
In K. Hammond & D. Gentner (Eds.) "Proceedings of the thirteenth annual 
conference of the cognitive science so. ciety . 1I Hillsdale. NJ: Lawre~ce Erlbaum~ ...... ~. 

St~ate y Shifts Without Impasses: As soc 1 a tes. 1991..' , 

A Computat1on~ Model of the Sum-to-Min Transition . : 

Randolph M. Jones 
Kurt VanLehn 

Department of Computer Science 
University of Pittsburgh 

Pittsburgh, PA 15260 
JONES@CS.PITT.EDU 

VANLEHNOCS .PITT .EDU 

Abstract 
The SUM-to-MJN transition that children exhibit when 
learning to add provides an ide&l domain for studying 
naturally occurring discovery proceues. We di&cuu a 
computational model that accounts for this transition 
including the appropriate intermediate strategies. In or: 
der to account for all of these shift., the model must 
sometimes learn without the benefit of impasses. Our 
model smoothly integrates impasse-driven and impaue­
free learning in a single, simple learning mechanism. 

Introduction 
This paper discusses models for the well-known SUM­
to-MIN transition (Ashcraft, 1982,1987; Groen" Park­
man,. 1972; Groen ~ Resnick, 1977; Kaye, Poet, HaU, 
" Dmeen, 1986; SIegler " Jenkins, 1989; Svenson, 
1975). This is an ideal domain for studying natu­
~ally occurring discovery processes (Siegler Ii. Jenk­
lOS, 1989). When young children first learn to add 
two smal! numbers, they use the so-called SUM strat­
egy. They create sets of objects to represent each ad­
dend. then count the objects in the union of the two 
sets. For instance, in order to ItOlve 2 + 3, the child 
says, "1,2" while raising two fingers on the left hand' 
then "I, 2, 3" while raising three fin,ers on the right 
hand; then "1,2,3,4,5," while countmg all the raised 
fingers: This strategy is called the SUM strategy be­
cause Its execution time is proportional to the sum of 
the two addends. Older children use a more efficient 
strategy. the MIN strategy, whose execution time is 
propo~tional to the minimum of the two addends. In 
follOWIng thil,l strategy, the child first announces the 
valu~ of the l~rger addend, then counts on from it. 
For mstance, 10 order to solve 2 + 3, the child would 
say "3" then say "4,S" while ruing two fingers on one 
hand. 

Although the SUM strategy is taught in school, the 
MIN strategy appears to be invented by the children 
themselves. The best evidence for this comes from 
a longitudinal study by Siegler and Jenkins (1989). 
They interviewed 8 children weekly for 11 weeks each 
tim~ ~king them to solve about 15 oraUy pres'ented 
addItIon problems. After each problem, the child was 
asked how they got their answer. The child was also 
toldwhethe~ t~ejr answer was correct, and was given 
a gold. st,ar If It :was. Videotapes were analyzed and 
the chlld s behaVior on each problem was classified ac-
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cordi.ng to the stratep used. As far as Siegler~ and 
Jen~lDs coul~ determ~ne, t~e onl~ instruction that the 
subjects received durlDg thiS penod was their school's 
normal instruction on the SUM strategy. Nonetheless 
7 of the 8 children began to use the MIN strategy: 
Mor~ver, they apJ>.ear to have discovered it during 
the VIdeo-taped sessIons. The tapes make it clear that 
they receiv~ no help from the experimenter, so the 
MIN strategies appear to have been invented by the 
subjects themselves. 

:rhe issu.e addressed by this paper is explainin, how 
chIldren dIscover the MIN strategy. This partIcular 
discovery presents a challenge for current theories of 
learning. Although a variety of learning methods have 
been proposed, many of them are triggered when the 
prob~em solver reach~ an impasse, and yet Siegler and 

. Jenk10s found no Ilgns of IIDpasses during the dis­
covery of the ·MIN strategy .... The exact definition of 
"impasse" depends on the problem-solving architec­
ture, but roughly speaking, an impasse occurs when­
ever the solver has a goal that cannot be achieved by 
any operator that is believed to be relevant to the 
task at hand. The essential idea of impasse-driven 
learning is to resolve the impasse somehow then ltore 
the resulting experience in such a way thai future im­
passes will be avoided or at least handled more ef­
ficiently. Many systems use impasse-driven learninlS 
including SWALE (Schank, 1986), OcCAM (PazzaDl: 
Dyer " Flowers, 1986), LPARSIFAL (Berwick, 1985), 
SOAR (Newell, 1990), SIERRA (VanLehn, 1990) and 
CA~CADE (VanLeh~" Jones, in p~). ' 
. SIegler and JenklDs looked sP«71fically for signs of 
IIDpassea and found none. In partIcular, they designed 
ItOme of the prob~ems to cause impasses by making one 
of the addends very large (e.g., 23 + 1). They found 
that "The specific problems on which the children first 
used the MIN strategy were 2 + 5, 4 + 1, 3 + I, 1 + 24, 
5 + 2, and 4 + 3. These problems did not deviate from 
the characteristic II of the overall set in any notable 
way."(p. 67) In fact, some of the children had ear­
lier successfully solved exactly the same problem that 
they were working on when they discovered the MIN 
strategy. Although the impasse problems did cause 
subjects who had already invented the MIN strategy 
to start using it more frequently, the problems did not 
cause those who had not invented the strategy to do 
so. 

Siegler and Jenkins 60ught signs of impasses by ex­
amining solution times and errors in the vicinity oUbe 
discovery events. Solution times were longer than Dor­
mal for the problems where the discovery occurred and 
for the problems immediately preceding the discovery 
trial. This might suggest some kind of impasse, but er­
ror rates indicated that the problems themselves were 
Dot particularly difficult. Siegler and Jenkins suggest 
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a reconciliation between their findings and impasse-
driven learning theories: .. . 
Two types of strategy changes can be dlstmgulshed: 
changes in which the main difference between the 
strategies is in the answers themselv~, and changes 
in which · the main differences are not 10 the answers 
that are generated but rather in the efficiency wi~h 
which answers are generated and/or the aesthetic 
appeal of the procedures. The first type of strategy 
change· may occur primarily as a result. of encoun­
tering impasses, but the second may tYPically occur 
for other reasons. (p. 104) 
One model in the literature effects a strategy change 

whenever it detects an opportunity for improving the 
efficiency of a procedure. HPM (Neches, 1987) keeps 
a complete trace of its processing, which is constantly 
monitored by heuristics such as: "If a 8ubprocedure 
produces an output, but ~o other subprocedure re­
ceives that result by the time the overall procedure 
finishes, then modify the overall procedure to eliminate 
the superfluous computation." Neches demonstrated 
that this heuristic and two others sufficed for changing 
the SUM strategy into the MIN strategy. 

Enroute, two transitional strategies are necessarily 
produced by HPM. Siegler and Jenkins sou~ht evi­
dence for these ·transitional strategies in theIr data. 
One of the strategies occurred 6 times, all in the proto­
col of the same subject. Moreover, all these instances 
occurred after the MIN strategy was invented. The 
second transitional strategy predicted by Neches did 
not appear at all. These unfulfilled predictions cast 

. doubt on the HPM model. The model itself, as Neches 
noted, "assumes the relative accessibility of extremely 
detailed information about both on-going process and 
related past experiences. How can this be reconciled 
with known limitations on the ability to report this in­
formation?" (p. 213) Although HPM is computation­
ally sufficient to produce the SUM-to-MIN transition, 
it makes dubious empirical and mneumonic assump-
tions. . 

The objective of this research has been to gener­
ate a computationally sufficient account of the SUM­
ta-MIN transition that produces only observed tran­
sitional strategies and makes plausible demands on 
memory. The result is a problem solver called GIPS 
(General Inductive Problem Solver). This paper de­
scribes GIPS and its account of the strategy shifts ob­
served by Siegler and Jenkins (1989). 

GIPS is a generalized means-ends analysis (MEA) 
problem solver (Jones, 1989) whose ~rimary learning 
mechanism is based on Schlimmer's (1987; Schlimmer 
& Granger, 1986a, 1986b) STAGGER system, which 
uses a probabilistic inductIOn technique to learn con­
cept descriptions from examples. Other systems have 
combined inductive concept learners with problem solv­
ers (e.g., Langley, 1985; Mitchell, Utgoff & Banerji, 
1983), but they acquire only search-control knowledge: 
concepts that indicate which operator to select when 
several operators match the current goal. GIPS modi­
fies the descriptions of the operators themselves as well 
as the heuristics for selecting operators. Both types of 
learning play crucial roles in making the SUM-to-MIN 
transition. 

Following a brief description of GIPS ~see Jones & 
VanLehn, 1991, for a complete description is the main 
section of this paper, which presents the IPS account 
of the SUM-to-MIN transition. 
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The General Inductive Problem Solver 
GIPS' basic problem-solving algorithm is a general­
ized version of MEA borrowed from the EUREKA sys­
tem (Jones, 1989). It is based on ~rying to achieve a 
state change. The desired change IS represented by a 
TRANSFORM, which is simply a pair consisting of the 
current state and some goal conditions. In order to 
achieve this transformation, GIPS selects an operator 
and attempts to apply it. If the operator's precon­
ditions are met, it is executed and the current state 
changes. If some of the preconditions are not met, a 
new TRANSFORM is created with them as the goals. 
When this transformation is achieved, GIPS returns 
to the old TRANSFORM and attempts again to apply 
the operator. So far, this is just the standard MEA 
algorithm, but GIPS adds two important differences. 

In standard MEA, operators are selected if they 
reduce the difference between the current and goal 
states. In GIPS, selection is determined by selection 
concepts. Each operator has a concept that indicates 
when it should be selected. If the concept depends 
mostly on the current state of the TRANSFORM, then 
the operator will act like a forward-chaining inference 
rule and fire whenever the state is appropriate, regard­
less of the current goals. If the concept depends mostly 
on the goals of the TRANSFORM, then it will act like a 
backward-chaining inference rule. Typically, forward 
and backward op.erators intermingle during problem 
solving, yielding a psychologically plausible blend of 
goal-directed and opportunistic behavior. 

Each operator has a selection concept. The concept 
is represented as set of literals (predicates that mayor 
may not be negated), and each literal has two values 
associated with it: its sufficiency and its necessity. In 
order to evaluate the worth of selecting an operator, 
GIPS matches the literals against the current TRANS­
FORM. It determines the subset of literals that match 
(M) and fail to match (F), then calculates 

Odds(C) II su//iciency(L) II necessity(L), 
LeM LeF 

where Odds(C) is the prior probability that the con­
cept is worth selecting. This is the same formula used 
by STAGGER, Schlimmer's (1987) propositional con­
cept formation system, to estimate the probability that 
a given object is an instance of a particular concept. 
When all the operators have been matched and their 
worth has been calculated, GIPS chooses the one with 
the highest. rating. 

GIPS adjusts its selection concepts on the basis of its 
successes and failures while solving problems. When 
a problem is finally solved, for each operator along 
the solution path, GIPS adjusts the sufficiency and ne­
cessity values so that the operator will be rated even 
higher the next time a similar TRANSFORM occurs. 
For each operator that initiated a failure path, GIPS 
adjusts the values in its selection concept so that it 
will receive a lower value next time. In order to learn, 
GIPS must. store the solution path and every opera­
tor that led off it. However, as soon as the problem 
is finished and the updating is complet.ed, this infor­
mation can be forgotten. HPM (Neches, 1987) must 
store the whole search tree, not just. the solution path, 
for an indefinite period. Holland, Holyoak, Nisbett, 
and Thagard (1986) describe a technique, called the 
bucket brigade algorithm, that achieves the same kind 



of update as GIPS without storing any of the solution 
path. 

The mechanism described so far can learn search­
control knowledge, as do many other machine learning 
systems. In order to make the SUM-to-MIN transition, 
the system must modify the preconditions of operators 
as well. In standard MEA, after an operator has been 
selected, its preconditions are matched to the current 
state. If all of them match, the operator is executed. If 
some do not match, they become subgoals. Thus, pre­
conditions determine the goal structure of the problem 
solving. GIPS takes an indirect approach to adjusting 
preconditions. In addition to the selection concept, 
GIPS provides a second concept, called the ezectdion 
concept, which serves as a repository for its experience 
in attempting to execute the operator. When values 
in the execution concept cross a threshold, appropri­
ate modifications are made to the preconditions. Thus, 
GIPS only modifies preconditions when warranted by 
a great deal of experience. The next two paragraphs 
describe exactly how execution concepts are used. 

When an operator is selected, the system matches 
the execution concept to the current TRANSFORM in 
the same way that selection concepts are matched. If 
the calculation returns a value greater than 1, GIPS 
attempts to execute the operator. If the value is less 
than 1, GIPS follows the standard MEA practice of 
matching the preconditions of the operator to the cur­
rent state and setting up subgoals for the unmatched 
ones. 

When GIPS attempts to execute an operator, it has 
no arms and eyes so it cannot tell if its attempt suc- . 
ceeds, thus it asks the user. If an operator succeeds, 
the values in the execution concept are updated ap­
propriately and the new state becomes current. If an 
operator fails, the values are updated and the system 
follows the standard MEA routine of matching precon­
ditions and setting up sub goals. 

When the sufficiency value for a literal in the execu­
tion concept crosses a threshold, that literal is added 
to the operator's preconditions. Thus, GIPS only adds 
a literal when that literal has been found time and 
time again to be present when the operator executes. 
However, GIPS is quick to remove a literal from the 
preconditions if it ever finds that the literal is not ac­
tually necessary for the execution of the operator. If 
the system successfully executes an operator and not 
all of the preconditions are satisfied, it removes the 
unmatched literals. There is no sense continuing to 
subgoal for an unmatched literal if that literal is not 
in fact necessary for executing the operator. 

Representation of the Addition Domain 
GIPS describes the world as a set of relations between 
objects. In the addition domain, these objects and re­
lations include the numbers that are part of the prob­
lem. the state of the problem solver's "hands" while it 
is adding, and the value of a counter that the problem 
solver keeps "in its head." 

GIPS requires 16 operators to represent the addition 
domain. There are two particular operators, which we 
refer to as the END-COUNT operators, that are in­
volved in most of the strategy shifts. For future refer­
ence, the series of preconditions that the LEFT-END­
COUNT operator acquires appears in Table 1. The 16 
operators' selection concepts were initialized so that 
the system generates the SUM strategy. The literals 
of each operator's selection concept were the precon-

ditions and the goals that the operator could satisfy. 
The necessity and sufficiency of these literals were set 
so that they would be retrieved in either a backward_ 
chaining or forward-chaining fashion, depending on the 
role of the operator in the domain. 

Table 1. A series of preconditions for LEFT-END_ 
COUNT. 

SUM strategy (a): 
Raising(Lefthand) 
Counting(Lefthand) 
1ssigned(Lefthand.=Value) 
Counter-value (=Value) 

SUM strategy (b): 
laising(Lefthand) 
Counting(Lefthand) 
1ssigned(Lefthand.=Value) 
Counter-value (=Value) 
Raised-fingers (Left hand. = Value) 

SHORTCUT SUM strategy (c): 
Raising(Lefthand) 
Counting(Lefthand) 
1ssigned(Lefthand.=Value) 
laised-fingers(Lefthand.=Value) 

FIRST strategy (d): 
'Raising(Left~and) 
Counting(Lefthand) 
1ssigned(Lefthand.=Value) 

Strate,KY Acquisition in the Addition 
Domam 
This section presents GIPS' behavior through a series 
of different strategies for adding numbers. These strat­
egy shifts arise from the learning algorithm incorpo­
rated into the system, and they correspond well with 
the shifts observed by Siegler and Jenkins. Siegler and 
Jenkins classified their subjects' behavior into 8 strate­
gies, of which 4 were based on counting (the others in­
volved various kinds of recognition and guessing). In 
this section, we describe each of the 4 counting strate­
gies in the order in which they generally appear. How­
ever, it is important to note that children always in­
termingle their strategies, sometimes even on a trial 
by trial basis. We will discuss the issue of strategy 
variability in the next section. 

The SUM Strategy 
GIPS' initial strategy for addition is the SUM strategy. 
The first thing the system does is assign an addend to 
each hand. For example, when adding 2 and 3, the sys­
tem may assign the number 2 to the left hand and the 
number 3 to the right hand. However, in this strategy 
the order of the addends does not make a difference, 
so it could just as easily have switched them. . 

Next, the system begins its procedure of countlng 
out a set of fingers on each hand. To accomplish this 
task the END-COUNT operators initially use a countedter 
to determine when a hand is finished being coun 
out. For example, the preconditions of LEFT-END­
COUNT demand that the system be raising fingers on 
the left hand, and that the value of the counter be 
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equal to the value of the left-hand adden~. These pre­
conditions are set up as subgoals, causmg the selec­
tion of the START-RAISE and START:-~OUNT opera­
tors, which initialize the forward-chamm~ procedure 
of raising and counting fingers one at a time. These 
operators execute alternately until LEFT-END-COUNT 
can execute, when the correct number of fingers have 
been counted on the left hand. 

After the left hand has been counted, the CL~BBER­
COUNTER operator immediately executes. ThIS oper­
ator executes when all the fingers of a hand have been 
raised along with a running count. Its effects are to 
zero the value of the counter to prepare it for the next 
hand and to mark the current hand as uncounted, be­
ca~ the counter's value has been changed. This en­
tire procedure then repeats with the right hand. 

After both hands have been counted, DETERMINE­
ANSWER checks whether it can execute. It can only 
execute if both hands are marked as counted, but ex­
ecution of CLOBBER-COUNTER has caused this to be 
false. Therefore, the system again attempts to count 
up fingers on each hand, this time marking fingers that 
are already raised. For this procedure no CLOBB.ER­
COUNTER is necessary, because the number of raised 
fingers (rather than the value of the counter) is used 
to termmate the count for each hand. Finally, after 
each hand has been counted for the second time, GIPS 
announces the answer. 

As the system repeatedly solves addition problems, 
it continuously updates the execution concepts for the 
END-COUNT operators. After a while, the concept en­
codes several regularities that are always true when 
these operators execute. For example, there are al­
ways two addends in the problem description, and the 
number of "marked" fingers is always zero. Most im­
portantly, however, the concept encodes the number 
of raised fingers is always equal to the counter va~ue 
(which in turn is equal to the goal value for countmg 
an addend). Thus, these literals eventually get added 
into the preconditions for the END-COUNT operators 
(see Table l(b». This action alone does not change 
the system's outward behavior, but it proves impor­
tant for later strategies. 

The SHORTCUT SUM Strategy 
After new preconditions have been added and a num­
ber of addition problems have been solved, the new 
literals in the system's execution concepts for LEFT­
END-COUNT and RIGHT-END-COUNT become st.rong 
enough t.hat GIPS attempts t.o execute the operat.ors 
earlier than usual. At some point, it thinks that the 
operators should execute when the number of fingers 
raised on a hand is equal to the goal value even though 
the system has not yet incremented its count for the 
last finger. It turns out that the system can success­
fully solve the addition problem even if it executes this 
operator prematurely, so it deletes the condit.ion that 
the current counter value must be equal to t.he goal 
value in the preconditions of the END-COUNT opera­
tors (see Table l(c». 

This change has a direct effect on GIPS' behavior. 
When attempting to apply LEFT-END-COUNT, the 
value of the counter no longer appears in the precon­
ditions, so it is not posted as a subgoal. This means 
that the START-COUNT operator is no longer selected. 
Thus, a running count is st.ill kept while raising fingers, 
but the counter is not marked for use as the termina­
tion criterion. This means that CLOBBER-COUNTER 
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will not fire and that leads to two changes in strategy. 
First, the c~unter is not reset to zero after counting the 
left hand, and counting continues from the left hand's 
final value. Second, the hands are not marked as .un­
counted 80 there is no need to count up the raised 
fingers ~gain after the two hands have initially been 
counted. This behavior corresponds to the SHOR~CUT 
SUM strategy, which was invented by all 8 of Siegler 
and Jenkins' subjects. 

The SHORTCUT MIN Strategy 
The next shift leads to an intermediate strategy be­
tween SHORTCUT SUM and MIN, which we call SHORT­
CUT MIN. Although Siegler and Jenkins do not classify 
SHORTCUT MIN as a distinct strategy from SHORTCUT 
SUM, they do note (p. 119) th~t some of their subjects 
begin to switch addends durmg SHORTCUT SUM so 
that they start countin~ with the larger addend on the 
left hand, rather than Just picking whichever addend 
appears first in the problem. GIPS can also account 
for this behavior. 

An important feature of the ~HORTCUT SUM .strat­
egy is that the problem solver s counter value IS not 
equal to the number of fingers being raised .on the rig~t 
hand (i.e., the second hand). We hYP?theslze tha~ thIS 
causes interference and subsequent fallure. Such mter­
ference would not occur with the left hand, because the 
number of raised fingers in the SHORTCUT SUM strat­
egy is always equal to the value of the counter for that 
hand. We simulated interference between the value of 
the counter and the number of fingers raised on the 
right hand by causing GIPS to fail sometimes during 
the SHORTCUT SUM strategy when it decided to count 
the larger addend on its right hand. This caused the 
system to update the selection concept for the opera­
tor that initially assigns an addend to each hand, so 
that it would prefer to count the smaller addend on 
the right hand. 

The MIN Strategy 
The final strategy shift occurs in a similar m~nne~ to 
the shift from SUM to SHORTCUT SUM. At thiS pOlDt, 
GIPS has attempted to execute the END-COUNT op­
erators at various times and has been given feedback 
each time as to whether it would be able to solve the 
current problem if it executed the operator at that 
time. Thus, it is slowly learning a "good" concept for 
when the END-COUNT operators are executable. One 
of the things that proves to be true every time these 
operators are executed is that the goal value for count­
ing out a hand is equal to the addend assigned to that 
hand. 

Eventually, t.he system attempts to fire t.he LEFT­
END-COUNT operat.or without having raised any fin­
gers at all. When it succeeds by doing this, it .deletes 
the precondition that the number of fingers raised on 
the hand be equal to the goal value (see Table l(d». 
The system has learned that it can simply start count­
ing from the goal value for the left hand rather than 
start.ing from zero. GIPS also at.t.empts to execute the 
RIGHT-END-COUNT operator early, but t.his leads to 
failure. Thus, the syst.em begins to exhibit the MIN 
strategy, in which the largest number (the left-~and 
number) is simply announced .and used to contmue 
counting the smaller number as m the SHORTCUT MIN 
strategy. 

.~------------------------
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The FIRST Strategy 
The only other counting strategy found by Siegler and 
Jenkins is the FIRST strategy. It was used on only 
6 trials all by the same subject. FIRST is similar 
~ the MIN strategy, except that it does not assign 
the larger addend to the left hand. Rather, it starts 
with whichever addend is presented first, and contin­
ues counting with the second. In GIPS, this strategy 
follows from the SHORTCUT SUM strategy when the 
system does not learn about ordering the addend.s. 
While using the FIRST strategy, the system can still 
eventually generate the MIN strategy through the same 
type of failure-driven learning that leads from SHORT­
CUT SUM to SHORTCUT MIN. 

Summary and Discussion 
Both the SUM strategy and the MIN strategy have 
three main subgoals: to represent one addend, to rep­
resent the the other addend, and to count the union 
of the representations. The SUM-to-MIN transition 
involves three independent modifications to the SUM 
strategy: (1) The subgoal of representing one addend 
changes from explicitly constructing a set of objects to 
simply saying the addend. (2) The order of addends 
is made conditional on their size 80 that the larger 
addend is represented by the easier process. (3) The 
process of representing the other addend is run in par­
allel with counting up the union. In the SUM strategy, 
representing the other addend is finished before count-
ing up the union begins. . . . 

The GIPS account for each of these transltions 15 as 
follows. The first transition is caused by correlational 
learning of preconditions. GIPS keeps track of which 
literals in the situation are correlated with the final 
achievement of the goal of representing the first ad­
dend. Eventually, it considers these correlated literals 
to be just as essential as the originally specified pre­
conditions. It eventually discovers that the originally 
specified preconditions can be ignored as long as the 
correlated literals are achieved. ' 

The second transition is caused by normal failure­
driven learning. The system uses two apparently equiv­
alent methods, but persistent errors in one of them 
causes the other one to eventually dominate. 

The third transition again involves'a correlational 
type of learning .. The COUNT operator is responsible 
for incrementing the oral counter. Initially, it is se­
lected only when the subgoal of counting-up an addend 
is present. Eventually, correlated relations that .are 
present in the current state (i.e., that a finger has Just 
been raised) come to dominate the selection concept, 
and the operator becomes a forward-chaining o~era­
tor. Basically, the person has developed the hablt of 
counting whenever they raise a finger even if that count 
doesn't serve any direct purpose. Although GIPS could 
learn this habit, we actually gave COUNT a forward­
chaining selection concept in our experiments in or­
der to save time. Given this habit, it serendipitously 
achieves the goal of counting the union even when the 
counter is no longer used to represent the second ad­
dend. 

Although this summary leaves out some crucial de­
tails, it makes it clear that correlational learning is cru­
cial to the GIPS account for the first and third transi­
tions. Ordinary failure driven learning can handle the 
second. 

Our analysis with GIPS helps clarify several impor-
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tant, general issues about strategy change. Siegler and 
Jenkins observe that, "Not one child adopted a strat­
egy that could be classified as indicating a lack of un­
derstanding of the goals of addition." (p. 107) In this 
respect, the subjects are similar to those of Gelman 
and Gallistel (1978) who found that very young chil­
dren would invent correct strategies for counting a set 
of objects even when unusual constraints were placed 
on them to thwart their normal strategy. 

The initial knowledge given to GIPS does not include 
any explicit principles of addition or counting. As far 
as it is concerned, the SUM strategy is just a 80ng that 
has to be sung the right way. Bow then does it avoid 
developing bad strategies? In the Siegler and Jenkins 
study, students were told after each trial whether they 
got the problem right. This kind of feedback is crucial 
to GIPS' learning. GIPS occasionally attempts to ex­
ecute an operator in situations that would produce a 
wrong answer. If it were not told that the execution 
was wrong, it would develop wrong strategies. This 
demonstrates that an innate understanding of addi­
tion is not necessary for a computationally sufficient 
account of the observed competence. 

A common misconception about discovery is that a 
newly discovered strategy or concept instantly and to­
tally supplants its predecessor. In all protocol-based 
studies of discovery (e.g., Kuhn, Amsel, & O'Laughlin, 
1988; Siegler & Jenkins, 1989; VanLehn, in press), the 
transition between the old strategy and the new one 
is gradual. We have not tried to model the. gradual 
transition to the use of the MIN strategy With GIPS 
because doing it right would require implementingsev­
eral memory-based strategies. However, it is clear that 
the probabilistic nature of GIPS' selection and execu­
tion concepts would tend to predict a gradual transi­
tion. 

Starting in the eighth week of the study, Siegler and 
Jenkins began including "impasse problems," such as 
2+23. They had hoped that these would encourage 
discovery of the MIN strategy, but they did not, for no 
child first used the MIN strategy on an impasse prob­
lem. However, children who had already discovered 
the MIN strategy began to use it much more frequently 
on the impasse problems and even on the non-impasse 
problems that followed the eighth week. GIPS would 
tend to do the same thing if it were ~iven impasse 
problems. The larger addend would inVite e!rors d~­
ing the SHORTCUT SUM and FIRST strategies, whlch 
would lower the values of their selection concepts. The 
inclusion of impasse problems would not effect the er­
ror rate of the MIN strategy, 80 it would gradually 
become the preferred strategy for all counting trials. 

Siegler and Jenkins noticed that some children were 
consciously aware that they had invented a new strat­
egy in that they could explain it on the first trial where 
they used it, and some even recogniz~ that it was, a 
"smart answer," in the words of one chlld. Other chil­
dren denied using the MIN strategy ~ven .when the 
videotape showed that they had used It. Slegler and 
Jenkins divided children into those who seemed con­
scious of the strategy and those who did not, and mea­
sured the frequency of their subsequent usage of the 
MIN strategy. The high awareness group used the MIN 
strategy on about 60% of the trials . where they used 
any counting strategy. The low awareness group used 
the MIN strategy on less than 10% of the trials. This 
suggests that being aware of a newl.y discovered strat­
egy facilitates subsequent usage of It. 
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This finding cannot be modeled by GIPS because 
GIPS has no way to distin~u!sh a str~tegy that ca:n be 
ex lained from one that IS macce8Slble to conscIous­
nJe. However, the finding could p~obably be mode~ed 
by combining GIPS with a symbolIc example-.learmng 
system such as CASCADE (VanLehn k Jones, 10 press; 
VanLehn, Jones, k Chi, 1991). In the new system, 
GIPS would discover a strategy and store a trace of 
the strategy's actions in memory. This trace would 
be used as an example to be explained by the sec­
ond system. If enough of the. trace can be recalled f?r 
the explanation to succeed, It annotates the step~ 10 

the trace and perhaps the operators whose executIOns 
produced the steps. These elaborations would make it 
easier to retrieve the modified operators from memory, 
and perhaps hel~ in assigning credit and. ~lame, thus 
speeding the adjustment of the preconditions, selec­
tion, and execution concepts. These influences would 
increase the usage of the new strategy on subsequent 
problems. 

To summarize, GIPS achieves its main research ob­
jective, providing a computational account of the sev­
eral strategy shifts observed during the SUM-ta-MIN 
transition. It uses plausible local processes, rather 
than global optimization techniques as required by the 
BPM system. In addition, GIPS uses modest amounts 
of storage, in contrast to HPM, which stores com­
plete solution traces for indefinite periods. Most im­
portantly, GIPS produces all and only the transitional 
strategies observed in the Siegler and Jenkins study. 

_ The G IPS analysis solves a number of puzzles raised by 
the Siegler and Jenkins study. These include the abil­
ity to make significant strategy shifts without impasse­
driven learning, and to avoid inventing bad strategies 
without assuming innate knowledge of the principles of 
addition. Thus, GIPS provides a plausible, computa­
tionally sufficient account. of the discovery of the MIN 
strategy. However, Siegler and Jenkins produced a sec­
ond set of findings on the gradual increase in usage of 
the newly discovered strategy. We have not yet tried 
to model these findings, but GIPS seems to provide an 
appropriate framework for doing so. 

References 
Ashcraft, M. H. (1982). The development of mental 
arithmetic: A chronometric approach. DetJeiopmental 
Review t 213-236. 
Ashcraft, M. H. (1987). Children's knowledge of sim­
ple arithmetic: A developmental model and simula­
tion. In C. J. Brainerd, R. Kail, k J. Bisanz (Eds.), 
Formal met/aodlJ in developmental ps,c/aolog,. New 
York: Springer-Verlag. 
Berwick, R. (1985). The acquisition of syntactic knowl­
edge. Cambridge MA: MIT Press. 
Gelman, R., k Gallistel, C. R. (1978). The chi/d'lJ 
underlJtand;rlg of number. Cambridge, MA: Harvard 
University Press. 
~roen, G. J., k Parkman, J. M. (1972). A chronomet­
nc analysis of simple addition. Psychological Review, 
79,329-343. 

Groen, G., k Resnick, L. B. (1977). Can preschool 
children invent addition algorithms? Journal of Edu­
cational PS'lchology, 69, 645-652. 
Holland, J. H., Holyoak, K. J., Nisbett, R. E., k Tha­
gard, P. R. (1986). Induction: Processes of inference, 
learnin.9, and discovery. Cambridge, MA: MIT Press. 
Jones, R. M. (1989). A model of retrieval in problem 
lolving. Doctoral dissertation, University of Califor-

363 

nia, Irvine. 
Jones, R. M., k VanLehn, K. (1991). The Gips model 
of strategy acquisitiorl. Manuscript submitted for pub-
lication. . 
Kaye, D. B., Post, T. A., Hall, V. C., k DlOeen, J. T. 
(1986). The emergence of information retrieval strate­
gies in numerical cognition: A development study. 
Cognitiorl and Instruction, 3, 137-166. 

Kuhn, D., Amsel, E., k O'Laughlin, M. (1988). The 
development of scientific t/ainking skilllJ. New York: 
Academic Press. 
Langley, P. (1985). Learning to search: From weak 
methods to domain-specific heuristics. Cognitive Sci­
erlce 9 217-260. 
Mitchell, T~ M., Utgoff, P. E., k Banerji, R. (1983). 
Learning by experimentation: Acquiring and refin­
ing problem-solving heuristics. In R. S. Michalski, 
J. G . Carbonell, T. M. Mitchell (Eds.), Machine learn­
ing: An artificial intelligence approach. Los Altos, 
CA: Morgan Kaufmann. 
Neches, R. (1987). Learning through incremental re­
finement of procedures. In D. Klahr, P. Langley, k R. 
Neches (Eds.), Production system models of learning 
arld develop-merlt. Cambridge, MA: MIT Press. 

Newell, A. (1990). Urlified lheoriu of cognition: T/ae 
William James lecturelJ. Cambridge, MA: Harvard 
U niversit>-. Press. 
Pazzani, M., Dyer, M., k Flowers, M. (1986). The role 
of prior causal theories in generalization. Proceedings 
of the Fifth National Conference on Artificial Intel­
ligence (pp. 545-550). Philadelphia: Morgan Kauf­
mann. 
Schank, R. (1986). Erplanation patternlJ: Understand­
ing mechanically arld creatively. Hillsdale, N J: Lawr­
ence Erlbaum. 
Schlimmer, J. C. (1987). Incremental adjustment of 
representations for learning. Proceedings of the Fourth 
International Works/aop on Machine Learning (pp. 79-
90). Irvine, CA: Morgan Kaufmann. 
Sclilimmer, J. C., k Granger, R. H., Jr. (1986a). Be­
yond incremental processing: Tracking concept drift. 
Proceedings of t/ae Fift/a National Conference on Arti­
ficial Intelligence (pp. 502-507). Philadelphia: Mor­
gan Kaufmann. 
Schlimmer, J. C., k Granger, R. H., Jr. (1986b). In­
cremental learning from noisy data. Machine team­
ing, 1, 317-354. 

Siegler, R. S., k Jenkins, E. (1989). How children 
discover new stmtegiu. Hillsdale, NJ: Lawrence Erl­
baum. 
Svenson, O. (1975). Analysis of time required by chil­
dren for simple additions. Acta Psychologica, 39, 289-
302. 
VanLehD, K. (1990). Mind bugs: The origins of pro­
. cedural misconceptiorllJ. Cambridge, MA: MIT Press. 
VanLehn, K. (in press). Rule acquisition events in 
the discovery of problem solving strategies. Cognitive 
Science. 
VanLehn, K., Jones, R. M., k Chi, M. T. H. (1991)_ A 
model of the self-erplanation effect. Manuscript sub­
mitted for_publication. 
VanLehn, K., & Jones, R. M. (in press). Integration of 
explanation-based learning of correctness and analo~­
ical search control. In S. Minton k P. Langley (Eds.), 
Proceedings of the symposium on learning, planning 
and scheduling. 

~~. ..----------------~------------............................. sd - .____E 


