
COGNITIVE SCIENCE 13, 415-465 (19eS)

Non-LIFO Execution of Cognitive Procedures

KURT VANLEHN, WILLIAM BALL, BERNADETTE KOWALSKI
Carnegie-Mellon University

Many current theories of human problem solving and skill acquisition assume

that people work only on the unsatisfied goal that was created most recently.
That is, the architecture obeys a last-in-first-out (LIFO) constraint on the selection
of goals. This restriction seems necessary for the proper functioning of automatic

learning mechanisms, such as production compilation and chunking. It is argued
that this restriction is violated by some subjects on some tasks. In particular, 8

subiects (from a sample of 26) execute subtraction procedures in a way that vio-

lates the LIFO constraint. Although there is a great deal of between- and within-
subject strategy variation in the 8 subjects’ behavior, it can be simply exploined
by hypothesizing that (1) the goal selection is not necessarily LIFO, (2) goal selec-

tion knowledge is represented by explicit preferences, and (3) the 8 subjects
have just a few preferences that are overgeneralized, overspecialized, or miss-

ing. The rest of their preferences ore correct. On the other hand, LIFO-bosed
models seem unable to explain the strategy variations in any simple way. Thus,

it seems that port of the flexibility in humon problem solving comes from having a
choice of which goal to work on next. Fortunately, it is simple to ammend auto-

matic learning mechanisms so thot they will function correctly in a non-LIFO
architecture.

1. INTRODUCTION

It is possible that people can select any pending goal they can recall as their
next focus of attention. The model of problem solving presented in this arti-
cle has this property, but most models-including GPS (Ernst & Newell,
1969), HPS (Anzai, 1978; Anzai & Simon, 1979), ACT* (Anderson, 1983,
1987; Anderson, Farrell, & Saurers, 1984; Anderson & Thompson, 1986;
Soar (Laird, Newell, & Rosenbloom, 1987), and Sierra (VanLehn, in press)-

We would like to thank Jamesine Friend for conducting the experiment, and Austin
Mnderson for writing the data collection program. Micki Chi, Paul Rosenbloom, Clayton
Lewis and Stellan Ohlsson provided valuable comments on the manuscript. Micki Chi’s
thoughtful advice was particularly important to the development of the research. This research
was supported by the Cognitive Science Program, Psychological Sciences Division, Office of
the Naval Research, under Contract No. NOOO14-88-K-0688. Reproduction in whole or in part
is permitted for any purpose of the United States Government. Approved for public release;
distribution unlimited.

Correspondence and requests for reprints should be sent to Kurt VanLehn, Department of
Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213.

415

416 VANLEHN, BALL, AND KOWALSKI

allow students to select only the most recently created pending goal. That is,
they impose a LIFO (Iast in first out) restriction on goal selection.’ For
instance, suppose that processing goal A creates subgoals B and C, then
subgoal B is selected and its processing creates sub-subgoal D. At this point,
there are at least two pending goals, D and C, in working memory. A LIFO
architecture has no choice; it must select goal D because D was created after
C. A non-LIFO architecture can select either goal. On the face of it, the
LIFO restriction seems a little strange. If working memory is equated with
information that can be easily recalled, then the LIFO restriction asserts
that people find it impossible to work on certain goals that they can easily
recall.

There are no compelling computational reasons for placing a LIFO
restriction on problem solving. Indeed, many contemporary AI problem-
solving systems have non-LIFO architectures. Typically, whenever the cur-
rently executing goal (often called a task) generates subgoals, they are placed
in a set of pending tasks. When the currently executing task completes, the
architecture selects the next task from the set of pending tasks.’ Although
the task selected may be one of the ones just created, it does not have to be,
and this makes the architecture non-LIFO. Despite the widespread use of
non-LIFO problem-solving architectures in AI, no one has seriously consid-
ered whether human problem solving might be non-LIFO. Most problem-
solving systems, that have been claimed as models of human problem solving
have been LIFO, but that may have been more a matter of convenience than
theoretical conviction.

There are many difficulties in determining whether people obey a LIFO
restriction. Here are four:
1. Usually it is not known exactly what the subjects’ procedures are. If

their behavior is consistent with a LIFO execution of one procedure,
and a non-LIFO execution of a different procedure, but it is not known
which procedure they have, then how can one tell whether the LIFO
constraint is being obeyed?

2. In many task domains, the LIFO restriction is imposed by the task
itself. For instance, if one is using a goal-recursive strategy for solving
the Tower of Hanoi puzzle, then the rules of the puzzle force one to at-
tend to the Move-disk goals in LIFO order (Simon, 1975). Only task
domains that give the subject the freedom to use a non-LIFO order are
useful for testing the LIFO hypothesis.

I If several goals are created at the same time, then some models allow selection among
them. But in no case is the model allowed to choose a goal that was created before some other
pending goal.

a Architecturess vary in selection schemes they use. Some use simple numerical priorities at-
tached to tasks. Some use heuristic rules. Others can use the full power of the problem-solving
system by “going meta” and taking on goal selection as a problem in itself.

3.

4.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 417

When a person follows a written procedure (e.g., while cooking), the
goals of that procedure probably are not subject to the LIFO restric-
tion. Suppose the procedure is memorized then followed from (declara-
tive) memory. Presumably the goals are still not subject to the LIFO
constraint. Suppose the declarative representation of the procedure is
compiled into a procedural representation. Now the LIFO constraint
should apply. But how does one tell whether a given subject’s proce-
dure is represented declaratively or procedurally?
Although the LIFO restriction applies to goals retrieved from working
memory, that is not how some goals are recalled. Instead, they are con-
structed from the externally visible problem state (VanLehn & Ball, in
press). It is not clear whether the LIFO restriction applies to recon-
structed goals.

In short, the issue of LIFO versus non-LIFO architectures is quite compli-
cated. This article certainly does not settle the issue, but merely introduces
some new data from a simple task domain that avoids most of the complexi-
ties mentioned above.

The task domain is ordinary, multicolumn subtraction. This task domain
has been extensively investigated, and detailed models exist for the knowl-
edge representations and learning processes that students seem to employ
(Brown & VanLehn, 1980; VanLehn, 1983a; VanLehn, in press; Young &
O’Shea, 1981). Thus, Difficulty 1 is avoided. The subtraction procedure is
such that non-LIFO executions are possible, so Difficulty 2 is avoided. The
subjects have practiced subtraction for many hours. As shall be argued later,
this suggests that the subtraction procedures are encoded as procedural
knowledge and therefore should be subject to the LIFO restriction. Thus,
Difficulty 3 is avoided. Although the task domain does allow goals to be
stored externally and reconstructs, it will be argued that mechanisms for
storing goals are “implementation” details, which should be considered
separately from ~chitectur~ principles, such as the LIFO constraint. Thus,
Difficulty 4 is shown to have no force. In short, the task domain of subtrac-
tion is an ideal vehicle for testing the claim that people’s use of goals is not
subject ‘to the LIFO constraint.

There is another advantage of subtraction that is a bit less obvious, but
quite important ndnetheless. If subjects reliably mention their goals as they
selected them, then the goal structure mentioned earlier could be used,

Goal A
Subgoal B

Sub-subgoal D
Subgoal C

If they selected goals in the order A, B, C, and D, and said so, then they
have demonstrably violated the LIFO restriction. But verbal protocol data
are notoriously incomplete, and seldom do subjects mention all the goals

418 VANLEHN, BALL, AND KOWALSKI

that have played a role in their problem solving. Fortunately, in subtraction,
the primitive (lowest) goals in the hierarchy correspond to reliably visible
actions, such as writing a digit. This gives the experimenter partial evidence
about the sequence of goals selections. This is not always good enough. For
instance, suppose goals C and D correspond to reliably visible actions and
the experimenter sees the subject execute C then D. This behavior is consis-
tent with both a non-LIFO execution of the goal structure (A, B, C, D) as
well as a LIFO execution (A, C, B, D). Thus, this particular goal structure is
too simple to allow an experimenter to test whether or not the subject uses
LIFO or non-LIFO goal selections. Testing requires a more complicated
goal structure, such as:

Goal A
Subgoal B

Sub-subgoal Bl
Sub-subgoal B2

Subgoal C
Sub-subgoal Cl
Sub-subgoal C2

where goals Bl, B2, Cl, and C2 correspond to reliably visible actions. Now,
if the subject executes the actions for goals Bl, Cl, B2, and C2, in that
order, the experimenter is fully justified in concluding that the subject has
used non-LIFO goal sections, as there are only two orders for goal section
that will generate this sequence (one is A, B, Bl, C, Cl, B2, C2, and the
other is A, C, B, Bl, Cl, B2, C2), and neither obey the LIFO restriction on
goal selection3 Fortunately, subtraction procedures generate goal struc-
tures of the necessary kind, which is yet another reason for using subtrac-
tion as the task domain.

Arguing for the generality of these findings will not be attempted since it
is both too hard and too easy. If one ignores the four difficulties listed
earlier, then cases of non-LIFO execution are easily found: When you fix
dinner, you have no problem interweaving subgoals from the Cook-dinner
goal with subgoals from the Clean-up-breakfast-dishes goal, even though
the LIFO restriction says that you must complete ah the subgoals of Clean-
up-breakfast-dishes before starting to work on Cook-dinner (or vice versa).
But such easy counterexamples to the LIFO constraint are subject to all the
difficulties mentioned above. For instance, the goal structure of the knowl-
edge involved in cooking and cleaning up the kitchen is not really known,
nor whether it is represented procedurally or declaratively. Thus, although

’ Computer scientists may recognize this pattern of execution as a kind of co-routinizing or
pseudo-parallel processing that can only be accomplished if the programming language has a
spaghetti stack. An ordinary stack will not support suspending the execution of procedure Bin
order to initiate execution of C, then later resuinmg thi: execution of procedure B.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 419

A. B. C.

6416
-2709 -2709 -2709

3709

Flgure 1. Initial, intermediate and final states of a nonstandard solution

it is easy to make plausible claims about generality, it is difficult to support
them properly, so this article restricts its claims to subtraction.

The argument to be presented is a classic case of finding a model that
captures the variance in a set of data. In this case, the data are protocols of
26 subjects solving subtraction problems. It will be shown that 8 of these
subjects alternate between a standard execution sequence, wherein all the
subgoals of processing a column are completed before moving on to work
on the next column, and a variety of nonstandard execution sequences. For
instance, some subjects do all the borrowing that a problem requires before
answering any column, then they answer the columns, starting with the far
left one and proceeding toward the units column (see Figure 1). The variance
in the data is exactly the strategy shifts of the subjects. For instance, one
subject did 4 problems with the standard execution strategy, 4 with the non-
standard strategy just mentioned, and 2 with a second nonstandard strategy.
Two further problems were solved with blends of the three strategies.

After presenting the data, a problem-solving model is presented that is
based upon the assumptions that (1) goals are not subject to a LIFO restric-
tion and (2) people have explicit goal selection preferences as part of their
knowledge of the subtraction procedure. A typical goal selection preference
is “If there is a pending goal of type Process-column and a pending goal of
type Borrow, then prefer the goal of type Borrow.”

Next, it is shown that almost all the variance in the data can be captured
by introducing small perturbations into the set of goal selection preferences
that defines the standard execution strategy. Most perturbations consist of
simply deleting a goal selection preference, wrapping a condition around it,
reversing its direction, generalizing it, or specializing it. In short, the expla-
nation for the variance in the data is that most of the 26 subjects learned a
complete, standard procedure, but 8 either failed to encode a few of the
standard goal preferences completely or they did encode them but later
decided to revise them slightly. Either way, the 8 subjects end up with a pro-
cedure that is almost identical to the standard procedure, with only a few
preferences modified.

Although this explanation for the variance is simple and intuitively com-
pelling, it does depend upon having a non-LIFO problem-solving architecture.
Because the LIFO constraint has been a fixture in successful problem-solving
models for almost a decade, cautions should be taken before abandoning

420 VANLEHN, BALL, AND KOWALSKI

such a traditional and useful assumption. So the next step in the argument is
to consider what it would take to capture the variance in these data using a
LIFO architecture. Several ways to model the data with LIFO architectures
are tried. Although all of the alternatives worked, they all required some
rather implausible extra assumptions.

Lastly, the reason for wanting a LIFO architecture in the first place is
examined. The chief advantage of the LIFO restriction seems to be that it
constrains automatic learning mechanisms, such as knowledge compilation
(Anderson, 1987) and chunking (Laird, Rosenbloom, 8c Newell, 1986). A
simple technique for constraining automatic learning without putting a LIFO
restriction on goal selection is presented. This leads to the conclusion that
there is no reason for retaining the LIFO constraint, and several reasons for
dropping it.

2. THE EXPERIMENT AND ITS RESULTS

The experiment involved collecting protocols from students learning multi-
column subtraction. One advantage of this task domain is that subtraction
is a fairly pure example of procedural knowledge. Students, much to the
regret of their teachers, do not seem to acquire a deep understanding of the
algorithm (Resnick, 1982; Resnick &L Omanson, 1987; VanLehn, 1986). As
far as most of them are concerned, the procedure is just so much symbol
manipulation. This means that a representation can be simple and yet still
suffice for representing their operative knowledge.’ Moreover, a fair amount
is already known about subtraction procedures and how they are acquired
(Brown & VanLehn, 1980; VanLehn, 1983a; VanLehn, 1983b; VanLehn, in
press). Before discussing the experiment itself, some additional background
on this task domain is presented.

2.1. Background
Prior to the experiment described here, three phenomena were already
known to occur in the behavior of subtraction students. Because these phe-
nomena also occur in the present data, the following paragraphs briefly
describe them and the best current explanations of them, as well as intro-
ducing several technical terms (in italics) that are needed later.

1. Both students and adults are known to make slips, which are uninten-
tional mistakes such as omitting a borrow or misremembering a number

a Some students know much about the deep structure of the algorithm, but they do not
seem to use it when they solve problems. Moreover, they do not seem to care if their solution
violates the subtraction principles that they can state (Resnick & Omanson, 1987). The pro-
cedural representations here are meant to cover only the parts of their knowledge that affect
problem solving.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 421

2.

3.

fact (e.g., thinking 13 - 7 = 5). Norman (1981) has proposed a prelim-
inary model of slips.
Subtraction is taught in the second, third and fourth grades in the
United States. About 40% of the students in those grades seem to have
buggy subtraction procedures (Brown & Burton, 1978; VanLehn, 1982);
A buggy procedure is a correct procedure that has one or more small
changes to its structure (bugs) that cause it to generate incorrect answers
on some problems. For instance, one common bug is called Diff-O-N = 0
because students with this bug answer columns with a zero on top by
simply putting zero in the answer instead of borrowing. One can model
this by simply adding a rule to a set of rules representing a correct pro-
cedure (Young & O’Shea, 1981). Other bugs can be modelled by deleting
rules or substituting rules.
In the grades where subtraction is taught, about 18% of the students ex-
hibit bug migrations, wherein they exhibit one bug on some problems
and different bugs on other problems (VanLehn, 1982). For instance, a
common bug migration is to do Diff-O-N = 0 on some problems and
Diff-O-N = N on others.

Brown and VanLehn (1980) proposed that most bugs and bug migrations
are caused by repairs to impasses. An impasse occurs when the student’s
procedure requires them to do something that they believe cannot or should
not be done. A repair is problem solving conducted with the goal of getting
past the impasse. Typical repairs are to skip the action that can/should not
be done or to substitute a similar action. In the case of a bug migration be-
tween Diff-O-N = 0 and Diff-O-N = N, the impasse occurs when the student
starts to borrow and notices the top digit in the column is a zero. Perhaps he
or she has heard “you can’t borrow from zero,” and thinks the rule applies
to this situation. In any case, for some reason the student reaches an impasse
on borrow columns with zeros on top. The two bugs are generated by two
different repairs, both of which substitute actions for the borrow. The bug
Diff-O-N = N comes from substituting the normal take-difference action for
the borrow. The bug Diff-O-N = 0 comes from substituting for the borrow
the action that is normally used on columns whose bottom digit is missing
(e.g., the tens column of 34 - 8). These two bugs illustrate how bug migra-
tions, and for that matter, bugs themselves, are generated by repairs to
impasses. 1

VanLehn (1987, in press) developed a computer program, called Sierra,
which simulates the acquisition of bugs. Sierra combines example-driven
learning with impasses and repairs. In one particularly rigidly controlled
demonstration, it was shown that 33% of the 75 observed subtraction bugs,
including almost all of the most common bugs, could be acquired by Sierra
(VanLehn, in press). Hand simulation indicates that the theory could be ex-
tended to capture 85% of the bugs (VanLehn, 1986).

422 VANLEHN, BALL, AND KOWALSKI

The data for testing Sierra came from testing thousands of students from
around the world (849 from California, 288 from Massachusetts, 1325 from
Nicaragua, and several smaller studies in Pennsylvania, New York, Utah,
and the Philippines). In all cases, the students took diagnostic tests of about
20 problems in length,’ with each problem presentedin vertical format, for
example,

5067
- 92

Test data were not scored or aggregated prior to analysis. Instead, each stu-
dent’s answers were analyzed as digit strings. A student was counted as
being successfully modelled if the student’s answers to each problem were
matched by the model’s answers, digit for digit (with some allowances made
for slips).

Although this method of testing and analysis is more detailed than earlier
ones (see Brown & Burton, 1978, for a complete discussion), it omits one
crucial piece of information. One cannot determine the chronological se-
quence in which the writing actions were made. One would need protocol
data, such as one could collect by video taping, in order to obtain the exact
sequence of writing actions. The experiment described here was designed to
collect such data and thereby (it is hoped) provide additional support for
Sierra. As will be seen, this purpose was not achieved, but, serendipitously,
a new phenomenon was discovered instead.

2.2. Subjects and Methods
By hypothesis, impasses occur because a student’s knowledge of a procedure
is not quite complete. Since it is difficult to induce such a state of knowledge
in the laboratory with any reliability, a screening technique was used in
order to find subjects who might naturally exhibit impasses. This strongly
biased subject selection means that the resulting group of subjects is not a
random sample of the population. Thus, frequency of occurrence of the
phenomena described later could be inflated when compared to the fre-
quency of occurrence in the general population.

Screening was done in the. context of the California study mentioned
earlier. The tests used, the methods of administration, and the results are
reported elsewhere (VanLehn, 1982). Since bringing protocol-taking equip-
ment out to the schools was anticipated, only three classrooms were selected
for participation in this experiment. The students in these classrooms had
been tested twice, approximately two months apart with the diagnostic tests
mentioned earlier. On the basis of these screening tests, 33 third graders

5 Problems were chosen to maximize the power of the test to differentiate buggy proce-
dures. See Burton (1982) for a description of Debuggy, the program used to generate test items
and analyze the students’ solutions.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 423

A. B. C. D. B. F.

34 $4
-18 -18 -18 -18 -18 -18 -I-

6 16

Flguro 2. A correct solut;on, shown as a sequence of problem states

were selected. In order to have stringent data to test this theory, students
who had uncommon bugs or whose behavior was not systematic enough to
be modelled by bugs were selected. The belief was that these students would
be more likely to exhibit impasses.

These 33 subjects were tested individually in a small room adjacent to
their classrooms. Each student solved an individualized paper-and-pencil
test whose items were designed to elicit the errors noted on that student’s
pretests. Each test consisted of about 13 subtraction problems, presented in
vertical format. In order to collect the exact chronology of the students’
writing actions, the test page was taped to an electronic tablet, and students
filled out the test with a special pen. Equipment malfunctions caused the
data from 7 students to be lost. Tablet data from each of the remaining 26
students were coded as a sequence of writing actions. For instance, a correct
solution to the problem shown in Figure 2, frame A, would be coded as the
Saction sequence

[Slash(2), Decrement(2), Add-ten(l), Take-difference(l), Take-difference(2)]

where “1” means the units column, “2” means the tens column, and so
forth. The states after each action are shown in Frames B through F, of the
figure. Although the students’ comments were also audio taped, they said
so little that their verbal protocols were not transcribed or analyzed. Conse-
quently, the raw data from this experiment consist of 26 nonverbal proto-
cols, one for each subject.

2.3. Results
Without verbal reports, evidence for impasses would have to come from the
actions and the pauses between them. It had been hoped to develop a cri-
terion for the existence of impasses by measuring the pauses between actions,
and assuming that the longer pauses were caused by impasse-repair episodes.
However, fragmentary verbal data and the notes of the experimenter indi-
cated that long pauses seemed to be caused mostly by counting in order to
determine a number fact, such as the difference between 15 and 7. Against
this high background variation in pause length, it would be difficult to set a
reliable criterion for the duration of impasse-repair episodes relative to the
duration of nonrepair actions. Consequently, one purpose for the experi-
ment, which was to collect protocol data on what happens at impasses could
not be achieved, because no reliable way to detect impasses directly was
available.

424 VANLEHN, BALL, AND KOWALSKI

A. B. C. D. E. P.

03
-44 2 2 -2: -2: - ?:

9 3 9

Flgure 3. Hilda’s solution, shown as consecutive states

Another reason for the experiment was simply to check if the models
developed for data in the form of numerical answers would also fit protocol
data. The earlier research had produced a large set of correct and buggy
procedures, which will henceforth be called the standard procedures. Since
this set had been developed with a very large sample of students, and this ex-
periment had a rather small sample, it was expected that for each student in
this experiment, there should be some standard procedure that would accu-
rately simulate the student’s protocol. Of the 26 students, 15 met our expec-
tation, 8 did not, and 3 students could not be analyzed because they made
no scratch marks (i.e., the marks made in the top row of the problem that
indicate the actions of borrowing). The rest of this article focuses on the
behavior of the 8 students whose protocols could not be modelled by a stan-
dard procedure. They will be called the nonstandard students for ease of
reference. Appendix 1 presents their protocols and the analysis of them.
The following comments summarize those analyses.

For expositional purposes, it is convenient to consider two types of
behavior. The first type of behavior involves nonstandard ways of doing
borrowing. For instance, on the problem shown in A of Figure 3, Hilda first
puts a scratch mark through the 8, then adds 10 to the 3, then decrements the
8, and finally answers the units column, as shown in B through E of the
figure. Her actions will be abbreviated, so that “S” stands for slash, “A”
for adding 10, “D” for decrement, and “-” for column difference. Then
Hilda exhibits the permutation SAD-. The most commonly taught borrow
order is SDA-, although ASD- is also taught, so it was expected that stu-
dents would exhibit either one or the other of these two standard orders, but
not both. However, Hilda’s SAD- order violates this expectation. She was
not alone in this respect. Of the 8 nonstandard students, 7 exhibit nonstan-
dard borrowing permutations. (The 15 standard students used either the
SDA- order on the whole test, or the ASD- order on the whole test. They did
not alternate among the two orders during the test, nor did they use non-
standard orders.) Table 1 gives a rough indication of the borrowing permu-
tations exhibited by the nonstandard students by counting the number of
times each permutation occurred, excluding unclear cases (e.g., borrowing
across zeros). Possible permutations that never occurred are excluded from
the table.

The second type of behavior involves, nonstandard orders for processing
columns. Although two students, Hilda and Paul, processed columns in the

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 425

TABLE 1
Borrowing Permutations Frequencies

Student SDA- SAD- SA-D ASD- A-SD

Angela 19

Hilda 3 6 2

Janine 10

Paul 2 11

Pete 2 2

Robby 1 3

Tanya 2 4

Trina 2 7

Total 27 10 19 13 7

A. B. C. D.

702 7 Of2 7 ;2 /32
-108 -108 -108. -108

4 94 5.9 4

Figure 4. Jonine’s solution, shown as a sequence of states

standard, left-to-right order, the other nonstandard students used a variety
of unusual orders. For instance, Janine used a “horizontal” ordering on 4
problems. She first did all the scratch marks required for borrowing in the
whole problem, moving right to left across the top row of the problem.
Then she filled in all the column’s answers. Usually she did this second pass
in right-to-left order, but on 1 problem, she filled in the thousands place
first then moved to the right, filling in the other answer places as she went.
Her way of solving the problem is called “horizontal” because it’ first does
the top row then does the answer row. On 3 problems, Janine used a “verti-
cal” ordering. She did all the marks in one column before moving on to the
next. Thus, on the problem shown in A, Figure 4, she added 10 to the 2,
and answered the units column (see Frame B). Then she moved to the tens
column, where she wrote “9” above the upper zero and in the answer
(Frame C). Then she moved to the hundreds column, where she decremented
the 7 by one, and put “5” in the answer (Frame D). This ordering ivk called
“vertical” because all actions that are aligned vertically are done together.
On 2 other problems, Janine used a strategy that seems to be a mixture of
the horizontal and vertical strategies.

Table 2 gives a rough indication of the usage of various ordering conven-
tions for column processing. The cells in the table indicate the number of
problems answered with the indicated convention6 The column in ,the,table

6 When a problem has no borrows, the column-processing convention is sometimes ambig-
uous, so these figures have some guesswork built into them.

426 VANLEHN, BALL, AND KOWALSKI

TABLE 2

Frequencies of Column Processing Conventions

Student Standard
Horizontal

L. to R.
Horizontal

R. to L. Vertical Unique

Angela
Hilda
Janine
Paul
Pete

Robby
Tanya
Trina

a 4

12
4 1 3 3 2

12
9 3 1

11 2
14

9 3

labeled “Unique” lumps together various strategies that are unique to a
single student. For instance, Robby has a particular strategy that he uses on
2 problems; Angela has a different one that she uses on 4 problems; both
counts are shown in the “Unique” column. See Appendix 1 for descriptions
of the actual ordering conventions used.

These two dimensions of variations-borrowing permutations and column-
processing orders-represent the unexpected aspects in the students’ behav-
ior. The other aspects of their behavior have been observed before. All of
the 8 nonstandard students exhibited slips. Four of the 8 students (Hilda,
Robby, Tanya and Trina) had bugs. One of the 8 students (Robby) exhibited
bug migration.

There are some rather obvious observations to make about these data.
First, all 8 nonstandard students seem to be executing a standard procedure,
but they often permute the order in which the standard procedure’s actions
are executed. On any given problem, the horizontal ordering convention,
for instance, generates exactly the same set of actions as the standard pro-
cedure with standard execution. However, the sequence of actions generated
by the horizontal convention is a permutation of the sequence generated by
the standard execution of the standard procedure.

A second observation is that all the students (except Tanya) exhibited
more than one execution strategy. Janine, for instance, used 3: a standard
execution strategy, the horizontal execution strategy and the vertical execu-
tion strategy. Paul used 2: standard and horizontal. Sometimes these execu-
tion strategies were used in sequential runs. Paul, for instance, used the
standard execution strategy for the first 9 problems, then a unique execu-
tion strategy, then the horizontal execution strategy for the last 3 problems.
In other cases, there are correlations between features of the problem and
the student’s choice of execution strategy. For instance, Tanya used the
ASD permutation when a borrow originated in the units column and the
SDA permutation when the borrow originated in the tens column.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 427

A third observation, which is perhaps not so obvious, is that the nonstan-
dard execution strategies exhibited by most of the students (all except Angela,
whose protocol is discussed later) happen to give the same answers as the
standard execution strategy would. In particular, if the student’s procedure
were bug-free, then the student’s answers would be correct (ignoring slips).
This explains why the phenomena of nonstandard ordering had escaped
notice in the earlier subtraction experiments-only the students’ answers
were known, and not the exact sequence of their writing actions. Thus, the
experiment showed that the original Sierra models of subtraction pro-
cedures fit only 15 of the 26 students’ protocols (i.e., only the standard
students) even though they fit 25 of the 26 students’ answers (i.e., all except
Angela).

Given these observations, a simple hypothesis leaps to mind: all the
students learned standard procedures, but 8 of the 26 are missing a few
unimportant constraints on the ordering of actions. Perhaps they never en-
coded those unimportant ordering constraints, or perhaps they learned
them but discovered later that it made no difference to the answer if they
dropped them. In order to investigate this hypothesis further, a formal rep-
resentation of knowledge was developed such that modifying “a few unim-
portant constraints” would yield exactly the behavior exhibited by the stu-
dents. The next section presents the representation.

3. A CONCISE REPRESENTATION
OF THE OBSERVED NONSTANDARDNESS

The knowledge representation selected here is based on the standard cogni-
tive science concepts of goals, operators and control knowledge. Control
knowledge is divided into two kinds: (1) goal selection information is used
to choose a goal to attend to, called the current goal; (2) operator selection
information is used to choose an operator appropriate for the current goal.
Execution of the selected operator causes either a change in the state of the
situation, such as writing a digit, or the creation of subgoals.

The formalisms used for these concepts are also standard ones. Operators
and opeator selection information are represented as a goal-hierarchical
production system, similar to the ones used by HPS (Anzai, 1978), Grapes
(Anderson et al., 1984), and many other systems. Goal selection informa-
tion is represented as a set of conditional preferences similar to the ones
used by Soar (Laird et al., 1987), Prodigy (Carbonell, Knoblock, BtMinton,
in press; h&ton, Carbonell, Etzioni, Knoblock, & Kuokka, 1987) and
other systems. Except for the preferences, this representation of knowledge
is very similar to the one used by Sierra.

The part of working memory that contains goals is called the goal store.
One of the goals is marked as the current goal. Each production has exactly

428 VANLEHN, BALL, AND KOWALSKI

one goal test as part of its condition; productions are considered for execu-
tion only if their goal tests match the current goal. A production may have
one or more goal specifications on its action side; the goals that they create
are added to the goal store. For instance, consider the following production:

If the goal is (ProcessColumn i), and
the top digit of i is less than the bottom digit of i,

then
set the goals (BorrowFrom i + l), (Add10 i), (ColumnDifference i).

If the current goal is (ProcessColumn 2), which means to process the tens
column (columns are numbered from right to left), then this production is
considered for execution. Suppose that the problem is 234- 190. Then the
test that is the second element of the left side will succeed, because 3 < 9, so
the production is executed.’ Three goals are created by the right side and
added to the goal store.

The goal store contains only pending goals. Whenever a production,
which. matches a goal is executed, the goal is removed from the goal store.
Thus, if the store contains

(ProcessColumn 2)
(ProcessColumn 3)

just before the production above fires, then it will contain

(BorrowFrom 3)
(Add10 2)
(ColumnDifference 2)
(ProcessColumn 3)

just after the production fires.*
Some goals are primitive, in that whenever they are selected as the cur-

rent goal, the next cycle of the production system results in a change to the
state of the problem rather than firing a production rule. For instance,
(AddlO 2) causes 10 to be added to the top digit in the tens column, and
(ColumnDiffeerence 2) causes the difference between the top and bottom
digits in the tens column to be written in the answer row as the answer for
that column. This completes the description of the notation used for proce-

’ A technical detail: the conflict-resolution strategy is specificity-if the set of worbg-
memory items matched by production A is a subset of those matched by production B, then A
is discarded.

’ The computer implementation does not physically remove goals from the goal store, but
only marks them as “not pending.” This makes it possible to back up to the goal if a failure
occurs and choose a different production for achieving it. Since such backing up did not seem
to occur in the data, this detail has been suppressed in order to simplify the exposition, and the
contents of the goal store are equated with the set of pending goals.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 429

TABLE 3

A Correct Subtraction Procedure

1. If the goal is (Subtract)

then for each column i. set the goal (ProcessColumn i).
2. If the goal is (ProcessColumn i), ond (Top i)<(Bottom i),

then set the goals (BorrowFrom i+l), (Add10 i), (ColumnDifference i).

3. If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

4. If the goal is (BorrowFrom i). and (Top i)=O,

then set the goals (BorrowFrom i+l), (Add10 i), (BorrowFrom i).
5. If the goal is (BorrowFrom i),

then set the goals (Slash i), (Decrement i).

dures. As an illustration, Table 3 presents a correct subtraction procedure
expressed in this production system notation.

Sierra did not need goal preferences, because it used its goal store as a
last-in-first-out stack. The most recently added goal was considered to be
the current goal. In the new model, the goal store is considered to be an
unordered set, and goal preferences are used to select a goal from it.

Four notations for preferences were tried before finding one that yields
simple, elegant student models.9 The one settled upon represents a goal
selection strategy as a set of preferences of the form,

If c condition >
then prefer <goal> over <goal>
else prefer < goal > over < goal >

9 The following is a brief description of those notations and their inadequacies. (1) A goal
selection strategy is represented as a set of preferences of the form “ <goal type A> is better
than<goal type B> .” When the 8 students are fit by a strategy expressed this way, 33% of the
interpreter cycles results in a multiple goal impasse (VanLehn & Ball, 1987). Essentially, this
representation could not represent the fact that most students change ordering conventions
during the course of the testing session. (2) A goal selection strategy is represented as a “big
switch” among several sets of preferences of the form described in (l), above. Although this
could represent the observed strategies, the sets used for any given student tended to overlap
considerably, indicating that most of their preferences were constant, and only a few varied
(VanLehn & Ball, 1987). (3) A goal selection strategy is represented as a discrimination net,
whose leaves are goal types (VanLehn & Garlick, 1987). This functions identically to a set of
rules of the form “If<condition>then<goal type>“. This representation could not express
some of the observed strategies (Kowalski & VanLehn, 1988). (4) A goal selection strategy is
represented by a set of preferences of the form, “If < condition > then prefer < goal A > over
<goal B> ,” where the goal patterns must have an explicit goal name in them (Kowalski &
VanLehn. 1988). This representation was fine in every respect, but not as concise as the chosen
representation, which allows variables for goal names and has “else” clauses as well as “then”
clauses.

VANLEHN. BALL, AND KOWALSKI

TABLE 4

Preferences for a Correct Subtraction Procedure

1.
2.
3.
4.
5.

.6.

‘7.
a.
9.

For X In the set BorrowingGoals, prefer (X i) over (ProcessColumn i).

For X in the set BorrowingGoals. prefer (X 1) over (ColumnDifference i).
For X in {BorrowFrom, Slash, Decrement}, prefer (Add10 1) over (X I).
Prefer (Slash 1) over (Decrement i).
Prefer (ProcessColumn 1) over (ProcessColumn i+i).
For X in the set BorrowingGoals, prefer (X i) over (ProcessColumn i).

For X in the set BorrowingGoals, prefer (X I) over (ColumnDifference i).
Prefer (ColumnDifference i) over (ProcessColumn i).
For X, Y in the set BorrowingGoals, prefer (X i+f) over (Y I).

A <condition > is like a condition in a production rule in that it can test
working memory and/or the state of the external world. A <goal> is a
pattern that matches items in the goal store. The goal patterns can mention
constants, variables or constrained variables. For instance, the preference

If (Top i)>9
then prefer (ProcessColumn j) over (ColumnDifference i)
else prefer (ColumnDiffemce i) over (ProcessColumn j)

means: if the column difference in column i will be a “hard” one to calcu-
late/recall, because the top digit is 10 or more, then prefer starting to pro-
cess another column rather than taking the column difference in i. On the
other hand, if the column difference will be a normal one, then it is prefer-
able to take care of it before moving on to another column. That is, this
preference prefers to procrastinate taking the difference in columns whose
top digits are 10 or more.

For convenience in exposition, parts of a preference are sometimes dropped.
For instance, if a goal preference always holds, then Prefer <goal> over
<goal > is written.

The execution cycle is to (1) select a goal, then (2) select a production,
then (3) execute the production. Preferences are used during Step 1. Goal
selection begins by gathering the set of preferences whose conditions are true
at this time. Next, it finds a subset of the goal store that is maximal, accord-
ing to the true preferences. A goal is maximal if there is no goal that is pre-
ferred over it. Often, there is just one maximal goal, so it is chosen as the
next current goal. If there are no maximal goals (e.g., because the true pref-
erences have a cycle in them), then a “no goal” impasse occurs. If there are
two or more maximal goals, then a “multiple goal” impasse occurs. This
use of preferences is quite similar to the way preferences are used in Soar
(Laird et al. 1987).

Table 4 shows the “standard” preference set, which will generate a stan-
dard, depth-first, left-to-right execution of the procedure of Table 3. Al-
though there are many different sets of preferences that will yield standard

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 431

executions, this one is thought to correspond most closely to the preference
sets acquired by the students. As will be seen later, all the students’ strate-
gies can be formed by making small deletions or additions to this set of
preferences. Hence, it is worth a moment to examine it carefully.

The fist three preferences concern satisfaction of a precondition of the
ProcessColumn goal. The first step in processing a column is to test whether
it needs a borrow. In order for the test to deliver a correct result, all pending
actions, which could modify the column, must be executed before the test.
The set BorrowingGoals is {BorrowFrom, AddlO, Slash, Decrement}, so
Preference 1 guarantees that such a goal will be selected before Process-
Column when both refer to the same column. Similarly, Preference 2 con-
cerns satisfaction of a precondition of ColumnDifference, and,Preference 3
concerns satisfaction of a precondition of decrementing zero.

Preference 4 is a universal convention in handwriting: cross out the old
stuff before writing the new stuff in.

Preference 5 causes the columns to be processed from right to left. This
preference is mandatory because it concerns satisfaction. of the precondi-
tions of the test embedded in the ProcessColumn goal. In fact, all of the first
5 constraints are mandatory (although one could quibble about Preference
4) in that violating any one of them will result in incorrect answers being
generated from a correct production system.

The remaining 4 preferences are mere conventions. Deleting or modifying
them will not harm the correctness of the answers. Preferences 6, 7, and 8
rank the goals by type:

BorrowingGoals > ColumnDifference> ProcessColumn

Notice that the relative location of the goals does not matter to these prefer-
ences, whereas it is crucial in the mandatory preferences. Preference 9 causes
the borrowing goals to be executed in left-to-right or.der. This is the most
commonly taught ordering of the borrowing actions.

It should be noted that the distinction between mandatory and conven-
tional preferences is important, particularly in the discussion of hoiv prefer-
ence sets are learned.

3.1. The 8 Student Models
For each of the 8 nonstandard students, Appendix 1 presents four items: the
student’s protocol, an idealized version of the protocol, a production sys-
tem, and a preference set. The latter two constitute the model of the.student
here. When the student model is executed, it generates the idealized protocol
exactly. So the discrepancies between the model and the data are captured in
the differences between the idealiied protocols and the realones:’ Each such
difference is highlighted and discussed in Appendix 1. In order to give an
overview, Table 5 categorizes the discrepancies and discusses each briefly,. .’

432 VANLEHN, BALL, AND KOWALSKI

TABLE 5

Discrepancies between Idealized and Actual Procotols

Number of
Occurrences Description

22 Facts errors. Column differences or decrements are misremembered, e.g.,
12-9=4.

10 Missing pieces of borrows. Sometimes there Is a slash without a decrement,

a decrement without a slash, a mlsslng addltlon of ten that Is detected later,
etc.

9 Redoing a column difference. The students rewrite the answer to a column,
possibly because they consider It illegible or as a result of checking the col-
umn subtraction.

9 Leadlng zero suppression. The student models will write leading zeros for
problems like 303-279, whereas some students do not.

5 Extra pieces of borrows. Extra scratch marks ore made for no apparent
reason. In some cases, thev seem to be ianored later.

4 Missing borrows. The student Inexplicably falls to borrow for a column where
she or he ordlnarilv would.

2 Extra’borrows. The student inexplicably borrows for a column thot she or he
would ordinarily not borrow for.

2 Blanks treated as ones. In ‘a column wlth a blank subtrahend, the student’s
answer was one less than it should be.

2 Missina answer. One column is mlsslna an answer.

1 Impasses and repairs. The interpreter used with the student models did not
have a complete set of repairs in It, so it was not able to generate exactly the
repairs that some students made to their impasses.

1 Quit early. Hilda forgot to answer the last two columns of her last problem,
even though she had borrowed from them.

1

1

Floundering. Pete made three slips during his solution of problem 8, and got

so frustrated that he quit, copied the problem over (OS problem 9) and trled
ogain. Problem B’s solution was omitted from the idealized protocol.

Slash after decrement. One student reversed the usual order of slashing and
decrementing.

1 Use Slash for AddlO. One student used a slash where she would normally
use an AddlO. and later changed it.

All of them are either well explained by current theory (e.g., the cases of
repairs to impasses) or clearly in the province of some other theory, such as
Norman’s (1981) theory of action slips or Siegler’s (1982) theory of arith-
metic facts.

The student models in Appendix 1 exhibit several important features.
First, all the production systems represent standard procedures that have
occurred many times before in analyses of the bug data. The second feature
exhibited by the student models is that all of the preference sets are quite

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 433

similar to the standard preference set of Table 4. For instance, 3 students
(Janine, Pete and Tanya) exhibit a horizontal execution strategy, wherein
they perform all the borrowing actions required by the problem before fill-
ing in any of the problem’s answers. The horizontal execution strategy can
be formed by reversing the standard preference,

8. Prefer (ColumnDifference i) over (ProcessColumn j).

to become
8. Prefer (ProcessColumn j) over (ColumnDifference i).

and leaving the remainder of the standard preferences intact.
Sometimes, deleting or weakening a standard preference creates an exe-

cution strategy that exhibits just the right kind of nondeterminism. For
instance, in place of the standard preference,

9. Prefer (X i+ 1) over (Y i), for X,Y in the set BorrowingGoals.

which says to perform the actions of borrowing from left to right, Hilda has
the following preferences:

9a. Prefer (Slash i + 1) over (Add10 j).
9b. Prefer (BorrowFrom i+ 1) over (Add10 j)

These preferences leave three possible permutations of the borrowing ac-
tions, and Hilda exhibits them all. The rest of Hilda’s preference set is iden-
tical to the standard preference set.

Sometimes a pattern in the student’s alternation among strategies was
seen. Although the preferences could be written, like Hilda’s, so that the
choice was undetermined, preferences were written that captured as much
of the variation as could be seen. For instance, Robby’s column-processing
strategy is represented by replacing

8. Prefer (ColumnDifference i) over (ProcessColumn j).

with
8. If the top digit of column i is greater than 10 and the current problem is

either problem 6 or 7, then prefer (ProcessColumn j) over (ColumnDiffer-
ence i) else prefer (ColumnDifference i) over (ProcessColumn j).

It is not known why Robby uses a nonstandard ordering on Problems 6 and
7 only, so the problem numbers in the preference’s condition were deliber-
ately mentioned. It is clear, however, that the columns whose answers are
delayed are the ones where the column difference would be “hard” because
the top digit is 10 or more. Because the condition is ad hoc, the preference
causes an exact match to ,Robby’s protocol, and thus serves as an accurate
reduction of the data, albeit only a partial explanation of it. An alternative
formulation would be to delete Preference 8 entirely. This would not cap-

434 VANLEHN, BALL, AND KOWALSKI

ture what appears to be a valid (although partial) explanation of why Robby
delays the answering of some columns. In general, whenever such explana-
tions could be found, they were written into the preferences. When they
could not be written in, the preference set was left undetermined. Usually
patterns (partial explanations) were seen in the choice of column-processing
strategies, but often patterns could not be seen in the choice of borrowing
permutations.

3.2. Discussion
Overall, the most important observation to make is that all the students had
preference sets that were nearly identical to the standard set. Also, the insta-
bility in any given student’s apparent goal selection strategy can be simply
and succinctly represented by conditionalizing or dropping a very few pref-
erences. In short, a representation for the data has been found that reduces
a large amount of protocol variance to a small amount of preference set
variance.‘o

A second finding is that the differences between the students’ preferences
and the standard preferences tended to involve only conventional prefer-
ences. The preference sets of all the students except Angela include all the
mandatory standard preferences. This means that all the students except
Angela have “correct” preference sets, in that they will produce correct
answers when used with a correct production set. (Angela has a condition-
alized version of standard Preference 5, a mandatory preference, which
causes her to give incorrect answers on 4 of the 12 problems she solves.)

As the introduction mentioned, there is an informal explanation that
leaps to mind when one considers the nonstandard students’ behavior. The
explanation is that these 8 students lack a few “unimportant” standard con-
straints because either they overlooked them as they learned the procedure,
or they learned them but later discovered that they were unimportant, so
they started ignoring or modifying them. So far, this informal explanation
has been borne out by formal modelling. A computationally sufficient repre-
sentation exists such that the behavior of the nonstandard students is accu-
rately reproduced by deleting or modifying a few “unimportant” parts of it.
The “tmimportant” parts turn out to be conventional standard preferences.

4. EXPLANATIONS BASED ON LIFO ABCHITECTUEES

The preceding section presents successful models that violate the LIFO
restriction. Before abandoning such a venerable restriction, it should be

I@ However, some of the models are nondeterministic, because their preference sets under-
constrain some goal selection events. Thus, the models do not explain all the variance in the
data. For discussion of the tradeoffs involved in this type of data analysis, see VanLehn and
Ball, 1987.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 435

seen how well the data can be modelled if the LIFO restriction is maintained.
There are two basic approaches to modelling these data within the confines
of a LIFO architecture. Both add complexity to the account based upon a
non-LIFO interpretation. The first approach adds complexity to the repre-
sentations used for the student’s procedure. The second approach retains
the simple procedural representations used with the non-LIFO model, and
adds complexity to the execution of these procedures.

4.1. Big Switch Representations of Subtraction Procedures
Any collection of observed strategies can be represented by a collection of
procedures, one per strategy, with a ‘!big switch” that selects among them.
For instance, to model Janine’s behavior, one can write LIFO procedures
for each of three strategies-horizontal, vertical, and standard-then write
productions that act as a “big switch” to select among them. Appendix 2
presents hierarchical production systems for each of the 8 nonstandard sub-
jects that suffice to model their behavior within the confines of ,a LIFO
architecture. The LIFO models for 4 of the 8 subjects (Angela, Hilda, Paul,
and Tanya) turn out to be quite simple and not much different from the pro-
duction systems given for them in Appendix 1. This simplicity is because the
nonstandardness in their behavior is due mostly to local permutations in the
order of their borrowing actions (e.g., from the standard SDA- to SA-D),
and that kind of variance doesn’t require a big switch to represent it, even in
a LIFO architecture. However, the other 4 students (Janine, Pete, Robby,
and Trina) do require big switch representations.

If parsimony of knowledge representations were the only criteria, the
LIFO hypothesis would be rejected. But parsimony is an argument of last
resort, to be used only when empirical evidence fails to discriminate the
hypotheses. The rest of this section will develop some empirical tests for dif-
ferentiating the LIFO hypothesis from the non-LIFO hypothesis. Although
the tests are not conclusive, what little evidence there is favors the non-LIFO
hypothesis.

,
4.1. I. Blena% of Strategies. When an iterative or recursive procedure is in

the middle of its execution, its designcauses certain properties to be true of
the current state. For instance, when the vertical strategy is running, all the
columns to the right of the current .column will be completely finished,
while all the columns to the left will be totaIly free of scratch marks. Differ-
ent properties are true for the standard execution strategy and the horizontal
one. When the intermediate state properties of two procedures are different,
it is difficult to abcrt one procedure in the middle of a problem and start the
other. It may take rather sophisticated problem solving to convert the state
left by the first procedure into one that is suitable.for the.execution of the
second procedure. Thus, if the subjects did indeed have a big switch proce-
dure for subtraction, one would not expect to see them “throw the switch”

436 VANLEHN. BALL, AND KOWALSKI

in the middle of problems. That would force them to engage in difficult
problem solving for no particular reason.

On the other hand, if subjects have a non-LIFO procedure, then switch-
ing from, say, the standard to the horizontal strategy, amounts to reversing
the direction of a single preference. This is done in the middle of solving a
problem just as easily as it is done in between problems. The resulting be-
havior would appear to the observer as a “blend” of the two strategies.
Thus, if blends of strategies occur, it is more plausible that subjects have a
non-LIFO representation than a big switch representation. If blends do not
occur, then they could equally well have either representation.

Of the 4 subjects whose LIFO representations require big switches, Janine
displays clear instances of strategy blends in her solutions to Problems 10
and 13. (The LIFO procedure given in Appendix 2 does not successfully
model her solutions to 10 and 13.) Pete’s solution to Problem 10 may also
be a blend of strategies, but that problem is difficult to analyze because Pete
seems to be in the middle of acquiring a new strategy at that point. (The
LIFO procedure in Appendix 2 does not model Pete’s solution to Problem
10.) The other two subjects (Robby and Trina) do not switch strategies in
the middle of problems. Thus, there is a little evidence that Janine has a
non-LIFO representation, but the data are silent in the case of the other 3
subjects.

4.1.2. Bugs. Under both the LIFO and non-LIFO hypotheses, bugs are
represented by perturbed production systems; the preferences, if any, are
left alone. Under the non-LIFO hypothesis, the subjects have just one pro-
duction system. Their preferences cause them to display different column-
processing strategies on different problems. Thus, if the subject has a bug,
it must appear regardless of the column-processing strategy usedby the sub-
ject, since the bug is represented in the subject’s production system, and
that does not shift over the course of the testing session. On the other hand,
under the LIFO hypotheses, the “big switch” subjects have different pro-
ductions for each of their strategies. They could have acquired the bug in
the context of only one of their strategies. Thus, if subjects display different
bugs depending upon the strategy they are using, or display bugs only on
some of their stategies and correct performances on others, then evidence
for the LIFO representation exists. If the subjects show the same bugs under
all strategies, then both hypotheses would be consistent with the data.

Unfortunately, the data are silent. Of the 4 students who switch column-
processing conventions, 2 (Janine and Pete) are totally bug-free. Robby has
a bug that shows up when he is doing the standard column-processing con-
vention, but he does his nonstandard convention only on 2 problems where
the conditions for the bug’s occurence are absent. Trina has a bug, and it
shows up under both her standard and nonstandard execution strategies.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 437

However, the bug occurs in a rule that is shared by those two conventions
regardless of which hypothesis is used to represent her procedural knowl-
edge. In short, both the LIFO and non-LIFO hypotheses are consistent with
the bug-versus-strategy data.

4.1.3. Summary of “Big Switch” Arguments. An attempt was made to
differentiate between the two hypotheses by looking for blends of strategies,
and for bugs that occurred only in some of the subjects’ strategies. The stra-
tegic blend data had the ability to support the non-LIFO hypothesis, and
they did, but only weakly. The bug-versus-strategy data had the ability to
refute the non-LIFO hypothesis, but they did not. So these arguments pro-
vide a tiny bit of support for the non-LIFO hypothesis. However, the main
significance of the arguments is to show that the two hypotheses actually are
discriminable, even though these data do not do a good job of it.

4.2. Are Subtraction Goals Special?
The preceding section made the assumption that the goals generated in the
course of solving subtraction problems have the same status as the goals one
generates while solving puzzles, college physics problems, and all the other
types of problems used in testing cognitive architectures. It was shown that
this assumption, plus the hypothesis of a LIFO architecture, implied that
some subjects had unparsimonious “big switch” procedures. This section
examines the contrary position. It assumes that subjects have parsimonious
representations for their procedures but the goals generated during the
course of solving subtraction problems are atypical in that they are not sub-
ject to the LIFO restriction even though the architecture is indeed a LIFO
architecture. Two different versions of this assumption will be examined.

4.2.1. Is Subtraction Declarative Knowledge? One way to release sub-
traction goals from the LIFO constraint is to assume that the subjects’ pro-
cedures are declarative knowledge. As such, they do not run directly on the
architecture, but instead are interpreted by a procedure that is running
directly on the architecture. This interpreter procedure need not enforce a
LIFO restriction even if the architecture does.

There are several pieces of evidence against the hypothesis that these
students are interpreting their procedures (as opposed to executing them
directly). First, the subjects in this experiment were nearing the end of the
third grade in a school where subtraction instruction begins in second grade.
They had between one and a half and two years of intermittent instruction
on the subtraction procedure. Anderson, based upon experiments where
students learn geometry, estimates that compiling from declarative to pro-
cedural knowledge takes only a short period of time, not years (Anderson,
1982, 1987). Surely, the students in this experiment had compiled their

438 VANLEHN, BALL, AND KOWALSKI

knowledge before they reached this experiment. Second, verbal rehearsal of
the procedure is usually common when a student is interpreting a declara-
tively encoded procedure (Anderson, 1983), but such rehearsal was absent
in this experiment. Third, all the subjects in this experiment were relatively
rapid, smooth solvers who seemed to pause only when they could not recall
a number fact or when they detected a mistake that needed correction. Speed
and lack of apparent effort at recall are hallmarks of a compiled skill. On
these grounds, it appears that the students in this experiment were executing
compiled procedures, rather than interpreting declarative knowledge.

These pieces of evidence bear only on Anderson’s theory of the proce-
dural-declarative distinction. However, regardless of what theory of the
procedural-declarative distinction turns out to be correct, one will have to
assume that the category one assigns to subtraction should also be assigned
to the knowledge for Tower of Hanoi, geometry theorem proving, physics,
and other tasks of the problem-solving literature, because the performances
of the subjects here are not qualitatively different from the performances of
subjects in these classic task domains. *I Taking this position seriously would
mean that protocol data from the classic experiments, as well as this experi-
ment, are simply irrelevant to determining the underlying cognitive architec-
ture. Such data bear only on the structure of the interpreters, and there
might be arbitrarily many of them. Clearly, there are significant methodo-
logical advantages to the traditional assumption that there is just one cogni-
tive architecture and that the procedures for solving the classic tasks, and
subtraction as well, are executed directly by this architecture.

Although the specific version of the interpretation hypothesis that derives
from Anderson’s theory can be rejected empirically, the general version can
be rejected only on methodological grounds, if at all. Nonetheless, this
explanation of the data from this experiment clearly seems to have more
problems than the others.

4.2.2. Are Subtraction Goals Stored Externally? Goals sometimes are
forgotten and have to be reconstructed. For instance, Anderson (1983) says
that he often fails to retrieve goals when solving the Tower of Hanoi and
must reconstruct them from the current puzzle state by using Simon’s (1975)
perceptual strategy. Larkin (1989) and VanLehn and Ball (in press) have
proposed that the problem state is routinely used as a sort of external storage

II In partkuhrr, suppose we assume (as programmers often do), that a program that is
running on an interpreter is ten times slower than it would be if it could run directly on the
architecture that the interpreter runs on. If this IO:1 ratio holds for the general cognitive
system, and our subjects are running an interpreter while the subjects in the classic experiments
are not, then our subjects should be ten times slower than the subjects in the classic experi-
ments. But both sets of subjects seem to be working about as fast, so this conjunction of
assumptions is untenable.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 439

for goals. Pylyshyn (in press) comments that it would be just as revealing
and more traditional to say that such goals are stored in long-term memory
but the external problem state serves as a visual cue for retrieving them.
Regardless of the mechanisms tnvolved, it is clear to all involved that goals
are not necessarily stored in working memory-sometimes one can get them
from the external world.

If one views the LIFO restriction as deriving from some property of the
part of working memory which stores goals, then it follows that goals that
are “stored” externally are not subject to the LIFO constraint. So it seems
to follow that parsimonious, standard subtraction procedures can be used
even in a LIFO architecture. But if this line of reasoning is examined closely,
it falls apart.

Consider the subtraction procedure shown in Table 3. If the goals it
creates are stored in a LIFO memory, then it generates a standard execu-
tion strategy when executed. However, suppose the ColumnDifference
goals are forgotten but later reconstructed from the external problem state
just after the goal Subtract has completed. The resulting behavior is exactly
the horizontal strategy. So it seems at first that a non-LIFO architecture can
explain the data. But the price is assuming that all the ColumnDifference
goals are “forgotten.” This occurs routinely, so it must be a part of the
person’s knowledge-not really a case of working-memory failure. Obvi-
ously, the person has decided to delay the processing of ColumnDifference
goals until after the problem’s borrowing is done. That is, the person has
adopted the preference “For X in the set BorrowingGoals, prefer (X i) over
(ColumnDifference j).” In a LIFO architecture, this preference means that
ColumnDifference goals.should be dropped from the LIFO goal memory
(or ignored) and reconstructed later. But if the architecture can do this on a
routine basis, then in what sense is it still a LIFO architecture?

Almost all cognitive modelling has been conducted under the useful
idealization that the goal store does not forget goals. The LIFO restriction
has always been interpreted as a characterization of this idealized goal store.
It is still thought to be useful to have an idealized goal store whose proper-
ties are spelled out carefully. The business about reconstructing goals from
external and/or long-term memory is an “implementation” issue, albeit an
important one. If one goes this route, then putting a LIFO restriction on the
idealized goal store implies that some students have unparsimonious, big
switch procedures, which leads to the problems discussed earlier.

On the other hand, if one chooses to dispense with the idealization and
model goal storage at the level of retrieval/reconstruction from external/
long-term memory, then it is patently clear that the goals are not subject to
a LIFO restriction, for no one. (it is assumed) would want to argue that the
external world and/or long-term memory impose some kind of LIFO restric-
tion on recall.

440 VANLEHN, BALL, AND KOWALSKI

So, the availability of a non-LIFO place to store goals does not really
help the LIFO theory of problem solving. To be consistent, either the theory
has to recognize this non-LIFO storage facility as a first class goal store, in
which case there is no sensible LIFO restriction, or the theory has to stick
with an idealized LIFO goal store, in which case it is stuck with big switch
procedures. The alternative favored here, of course, is to work with an
idealized gdal store that is non-LIFO. This keeps the theory of problem
solving from becoming enmeshed in the “implementation” details of the
goal memory, and it also avoids burdening the learning component of the
theory with having to acquire complex procedural structures.

5. CONCLUSIONS

This article makes two main points. The first is that there is a greal deal of
variance in the execution strategies of some subtraction students, both be-
tween subjects and within the individual subject’s performance. The second
point is that this variance can be simply represented as minor perturbations
of standard procedures, provided that goal selection information is repre-
sented explicitly and the architecture does not enforce a LIFO restriction on
goals. To these rather substantially supported points, a rather extended
examination of how a LIFO architecture could model these data was added.
The primary conclusion is that it could, but only at the price of assuming
that some of the students had somehow acquired complex “big switch”
procedures. Also devised were some empirical tests to determine whether
their procedures were big switches or not; unfortunately, the data were silent.

Early accounts of problem solving did not impose a LIFO restriction.
Miller, Galanter, and Pribram (1960) explicitly differentiate inflexible plans
from flexible plans whose goals can be rearranged to suit the occasion.
Although their examples indicate a non-LIFO sort of processing for flexible
plans, they are not explicit on the point. Newell and Simon (1972) are explicit
(to put it mildly!), and they sometimes use LIFO models and sometimes use
non-LIFO models. In their famous chapter 14, wherein they present their
theory of human problem solving, no LIFO restriction is placed on the goal
store.

:LIFO restrictions became common at about the same time that cognitive
architectures began to include automatic learning mechanisms, such as pro-
duction compounding (Anderson, 1982) and chunking (Rosenbloom, 1983).
In order to yield plausible learning, one wants to compound two productions
only when those productions serve the same goal. For instance, if a subtrac-
tion problem were immediately followed by an addition problem, then one
would want to avoid forming a compound from the last production executed
during a substraction problem’s solution and the first production executed
for the addition problem, even though those productions may have been
executed consecutively. Since automatic learning mechanisms are part of

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 441

the architecture, it makes sense to make the LIFO restriction be a part of the
architecture. This makes it simpler to place the same-goal constraint on
automatic learning.

Once the question is posed, it is clear that a non-LIFO architecture does
not really make automatic learning any more complicated. In order to
impose the same-goal constraint that seems critical for plausible automatic
learning, the architecture need only maintain explicit information about the
goal-subgoal relationship of the goals it creates. Because this information is
often needed anyway, relaxing the LIFO restriction adds no new burdens to
the architecture.

As far as can be seen, there is no good reason for believing the LIFO con-
straint, and several weak reasons for disbelieving it. So far, there is nothing
in the data to contradict the intuition that if a person can recall a goal, then
he or she can act upon it, even if that goal is not the most recently created
pending goal.

H Original Submission Date: November 22, 1988.

REFERENCES

Anderson, J.R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-406.
Anderson, J.R. (1983). The urchitecture of cognition. Cambridge, MA: Harvard.
Anderson, J.R. (1987). Skill acquisition: Compilation of weak-method problem solutions.

Psychological Review, 94, 192-210.
Anderson, J.R., Farrell, R., & Saurers, R. (1984). Learning to program in LISP. Cognitive

Science 8, 87-129.
Anderson, J.R.. &Thompson, R. (1986, June). Use of analogy in a production system architec-

ture. Paper presented at the Illinois Workshop on Similarity and Analogy, Urbana-
Champaign.

Anzai, Y. (1978). Learning strategies by computer. In Proceedings of the Second CoMerence
on Computational Studies of Intelligence. Toronto: Canadian Society for Computa-
tional Studies of Intelligence.

Anzai, Y., & Simon, H.A. (1979). The theory of learning by doing. Psychologiccrl Review, 86,
124-140.

Brown, J.S., & Burton, R.B. (1978). Diagnostic models for procedural bugs in basic mathe-
matical skills. Cognitive Science, 2, 155-192.

Brown, J.S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural
skills. Cognitive Science, 4, 379-426.

Burton, R.B. (1982). Diagnosing bugs in a simple procedural skill. In D.H. Sleeman & J.S.
Brown (Eds.), Intelligent tutoring systems (pp. 157-183). New York: Academic.

Carbonell, J.G., Knoblock, C., & Minton, S. (in press). PRODIGY: An integrated architecture
for planning and learning. In K. VanLehn (Ed.), Architectures for intelligence. Hills-
dale, NJ: Erlbaum.

Ernst, G.W.. &Newell, A. (1969). GPS: A case study in generality andproblem solving. New
York: Academic.

Kowalski, B., & VanLehn, K. (1988). Inducing subject modelsfromprotocoldata. In V. Patel
(Ed.) Proceedings of the Tenth Annual Coqference of the Cognitive Science Society.
Hillsdale, NJ: Erlbaum.

442 VR.NLEHN. BALL, AND KOWALSKI

Laird, J.E.. Newell, A., & Rosenbloom. P.S. (1987). Soar: An architecture for general intelli-
gence. Artificial Intelligence, 33. l-64.

Laird, J.E., Rosenbloom, P.S.. & Newell, A. (1986). Chunking in Soar: The anatomy of a
general learning mechanism. Machine Learning, I, 1 l-46.

Larkin, J. (1989). Display-based problem solving. In D. KIahrB K. Kotovsky (Eds.). Complex
information processing: The impact of Herbert A. Simon. Hillsdale. NJ: Erlbaum.

Miller, G.A.. Galanter, E., & Pribram. K.H. (l%o). Plans and the structure of behavior.
New York: Holt, Rinehart & Winston.

Minton, S.. Carbonell, J.G., Etzioni. O., Knoblock, C., & Kuokka. D.R. (1987). Acquiring
effective search control rules: Explanation-based learning in the Prodigy system. In P.
Langley (Ed.). Proceeedings of the Fourth International Workshop on Machine Leam-
ing. Los Altos. CA: Morgan Kaufmann.

Newell, A.. &Simon, H.A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-
Hall.

Norman, D.A. (1981). Categorization of action slips. Psychological Review, 88, l-15.
Pylyshyn, 2. (in press). Architectures and strong equivalence: Commentary. In K. VanLehn

(Ed.), Architectures for intelligence. HiUsdaIe. NJ: Erlbaum.
Resttick. L. (1982). Syntax and semantics in learning to subtract. In T. Car-peter, J. Moser, &

T. Romberg (Eds.), Addition and subtraction: A developmental perspective. Hillsdale,
NJ: Erlbaum.

Resttick. L.B.. & Omanson, S.F. (1987). Learning to understand arithmetic. In R. Glaser
(Ed.). Advances in Instructional Psychology. Hillsdale. NJ: Erlbaum.

Rosenbloom. P.S. (1983). The chunking of goal hierarchies: A model of practice and stimulus-
response compatibility. Doctoral disse.rtation. Carnegie-Mellon University, Pittsburgh.
PA. (CMU Computer Science Technical Report #83-148)

Siegler, R.S. (1987). Strategy choices in subtraction. In J. SlobodaBt D. Rogers (Eds.), Cogni-
tive Pro-es in Mathematics. Oxford, England: Oxford University Press.

Simon. H.A. (1975). The functional equivalence of problem solving skills. Cognitive Psy-
chology, 7, 268-288.

VanLehn, K. (1982). Bugs are not enough: Empirical studies of bugs. impasses and repairs in
procedural skills. The Journal of Mathematical Behavior, 3, 3-71.

VanLehn, K. (1983a). Human skill acquisition: Theory, model and psychological validation.
In M.R. Genesereth (Ed.). Proceedings of AAAZ-83 (pp. 420-423). Los Altos, CA:
Morgan Kaufmann.

VanLehn. K. (1983b). The representation of procedures in repair theory. In H.P. Ginsberg
(Ed.), The development of mathematical thinking. HilIsdale, NJ: Erlbaum.

VanLehn, K. (1986). Arithmetic procedures are induced from examples. In J. Hiebert (Ed.).
Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ:
Erlbaum.

VanLehn, K. (1987). Learning one subprocedure per lesson. Artificial Intelligence, 31, l-40.
VanLehn, K. (ii press). Mind bugs: The origins of procedural misconceptions. Cambridge,

MA: MIT Press.
VanLehn, K.. & Ball, W. (1987). Rexible execution of cognitive procedures (Tech. Rep. No.

PCG5). Pittsburgh, PA: Department of Psychology, Carnegie-Mellon University.
VanLehn, K., 8 Ball, W. (in press). Teton: A large-grained architecture for studying learning.

In K. VanLelm (Ed.), Architectures for intelligence. Hiidale, NJ: Erlbaum.
VanLehn, K.. & Garlick, S. (1987). Cirrus: An automated protocol analysis tool. In P. Langley

(Ed.), Proceedings of the Fourth Machine Learning Workshop (pp. 205-217). Los
Altos, CA: Morgan-Kaufmarm.

Young, R.M., & O’Shea, T. (1981). Errors in children’s subtraction. Cognitive Science. 5.
153-177.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 443

APPENDIX 1: PROTOCOLS AND NON-LIFO MODEL!3

This appendix presents the protocols of each of the eight nonstandard stu-
dents and our models of them. The syntax of the models has been explained
in the text. The protocols use an abbreviated notation. Each action is indi-
cated by a letter and a number. The letter stands for the type of the primi-
tive goal:

A Add10
D Decrement
- ColtutmDifference
s Slash
N WriteNine

The number stands for the column that the action was executed in. Thus,
A2 means (Add10 2), the addition of ten to the top digit in the tens column.

In order to capture some of the variability in the protocols, ad hoc predi-
cates on the problem states are used. The most common one is (ProMem x),
which is true whenever the current problem’s number is contained in the set
that is its argument. Thus, (Problem (3, 7)) is true during problems 3 and 7.

Angela
Angela always uses a standard, correct procedure. On eight problems, she
uses the standard execution strategy. In four problems (5, 9, 10, and ll),
she permutes the order of the ProcessColumn goals. She seems to delay pro-
cessing a column if that column seems hard, for instance, because it requires
borrowing from zero. We represent this by making the standard preference
5 conditional on the perceived difficulty of the problem. The predicate
(CoIumnSeemsHard I) has an ad hoc definition, since we do not have
enough data to fully understand Angela’s concept of column difficult.

Protocols

1. 562 S2 D2 Al -1 -2 -3
- 1

2. 742 S2 D2 Al -1 -2 -3
- 136

3. 50 S2 D2 Al -1 -2
- 23

4. 8305 S3 D3 A2 S2 D2 Al -1 Carry2 -2 -3
- 3 Ideal: -1 -2 -3 4

Angela mistakenly borrows in the units column, which causes the units
answer to be 12, so she carries tne ten to the ten’s column. when she

444

5. 106
- 70

6. 716
- 598

7. 1564
- 887

8. 6$1!
- 2697

.

9. 311
- 214

i ‘. _.

10. 102
- 39

11. 9007
- 6880

12. 702
- 108

VANLEHN, BALL, AND KOWALSKI

comes to taking the column difference in the tens column, she inter-
prets the 9 with a one over it (from the carry) as 9-1, so she writes 8 in
the answer. The idealized protocol omits this extra-borrow slip. Also,
Angela omits answering the last column, which the idealized protocol
does not.

S3 D3 A2 -2 -1 -3

S2 D2 Al -1 -2 -3
Ideal: S2 D2 Al -1 S3 D3 A2 -2 -3

Angela mistakenly omits the borrow for the tens column, doing 0 - 9 = 9
instead. The idealized protocol rectifies this missing-borrow slip. Her
aqyer in column one is off by one: 16 - 8 =7.

S2’D2Al-lS3D3A2-2S4D4A3-3-4

S2D2’Al-l-2S4D4A3-3-4 “-
Ideal:S2D2Al-lS3D3A2-2S4D4A3-3-4

Angela mistakenly omits the borrow in the tens column, doing 8 - 9 = 1
instead.

$3 D3 A2 -2 Carry3 -3 <cross out answer 3 > S2 D2 Al -1
Ideal: -2 -3 S2 D2 Al -1

Angela processes the tens cohmm fist, as she does in several otherr-prob-
lems. For some reason, she borrows. Perhaps she sees that the units
column will cause a decrement in the tens. If so, she forgets her discov-
ery by the time she gets to the -2, and takes 1 from 11, gets ten, and car-
ries into the hundreds. After processing the hundreds, she apparently
decides this carry was wrong, and thus the answer to the hundreds
should be zero instead, so she crosses out her answer in the hundreds
column. The idealized protocol retains the column processing order,
but omits her extra borrow and the trouble that it causes.

S3 D3 A2 -2 S2 D2 Al -1 -3
.:

-1 S4 D4 A3 -3 S3 D3 A2 -2 -4

S3 D3 A2 S2 D2 Al -1 -2 -3

Arithmetic slip in the units column: 12 - 8 = 5.

Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 445

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
then set the goals (BorrowFrom i + l), (Add10 i), (ColumnDifference i).
If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).
If the goal is (BorrowFrom i), and (Top i) =O,
then set the goals (BorrowFrom i + l), (Add10 i), (BorrowFrom i).

If tlie goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

Goal Selection Strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Add10 i) over (X i), for X in { BorrowFrom, Slash, Decrement}.
4. Prefer (Slash i) over (Decrement i).
5. If (ColumnSeemsHard i)

then prefer (ProcessColumn i + j) over (ProcessColumn i)
else prefer (ProcessColumn i) over (ProcessColumn i + j).

6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.
7. Prefer (X i) over (ColumnDifference j), for X in BorrowingGoals.
8. Prefer (ColumnDifference i) over (ProcessColumn j).
9. Prefer (X i + j) over (Y i) for X, Y in the set BorrowingGoals.

Hilda
Hiida has a standard bug, tailed Borrow-Across-Zero, that skips over zeros
during borrowing. Hilda’s execution strategy is standard, except that she
exhibits three different permutations of the borrowing actions. Since we do
not understand what determines her choice among them, we represent her
execution strategy by weakening standard preference number 9 in such a
way that the choice among the three permutations is undetermined.

Protocols

1. 647 -1 -2 -3
- 45

2. 885 -1 -2 -3
- 205

3. 83 S2 Al D2 -1 -2
- 44

4. 8305 -1 -2 -3 -4
- ?

446

5. 50
- 23

6. 562
- 3

7. 742
- 136

8. 106
- 70

9. 9007
- 6880

10. 4015
- 607

11. 702
- 108

12. 2006
- 42

VANLEHN, BALL, AND KOWALSKI

S2 D2 Al -1 -2

S2 Al D2 -1 -2 -3

S2 Al -1 D2 -2 -3

-1 S3 D3 A2 -2 -3

-1 S4 A2 -2 D4
Ideal: -1 S4 A2 -2 D4 S4 A3 -3 D4 -4

Hilda reaches an impasse when she attempts the slash-decrement for
the borrow in the hundreds column because the 9 has already been
decremented. Her repair is to quit. The idealized protocol pretends that
she had no impasse.

S2D2Al-l-2S4A3D4-3-4

S2 S3 Al D3 -1 -2 -3
Ideal: S3 Al D3 -1 -2 -3

Hilda performs the slash to the top of the tens column before she notices
that it is zero, and thus should be skipped over. The idealized protocol
omits the S2. Also, Hilda makes a facts error in the units column,
12-8=5.

-1 credo-l> S3S4A2D4-2
Ideal: -1 S4 A2 D4 -2 -3 -4

Hilda makes several slips, which the idealized protocol rectifies. She re-
does her units column difference. She makes a slash in the hundreds
column before noticing that its top digit is zero. She quits before
answering the hundreds and thousands column.

Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i) < (Bottom i),
then set the goals (BorrowFrom j), (Add10 i), (ColumnDifference i),
where j is the first column to the left of i with a non-zero top digit.

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 447

Goal Selection Strategy

1. Prefer (X i) over (ProcessColumn i), for X inthe set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Add10 i) over (X i), for X in { BorrowFrom, Slash, Decrement}.
4. Prefer (Slash i) over (Decrement i).
5. Prefer (ProcessColumn i) over (ProcessColumn i + j).
6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.
7. Prefer (X i) over (ColumnDifference j), for X in the set {BorrowFrom,

Slash, AddlO}.
8. Prefer (ColumnDifference i) over (ProcessColumn j).
9a. Prefer (Slash i) over (Add10 j).
9b. Prefer (BorrowFrom i) over (Add10 j)

Janine
Janine uses a standard, correct production system. It has a borrow from
zero routine that substitutes a WriteNine operation (abbreviated as “N’ in
the protocols) for the more common combination of adding ten and decre-
menting. This change necessitates a slight change to standard preference
number 4. The major differences from the standard execution strategy oc-
cur because Janine uses three different conventions for processing columns.
On four problems (1,2,4, and 8), she uses the standard execution strategy.
On four problems (5, 6, 11 and 12), ,she uses a horizontal convention. On
three problems (3,7 and 9), she uses a vertical convention. On two problems
(10 and 13), she uses a mixture of all three strategies. We currently do not
understand the problem characteristics, if any, that cause her to choose one
execution strategy over another, so a simple way to model Janine’s
behavior would be to delete standard preferences 6,7 and 8, which establish
the conventional ordering for ProcessColumn and Column difference with
respect to the borrowing goals and each other. However, we believe that
Janineactually has knowledge of the standard, horizontal and vertical con-
ventions, so we prefer a more complicated model that uses (Problem x) to
turn off preferences 6, 7 and 8 on some problems. Two new preferences (10
and 11) are added, and they are also conditional on the problem being pro-
cessed. The conditions are written so as to put no constraints on the column
processing order in problems 10 and 13, because we see no pattern to her
behavior on those problems.

Protocols

1. 83 Al S2 D2 -1 -2
- 44

2. 50 Al S2 D2 -1 -2
- 23

448

3. 742
- 136

4. 106
- 70

5. 716
- 598

6, 1564
- 887

7, 102
- 39

8. 9007
- 6880

9. 702
- 108

10. 2006
- 42

11. 10012
- 214

12. 8001
- 43

13. 401
-206

VANLEHN, BALL, AND KOWALSKI

Al -1 S2 D2 -2 -3

-1 A2 S3 D3 -2
Ideal: -1 A2 S3 D3 -2 -3

Janine suppresses the answer’s leading zero; the idealized protocol
does not.
Al S2 D2 A2 S3 D3 -1 -2 -3

AlS2D2A2S3D3A3IMD4-1-2-3
Ideal: Al S2 D2 A2 S3 D3 A3 S4 D4 -1 -2 -3 -4

Janinc suppresses the answer’s leading zero.
Al -1 credo -l> S2 N2 -2 S3 D3
Ideal: Al -1 S2 N2 -2 S3 D3 -3

Janine redoes the units column’s answers to correct the facts error
12 - 9 ‘4, and she suppresses the answer’s leading zero. The idealized
protocol does neither of these.
-1 A2 S3 N3 S4 D4 -2 -3 -4

Al -1 N2 -2 S3 D3 -3 <rewrite result of D3>
Ideal: Al -1 S2 N2 -2 S3 D3 -3

Janine omits the slash in the tens column; she rewrites the 6 over the 7
after she has finished the problem.
-1 A2 -2 N3 S3 S4 D4 -3 -4
Ideal: -1 A2 -2 S3 N3 S4 D4 -3 -4

Janine inczplkably reverses the order of the Slash and the WriteNine in
the hundreds column. The idealized protocol has them in their usual
order.
AlS2D2A2S3N3%tN4S5DS-l-2-3-4
Ideal: Al 52 D2 A2 S3 N3 S4 N4 S5 D5 -1 -2 -3 -4 -5

Janine suppresses the answer’s leading zero.

Al S2 N2 S3 N3 S4 D4 -4 -3 -2 -1

Al S2 N2 -1 -2 S3 D3 -3

Production System
If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i)#

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 449

If the goal is (ProcessColumn i), and (Top i)< (Bottom i),
then set the goals (BorrowFrom i + l), (Add10 i), (ColumnDifference 1).
If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i),
If the goal is (BorrowFrom i), and (Top i) =O,
then set the goals (BorrowFrom i I- l), (Slash i), (WriteNine i).
If the goal is (BorrowFrom i),
the set the goals (Slash i), (Decrement i).

Goal Selection Strategy
1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Add10 i) over (X i) for X in { BorrowFrom, Slash, Decrement}.
4a. Prefer (Slash i) over (Decrement i).
4b. Prefer (Slash i) over (WriteNine i).
5. Prefer (ProcessColumn i) over (ProcessColumn i + j).
6. If (Problem { 1, 2, 4, 5, 6, 8, 11, 12)) then

prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.
7. If (Problem { 1, 2, 4, 5, 6, 8, 11, 12)) then

pefer (X i) over (ColumnDifference j), for X in BorrowingGoals.
8. If (Problem (5, 6, 11, 12))

then prefer (ProcessColumn i) over (ColumnDifference j)
else prefer (ColumnDifference j) over (ProcessColumn i).

9. Prefer (X i) over (Y i+ 1) for X, Y in the set BorrowingGoals.
10. If (Problem (12))

then prefer (ColumnDifference i + j) over (ColumnDifference i)
else prefer (ColumnDifference i) over (ColumnDifference i + j).

11. If (Problem (3, 7, 9))
then prefer (X I) over (Y i + l), for any X, Y.

Paul
Paul has a standard, correct subtraction procedure, and uses the standard
column processing order. He exhibits two different nonstandard permuta-
tions of the borrowing actions when he does a borrows from non-zero digits.
He uses the standard permutation when he does borrowing from zero. In
order to represent this, we use an ad hoc predicate, (BFzlnProgress), which
is true whenever a borrowing from zero is being performed.

Protocols
1. 647 -1 -2 credo -l> credo -2> -3

- 45 Ideal: -1 -2 -3

450 VANLEHN, BALL, AND KOWALSKI

Paul rewrites his first two answers, apparently because they were iliegi-
ble. The idealized protocol omits these rewrites.

2. 8305 -1 -2 -3 -4
- 3

3. 885 -1 -2 -3
- 2.05

4. 83 S2 Al -1 D2 -2
- 44

5. 50 S2 Al -1 D2 -2
- 23

6. 562 S2 Al -1 D2 -2 -3
- 3

7. 6591 S2 Al -1 D2 S3 A2 D3 -2 S4 A3 -3 D4 4
-2697

8. 311 S2Al-lD2S3A2-2D3-3
- 214

9. 1813 S2 Al -1 D2 S3 A2 -2 D3 -3 -4
- 215

10. 4015 S2 Al -1 D2 -2 S4 A3 D4 -3 4
-607

11. 10012 S2Al-lD2SSDSA4EXlMA3S3D3A2-2-3-4
- 214 Ideal: S2 Al -1 D2 S5 D5 A4 S4 D4 A3 S3 D3 A2 -2 -3 -4 -5

Paul suppresses the answer’s leading zero; the idealized protocol does
not.

12. 8001 !BD4A3S3D3A2S2D2Al-l-2-3-4
- 43

Production System

If the goal is (Subtract)
then for each column i. set the goal (ProcessColumn i).

If the goal is (PnxessColumn i), and (Top i)< (Bottom i),
then set the goals (BorrowFrom i + l), (Add10 i), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i), and (Top i) = 0,
then set the goals (BorrowFrom i + l), (Add10 i), (BorrowFrom i).

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 451

Goal selection strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Add10 i) over (X i), for X in{BorrowFrom, Slash, Decrement).
4. Prefer (Slash i) over (Decrement i).
5. Prefer (ProcessColumn i) over (ProcessColumn i + j).
6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.
7. If (BFZinProgress)

8.
9.

then prefer (X i) over (ColumnDifference j) for X in BorrowingGoals
else prefer (x i) over (ColumnDifference j)

for X in the set {BorrowFrom, AddlO, Slash}.
Prefer (ColumnDifference i) over (ProcessColumn j).
If (BFZinProgress)
then prefer (X i + j) over (Y i) for X, Y in the set BorrowingGoals
else

prefer (BorrowFrom i+ 1) over (Add10 i), and
prefer (Slash i + 1) over (Add10 i), and
prefer (Add10 i) over (Decrement i+ 1).

Pete
Pete has a standard, correct production system. Pete seems to learn a new
execution strategy somewhere in the vicinity of problem 10. On problems 1
through 9, he exhibits the same pattern of borrow permutations that Paul
does; see the section on Paul for discussion. On problem 10, Pete exhibits a
transitional strategy that is like the pattern for borrowing from zero, but it
is applied to a problem that has no borrowing from zero. We do not model
Pete’s solution to this problem. On problems 11 through 13, Pete exhibits a
horizontal execution strategy. Also, Pete exhibits two permutations of
his borrowing actions during problems 11 through 13. For borrows into
the leftmost column, he uses the order Slash-Decrement-AddlO. For other
columns, he uses Slash-AddlO-Decrement. To represent this, we use the ad
hoc predicate (Penuftimate I), which is true if i is the next to last column in
the problem.

Protocols

1. 647 -1 -2 -3 credo -2>
- 45 Ideal: -1 -2 -3

Pete rewrites his answer to the tens column. The idealized protocol
omits this.

2. 885 -1 -2 -3
- 205

452 VANLEHN, BALL. AND KOWALSKI

3. 83 S2 Al D2 -1 -2
- 44

4. 8305 -1 -2 -3 -4
- 3

5. 50 S2 Al -1 D2 -2
- 23

Facts error in column 1: 10 - 3 = 6.

6. 562 S2 Al D2 -1 -2 -3
- 3

7. 742 -1-2-3
- 136

Pete fails to notice a borrow is necessary in the units column. Since
we do not know what his scratch marks would be in this case, the ideal-
ized protocol pretends the problem is 742 - 131, which requires no
borrowing.

8. 106 S3 A2 D2 S2 Al
- 70

Pete makes several slips on this problem, and ultimately gives up,
copies the problem (which appears as 9 below) and tries again. His slips
are borrowing for the units column, leaving out the decrement in the
hundreds column, and switching the slash and the decrement in the
tens column. This problem’s solution is excluded from the idealized
protocol.

9. 106 S3A2D2Al-1 -2
- 70 Ideal: S3 D3 A2 S2 D2 Al -1 -2 -3

Pete again makes several slips on this problem: borrowing for the units
column, leaving out the decrement in the hundreds column, and leav-
ing out the slash in the tens column. Also, he suppresses the answer’s
leading zero. This problem is the best evidence in the protocol that Pete
knows about borrowing from zero, so it is necessary to leave it in.
Thus, the idealized protocol pretends the problem is 106 - 79, which re-
quires a borrow in the units column. The idealized protocol rectifies
Pete’s other slips and does not suppress the leading zero.

10. 311 S3 D3 A2 S2 D2 Al -1 -2 -3
- 214

11. 6591 S2 Al D2 S3 A2 D3 S4 D4 A3 -1 -2 -3 -4
- 2697

Facts error in the units column: 11 - 7 = 5.

12. 1564 S2 Al D2 S3 A2 D3 S4 D4 A3 -1 -2 -3
- 887 Ideal: S2 Al D2 S3 A2 D3 S4 D4 A3 -1 -2 -3 -4

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 453

Pete suppresses the answer’s leading zero; the idealized protocol does
not. Facts error in the hundreds column: 14 - 8 = 7.

13. 716 S2 Al S3 D3 D2 A2 -1 -2 -3
- 598 Ideal: S2 D2 Al S3 D3 A2 -1 -2 -3

Pete seems to forget to do the decrement in the tens column, but he
catches his mistake just before adding ten in the tens column. The
idealized protocol does not make this slip.

Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)< (Bottom i),
then set the goals (BorrowFrom i + l), (Add10 i), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i), and (Top i) = 0,
then set the goals (BorrowFrom i + l), (Add10 i), (BorrowFrom i).

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

Goal selectloa strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Add10 i) over (X i), for X in { BorrowFrom, Slash, Decrement}.
4. Prefer (Slash i) over (Decrement i).
5. Prefer (ProcessColumn i) over (ProcessColumn i + j).
6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.
7a. If (BFZinProgress)

then prefer (X i) over (ColumnDifference j) for X in BorrowingGoals
else prefer (X i) over (ColumnDifference j)

for X in the set {BorrowFrom, AddlO, Slash}.
7b. If (Problem (5))

then prefer (ColumnDifference i) over (Decrement j)
else prefer (Decrement j) over (ColumnDifference i).

8. If (Problem { 11, 12, 13))
then prefer (ProcessColumn i) over (CohmmDifference j),
else prefer (ColumnDifference j) over (ProcessColumn i).

9. If (BFZinProgress) or
((Problem { 11, 12, 13)) and (Penultimate i))

then prefer (X i + j) over (Y i) for X, Y in the set BorrowingGoals.
else

454 VANLEHN. BALL, AND KOWALSKI

prefer (BorrowFrom i+ 1) over (Add10 i), and
prefer (Slash i + 1) over (Add10 i), and
prefer (Add10 i) over (Decrement i + 1). _

10. Prefer (ColumnDifference i) over (ColumnDifference i + j).

Robby
Robby seems to have a common bug, called Stops-Borrow-At-Zero. (There
is a second analysis, which attributes to him a procedure that does not know
how to borrow across zero. When given a borrow-from-zero problem, he
reaches an impasse when he tries to decrement a zero. On two problems (10
and 1 l), he repairs by skipping the BorrowFrom goal. On another problem
(13), he repairs by relocating the BorrowFrom leftwards. However, the evi-
dence for a relocation repair in problem 13 is weak, because Robby only does
the slash and not the decrement of the supposedly relocated BorrowFrom.)
Robby’s execution strategy is usually the standard one, but on two prob-
lems (6 and 7), he delays doing “hard” column differences until the end of
the problem, where “hard” appears to mean that the top digit in the column
is ten or more. Also, Robby exhibits several permutations of the borrowing
operations, which we model by deleting standard preferences 7 and 9, and
adding a new preference, 10. The new preference causes slash-decrement
pairs to be executed continguously, with no intervening actions. Robby is by
far the sloppiest student in the experiment. He makes many facts errors,
and he frequently omits parts of the borrowing subprocedure.

Protocols

1. 885
- 205

2. 8305
- 3

3. 83
- 44

4. 967
- 607

5. 106
- 70

6. 6591
- 2697

-1 -2 -3

-1 -2 -3 -4

S2 D2 Al -1 -2

-1 -2 -3

Facts slip in hundreds column: 9 - 6 = 4.

-1 A2 S3 D3 -2 credo -2> -3
Ideal: -1 A2 S3 D3 -2 -3

Robby correctly answers the tens column, then “corrects” it to
lo-7=4.

Al S2D2-2A3S4D4-4-3-1

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 455

Robby mistakenly omits the borrow in the tens column. Since it is not
clear what he would have done if he had,noticed the borrow there, the
idealized protocol keeps his action sequence and pretends that the
problem is 6591- 2677, which requires no borrow in the tens column.

7. 108 -1 A2 S3 D3 -3’-2 credo -2>
- 60 Ideal: -1 A2 S3 D3 -3 -2

Robby makes a facts error in the tens column, detects it, and redoes the
column difference. The idealized protocol gets it right the first time.

8. 1236 Al S2 -1 A2 S3 -2 A3 -3 -4
- 497 Ideal: Al S2 D2 -1 A2 S3 D3 -2 A3 S4 D4 -3 -4

Robby makes several slips, which are rectified in the idealized protocol.
He omits D2, D3 and the whole of (BorrowFrom 4). Also, he makes a
facts error in column 2 (12 - 9 = 4) and in column 3 (1 1 - 4 = 4).

9. 1813 Al -1 -2 S3 D3 -3 -4
- 215 Ideal: Al -1 S2 D2 A2 -2 S3 D3 -3 4

Facts error in the units column: 13 - 5 = 7. Robby does not write the
(BorrowFrom 2) and A2, but he acts as if he did, and give 10 - 1 = 9 as
the answer in column 2.

10. 102 Al -1 A2 S3 D3 -2 -3
- 39

Facts error in the units column: 12 - 9 = 4.
11. 9007 -1A2-2A3-3S4D4-4

- 6880

Facts error in the thousands column’s decrement: 9 - 1 = 7.
12. 4015 Al-lD2-2A3S4D4-3-4

- 607 Ideal: Al -1 S2 D2 -2 A3 S4 D4 -3 -4

Robby omits the S2.
13. 104 S3 Al -1 A2 -2 -3

- 27 Ideal: Al -1 A2 -2 -3

The initial Slash may be due to a repair to the decrement-zero impasse,
or it may be a slip of some kind. The idealized protocol omits it.

Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn~i).
If the goal is (ProcessColumn i), and (Top i)< (Bottom i),
then set the goals (BorrowFrom i + l), (Add10 i), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

456 VANLEHN, BALL, AND KOWALSKI

If the goal is (BorrowFrom i), and (Top i) = 0,
then do nothing.

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

Goal Selection Strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Add10 i) over (X i), for X in { BorrowFrom, Slash, Decrement}.
4. Prefer (Slash i) over (Decrement i),
5. Prefer (ProcessColumn i) over (ProcessColumn i + j).
6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.
7.
8. If (Top i)> 9 and (Problem { 6, 7))

then prefer (ProcessColumn j) over (ColumnDifference i)
else prefer (ColumnDifference i) over (ProcessColumn j).

9.
10. Prefer (Decrement i) over (X j),

for X in {AddlO, ColumnDifference, BorrowFrom}.

Tanya
Tanya has a moderately common bug, called Diff-O-N =O-Except-After-
Borrow, which merely writes zero in the answer instead of borrowing when-
ever a column has zero as its top digit, and the zero is from the original top
row rather than being cieated by an earlier borrow that decremented a one.
This bug is represented by adding an extra condition--that the original value
of the top digit in the column be non-zero-to the production that initiates
borrowing, and assuming that ColumnDifference always takes the absolute
difference of the digits in the column. Also, Tanya has the same version of
borrowing from zero as Janine-see the comments in Janine’s section for
discussion. Tanya’s execution strategy is almost perfectly stable. She always
uses the horizontal convention, which completes all borrowing before doing
any column-answering. This is represented by reversing standard preference
number 8. Tanya systematically employs two permutations of the borrowing
goals. If the borrow originates in the units column, Tanya does the Add10
first; if the borrow originates in the tens column, she does the BorrowFrom
first. Only problem 11 is an exception, and the exception may be due to a
slip. Tanya’s policy on borrowing permutations is represented by putting a
condition around standard preference number 9.

I. 647 -1 -2 -3
- 45

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 457

2. 885 -1 -2 -3
- 205

3. 83 Al S2 D2 -1 -2
- 44

4. 8305 -1 -2 -3 -4
- 3

5. 50 -1 -2
- 23

6. 106 -1 -2 -3 <redo -3>
- 70 -1 -2 -3

Tanya first writes 1 in the units column answer, then “corrects” it to 0.
Ideal protocol leaves it as 1.

7. 716 Al S2 D2 S3 D3 A2 -1 -2 <redo -2> -3
- 598 Ideal: Al S2 D2 S3 D3 A2 -1 -2 -3

Tanya rewrites her answer to column 2; the idealized protocol does not.

a. 311 Al S2 D2 S3 D3 A2 -1 -2 -3
- 214

Facts error in column 1: 1 1 - 4 = 6.

9. 102 Al N2 S3 D3 -1 -2 -3
- 39

Facts error in column 1: 12 - 9 = 9.

10. 9007 -1 -2 -3 -4
- 6880

11. 4015 Al S2 D2 A2 N3 -1 -2 -3 -4
- 607 Ideal: Al S2 D2 -1 -2 -3 -4

Tanya slips, starts a borrow in the tens column, but stops before com-
pleting it. The idealized protocol omits the borrow.

12. 702 Al N2 S3 D3 -1 -2 -3
- 108

13. 205 -1 -2 -3
- 30

Slip in column 3: writes 1 in answer.

14. 100 -1 -2 -3
-60

Slip in column 3: writes 0 in the answer.

458 VANLEHN, BALL, AND KOWALSKI

Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).
If the goal is (ProcessColumn i), and (Top i)< (Bottom i),
and (OriginalTop i) is not equal to zero,
then set the goals (BorrowFrom i + l), (Add10 i), (ColumnDifference i).
If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).
If the goal is (BorrowFrom i), and (Top i) =O,
then set the goals (BorrowFrom i + l), (WriteNine i).
If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

Goal Selection Strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Add10 i) over (X i), for X in { BorrowFrom, Slash, Decrement}.
4a. Prefer (Slash i) over (Decrement i),
4b. Prefer (Slash i) over (Write9 i).
5. Prefer (ProcessColumn i) over (ProcessColumn i + j).
6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.
7. Prefer (X i) over (ColumnDifference j), for X in BorrowingGoals.
8. Prefer (ProcessColumn i) over (ColumnDifference j).
9. If i = 1 and (BFZinProgress)

then prefer (X i) over (Y i + 1) for X, Y in the set BorrowingGoals,
else prefer (Y i + 1) over (X i) for X, Y in the set BorrowingGoals.

10. Prefer (ColumnDifference i) over (ColumnDifference i + j).

Trina
Trina has a common bug, called Don’t-Decrement-Zero, which makes her
borrow-from-zero routine incorrect. The correct procedure is to add ten to
the zero and then later to decrement; Trina’s bug omits the decrementing.
Trina’s strategy for processing columns is generally standard, except on
problems 9, 10 and 12. On those problems, as soon as the actions of the last
possible borrow are completed, she answers the remaining columns in left to
right order. This aspect of her strategy is represented by wrapping a condi-
tional around standard preference number 5. In problem 10, she delays the
column difference in the tens column, so standard preference 8 also has a
condition wrapped around it. Tiina also shifts unsystematically among three
permutations of the borrowing actions, which is represented by deleting
standard preferences numbers 7 and 9, and adding a new preference, 10.

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 459

The effect of the new preference is to cause slash-decrements to be executed
continguously, with no intervening actions.

Protocols

1. 50
- 23

2. 562
- 3

3. 742
- 136

4. 106
- 70

5. 716
- 598

6. 102
- 39

7. 9007
- 6880

8. 4015
- 607

9. 702
- 108

10. 2006
- 42

11. 10012
- 214

12. 8001
- 43

S2 D2 Al -1 -2

Al -1 S2 D2 -2 -3

Al -1 S2 D2 -2 -3

-1 credo -l> Al -2 S3 D3
Ideal: -1 Al -2 S3 D3 -3

Trina rewrites her answer in column 1, and she suppresses the answer’s
leading zero. The idealized protocol does neither.
Al -1 S2 D2 S3 D3 A2 -2 -3

Al -1 A2S3 D3 -2
Ideal: Al -1 A2 S3 D3 -2 -3

Trina suppresses the leading zero. The ideal protocol does not.
-1 A2 A3 S4 IX -2 -3 -4

Al -1 S2 D2 -2 A3 -3 S4 D4 4

S2 D2 Al -1 A2 S3 D3 -3 -2
Ideal: Al -1 A2 S3 D3 -3 -2

Triua inexplicably begins by slashing the top zero in the tens column
and “decrementing” it to zero. The idealized protocol omits these
actions. Both Trina and the ideal protocol do 10 -0= 0 in the tens
column. That is, they both omit carrying.
-1 A2A3 S4D4-4-3-2

Both Trina and the ideal protocol omit carrying from the hundreds
column.
Al -1 S2 D2 A3 A4 SS D5 A2 -2 -3 -4 -5

Al -1 S2 A3 S4 D4 -4 -2 c Write 10 above column 2>
Ideal: Al -1 A2 A3 S4 D4 -4 -3 -2

460 VANLEHN, BALL, AND KOWALSKI

Trina makes two slips, which the idealized protocol rectifies. First, she
fails to answer the hundreds column. Second, she does an S2 instead of
an A2. Apparently, she catches this error later, because her answer to
the second column is 6, indicating that she interpreted the slash mark
as an AddlO. Nonetheless, she changes her slash to a “10” after she
has already completed the problem.

Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i)*
If the goal is (ProcessColumn i), and (Top i) < (Bottom i),
then set the goals (BorrowFrom i + l), (Add10 i), (ColumnDifference i).
If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowProm i), and (Top i) = 0,
then set the goals (BorrowFrom i + l), (Add10 i).
If the goal is (BorrowProm i),
then set the goals (Slash i), (Decrement i).

Goal Selection Strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Add10 i) over (Xi), for X in { BorrowFrom, Slash, Decrement}.
4. Prefer (Slash i) over (Decrement i).
5. If (Problem (9, 10, 12))

6.
7.
8.

and there is a slash-decrement in the leftmost column,
then prefer (ProcessColumn i + j) over (ProcessColumn i)
else prefer (ProcessColumn i) over (ProcessColumn i + j).
Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.

If (Not (Problem { 10)))
then prefer (ColumnDiffer.fmce i) over (ProcessColumn j).

9.
10. Prefer (Decrement i) over (X j),

for X in {AddlO, ColumnDifference, BorrowFrom}.

APPENDIX 2: LIFO MODELS

This section presents LIFO models for the 8 non-standard students. The
models are expressed as hierarchical production .systems. The notational
conventions used in the non-LIFO models are used here, with one modifica-
tion. If a production creates several goals, the default interpretation is that

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 461

the goals are to be completed in the order of their occurrence in the rule.
Thus, the production UC Chen set Ihe goals A, B means to complete goal A
before starting to work on B. This default interpretation can be overridden
by preferences attached to the production. The production UC then set the
goals A, B. u(Problem { 12, X3)) then prefer B over A means to finish goal
A before starting B for all problems except problems 12 and 13; on those
problems, goal B is to be finished before work begins on goal A. Similarly,
the default interpretation of an action side of the form “for each column i,
set the goal....” is to select the goals in right-to-left order by their argu-
ments; but preferences can modify this order. The preferences attached to a
production can only mention goals that appear in the action side of the pro-
duction. Thus, this notation is strictly less powerful than the non-LIFO
notation.

Angela
If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i);
If (ColumnSeemsHard i)
then prefer (ProcessColumn i + j) over (ProcessColumn i).
If the goal is (ProcessColumn i), and (Top i)< (Bottom i)
then set the goals (BorrowFrom i + l), (Add10 i), (ColumnDifference i).
If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i) and (Top i) = 0,
then set the goals (BorrowProm i + l), (Add10 i), (BorrowFrom i).
If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

Hilda
If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i);

If the goal is (ProcessColumn i), and (Top i)< (Bottom i)
then set the goals (Slash j), (Add10 i), (Decrement j), (ColumnDifference i),
where j is the first column to the left of i that has a non-zero top digit.
If (Problem (5, 8)) then prefer (Decrement j) over (Add10 i),
else if Problem (7, 9)) then prefer (ColumnDifference i) over (Decrement j).
If the gnal is (ProcessColumn i),
then set the goal (ColumnDifference 1).

Janlne
If the goal is (Subtract) and (Problem { 1,2,4,8}),
then for each column i, set the goal (ProcessColumn i).

462 VANLEHN, BALL. AND KOWALSKI

If the goal is (ProccssColumn i), and (Top i)<(Bottom i),
then set the goals (Add10 i), (BorrowFrom i+ l), (ColumnDiffercnce i).

If the goal is (Procc~~Column i),
then set the god (columnDifferencc i).
If the goal is (BorrowFrom i), and (Top i) =O,
then set the goals (Slash i), (WriteNme i), (BorrowFrom i + 1).
If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).
If the goal is (Subtract) and (Problem t&6,11,12}),
tht SCt the 8OdS @O~~OWS), @O&hSW’XS).

If the 80&d is @o~tTOWS),
then for each column i, set the goal (Borrow i).
If the goal is (Borrow i) and (Top i)< (Bottom i),
then set the goals (Add10 i), (BorrowFrom i + 1).
If the j3Od iS @OrrOW i),
then do nothing.
If the goal is (DoAllAnswcrs),
then for each column i, set the goal (CokmDifferencc i).
If Problem { 12))
then prefer (ColumnDlffcrcnce i + j) over (ColumnDiffcrencc i).

If the goal is (Subtract) and (Problem {3,7,9}),
then for each column i, set the goal (Vertical i).
If the goal is (Vertical i) and (‘fop i) =0 and (IncomingBorrow i),*
then set the goals @ash i), (writeh?me i), and (CohtmnDiffcrmcc i).
If the goal is (Vertical i) and Fop i)> (Bottom i) and (IncomingBorrow i),
then set the goals (BorrowFrom i), (ColumnDiffcrcnce i).
If the goal is (Vertical i) and (IncomingBorrow i),
then set the goals (BorrowFrom i), (Add10 i), (ColumnDifference i).
If the goal is (Vertical i) and (I’op i)<(Bottom i),
then set the goals (Add10 i), (ColumnDifference i).
If the jJOd is (-vertical i),
then set the goal (ColumnDifference i).

Paul

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

l The predicate (hwm~Bomw i) is true if there is a column i-l and either the action
Add10 or the action WriteNiie has been performed on it.

NON-LIFO fXECUTION OF COGNITIVE PROCEDURES 463

If the goal is (ProcessColumn i), and (Top i)< (Botom i) and (Top i + 1) =0,
then set the goals (BorrowFrom i+ l), (Add10 i), (ColumnDifference i).
If the goal is (ProcessColumn i) and(Top i) < (Bottom i),
then set the goals (Slash i + l), (Add10 i), (ColumnDifference i), (Decrement

i+l).
If either (Problem (7)) and i =2 or (Problem { 10)) and i-3,
then prefer (Decrement i + 1) over (ColumnDifference i).
If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).
If the goal is (BorrowFrom i), and (Top i) -0,
then set the goals (BorrowFrom i+ l), (Add10 i), (BorrowFrom i).
If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

Pete

If the goal is (Subtract) and (Problem {1,2,3,4,5,6,7,9},
then for each column i, set the goal (ProcessColumn i).
If the goal is (ProcessColulmn i) and (Top i) < (Bottom i) and (Top i + 1) = 0,
then set the goals (BorrowFrom i+ 1). (Add10 i), (ColumnDifference i).

If the goal is (ProcessColumn i) and (Top i)c (Bottom i),
then set the goals (Slash i+ l), (Add10 i), (ColumnDifference i), (Decrement

i+l).
If (Problem { 3.6)) then prefer (Decrement i + 1) over (ColumnDifference i).
If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).
If the goal is (BorrowFrom i), and (Top i) = 0,
then set the goals (BorrowFrom i + l), (Add10 i), (BorrowFrom i).
If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).
If the goal is (Subtract) and (Problem { 11, 12. 13)).
then (DoAllBorrows), (DoAllColumns).
If the goal is (DoAllBorrows),
then for each column i, set the goal (Borrow i).
If the goal is (Borrow i) and (Top i)<(Bottom i),
then set the goals (Slash i + l), (Add10 i), (Decrement i + 1).
If (Penultimate i), then prefer (Decrement i + 1) over (Add10 i).
If the goal is (Borrow i),
then do nothing.
If the goal is (DoAllAnswers),
then for each column i, set the goal (ColumnDifference i).

464 VANLEHN, BALL, AND KOWALSKI

Robby

If the goal is (Subtract) and (Problem { 1,2,3,4,5,8,9,10,11,12,13}),
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i) < (Bottom i),
then set the goals (Add10 i), (BorrowFrom i + l), (ColumnDifference i).
If either (Problem (9,ll)) or both i=2 and (Problem { 12}),
then prefer (ColumnDifference i) over (BorrowFrom i + l),
else if (Problem {3}),
then prefer (BorrowFrom i + 1) over (Add10 i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).
If the goal is (BorrowFrom i), and (Top i) = 0,
then do nothing.

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).
If the goal is (Subtract) and (Problem {6,7}),
then (DoColumns), (FishUp).
If the goal is (DoColumns),
then for each column i, set the goal (DoProcessColumn i).

If the goal is (DoProcessCohnnn i) and (Top i)c (Bottom i),
then set the goals (Add10 i), (BorrowFrom i + 1).

If the goal is (DoProcessCohunn i),
then set the goal (ColumnDifference i).

If the goal is (FinishUp),
then for each column i, set the goal (Check&Answer i),
where i goes rightward from the leftmost column.

If the goal is (Check&Answer i) and the answer place of i is blank,
then set the goal (ColumnDifference i).
If the goal is (Check&Answer i),
then do nothing.

Tanya

If the goal is (Subtract)
then set the goals (DoAllBorrows), (DoAllAnswers).
If the goal is (DoAllBorrows),
then for each column i, set the goal (Borrow i).

If the goal is (Borrow i), and (Top i)<(Bottom i),
and (OriginalTop i) is not equal to zero,
then set the goals (BorrowFrom i + l), (Add10 i).
If i = 1, then prefer (Add10 i) over (BorrowFrom i + 1).

NON-LIFO EXECUTION OF COGNITIVE PROCEDURES 465

If the goal is (Borrow i),
then do nothing.
If the goal is (BorrowFrom i), and (Top i) = 0,
then set the goals (WriteNine. i), (BorrowFrom i + 1).

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).
If the goal is (DoAllAnswers)
then for each column i, set the goal (ColumnDifference i).

Trina

If the goal is (Subtract) and (Problem { 1 2 3 4 5 6 7 8 11)). t 9 s , 9 , . 9
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i) -c (Bottom i),
then set the goals (Add10 i), (ColumnDifference i), (BorrowFrom i + 1).
If either (Problem (1)) or both i=2 and (Problem {5,11}),
then prefer (BorrowFrom i + 1) over (Add10 i),
else if (Problem {7}),
then prefer (BorrowFrom i + 1) over (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).
If the goal is (BorrowFrom i), and (Top i) = 0,
then set the goals (Add10 i), (BorrowFrom i + 1).

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).
If the goal is to (Subtract) and (Problem {9,10,12}),
then set the goal (RecursiveSub i).
If the goal is (RecursiveSub i) and the leftmost column has a slash in it,
then for each column i, set the goal (ColumnDifference i), where
i goes from the leftmost column to the rightmost unanswered column.

If the goal is (RecursiveSub i) and Problem { 10)) and i = 2,
then (Add10 i), (BorrowFrom i + l), (RecursiveSub i + 1).

If the goal is (RecursiveSub i),
then set the goals (ProcessColumn i), (RecursiveSub i + 1).

