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Abstract .  In principle, the version space approach can be applied to any induction 
problem. However, in some cases the representation language for generalizations is so 
powerful that  (1) some of the update functions for the version space are not effectively 
computable, and (2) the version space contains infinitely many generalizations. The 
class of context-free grammars is a simple representation that exhibits these problems. 
This paper presents an algorithm that solves both problems for this domain. Given a 
sequence of strings, the algorithm incrementally constructs a data structure that has 
nearly all the beneficial properties of a version space. The algorithm is fast enough to 
solve small induction problems completely, and it serves as a framework for biases that 
permit the solution of larger problems heuristically. The same basic approach may be 
applied to representations that include context-free grammars as special cases, such as 
And-Or graphs, production systems, and Horn clauses. 

1. Introduct ion  

The problem addressed here arose in the course of studying how people 
learn arithmetic procedures from examples (VanLehn, 1983a; VanLehn, 
1983b). Our data allowed us to infer approximations of the procedures 
the subjects had learned and the examples they received during training. 
Thus, the inputs and outputs to the learning process were known, and the 
problem was to describe the learning process in detail. However, because 
the subjects' learning occurred intermittently over several years, we were 
not immediately interested in developing a detailed cognitive simulation of 
their learning processes. Even if such a simulation could be constructed, 
it might be so complicated that it would not shed much light on the basic 
principles of learning in this task domain. Therefore, our initial objective 
was to find principles that could act as a partial specification of the learn- 
ing process. The principles we sought took the form of a representation 
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language for procedures, together with inductive biases that would post- 
diet the procedures learned by our subjects. More precisely, our problem 
w a s :  

• Given: 
o a training sequence, consisting of examples of a procedure being 

executed, and 

o a set of observed procedures, represented in some informal lan- 
guage (i.e., English), 

• Find: 

o a representation language for procedures, and 

o a set of inductive biases, expressed as predicates on expressions in 
the representation language, 

such that the set of all procedures that are consistent with the examples 
and preferred by the biases 

o includes the observed procedures, and 

o excludes implausible procedures (e.g., ones that never halt). 

This method for studying the structure of mental representations and pro- 
cesses has much to recommend it (VanLehn, Brown & Greeno, 1984; Fodor, 
1975), but here we wish to discuss only the technical issues involved in im- 
plementing it. The central technical problem is calculating the sets men- 
tioned above. The calculation must be done repeatedly, once for each 
combination of representation language, biases and training sequence. Al- 
though the calculations could be done by hand, it is probably easier to 
program a computer to perform them. Rather than build one program 
that could handle all combinations, or one program for each combination, 
we chose a hybrid approach. 

The approach was to build a different program for each representation 
language. The programs are induction programs, in that they take a se- 
quence of training examples and calculate expressions in the representation 
language that are generalizations of those examples. The inducers are un- 
biased, in that they produce all expressions in the language consistent with 
their inputs. An unbiased inducer provides a framework on which we can 
install explicit biases in an attempt to fit its output to the data. The ad- 
vantage of this approach is that tuning an unbiased inducer is much easier 
than building a different biased inducer for each set of biases. The main 
technical problem of implementing this approach is devising an unbiased 
inducer for each of the hypothesized representation languages. 

It is very important to understand that these inducers are merely tools 
for generating certain sets that we are interested in studying. They are not 
meant to be models of human learning processes. 
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This approach works fine for some representation languages, but not 
for others. Some procedure representation languages (e.g., those used by 
Anderson, 1983, and VanLehn, 1983c) are based on recursive goal hier- 
archies that  are isomorphic to context-free g rammars )  For several rea- 
sons, it is impossible to construct an inducer that  produces the set of all 
context-free grammars consistent with a given training set. First, such 
a set would be infinite. Second, the standard technique for represent- 
ing such a set, Mitchell's (1982) version space technique, seems inapplica- 
ble because the crucial 'more-specific-than' relationship is undecidable for 
context-free grammars. 2 The proofs for these points will be presented later. 
Although we could have abandoned exploration of procedure representa- 
tion languages with recursive goal hierarchies, we chose instead to attack 
the subproblem of finding a suitable induction algorithm for context-free 
grammars. 

The impossibility of an unbiased inducer means that  a biased one must 
be employed as the framework on which hypothesized biases are installed 
for testing their fit to the data. Because we will not be able to test the 
fit with the built-in bias removed, the built-in bias must be extremely 
plausible a priori. Moreover, there must be an algorithm for calculating 
the set of grammars consistent with it, and that  set must be finite. 

We found such a bias and called it reducedness. A grammar is reduced if 
removing any of its rules makes it inconsistent with the training examples. 
Later, we will argue for the plausibility of redueedness and, more impor- 
tantly, we will prove that  there are only finitely many reduced grammars 
consistent with any given training sequence. This proof is one of the main 
results presented in this paper. 

The proof contains an enumerative algorithm for generating the set of 
reduced grammars consistent with a training sequence, but  the algorithm 
is far too slow to be used. In order to experiment with biases, we needed an 
algorithm that  could take a training sequence of perhaps a dozen examples, 
and produce a set of reduced grammars in a day or less time. 

The obvious candidate for a faster algorithm is Mitchell's (1982) ver- 
sion space strategy. Applying the strategy seems to involve conquering 
the undecidability of the 'more-specific-than' relationship for grammars. 
However, we discovered that  it was possible to substitute a decidable re- 
lationship for 'more-specific-than' and thereby achieve an algorithm that 
had almost all the beneficial properties of the version space technique. In 
particular, it calculates a finite, partially ordered set of grammars that  can 
be represented compactly by the maximal and minimal grammars in the 

1A context-free grammar is a set of rewrite rules, similar to a simple production 
system. The next section gives precise definitions of the relevant terms from formal 
language theory. 

2The version space technique is explained in the next section. 
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order. Unfortunately, the set is not exactly the set of reduced grammars, 
but it does properly contain the set of reduced grammars. We call it the 
derivational version space. 

The derivational version space satisfies our original criterion: it is a set of 
consistent grammars which is arguably a superset of the set of grammars 
qua procedures that  people learn. Moreover, the algorithm for calculat- 
ing it is fast enough that  small training sequences can be processed in a 
few hours, and the structure of the algorithm provides several places for 
installing interesting biases. The derivational version space is the second 
result to be presented in the paper. 

The main interest for machine learning researchers lies in the generality 
of the techniques we used. The reducedness bias can be applied directly 
to many representation languages. For instance, an expression in disjunc- 
tive normal form (i.e., a disjunction of conjunctions) is reduced if deleting 
any of its disjuncts makes the expression inconsistent with the training 
examples. The finiteness result for reduced grammars suggests that  sets of 
reduced expressions in other representations are also finite and effectively 
computable. 3 Moreover, the technique of substi tuting an easily computed 
relation for the 'more-specific-than' relation suggests that  such sets of re- 
duced expressions can be efficiently computed using the derivational version 
space strategy. 

Indeed, the fact that  substituting another relation for 'more-specific- 
than'  leads to a useful extension of the version space strategy suggests 
looking for other relationships that  provide the benefits of version spaces 
without the costs. This idea is independent of the idea of reducedness. 
Both ideas may be useful outside the context of grammar induction. 

There are four main sections to the paper. The first introduces the 
relevant terminology on grammars, grammar induction and version spaces. 
The second discusses reducedness and the finiteness of the set of grammars 
consistent with a set of examples. The third discusses the derivational 
version space, while the fourth presents the induction algorithm for this 
structure and demonstrates the results of incorporating certain biases. The 
concluding section speculates on the larger significance of this work. 

3It might be argued that although the bias can be applied to other representation 
languages, one might not want to. However, reducedness is already obeyed by all con- 
structive induction programs that we are familiar with, including the systems of Quin- 
lan (1986), Michalski (1983), and Vere (1975). (Reducedness is not usually obeyed by 
enumeration-based induction algorithms, such as those found in the literature on lan- 
guage identification in the limit (Osherson, Stob & Weinstein, 1985).) Apparently, the 
designers of constructive inducers believe that it is natural for an induced generaliza- 
tion to include only parts (e.g., rules, disjuncts) that have some support in the data. 
Reducedness is a precise statement of this belief. 
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2. T e r m i n o l o g y  

2.1 Introduct ion  to g r a m m a r s  and g r a m m a r  induct ion  

A grammar  is a finite set of rewrite rules. A rule is wri t ten c~ -~ ~, where 
and fi are strings of symbols. Grammars  are used to generate strings by 

repeatedly rewriting an initial string into longer and longer strings. In this 
article, the initial string is always 'S'. For instance, the following grammar  

S - ~ b  
S --*aS 

generates the string 'aab' via two applications of the second rule and one 
application of the first rule: 

S ~ aS --* aaS --* aab 

Such a sequence of rule applications is called a derivation. There are two 
kinds of symbols in grammars.  Terminals are symbols that  may appear in 
the final string of a derivation, whereas nonterminals are not allowed to 
appear in final strings. In the above grammar,  a and b are terminals, and 
S is a nonterminal.  

The g rammar  induction problem is to infer a grammar  that  will generate 
a given set of strings. 4 The set of strings given to the learner is called the 
presentation. It always contains strings that  the induced grammar  should 
generate (called positive strings) and it may or may not contain strings 
that  the induced grammar  should not generate (called negative strings). 
For instance, given the presentation 

- a , + a b , + a a b , - b a  

the grammar  given earlier (call it Grammar  1) could be induced because 
it generates the two positive strings, 'ab' and 'aab,'  and it cannot generate 
the two negative strings, 'a' and 'ba'. A grammar  is said to be consistent 
with a presentation if it generates all the positive strings and none of the 
negative strings. 5 

There are usually many grammars  consistent with a given presentation. 
For instance, here are two more grammars  consistent with the presentation 
mentioned above: 

4 G r a x n m a r  induction is studied in at least three fields - p h i l o s o p h y ,  linguistics, and 
artificial intelligence. For reviews from the viewpoints of each, see, respectively, Osher- 
son, Stob and Weinstein (1985), Pinker (1979), and Langley and Carbonell (1986). In 
addition, Cohen and Feigenbaum (1983) give an excellent overview. 

5Some authors use 'deductively adequate' (Homing, 1969) or 'consistent and com- 
plete' (Miehalski, 1983) for the same concept. We use the term 'consistent' in order to 
bring the terminology of this paper into line with the terminology of Mitchell's (1982) 
work on version spaces. 
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Grammar 2 Grammar 3 
S ~ A  S ~ S b  
A ~ b  S b ~ a b  
A ~ aA S ~ aa 

Grammar 2 is equivalent to grammar 1 in that  it generates exactly the 
same set of strings: {b, ab, aab, aaab, aaaab, . . .  }. The set of all strings 
generated by a grammar is called the language generated by the grammar. 
The language in this case is an infinite set of strings. However, languages 
can be finite. The language generated by Grammar 3 is the finite set {ab, 
aa, aab}. 

Grammar induction is considerably simpler if restrictions are placed on 
the class of grammars to be induced. Classes of grammars are often defined 
by specifying a format for the grammars that  are members of the class. For 
instance, grammars 1 and 2 obey the format restriction that  the rules have 
exactly one nonterminal as the left side. Grammars having this format are 
called context-free grammars. Grammar 3 is not a context-free grammar. 

2.2 Vers ion  spaces  

One of the most widely studied forms of machine learning is learning 
from examples, or induction, as ~it is more concisely called. The following 
is a standard way to define an induction problem: 6 

• Given: 

o A representation language for generalizations; 

o A predicate of two arguments, a generalization and an instance, 
that  is true if the generalization matches the instance; 

o A set of 'positive' instances (which should be matched by the 
induced generalizations) and a set of 'negative' instances (which 
should not be matched); 

o A set of biases that  indicate a preference order for generalizations; 

• Find: One or more generalizations that  are 

o consistent with the instances; and 

o preferred by the biases; 

where 'consistent' means that  the generalization matches all the positive 
instances and none of the negative instances. 

This formulation is deliberately vague in order to encompass many spe- 
cific induction problems. For instance, the instances may be ordered. There 
may be no negative instances. There may be no biases, or biases that  rank 

6Throughout, we follow Mitchell's (1982) choice of terminology, with two exceptions. 
First, we use Generalizes(x,y) instead of more-specific-than(y,x). Second, i fx Generalizes 
y, then we visualize x as above y; Mitchell (1982) would say that x is below y. 
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generalizations on a numerical scale, or biases that  partially order the set 
of generalizations. Much work in machine learning is encompassed by this 
definition. 

Mitchell defines a version space to be the set of all generalizations con- 
sistent with a given set of instances. This is just a set, with no other 
structure and no associated algorithm. However, Mitchell also defines the 
version space strategy to be a particular induction technique, based on a 
compact way of representing the version space. Although popular usage 
of the term 'version space' has drifted, this paper will stick to the original 
definitions. 

The central idea of the version space strategy is that  the space of gener- 
alizations defined by the representation language can be partially ordered 
by generality. One can define the relation Generalizes(x,y) in terms of the 
matching predicate: 

Definition 1 Generalizes(x,y) is true if and only if the set of instances matched 
by x is a superset of the set of instances matched by y. 

Note that  the Generalizes relationship is defined in terms of the denota- 
tions of expressions in the representation language, and not the expressions 
themselves. This will become important  later, when it is shown that  the 
Generalizes relation is undecidable for context-free grammars. 

It is simple to show that the Generalizes relation partially orders the 
space of generalizations. Thus, no mat ter  what the specific induction prob- 
lem may be, one can always imagine its answer as lying somewhere in a 
vast tangled hierarchy which rises from very specific generalizations that  
cover only a few instances, all the way up to generalizations that cover 
many instances. 

Given a presentation, the version space for that  presentation will also be 
partially ordered by the Generalizes relation. Given some mild restrictions 
(e.g., that  there are no infinite ascending or descending chains in the partial 
order), the version space has a subset of maximal elements and a subset of 
minimal elements. The maximal set is called G, because it contains the set 
of maximally general generalizations. The minimal set is called S, because 
it contains the maximally specific generalizations. The pair IS,G] can be 
used to represent the version space. Mitchell proved that  

Given a presentation, x is contained in the version space for that pre- 
sentation if and only if there is some g in G such that g Generalizes x 
and there is some s in S such that x Generalizes s. 

Three algorithms are usually discussed in connection with the [S,G] rep- 
resentation of version spaces: 
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• Update ( i  , [S , G] ) --. [S ' ,G ' ]  
The Update function takes the current version space boundaries and 
an instance that  is marked as either positive or negative. It returns 
boundaries for the new version space. If the instance makes the version 
space empty (i.e., there is no generalization that  is consistent with the 
presentation, as when the same instance occurs both positively and 
negatively), then some marker, such as Lisp's NIL, is returned. The 
Update algorithm is the induction algorithm for version space bound- 
aries. Its implementation depends on the representation language. 

• DoneP([S,G]) --+ true or false 

Unlike many induction algorithms, it is possible to tell when further 
instances will have no effect because the version space has stabilized. 
DoneP is implemented by a test for set equality, S = G. 

• Classify(i,[S,G]) -~ +, -, or 7 

Classify an instance that  is not marked positively or negatively, using 
the version space boundaries. It returns '+ '  if the instance would be 
matched by all the generalizations in the version space. It returns ' - '  
if it would be matched by no generalizations. It returns '?' otherwise. 
Classify is useful for experimental design. If instances are marked 
by some expensive-to-use teacher (e.g., a proton collider), then only 
instances that  receive '?' from Classify are worth submitting to the 
teacher. 

Applying the version space strategy to a representation language means 
that  one must devise only an appropriate Update  function, because the 
Classify and DoneP functions come for free with the strategy. This is 
sometimes cited as the chief advantage of the version space approach. In 
our work on skill acquisition, we make only minor use of them. Our main 
reason for preferring the version space strategy over other induction strate- 
gies is that  it computes exactly the set we need, the version space, and 
represents it compactly. 

3. R e d u c e d  vers ion  spaces  

The first problem encountered in applying the version space strategy 
to grammar induction is that  the version space will be always be infinite. 
This does not necessarily imply that  the version space boundaries will be 
infinite; a finite S and G can represent an infinite version space. However, 
for grammars, the boundaries also turn out to be infinite. To begin, let us 
consider a well-known theorem about grammar induction, which is: 

Theorem 1 For any class of grammars that includes grammars for all the finite 
languages, there are infinitely many grammars in the class that are consistent with 
any given finite presentation. 
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That  is, the version space is infinite for any finite presentation. This theo- 
rem has a significance outside the context of version space technology. For 
instance, it has been used to justify nativist approaches to language acqui- 
sition (Pinker, 1979). This section is written to address both the concerns 
of version space technology and the larger significance of this theorem. 

3.1 N o r m a l  v e r s i o n  s p a c e s  are in f in i te  

Three ways to prove the theorem will be presented. Simply amending the 
statement of the theorem to prevent the use of each of the proof techniques 
yields a new theorem, which is one of the results of this article. 

All three proofs employ mathematical  induction. The initial step in all 
the proofs is the same. Because the class of grammars contains grammars 
for all finite languages, and the positive strings of the presentation consti- 
tute a finite language, we can always construct at least one grammar that  is 
consistent with the presentation. This grammar initializes the inductions. 
The inductive steps for each of the three proofs are, respectively: 

1. Let a be any string not in the presentation. Add the rule S ~ a to 
the grammar. The new grammar generates exactly the old grammar's  
language plus c~ as well. Since the old language was consistent with 
the presentation, and (~ does not appear in the presentation, the new 
grammar is also consistent with the presentation. Because there are 
infinitely many strings a that  are not in the presentation, infinitely 
many different grammars can be constructed this way. One might 
object that  the rule S ~ a may be in the grammar already. However, 
because a grammar has finitely many rules, there can be only finitely 
many such (~, and these can be safely excluded when the a required 
by the proof is selected. 

2. Let A be a nonterminal in the grammar, and let B be a nonterminal 
not in the grammar. Add the rule A ~ B to the grammar. For 
some or all of the rules that  have A as the left side, add a copy of 
the rule to the grammar with B substi tuted for A. These additions 
create new grammars that  generate exactly the same strings as the 
original grammar. Because the original grammar is consistent with the 
presentation, so are the new grammars. This process can be repeated 
indefinitely, generating an infinite number of grammars consistent with 
the presentation. 

3. Form a new grammar by substituting new nonterminals for every non- 
terminal in the old grammar (except S). Create a union grammar 
whose rules are the union of the old grammar's  rules and the new 
grammar's  rules. The union grammar generates exactly the same lan- 
guage as the original grammar, so it is consistent with the presentation. 
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The union process can be repeated indefinitely, yielding an infinite set 
of grammars consistent with the presentation. 

It is hard to imagine why a machine or human would seriously entertain 
the grammars constructed above. The grammars of the last two proofs are 
particularly worthless as hypotheses, because they are notational variants 
of the original grammar. In a moment,  we will add restrictions to the class 
of grammars that  will bar such irrational grammars. 

We have mentioned that  an infinite version space can, in principle, be 
represented by finite boundaries. Unfortunately, this does not work for 
grammars. The second two proofs above will generate infinitely many 
grammars that  generate exactly the same language as the initial grammar. 
If the initial grammar is from S, then S can be made infinite; similarly, G 
can be made infinite. The G set can also be made infinite by the first proof 
above. These comments prove the following theorem: 

Theorem 2 If the representation language for generalizations specifies a class 
of grammars that includes grammars for all finite languages, then for any finite 
presentation, the version space boundaries, S and G, are each infinite. 

3.2 R e d u c e d n e s s  makes  the  vers ion space  finite 

One way to make the version space finite is to place restrictions on the 
grammars to be included in it. As some of these restrictions are most 
easily stated as restrictions on the form of grammar rules, we will limit our 
attention to context-free grammars, although the same general idea works 
for some higher order grammars as well (as shown in Appendix 1). The 
first restriction blocks the grammars produced by the second proof: 

Definition 2 A context-free grammar is simple if (1) No rule has an empty right 
side, 7 (2) if a rule has just one symbol on its right side, then the symbol is a 
terminal, and (3) every nonterminal appears in a derivation of some string. 

The class of simple grammars can generate all the context-free languages. 
Hopcroft and Ullman (1979) prove this (theorem 4.4) by showing how to 
turn  an arbitrary context-free grammar into a simple context-free grammar. 
For our purposes, the elimination of rules of the form A --* B, where both 
A and B are nonterminals, blocks the second proof. 

Proofs 1 and 3 can be blocked by requiring that  all the rules in an induced 
grammar be necessary for the derivation of some positive string in the given 
presentation. To put  this formally: 

~This reduces the expressive power of the class somewhat, because a grammar without 
such epsilon rules, as they are commonly called, cannot generate the empty string. 
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Definit ion 3 Given a presentation P, a grammar is reduced if it is consistent with 
P and if there is no proper subset of its rules that is consistent with P. 

Removing rules from a g rammar  will only decrease the size of the language 
generated, not increase it. So removing rules from a g rammar  will not 
make it generate a negative string that  it did not generate before. However, 
deleting rules may prevent the grammar  from generating a positive string, 
thus making it inconsistent with the presentation. If any deletion of rules 
causes inconsistency, the g rammar  is reduced. 

In proof 1, adding the rules S ~ c~ creates a new grammar  that  is 
reducible. Similarly, the union grammar  formed by proof 3 is reducible. 
This leads to the theorem: 

Theo rem 3 Given a finite presentation, there are finitely many reduced simple 
context-free grammars consistent with that presentation. 

The proof of this theorem is presented in Appendix 1. We call the version 
space of reduced, simple grammars  a reduced version space for grammars.  

Any finite partially ordered set has a finite subset of minimal elements 
and a finite subset of maximal elements. Define the reduced G and S as 
the maximal and minimal sets, respectively, of the reduced version space 
under the partial order established by the Generalizes relation. It follows 
immediately that:  

Theo rem 4 Given a finite presentation, the reduced G and S sets are each finite. 

3.3 T h e  b e h a v i o r  o f  r e d u c e d  v e r s i o n  s p a c e s  

This subsection describes some of the ways in which a reduced version 
space differs from a normal version space. 

Normally, a version space can only shrink as instances are presented. As 
each instance is presented, generalizations are eliminated from the version 
space. With a reduced version space, negative instances cause shrinking, 
but  positive instances usually expand the reduced version space. To see 
why, suppose that  at least one of the grammars  in the current  version space 
cannot generate the given positive string. There are usually several ways 
to augment the g rammar  in order to generate the string. For instance, one 
could add the rule S ~ a, where a is the string. Or one could add the rules 
S ~ Aft and A ---* "7, where a = "Tfl. Each way of augmenting the current  
g rammar  in order to generate the new string contributes one grammar  to 
the new version space. So positive strings cause the reduced version space 
to expand. 

Because presenting a positive string can cause the reduced version space 
to expand, the equality of S and G no longer implies that  induction is 



50 K. VANLEHN AND W. BALL 

done. That is, the standard implementation of DoneP does not work. We 
conjecture that Gold's (1967) theorems would allow one to show that there 
is no way to tell when induction of a reduced version space is finished. 

The S set for the reduced version space turns out to be rather boring. 
It contains only grammars that generate the positive strings in the presen- 
tation. We call such grammars trivially specific because they do nothing 
more than record the positive presentation. The version space Update al- 
gorithm described below does not bother to maintain the S set, although 
it could. Instead, it maintains P+ ,  the set of positive strings seen so far. 
In order to illustrate the efficiency gained by this substitution, consider 
the Classify function, whose normal definition is: where i is an instance 
to be classified, if all s in S match i, then return '+';  else if no g in G 
matches i, then return ' - ' ;  else return '?'. With P+,  the first clause of the 
definition becomes: if i is in P+,  then return '+ ' .  Because S contains only 
the trivially specific grammars, these two tests are equivalent. Clearly, it 
is more efficient to use P +  instead of S. Similar efficiencies are gained in 
the implementation of the Update algorithm. Nowlan (1987) presents an 
alternative solution to this problem with some interesting properties. 

3.4 W h y  choose  r e d u c e d n e s s  for an  i nduc t ive  bias? 

The basic idea of reducedness applies to other representation languages. 
For instance, suppose the representation is a first order logic whose ex- 
pressions are in disjunctive normal form (i.e., a generalization is one large 
disjunction, with conjunctions inside it). The rules in a grammar are like 
disjuncts in a disjunction. Therefore, a disjunctive normal form expression 
is reduced if removing a disjunct makes it inconsistent with the presenta- 
tion. We conjecture that the reduced version space for disjunctive normal 
forms will turn out to be finite. There may be a general theorem about re- 
ducedness and finiteness that would apply, at the knowledge level perhaps 
(Newell, 1982; Dietterich, 1986), to many representation languages. 

As mentioned earlier, it seems that reducedness is a 'common sense' 
restriction to place on induction. All heuristic concept induction programs 
with which we are familiar (e.g., Michalski, 1983; Vere, 1975; Quinlan, 
1986) consider only reduced concepts. Reducedness seems to be such a 
rational restriction that machine learning researchers adopt it implicitly. 

There are other ways to restrict grammars so that there are only finitely 
many grammars consistent with a finite presentation. For instance, there 
are only finitely many simple, trivially specific grammars consistent with 
a finite presentation. However, the restriction to reduced, simple gram- 
mars seems just strong enough to block the procedures that produce an 
infinitude of grammars without being so strong that interesting grammars 
are blocked as well. This makes it an ideal restriction to place on version 
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spaces for grammars. The chief advantage of version spaces is that they 
contain all the generalizations consistent with the presentation. In order to 
retain the basic spirit of version spaces while making their algorithms effec- 
tive, one should add the weakest restrictions possible. For grammars, the 
conjunction of reducedness with simplicity seems to be such a restriction. 

4. Apply ing  the version space s trategy to reduced version 
spaces 

The proof of theorem 3 puts bounds on the size of reduced grammars 
and their rules. In principle, the reduced version space could be generated 
by enumerating all grammars within these bounds. However, such an al- 
gorithm would be too slow to be useful. This section discusses a technique 
that yields a much faster induction algorithm. 

4.1 The undecidability of the Generalizes relationship 

The version space strategy is the obvious choice for calculating a reduced 
version space, but it cannot, we believe, be applied directly. The problem 
is that the version space strategy is based on the Generalizes relationship, 
which is defined by a superset relationship between the denotations of two 
generalizations. If the generalizations are grammars, then the denotations 
are exactly the languages generated by the grammars. Implementing Gen- 
eralizes(x,y) is equivalent to testing whether the language generated by x 
includes the language generated by y. This test is undecidable for context- 
free grammars or grammars of higher orders (Hopcroft & Ullman, 1979, 
theorem 8.12). This means that there is no algorithm for implementing 
Generalizes(x,y) over the context-free grammars. 

This result does not prove that the version space strategy is inapplicable, 
because only the Update algorithm is required in order to construct a 
version space, and there is no proof (yet) that a computable Generalizes 
is necessary for a computable Update. On the other hand, we have never 
seen a version space Update algorithm that did not call Generalizes as a 
subroutine, and we have no idea how to build a Generalizes-free Update 
algorithm for grammars. So the undecidability of the Generalizes predicate 
is a practical impediment, at the very least. 

The Generalizes predicate may be decidable if its arguments are re- 
stricted to be reduced granunars for the same presentation. If so, then 
it may be possible to use Generalize in an Update algorithm that only 
works for the reduced version space, and not the normal version space. We 
did not explore this approach. Instead, we sought a way to apply the spirit 
of the version space strategy while avoiding the troublesome Generalizes 
predicate entirely. 
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The 'trick' to the version space strategy is using the boundaries of a 
partial order to represent a very large, partially ordered set. In principle, 
this trick can be based on any partial order, and not necessarily on the 
partial order established by Generalizes. This idea led us to seek a partial 
order that  was 'like' Generalizes and yet was computable. Moreover, the 
partial order had to be such that  there was an Update  algorithm for the 
sets of maximal and minimal elements in the order. 

It was not difficult to find a computable partial order on grammars, but  
we never found an Update  algorithm that  could maintain sets that  were 
the boundaries of exactly the reduced version space. Instead, we discovered 
one for a superset of the reduced version space. In particular, we found: 

• A set, called the derivational version space, that  is a superset of the 
reduced version space and a subset of the version space. 

• A computable predicate, called FastCovers, that  is a partial order over 
grammars in the derivational version space. 

• An Update  algorithm for the maximal and minimal elements in Fast- 
Covers of the derivational version space. 

The remainder of this section presents the derivational version space and 
the FastCovers relation. The next section discusses the Update algorithm. 

4.2 T h e  d e r i v a t i o n a l  v e r s i o n  space  

In order to define the derivational version space, it will be helpful to 
define some ancillary terms first. A derivation tree is a way to indicate the 
derivation of a string by a grammar. (These are sometimes called parse 
trees.) The derivation tree's leaves are the terminals in the string. The 
non-leaf nodes of the tree are labelled by nonterminals. The root node is 
always labelled by the root nonterminal, S. An algorithm can 'read off' 
the rules used by examining mother-daughter  subtrees. If the label of the 
mother  is A and the labels of the daughters are B, C and D, then the rule 
A ~ B C D has been applied. This reading off process can be used to 
convert derivation trees into a grammar. 

For simple grammars, derivation trees are constrained to have certain 
possible shapes. Simple grammars have no rules of the form A ---* B, where 
both A and B are nonterminals. Therefore, if a node in the derivation tree 
has a single daughter, that  daughter must be a terminal, because a rule 
may have a singleton right side only if that  side consists of a terminal. 
Let us call trees with this shape simple trees. The definition of simple 
grammars makes it impossible for a simple tree to have long, unbranching 
chains. Consequently, there are only finitely many unlabelled simple trees 
for any given string. 
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Figure 1. The simple tree product for the presentation 'b', 'ab'. 

If a string has more than one element, then there is more than one 
unlabelled simple tree. Given a finite sequence of strings, one can calculate 
all possible sequences of unlabelled simple trees by taking the Cartesian 
product over the sets of unlabelled simple trees for each string. Let us 
call this set of simple tree sequences the simple tree product of the strings. 
Because there are only finitely many unlabelled simple trees for each string, 
the simple tree product  will be finite. The definition of the derivational 
version space can now be stated: 

Definition 4 Given a set of positive strings, the derivational version space is the 
set of grammars corresponding to all possible labellings of each tree sequence in 
the simple tree product for those strings. Given a set of positive and negative 
strings, the derivational version space is the derivational version space for the 
positive strings minus those grammars that generate any of the negative strings. 

An example may clarify this definition. Suppose the positive strings are 
'b' and 'ab.' The construction of the derivational version space begins by 
considering the simple tree product  for the strings. There is one unlabelled 
tree for 'b.' There are four unlabelled trees for 'ab.' So there are four tree 
sequences in the Cartesian product of the trees for 'a' and the trees for 
'ab.' These four tree sequences constitute the simple tree product, which 
is shown in Figure 1. For each of the four tree sequences, the construction 
process partitions the nodes in the trees and assigns labels. Figure 2 il- 
lustrates how the fourth unlabelled tree sequence is treated. At the top of 
the figure, the unlabelled tree sequence is shown with its nodes numbered. 
Trees 1 through 5 show all possible partitions of the four nodes and the 
labellings of the trees that  result. Because the root nodes of the trees must 
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always receive the same node label, S, they are given the same number, 
which forces them to be in the same partit ion element, and hence receive 
the same labelling. Each of the resulting labelled tree sequences is con- 
verted to a grammar. These grammars are shown in the third column of 
the figure. The derivational version space is the union of these grammars, 
which derive from the fourth tree sequence, with the grammars from the 
other tree sequences. 

The motivation for the derivational version space is the following: If a 
grammar is going to parse all the positive strings, then there must be a 
sequence of simple derivation trees, one for each string. Such a sequence 
must be some possible labelling of some possible sequence of unlabelled 
simple trees. The derivational version space is constructed from all such 
sequences, i.e., from the simple tree product. Consequently, it must some- 
how represent all possible grammars, except those grammars which have 
rules that  were not used during the parsing of those strings. Those gram- 
mars are, by definition, the reducible grammars. So the derivational version 
space contains all the reduced grammars. These observations lead to the 
following theorem, which is proved in Appendix 2: 

Theorem 5 The derivational version space for a given presentation contains the 
reduced version space for that presentation. 

Usually, the reduced version space is a proper subset of the derivational 
version space. That  is, the derivational version space often contains re- 
ducible grammars. In the illustration discussed earlier, where the positive 
strings (P+) were 'b' and 'ab,' no reducible grammars would be generated. 
However, if P +  was {'b,' 'ab,' 'ab'} or if P +  was {'b,' 'ab,' 'abb'}, then 
many reducible grammars would be generated. In general, if a subset of 
P +  is sufficient to produce grammars that  will generate all of it, then the 
derivational version space will contain reducible grammars. 

The following theorem shows that  the 'version space' component of the 
name 'derivational version space' is warranted: 

Theorem 6 The derivational version space for a given presentation is contained 
in the version space for that presentation. 

The proof follows from the observation that  the grammars in the deriva- 
tional version space were constructed so that  each positive string has a 
derivation, and grammars that  generate negative strings are filtered out. 
Consequently, the grammars are consistent with the presentation. Lastly, 
we note that: 

Theorem 7 The derivational version space for a finite presentation is finite. 

The proof follows from the earlier observation that  the simple tree product  
is finite. Because each tree sequence in the product  has only finitely many 
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Unlabelled trees: 1 1 

I / \  
b 2 3 

I I 
a b 

4.1 

Partition 

{1,2,a} 

Labelled Trees Grammar  

S S S + b  
I /\ S ~ a  

b S S S ----+ SS 

I I 
a b 

4.2 {1,2} {3} S S S - + b  
I / \  S ~ a  

b S A S ---+ SA 
I I A ~ b  
a b 

4.3 {1,3} {2} S S S ---+ b 
l / \ s ---, As 

b A S A - - + a  

I I 
a b 

4.4 {1} {2,3} S S S - - + b  
I / \ S --+ AA 

b A A A ~ a  
I I A - - + b  
a b 

4.5 {1} {2} {3} S S S - - + b  

b A B A ---+ a 
I I B - + b  
a b 

Figure 2. Parti t ions,  labelled trees, and grammars of tree sequence 4. 
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nodes and there are only finitely many ways to par t i t ion a finite set into 
equivalence classes, there are only finitely many  ways to label each of the  
finitely many  simple tree sequences. Hence, the derivational version space 
for P +  is finite. The  derivational version space for the  whole presentat ion 
is a subset of the one for P + ,  so it too is finite. 

The  derivational version space is a finite set t ha t  contains all the reduced 
simple grammars ,  and moreover,  all its members  are consistent wi th  the 
presentat ion.  This  set suffices for the purposes  we out l ined in the introduc- 
tion. It contains all the  'plausible'  g rammars  and it is finite. We show next  
tha t  there is a part ial  order for the set t ha t  allows a boundary  upda t ing  
algori thm to exist. 

4.3 The FastCovers predicate 

The definition of the  part ial  order is simplified if g rammars  in the deriva- 
tional version space are represented in a special way, as a triple. The  first 
element of the  triple is a sequence of unlabelled simple derivation trees, 
with  the  nodes numbered  as in Figure 1. The  second element of the triple 
is a par t i t ion of the  trees' nodes. The  th i rd  element  is the grammar ' s  rules. 
For instance, g r ammar  4.4 of Figure 2 is represented by the following triple: 

Tree sequence: 
(1 b), (1 (2 a)(3 b)) 

Partition: 
{1}, {2 3} 

Rules: 
S ~ b  
S---* AA 
A ~ a  
A ~ b  

The  triple representat ion allows the FastCovers relation to be defined as 
follows: 

Defini t ion 5 Given two grammars, X and Y, in triple form, grammar X Fast- 
Covers grammar Y if (1) both grammars are labellings of the same tree sequence 
(i.e., the first elements of their triples are the same), and (2) the partition (i.e., 
second element of the triple) of Y is a refinement s of the partition of X. 

For instance, a g r ammar  whose par t i t ion is ({1},{2},{3}) is FastCovered 
by the g rammar  above. In contrast ,  a g r ammar  whose par t i t ion is ({1 
2},{3}) is not  FastCovered by the above grammar ,  nor  does it FastCover 
tha t  grammar .  

SA partition PY is a refinement of another partition PX if and only if every partition 
element of PY is a subset of some partition element of PX. 
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FastCovers is named after Covers, a partial order used in early work on 
grammar induction (Reynolds, 1968; Horning, 1969; Pao, 1969). Although 
we will not pause to define Covers, it can be shown that FastCovers(x,y) 
implies Covers(x,y), but Covers(x,y) does not imply FastCovers(x,y). Fast- 
Covers is used instead of Covers for ordering the derivational version space 
because it is faster to compute than Covers and it makes the Update algo- 
rithm simpler. 

It is simple to show that the FastCovers relationship is transitive and 
reflexive, because these hold for the refinement relationship. Moreover, 
because every grammar in the derivational version space has a triple form, 
FastCovers applies to every pair of grammars in a derivational version 
space. Thus, FastCovers partially orders the derivational version space. 

A second property of FastCovers is needed to show that the Update 
algorithm is correct: 

Theorem 8 For any two grammars, X and Y, in triple form, FastCovers(X,Y) 
implies Generalizes(X,Y). 

The proof follows from observing that the refinement relationship between 
the nonterminals (= partition elements) of X and the nonterminals of Y 
establishes a mapping that takes Y's nonterminals onto X's nonterminals. 
Every derivation in grammar Y can be turned into a derivation in grammar 
X by mapping Y's nonterminals onto X's nonterminals. Thus, every string 
that has a derivation in Y must have a derivation in X as well. So the 
language generated by Y is a subset of the language generated by X, i.e., 
Generalizes(X,Y). 

Given a derivational version space, there is always a finite set of maximal 
elements in FastCovers and a finite set of minimal elements. The finiteness 
of the boundaries follows from the finiteness of the space itself. We will 
call the maximal and minimal sets the derivational G and S, respectively. 
From the preceding theorem, it follows immediately that: 

Theorem 9 The derivational G (S) includes the subset of the derivational version 
space that is maximal (minimal) with respect to the Generalizes relationship. 

Given a derivational [S,G], the FastCovers relationship can be used to de- 
termine whether a given grammar is contained in the derivational version 
space represented by the pair. 

Theorem 10 Given a grammar x in triple form and a derivational [G,S], x is in 
the derivational version space represented by [G,S] if and only if there is some g 
in G such that g FastCovers x, and some s in S such that x FastCovers s. 

The proof of the theorem is given in Appendix 3. 
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5. A n  U p d a t e  a lgor i thm for the  derivat ional  vers ion space 

The preceding section discussed the definition of the structure that  we 
wish to generate. This section presents the algorithm that  generates the 
structure, then reports the results of several experiments with it. It begins 
by presenting an informal account of what happens as positive and negative 
strings are presented. 

5.1 The 'sliced bread' metaphor for derivational version spaces 

The derivational version space under FastCovers is a set of partit ion 
lattices, 9 one lattice for each tree sequence in the simple tree product. One 
can visualize the space as a loaf of sliced bread, one slice for each tree 
sequence. All the FastCovers relationships run inside slices; none cross 
from one slice to another. Each slice is a parti t ion lattice. It has one 
maximal parti t ion on top and one minimal partit ion on the bottom. The 
top partition has just  one element, and the element has all the nodes in the 
tree sequence for that  slice. The top parti t ion for tree sequence of Figure 2 
is ({1, 2, 3}). The bot tom partit ion in each lattice has a singleton partit ion 
element per node in the tree sequence. The bot tom partit ion for the tree 
sequence of Figure 2 is ({1},{2},{3}). All the slices/lattices have unique 
top and bot tom partitions. 

If there are no negative instances in the presentation, then G consists of 
the top parti t ion in each lattice. As negative instances are presented, the 
maximal set for each lattice may descend. Thus, the G set expands and 
the derivation version space shrinks as negative strings are presented. The 
S set always consists of the bo t tom parti t ion in each lattice. Presentation 
of negative instances does not effect the S set. 

When a new positive instance is presented, the derivational version space 
grows horizontally, so to speak (i.e., the loaf gets more slices, and the slices 
get larger). If the newly added positive string has more than one member, 
there will be more than one unlabelled simple derivation tree for it. Hence, 
the simple tree product  will increase in size and the set of partition lattices 
will increase as well (i.e., the loaf gets more slices). Moreover, each of the 
new tree sequences is longer than the corresponding old one, because some 
unlabelled derivation tree for the new string has been added to it. The new, 
longer tree sequence will have more nodes (again, assuming that  the string 
has more than one member). With more nodes available for partitioning, 
the partit ion lattices will expand. Thus, the loaf's slices get larger. In 

9A lattice is a part ial  order with the additional property that  every pair of nodes in 
the lattice has a singleton maximal set and a singleton minimal set. A part i t ion lat t ice 
consists of the set of all part i t ions of some finite set of objects, ordered by the refinement 
relationship. 



A VERSION SPACE FOR GRAMMARS 59 

short, presenting a positive string increases the number of partition lattices 
and the sizes of the partition lattices. 

Presenting a new positive string affects the derivational S and G sets 
in the following ways. The increase in the number of partitions implies 
that the derivational S grows because its members are always the bottom 
partitions of the partition lattices. The effect on the derivational G is 
more subtle. If there are no negative instances, then G grows because 
its members are the top elements of the partition lattices. If there are 
negative instances, then G may grow as positive instances are presented, 
but we have no proof that it must grow. Although the number of maximal 
sets grows, the size of the sets may decrease, leaving the overall G set the 
same size, or perhaps even decreasing it. 

5.2 The Update algorithm 

As mentioned earlier, our algorithm does not bother to maintain the S 
set, although it could easily do so. Instead, it maintains P+,  the set of 
positive strings seen so far. This makes the algorithm more efficient. 

The Update algorithm is incremental. It takes an instance and the cur- 
rent [P+, G] pair and returns a revision of the pair that is consistent with 
the given instance. If there is no such revision, then the algorithm returns 
some error value, such as NIL. The following describes the top level of the 
algorithm: 

1. If the string is positive and a member of P+,  then do nothing and 
return the current version space. If the string is not a member of P+,  
then add it to P +  and call Update-G+. 

2. If the string is negative and a member of P+,  then return NIL. If the 
string is not a member of P+,  then call Update-G- .  

The subroutine Update-G-  is simpler than Update-G+, so it will be de- 
scribed first. 

The task of Update-G-  is to modify G so that none of the grammars 
will parse the negative string. The easiest way to do this is with a queue, 
which is initialized to contain all the grammars in G. The basic cycle is to 
pick a grammar off the queue, and see if it parses the negative string. If 
it does not, then it can be placed in New-G, the revised version of G. If it 
does parse the string, then the algorithm refines the node partition once, 
in all possible ways. That is, it takes a partition such as ({1 2 3},{4 5}), 
and breaks one of the partition elements in two. In this case, there are four 
possible one-step refinements: 
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1. {1}, {2 3}, {4 5} 
2. {1 2}, {3}, {4 5} 
3. {1 3}, {2}, {4 5} 
4. {1 2 3}, {4}, {5} 

Each of these corresponds to a new grammar. These grammars have the 
property that they are FastCovered by the original grammar, and there is 
no grammar that FastCovers them and not the original grammar. That 
is, they are just below the original grammar in the partial order of Fast- 
Covers. This process is called splitting in the grammar induction literature 
(Homing, 1969). 10 

All the grammars produced by splitting are placed on the queue. Even- 
tually, the new grammars will be taken off the queue, as described above, 
and tested to see if they parse the negative string. Those that fail to parse 
the negative string are placed in New-G. Such grammars are maximal in 
the FastCovers order in that there is no grammar above them that fails 
to parse the negative string. The basic cycle of testing grammars, split- 
ting them, and queuing the resulting new grammars continues until the 
queue is exhausted. At this point, New-G contains the maxima] set of the 
grammars that fail to parse the negative string. 

There is one technical detail to mention. It is possible for the same 
grammar to be generated via several paths. Before queuing a new graznmar, 
the queue and New-G are checked to make sure the new grammar is not 
FastCovered 11 by some existing grammar. 

New-G should contain only grammars that are (I) simple, (2) consistent 
with the positive presentation, (3) consistent with the negative presen- 
tation, and (4) maxima] in the FastCovers partial order. The following 
comments prove that the Update-G- algorithm satisfies those criteria. 

i. The grammars are simple, because the unlabelled derivation trees from 
which they are constructed are simple. 

2. The grammars are consistent with the positive presentation, because 
they are a labelling of a set of derivation trees for those strings. There- 
fore, they are guaranteed to parse those strings. 

1°Normally, splitting takes one nonterminal (i.e., a partition element), and divides all 
its occurrences in two. Some of the occurrences are replaced by a new nonterminal. 
Thus, the old nonterminal is 'spli t '  in two. The triple representation presented earlier 
allows a very simple implementation of splitting, but  it applies only to grammars that  
can be represented as triples, and it generates only a subset of the grammars that  normal 
splitting would produce. 

11In order to make the algorithm function correctly, FastCovers must be used for 
this and not Covers. Fil tering grammars that  are covered by grammars from distinct 
unlabelled tree sequences will prune search paths that  may lead to valid New-G members. 
This is the main reason for working with FastCovers rather than Covers. 
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3. The grammars are consistent with the the negative string just received, 
because the test puts the grammars in New-G only if they fail to parse 
that string. The grammars are consistent with the negative strings 
received prior to this one, because the grammars from the old G were 
consistent, and splitting moves down the FastCovers order, so splitting 
reduces the language generated by a grammar and never expands it. 

4. The grammars are maximal in the FastCovers order because splitting 
moves down the order one step at a time, and the movement is stopped 
as soon as the grammar becomes consistent with the presentation. ~ 

This completes the discussion of Update-G-.  We now turn to Update-G+, 
the function that revises the G set when some of the grammars in it do not 
parse a newly received positive string. 

The easiest way to explain Update-G+ is to first describe an algorithm 
that is not incremental: it takes the whole presentation at once and builds 
the appropriate G set. The non-incremental algorithm proceeds in the 
following steps: 

1. Form the simple tree product by taking the Cartesian product of the 
unlabelled simple derivation trees for each positive string. 

2. For each such tree sequence in the simple tree product, form a triple 
to represent the grammar that has only one nonterminal, S. The par- 
titions for these grammars all have just one partition element, and the 
element contains all the nodes in the derivation tree sequence. These 
grammars are the maximal grammars in the FastCovers partial order. 
They would be the G set if the presentation had only the positive 
strings. 

3. For each string in the set of negative strings, apply Update-G-.  

This algorithm is not incremental, since it must process all the positive 
strings before it processes any of the negative strings. An incremental 
Update algorithm must be able to handle strings in the order they are 
received. The incremental algorithm should take a G set whose grammars 
may have already been split somewhat by Update-G- ,  and modify it to 
accommodate a new positive string. 

In the non-incremental algorithm, the effect of adding a new string is 
to increase the length of the sequences of unlabelled derivation trees, and 
hence to increase the number of nodes in the partitions. In the incremental 
algorithm, this must be done in all possible ways, so the resulting Update 
algorithm is: 

12A complete proof would require using the fact that the derivational version space is 
a set of lattices, and lattices are particularly well-connected. 



62 K. VANLEHN AND W. BALL 

1. Given a positive string, form the set of all unlabelled simple derivation 
trees for that string. 

2. For each grammar in the old G and for each tree for the new positive 
string, 

(a) append the tree onto the end of the tree sequence of the gram- 
roar's triple, and 

(b) allocate the new tree's nodes to the partition elements in all possi- 
ble ways. Thus, if there are N partition elements in the partition, 
then there are N choices for where to put the first tree node, N 
choices for where to put the second tree node, etc. If the tree has 
M nodes, then N M new partitions will be generated. Each one 
becomes a grammar that is a candidate for New-G. 

3. Place all the candidate grammars generated in the preceding step on 
the queue for the Update-G-  algorithm. However, instead of testing 
that a grammar is consistent with just one negative string, as the 
Update-G-  algorithm does, test that the grammar is consistent with 
all the negative strings in the presentation that have been received so 
far. 

The first two steps generalize the old grammars by adding rules to them. 
The new grammars might be too general, in that they may parse some of 
the negative strings given earlier in the presentation. Hence, the last step 
must check all the negative strings. This requires saving all the negative 
strings as they are presented. Thus, the version space needs to be a triple: 
IF+, P - ,  G]. 

This means that one of the usual benefits of the version space technique 
is lost. Usually, version space induction allows the learner to forget about 
an instance after having processed it. This algorithm requires the learner 
to remember the instances in the presentation. However, it is still an 
incremental algorithm. After each string is presented, an up-to-date G 
set is produced. Moreover, it is produced with less processing and memory 
than would be required to generate that same G set completely from scratch 
using the entire presentation. In short, the algorithm is an incremental 
version space update with respect to computation, but not with respect to 
instance memory. 

5.3 Illustrations of the algorithm's operation 

In order to illustrate the operation of the algorithm, this subsection 
presents a simple example. The next subsection will continue this example 
by showing how the algorithm performs when it is modified to incorporate 
certain biases. 
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Table 1. Learning a command language. 

Instances Size of G set CPU seconds 

+ delete all-of-them 
- all-of-them delete 
- delete delete 
+ delete it 
- it it 
+ print it 
+ print all-of-them 

4 
5 
5 

25 
25 

197 
2580 

0.03 
0.25 
0.52 

11.80 
0.32 

526.00 
20300.00 

The illustration is based on learning a command language for a file sys- 
tem. The algorithm receives strings of command words, marked positive 
or negative, and from these data it must infer a grammar for the command 
language. Suppose the first string is positive: 'delete all-of-them.' There 
are four possible unlabelled simple trees for this string, and they lead di- 
rectly to four grammars for the G set. These grammars are listed below in 
their triple representation. 

1. (1 delete all-of-them) 
{1} 
(S ~ delete all-of-them) 

2. (1 delete (2 albof-them)) 
{12} 
(S --+ delete S) (S --+ all-of-them) 

3. (1 (2 delete)(3 all-of-them)) 
{12} 
(S ~ S all-of-them)(S --+ delete) 

4. (1 (2 delete)(3 all-of-them)) 
{123}  
(S --+ S S)(S --+ delete)(S --+ all-of-them) 

The first three grammars generate the finite language consisting only of 
the single string 'delete all-of-them.' The fourth grammar generates all 
possible strings over the two word vocabulary of 'delete' and 'all-of-them.' 
Suppose the next string is a negative string, 'all-of-them delete.' This string 
cannot be parsed by grammars l, 2 or 3, so they remain unchanged in the 
G set. The fourth grammar is overly general, so it is split. There are only 
three legal partitions. Two of them survive, becoming grammars 5 and 6 
shown below. The other partition, {1}{2 3}, yields a grammar that parses 
the negative string, so it is split further, into {1}{2}{3}. This partition is 
FastCovered by the two survivors, so it is abandoned. The survivors are: 
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5. (1 (2 delete)(3 all-of-them)) 
{1 2}{3} 
(S ---} S A)(S ~ delete)(A ~ all-of-them) 

6. (1 (2 delete)(3 all-of-them)) 
{1 3}{2} 
(S ~ A S)(A ~ delete)(S ~ all-of-them) 

Suppose the next string is 'delete delete,' a negative instance. None of 
the grammars in G parse this string, so the G set remains unchanged. This 
illustrates that the algorithm has made an inductive leap while processing 
the preceding strings. This string is new, but there is no change in the 
version space. 

Suppose the next string is positive, 'delete it.' There are four possible un- 
labelled simple derivation trees for this string. Each is paired with each of 
the five grammars in the current G, yielding 20 combinations. The result- 
ing 20 grammars are queued for testing against P - .  Some splitting occurs 
during the processing of the queue. When the queue is finally exhausted, 
New-G has 25 grammars. 

Table 1 summarizes the results so far and shows what happens as more 
instances are presented. As a rough indication of the practicality of the 
algorithm, the table shows the number of CPU seconds used in processing 
each instance by a Xerox 1109 running Interlisp. The combinational explo- 
sion inherent in the Update-G+ algorithm is quite evident. However, the 
algorithm is fast enough to construct small version spaces. 

Table 2. A bias for minimum number of nonterminals. 

Instances Size of G set CPU seconds 

+ delete all-of-them 
- all-of-them delete 
- delete delete 
+ delete it 
- it it 
+ print it 
+ print all-of-them 

4 
3 
3 
7 
7 

17 
55 

0.03 
0.28 
0.05 
1.66 
0.09 
5.87 

19.40 

5.4  B i a s i n g  t h e  U p d a t e  a l g o r i t h m  

Better performance can be obtained by using the Update algorithm as 
a framework upon which biases can be mounted. There are several places 
in the algorithm where biases can be installed. One place is in the queue- 
based loop of Update-G- .  Currently, new grammar triples are placed on 
the queue only if they are not FastCovered by existing grammar triples. 
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Table 3. The effects of limiting the splitting ply. 

Instances one ply two ply 

G Secs. G Secs. 

+ delete all-of-them 
- all-of-them delete 
- delete delete 
+ delete it 
- it it 
+ print it 
+ print all-of-them 

4 0.02 
5 0.39 
5 0.09 

25 6.99 
25 0.31 

4 0.01 
5 0.54 
5 0.08 

25 13.50 
25 0.32 

197 204.00 
2580 3460.00 

188 75.20 
2406 1110.00 

This filter can be made stronger. For instance, suppose we queue only 
grammars that  have a minimal number of nonterminals, that  is, grammar 
triples with partitions of minimal cardinality. Table 2 shows the results of 
running the previous illustration with this bias installed. 

The bias reduces the G set from 2580 grammars to 55 grammars. All of 
these grammars happen to use a single nonterminal, e.g., 

S --* S all-of-them 
S ~ S i t  
S -* delete 
S -+ print 

Processing time is drastically reduced since many grammar triples those 
with partitions having cardinality larger than that  of some existing consis- 
tent grammar triple - are not even generated. 

Another filter that  can be placed on the Upda t e -G-  loop is one which 
limits how deeply into the partition lattice the search may delve. We 
implemented a filter which allows the user to set a 'ply.' If a grammar triple 
with partit ion of cardinality m needs to be split, the search will proceed 
only to partitions of cardinality m+n,  where n is the ply set by the user. 
Table 3 indicates that  this bias approximates the results of the unbiased 
algorithm more closely than does minimizing the number of nonterminals. 
Note especially that  for a ply of two, all the grammars of the unbiased 
algorithm were produced at a fraction of the processing time. 

The desirability of these biases will depend on the task domain. The 
point is only that  the algorithm provides a convenient framework for im- 
plementing such biases. 

Another place to install biases is in the subroutine of Update-G+ that  
generates unlabelled derivation trees. This placement allows the biases 
to control the form of the grammars. For example, if the tree generator 
produces only binary trees, then the induced grammars are in Chomsky 
normal form. If the tree generator is constrained to produce only right 
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branching trees, then only regular grammars are considered. In the latter 
case, there is only one right branching simple tree for each string. Conse- 
quently, there is only one unlabelled tree sequence for any given presenta- 
tion. Under these circumstances, FastCovers is equivalent to Covers, and 
our algorithm becomes similar to Pao's (1969) algorithm for learning finite 
state machines. The main difference is that Pao's algorithm employs an 
explicit representation for the whole version space, whereas our algorithm 
uses the more compact [P+, P - ,  G] representation. Table 4 shows the 
results of our algorithm on the test case discussed above when the bias for 
regular grammars is introduced. Tables 5 and 6 show the results for a more 
challenging case, inferring the syntax of Unix file names. 

The point of this section is that the Update algorithm is good for more 
than just exploring induction problems. It can be used as a framework for 
the development of practical, task-specific learning machines. 

Table 4. Inducing regular grammars for file system commands. 

Instances Size ofGset CPUseconds 

+ delete all-of-them 
- all-of-them delete 
- delete delete 
+ delete it 
- it it 
+ print it 
+ print all-of-them 

0.07 
0.02 
0.01 
0.07 
0.02 
0.11 
0.12 

6 .  C o n c l u s i o n s  

The introduction motivated the results presented here from a narrow 
perspective, viz. their utility in our research on cognitive skill acquisition. 
However, they may have wider application. This section relates the results 
to more typical applications of grammar induction, which, for purposes of 
discussion, can be divided into three classes: 

• Grammar induction is used as a formal account of natural language ac- 
quisition (Osherson, Stob & Weinstein, 1985; Berwick, 1985; Langley 
& Carbonell, 1986; Pinker 1979). Learning the syntax of a language 
is regarded by some as an important component of learning a lan- 
guage, and grammar induction is one way to formalize the syntactic 
component of the overall language-learning task. 
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Grammars are sometimes used in software engineering; e.g., for com- 
mand languages or pat tern recognition templates (Gonzalez & Thoma- 
son, 1978). Some applications require that  the grammars change over 
time or in response to different external situations. For instance, a 
command language could be tailored for an individual user or a pat- 
tern recognizer might need to learn some new patterns. Grammar 
induction may be useful in such applications (Fu & Booth, 1975; Bier- 
mann & Feldman, 1972). 

Knowledge bases in AI programs often have recursive hierarchical 
structures, such as calling structures for plans or event schemata for 
stories. The hierarchical component of such knowledge is similar to a 
grammar. Grammar  induction can be used to acquire the hierarchical 
structure, although it must be used in combination with other induc- 
tion engines that  acquire the other structures. For instance, the Sierra 
learner (VanLehn, 1987) represents knowledge as hierarchical produc- 
tion rules. It uses a grammar induction algorithm to learn the basic 
skeleton of its rules, a BACON-like function inducer (Langley, 1979) 
to learn details of the rules' actions, and a version space algorithm 
(Mitchell, 1982) to learn the exact content of the rules' conditions. 

In all these applications, the problem is to find an algorithm that will infer 
an 'appropriate'  grammar whenever it receives a 'typical' training sequence. 
The definition of 'appropriate grammar'  and 'typical training sequence' 
depends, of course, on the task domain. However, it is usually the case that  
only one grammar is desired for any given training. If so, then the Update 
algorithm for derivational version spaces is not immediately applicable, 
because it produces a set of grammars. In fact, the set tends to grow 
larger as the training sequence grows longer. This is why we do not claim 
that  the algorithm models human learning, even though it was developed as 
part of a study of human learning. The algorithm produces a set, whereas 
a person probably learns only one (or a few) grammars qua procedures. 
Similarly, the algorithm is not a plausible model of how children learn 
natural language, even in the liberal sense of 'plausible' employed by studies 
of language identification in the limit. 13 

13It might seem that after a large number of examples had been received, all the 
grammars in the derivational version space will generate exactly the same language, and 
that language is the target language. This would imply that our algorithm identifies 
languages in the limit, even though it produces a set of grammars instead of a single 
grammar. Kevin Kelly and Clark Glymour (personal communication) have proved this 
conjecture false. Kelly (personal communication) has shown that any identifiable class of 
context-free grammars is identifiable by a machine whose conjectures are always reduced, 
simple grammars that are consistent with the data. Kelly and Glymour conclude, along 
with us, that our results have little bearing on the language identification literature. 
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Table 5. Learning regular grammars for Unix file names. 

Instances Size of G set CPU seconds 

+ foo. bar 
+ foo 
+ bar 
+ / gram / foo 
- foo / / foo 
- / / f o o  
+ / usr / vsg / bar 
- / / bar 
- / / / bar 
- / usr / / bar 
- / / gram / bar 
- / / v s g / b a r  
- v s g / / u s r / b a r  
- / u s r / / g r a m / b a r  
- / usr / / foo 
- / u s r / / g r a m / f o o  
- / u s r / / v s g / b a  

1 
1 
1 
1 
5 
2 

43 
32 
25 
16 
32 
14 
22 
15 
10 
5 
2 

0.01 
0.01 
0.01 
0.04 
1.03 
0.82 

88.30 
20.90 
9.49 

19.50 
9.76 
6.20 

10.10 
17.20 
10.40 
7.55 
8.72 

Of course, not all applications of grammar induction desire an algorithm 
to produce just  one grammar. An application might have an inducer to 
produce a set of grammars and leave some other process to choose among 
them. For instance, when tailoring a command language, one might have 
the user choose from a set of grammars generated by the grammar inducer. 

If grammar induction is viewed as search, then producing just one gram- 
mar is a form of depth-first or greatest-commitment search. The version 
space strategy, as pointed out by Mitchell (1982), is a form of breadth-first 
or least commitment  search. This gives it the capability of producing in- 
formative intermediate results. Halfway through the presentation of the 
training sequence, one can determine unequivocally which generalizations 
have been rejected and which generalizations are still viable. If this capa- 
bility, or any other feature of the least commitment  approach, is important,  
then the algorithm presented here should be considered. 

Even if the application does not use grammars as the representation 
language or even as a component  of the representation, the techniques pre- 
sented here may be useful. The definition of reducedness extends readily to 
many representation languages. For instance, a Prolog program is reduced 
if deleting any of its Horn clauses makes the program inconsistent with 
the training examples. Similarly, the technique for building a derivational 
version space can be extended to representations other than grammars. It 
remains to be seen whether there is any utility in these extensions, but  
they are at least possible. 
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Table 6. The contents of the final G set of Table 5. 

Grammar 1 Grammar 2 

S ---+ / A 
A ---+ gram S 
A --+ usr S 
A ~ vsg S 
S-+ / foo 

S + / A  
A --+ gram S 
A ---, usr S 
A --+ vsg S 
S ~ / f o o  

S -* / bar 
S ~ . bar 
S --, foo 
S --4 bar 
S --* foo S 

S ~ / bar 
A --* bar 
S ~ f o o  
S --* bar 
S-* foo A 

However, the applications that seem most likely to benefit from the 
derivational version space approach are those that are most similar to our 
application, in that their research problem is to understand the influence of 
representation languages and biases on learning. This amounts to studying 
the properties of induction problems, rather than studying the properties 
of induction algorithms. In such research, it is often a useful exercise to 
study the set of generalizations consistent with a given training sequence 
and see how that set changes as the biases and representation language 
are manipulated. Such sets are exactly what the derivational version space 
strategy calculates. 
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A p p e n d i x  1. P r o o f  o f  T h e o r e m  3 

The following proof shows that there are finitely many reduced context- 
sensitive grammars for any given finite presentation. Context-sensitive 
grammars are used in the theorem not only because they give the theorem 
broader coverage, but because they make the proof simpler. The proof 
is a counting argument, and context-sensitive grammars are defined by 
counting the relative sizes of the left and right sides of their rules. 

Definition 6 A grammar is a context-sensitive grammar if for all rules a ~ 8, 
we have lal < Ifll, where Ixl means 'the length of string x'. 14 

14Another definition of context-sensitive grammars requires that the rules have the 
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Defini t ion 7 A context-sensitive grammar is simple if (1) for all rules a --+ /3, 
ial = 6~] implies that ~ has more terminals than a, and (2) every nonterminal 
occurs in some derivation of some string. 

L e m m a  1 The longest derivation of a string s using a simple context-sensitive 
grammar is 2is i - 1. 

Proof Consider  an arbi t rary step in the derivation, a --+ /3. If lal = 
Ifl], then  fl mus t  contain at least one more  terminal  than  a, because the 
g rammar  is a simple one. Consequently,  there can be at most  asK such steps 
in the derivation, because there are Isi terminals  in the string. For all the 
other steps in the der ivat ion, /3  mus t  be at least one longer t han  a. There  
can be at most  Isl - 1 such steps in the derivation, because the str ing is 
only Isl long. So the longest possible derivation using a simple g rammar  is 
2] J- 1, where steps have = and a steps have < J J. 

T h e o r e m  3 There are finitely many simple reduced context-sensitive grammars 
for any given finite presentation. 

Proo~ There  are finitely many  positive strings in the presentat ion.  By 
the l emma just  proved, the  longest derivation of each string a is 21a i - 1, 
Therefore, the largest number  of rule firings in deriving the positive strings 
is less than  2T, where T is the total  of the lengths of positive strings: 

T =  
~EP+ 

where P +  designates the set of positive strings in the presentat ion.  If a 
g rammar  has more than  2T rules, then  there mus t  be rules tha t  were not  
used in any string's  longest derivation. Such rules can be el iminated from 
the g rammar  wi thout  affecting the existence of the longest derivations. So 
such a g rammar  is reducible. Thus,  the  largest possible reduced g rammar  
will have less t han  2T rules. 

This result alone is not  enough to show tha t  there are finitely many  
reduced grammars ,  because the rules could in principle be arbitrarily long 
or contain arbitrari ly many  dist inct  symbols. However, if a rule is used in 
a derivation of some string in P + ,  its right side mus t  be shorter  than  L, 
where L is the length of the  longest string in P + .  The  rule's left side mus t  
also be shorter  than  L. If we could show tha t  the g rammar  cannot  have 
arbitrarily many  symbols,  then  we would be done. Because the terminals 
in the rules mus t  appear  in the strings and there are finitely many  strings, 
there are finitely many  possible terminals  in the rules. In fact, the largest 

form a A ~  --~ a~13, where A is a aonterminal and "7 is nonempty. The definition given 
above is from Hopcroft and Ullman (1969), who comment that the two definitions axe 
equivalent. 



A VERSION SPACE FOR GRAMMARS 73 

number of terminals is T. Because each nonterminal must participate in 
some string's derivation (by simplicity), each nonterminal must appear in 
some rule's left side. There are less than 2T rules, each with at most L 
symbols on the left side, so there are less than 2LT possible nonterminals. 
Thus, the number of simple reduced grammars is finite because: (1) the 
number of rules is less than 2T, (2) the length of the left and right sides is 
at most L, and (3) there are less than 2LT+T symbols used in the rules. 
This completes the proof of theorem 3. 

A p p e n d i x  2. P r o o f  o f  T h e o r e m  5 

Theorem 5 states that the derivational version space contains the reduced 
version space. The critical part of the proof deals with the positive strings, 
P+,  because both version spaces specifically exclude grammars that gen- 
erate negative strings. Hence, we prove the following theorem, from which 
Theorem 5 follows immediately. 

Algorithm A Given a set of strings P+, produce the grammars corresponding 
to all possible labellings of all possible sequences of all possible simple unlabelled 
derivation trees for each string. 

Theorem 11 Algorithm A produces a set of grammars that contains all the re- 
duced, simple grammars for P+. 

To prove the theorem, we need to show that every reduced grammar is gen- 
erated by the algorithm. Suppose that R is a reduced grammar. Because 
R generates every string in P+,  it generates at least one derivation tree 
for every string in P+.  First we will consider the case where R generates 
exactly one derivation tree for each string, then consider the case where R 
generates more than one derivation tree for some (or all) of the strings. 

Since R generates exactly one derivation tree for each string~ we merely 
need to show that that sequence of derivation trees is among the set of 
labelled parse tree sequences generated by the algorithm. Because R is 
simple, its parse trees must conform to the structural constraints that 
were imposed in generating the set of unlabelled derivation trees. In other 
words, if a node has just one daughter, then the daughter is a leaf. More- 
over, the algorithm generates all such unlabelled derivation trees, so R's 
derivation trees must be among those generated by the algorithm. Thus, 
R's derivation trees are some labelling of one of the unlabelled derivation 
tree sequences. However, the algorithm generates all possible labellings 
of these. So R's parse trees must be among the set of labelled derivation 
tree sequences generated by the algorithm. The only way for R to have 
nonterminals other than those induced by labelling the unlabelled deriva- 
tion trees would be for R to have rules that are not used in generating its 
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derivation trees for P+ .  However, R is reduced, so this cannot be the case. 
Thus, R must  be one of the grammars induced by the algorithm. 

Next we consider the case where R generates more than one derivation 
tree for at least one string in P+ .  For each string p in P+ ,  let Treesp be the 
set of derivation trees for p generated by R. As shown above, the algorithm 
generates at least one of the derivation trees in each Treep. From that  
derivation tree sequence, it generates rules for a grammar. The generated 
grammar will not be the same as R if some of the other derivation trees in 
Treesp use rules that  are not in this derivation tree sequence. However, if 
this were the case, then those rules could be deleted from R, and yet all 
the strings could still be parsed. Thus, R would be reducible, contrary to 
hypothesis. So R must be generated by the algorithm. This completes the 
proof of the theorem. 

Appendix  3. Proof  of  Theorem 10 

The following theorem states that  the derivational version space is prop- 
erly represented by its boundaries: 

Theorem 10 Given a grammar x in triple form and a derivational [C,S], x is in 
the derivational version space represented by [G,S] if and only if there is some g 
in G such that g FastCovers x, and some s in S such that x FastCovers s. 

The 'if' half of the 'if and only if' follows immediately from the definition 
of G and S; if x is in the space, then there must be maximal and minimal 
elements above and below it. To show the 'only if' half, suppose that  x is 
not in the space, and yet there is a g that  FastCovers it and an s that  it 
FastCovers. A contradiction will be derived by showing that  x should be in 
the derivational version space. First, we show that  x is consistent with the 
presentation. Because x FastCovers s, the language generated by x includes 
the language generated by s. Because s's language includes the positive 
strings of the presentation, so does x's language. Thus, x is consistent with 
the positive strings of the presentation. Because g FastCovers x, and g's 
language excludes all the negative strings, x's language must also exclude all 
the negative strings. So x is consistent with the negative strings. Therefore, 
x is consistent with the whole presentation. The remaining requirement for 
membership in the derivational version space is that  x be a labelling of some 
tree sequence from the simple tree product of the presentation. Clearly, x 
is a labelling of the tree sequence which is the first element of its triple. 
Because x FastCovers s, it must  have the same tree sequence as x, so its 
tree sequence is a member of the simple tree product.  It follows that  x 
should be in the derivational version space. This contradiction completes 
the proof of the theorem. 


