. Learning regular grammars for Unix file names.

Instances Size of G set CPU seconds

+ foo. bar
+ foo
+ bar
+ / gram / foo
- foo / / foo
- / / f o o
+ / usr / vsg / bar
- / / bar
- / / / bar
- / usr / / bar
- / / gram / bar
- / / v s g / b a r
- v s g / / u s r / b a r
- / u s r / / g r a m / b a r
- / usr / / foo
- / u s r / / g r a m / f o o
- / u s r / / v s g / b a

1
1
1
1
5
2

43
32
25
16
32
14
22
15
10
5
2

0.01
0.01
0.01
0.04
1.03
0.82

88.30
20.90
9.49

19.50
9.76
6.20

10.10
17.20
10.40
7.55
8.72

Of course, not all applications of grammar induction desire an algorithm
to produce just one grammar. An application might have an inducer to
produce a set of grammars and leave some other process to choose among
them. For instance, when tailoring a command language, one might have
the user choose from a set of grammars generated by the grammar inducer.

If grammar induction is viewed as search, then producing just one gram-
mar is a form of depth-first or greatest-commitment search. The version
space strategy, as pointed out by Mitchell (1982), is a form of breadth-first
or least commitment search. This gives it the capability of producing in-
formative intermediate results. Halfway through the presentation of the
training sequence, one can determine unequivocally which generalizations
have been rejected and which generalizations are still viable. If this capa-
bility, or any other feature of the least commitment approach, is important,
then the algorithm presented here should be considered.

Even if the application does not use grammars as the representation
language or even as a component of the representation, the techniques pre-
sented here may be useful. The definition of reducedness extends readily to
many representation languages. For instance, a Prolog program is reduced
if deleting any of its Horn clauses makes the program inconsistent with
the training examples. Similarly, the technique for building a derivational
version space can be extended to representations other than grammars. It
remains to be seen whether there is any utility in these extensions, but
they are at least possible.

A VERSION SPACE FOR GRAMMARS 69

Table 6. The contents of the final G set of Table 5.

Grammar 1 Grammar 2

S ---+ / A
A ---+ gram S
A --+ usr S
A ~ vsg S
S-+ / foo

S + / A
A --+ gram S
A ---, usr S
A --+ vsg S
S ~ / f o o

S -* / bar
S ~ . bar
S --, foo
S --4 bar
S --* foo S

S ~ / bar
A --* bar
S ~ f o o
S --* bar
S-* foo A

However, the applications that seem most likely to benefit from the
derivational version space approach are those that are most similar to our
application, in that their research problem is to understand the influence of
representation languages and biases on learning. This amounts to studying
the properties of induction problems, rather than studying the properties
of induction algorithms. In such research, it is often a useful exercise to
study the set of generalizations consistent with a given training sequence
and see how that set changes as the biases and representation language
are manipulated. Such sets are exactly what the derivational version space
strategy calculates.

Acknowledgments

This research was supported by the Personnel and Training Research
Programs, Psychological Sciences Division, Office of Naval research, under
Contract N00014-86-K-0349. We would like thank Peter Gordon, Brian
MacWhinney, Tom Mitchell, and Peter Reimann for their critiques. Special
thanks go to Steve Nowlan and Kevin Kelly for debugging our claims, and
to Pat Langley and Tom Dietterich for debugging our exposition.

References

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA:
Harvard University Press.

Berwick, R. (1985). The acquisition of syntactic knowledge. Cambridge,
MA: MIT Press.

Biermann, A. W., & Feldman, J. A. (1972). A survey of results in grammat-
ical inference. In S. Watanabe (Ed.), Frontiers of pattern recognition.
New York: Academic Press.

70 K. VANLEHN AND W. BALL

Cohen, P. R., & Feigenbaum, E. A. (1983). The handbook of artificial
intelligence. Los Altos, CA: Morgan Kaufmann.

Dietterich, T. G. (1986). Learning at the knowledge level. Machine Learn-
ing, 1,287 316.

Fodor, J. A. (1975). The language o/thought. New York: Crowell.
Fu, K., & Booth, T. (1975). Grammatical inference: Introduction and

survey. IEEE Transactions on Systems, Man, and Cybernetics, 5, 95-
111.

Gold, E. M. (1967). Language identification in the limit. Information and
Control, 10,447-474.

Conzalez, R. C., & Thomason, M. G. (1978). Syntactic pattern recognition.
Reading, MA: Addison-Wesley.

Hopcroft, J. E., & Ullman, J. D. (1969). Formal languages and their rela-
tion to automata. Reading, MA: Addison-Wesley.

Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory,
languages, and computation. Reading, MA: Addison-Wesley.

Horning, J. J. (1969). A study of grammatical inference (Technical Report
CS-139). Stanford, CA: Stanford University, Department of Computer
Science.

Langley, P. (1979). Rediscovering physics with BACON.3. In Proceedings
of the Sixth International Joint Conference on Artificial Intelligence
(pp. 505-507). Tokyo, Japan: Morgan Kaufmann.

Langley, P., & Carbonell, J. G. (1986). Language acquisition and machine
learning. In B. MacWhinney (Ed.), Mechanisms of language acquisi-
tion. Hillsdale, N J: Lawrence Erlbaum.

Michalski, R. S. (1983). A theory and methodology of inductive inference.
In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine
learning: An artificial intelligence approach. Los Altos, CA: Morgan
Kaufmann.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence,
18, 2O3-226.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18, 87-127.
Nowlan, S. (1987). Parse completion: A technique for inducing context-

free grammars (Technical Report AIP-1). Pittsburgh, PA: Carnegie-
Mellon University, Department of Psychology.

Osherson, D., Stob, M., & Weinstein, S. (1985). Systems that learn. Cam-
bridge, MA: Bradford Books/MIT Press.

Pao, T. W. (1969). A solution of the syntactical induction-inference prob-
lem for a non-trivial subset of context-free languages (Interim Report

A VERSION SPACE FOR GRAMMARS 71

69-19). Philadelphia, PA: University of Pennsylvania, Moore School
of Electrical Engineering.

Pinker, S. (1979). Formal models of language learning. Cognition, 7, 217-
283.

Quinlan, J. R. (1986). The effect of noise on concept learning. In R. S.
Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning:
An artificial intelligence approach (Vol. 2). Los Altos, CA: Morgan
Kaufmann.

Reynolds, J. C. (March 1968). Grammatical covering (Technical Memo-
randum 96). Argonne National Laboratory.

Va~lLehn, K. (1983a). Human skill acquisition: Theory, model and psycho-
logical validation. In Proceedings of the National Conference on Ar-
tificial Intelligence (pp. 420 423). Washington, D.C.: Morgan Kauf-
mann.

VanLehn, K. (1983b). Felicity conditions for human skill acquisition: Val-
idating an AI-based theory (Technical Report CIS-21). Palo Alto, CA:
Xerox Palo Alto Research Center.

VanLehn, K. (1983c). The representation of procedures in repair theory.
In H. P. Ginsberg (Ed.), The development of mathematical thinking.
Hillsdale, N J: Lawrence Erlbaum.

VanLehn, K. (1987). Learning one subprocedure per lesson. Artificial
Intelligence, 31, 1 40.

VanLehn, K., Brown, J. S., & Greeno, J. G. (1984). Competitive argumen-
tation in computation theories of cognition. In W. Kintsch, J. Miller,
& P. Polson (Eds.), Methods and tactics in cognitive science. Hillsdale,
N J: Lawrence Erlbaum.

Vere, S. (1975). Induction of concepts in the predicate calculus. In Pro-
ceedings of the Fourth International Joint Conference on Artificial In-
telligence (pp. 281-287). Tbilisi, USSR: Morgan Kaufmann.

A p p e n d i x 1. P r o o f o f T h e o r e m 3

The following proof shows that there are finitely many reduced context-
sensitive grammars for any given finite presentation. Context-sensitive
grammars are used in the theorem not only because they give the theorem
broader coverage, but because they make the proof simpler. The proof
is a counting argument, and context-sensitive grammars are defined by
counting the relative sizes of the left and right sides of their rules.

Definition 6 A grammar is a context-sensitive grammar if for all rules a ~ 8,
we have lal < Ifll, where Ixl means 'the length of string x'. 14

14Another definition of context-sensitive grammars requires that the rules have the

72 K. VANLEHN AND W. BALL

Defini t ion 7 A context-sensitive grammar is simple if (1) for all rules a --+ /3,
ial = 6~] implies that ~ has more terminals than a, and (2) every nonterminal
occurs in some derivation of some string.

L e m m a 1 The longest derivation of a string s using a simple context-sensitive
grammar is 2is i - 1.

Proof Consider an arbi t rary step in the derivation, a --+ /3. If lal =
Ifl], then fl mus t contain at least one more terminal than a, because the
g rammar is a simple one. Consequently, there can be at most asK such steps
in the derivation, because there are Isi terminals in the string. For all the
other steps in the der ivat ion, /3 mus t be at least one longer t han a. There
can be at most Isl - 1 such steps in the derivation, because the str ing is
only Isl long. So the longest possible derivation using a simple g rammar is
2] J- 1, where steps have = and a steps have < J J.

T h e o r e m 3 There are finitely many simple reduced context-sensitive grammars
for any given finite presentation.

Proo~ There are finitely many positive strings in the presentat ion. By
the l emma just proved, the longest derivation of each string a is 21a i - 1,
Therefore, the largest number of rule firings in deriving the positive strings
is less than 2T, where T is the total of the lengths of positive strings:

T =
~EP+

where P + designates the set of positive strings in the presentat ion. If a
g rammar has more than 2T rules, then there mus t be rules tha t were not
used in any string's longest derivation. Such rules can be el iminated from
the g rammar wi thout affecting the existence of the longest derivations. So
such a g rammar is reducible. Thus, the largest possible reduced g rammar
will have less t han 2T rules.

This result alone is not enough to show tha t there are finitely many
reduced grammars , because the rules could in principle be arbitrarily long
or contain arbitrari ly many dist inct symbols. However, if a rule is used in
a derivation of some string in P + , its right side mus t be shorter than L,
where L is the length of the longest string in P + . The rule's left side mus t
also be shorter than L. If we could show tha t the g rammar cannot have
arbitrarily many symbols, then we would be done. Because the terminals
in the rules mus t appear in the strings and there are finitely many strings,
there are finitely many possible terminals in the rules. In fact, the largest

form a A ~ --~ a~13, where A is a aonterminal and "7 is nonempty. The definition given
above is from Hopcroft and Ullman (1969), who comment that the two definitions axe
equivalent.

A VERSION SPACE FOR GRAMMARS 73

number of terminals is T. Because each nonterminal must participate in
some string's derivation (by simplicity), each nonterminal must appear in
some rule's left side. There are less than 2T rules, each with at most L
symbols on the left side, so there are less than 2LT possible nonterminals.
Thus, the number of simple reduced grammars is finite because: (1) the
number of rules is less than 2T, (2) the length of the left and right sides is
at most L, and (3) there are less than 2LT+T symbols used in the rules.
This completes the proof of theorem 3.

A p p e n d i x 2. P r o o f o f T h e o r e m 5

Theorem 5 states that the derivational version space contains the reduced
version space. The critical part of the proof deals with the positive strings,
P+, because both version spaces specifically exclude grammars that gen-
erate negative strings. Hence, we prove the following theorem, from which
Theorem 5 follows immediately.

Algorithm A Given a set of strings P+, produce the grammars corresponding
to all possible labellings of all possible sequences of all possible simple unlabelled
derivation trees for each string.

Theorem 11 Algorithm A produces a set of grammars that contains all the re-
duced, simple grammars for P+.

To prove the theorem, we need to show that every reduced grammar is gen-
erated by the algorithm. Suppose that R is a reduced grammar. Because
R generates every string in P+, it generates at least one derivation tree
for every string in P+. First we will consider the case where R generates
exactly one derivation tree for each string, then consider the case where R
generates more than one derivation tree for some (or all) of the strings.

Since R generates exactly one derivation tree for each string~ we merely
need to show that that sequence of derivation trees is among the set of
labelled parse tree sequences generated by the algorithm. Because R is
simple, its parse trees must conform to the structural constraints that
were imposed in generating the set of unlabelled derivation trees. In other
words, if a node has just one daughter, then the daughter is a leaf. More-
over, the algorithm generates all such unlabelled derivation trees, so R's
derivation trees must be among those generated by the algorithm. Thus,
R's derivation trees are some labelling of one of the unlabelled derivation
tree sequences. However, the algorithm generates all possible labellings
of these. So R's parse trees must be among the set of labelled derivation
tree sequences generated by the algorithm. The only way for R to have
nonterminals other than those induced by labelling the unlabelled deriva-
tion trees would be for R to have rules that are not used in generating its

74 K. VANLEHN AND W. BALL

derivation trees for P+ . However, R is reduced, so this cannot be the case.
Thus, R must be one of the grammars induced by the algorithm.

Next we consider the case where R generates more than one derivation
tree for at least one string in P+ . For each string p in P+ , let Treesp be the
set of derivation trees for p generated by R. As shown above, the algorithm
generates at least one of the derivation trees in each Treep. From that
derivation tree sequence, it generates rules for a grammar. The generated
grammar will not be the same as R if some of the other derivation trees in
Treesp use rules that are not in this derivation tree sequence. However, if
this were the case, then those rules could be deleted from R, and yet all
the strings could still be parsed. Thus, R would be reducible, contrary to
hypothesis. So R must be generated by the algorithm. This completes the
proof of the theorem.

Appendix 3. Proof of Theorem 10

The following theorem states that the derivational version space is prop-
erly represented by its boundaries:

Theorem 10 Given a grammar x in triple form and a derivational [C,S], x is in
the derivational version space represented by [G,S] if and only if there is some g
in G such that g FastCovers x, and some s in S such that x FastCovers s.

The 'if' half of the 'if and only if' follows immediately from the definition
of G and S; if x is in the space, then there must be maximal and minimal
elements above and below it. To show the 'only if' half, suppose that x is
not in the space, and yet there is a g that FastCovers it and an s that it
FastCovers. A contradiction will be derived by showing that x should be in
the derivational version space. First, we show that x is consistent with the
presentation. Because x FastCovers s, the language generated by x includes
the language generated by s. Because s's language includes the positive
strings of the presentation, so does x's language. Thus, x is consistent with
the positive strings of the presentation. Because g FastCovers x, and g's
language excludes all the negative strings, x's language must also exclude all
the negative strings. So x is consistent with the negative strings. Therefore,
x is consistent with the whole presentation. The remaining requirement for
membership in the derivational version space is that x be a labelling of some
tree sequence from the simple tree product of the presentation. Clearly, x
is a labelling of the tree sequence which is the first element of its triple.
Because x FastCovers s, it must have the same tree sequence as x, so its
tree sequence is a member of the simple tree product. It follows that x
should be in the derivational version space. This contradiction completes
the proof of the theorem.

