
In K. Hammond & D. Gentner (Eds.) "Proceedings of the thirteenth annual
conference of the cognitive science so. ciety . 1I Hillsdale. NJ: Lawre~ce Erlbaum~ ~.

St~ate y Shifts Without Impasses: As soc 1 a tes. 1991..' ,

A Computat1on~ Model of the Sum-to-Min Transition . :

Randolph M. Jones
Kurt VanLehn

Department of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260
JONES@CS.PITT.EDU

VANLEHNOCS .PITT .EDU

Abstract
The SUM-to-MJN transition that children exhibit when
learning to add provides an ide&l domain for studying
naturally occurring discovery proceues. We di&cuu a
computational model that accounts for this transition
including the appropriate intermediate strategies. In or:
der to account for all of these shift., the model must
sometimes learn without the benefit of impasses. Our
model smoothly integrates impasse-driven and impaue­
free learning in a single, simple learning mechanism.

Introduction
This paper discusses models for the well-known SUM­
to-MIN transition (Ashcraft, 1982,1987; Groen" Park­
man,. 1972; Groen ~ Resnick, 1977; Kaye, Poet, HaU,
" Dmeen, 1986; SIegler " Jenkins, 1989; Svenson,
1975). This is an ideal domain for studying natu­
~ally occurring discovery processes (Siegler Ii. Jenk­
lOS, 1989). When young children first learn to add
two smal! numbers, they use the so-called SUM strat­
egy. They create sets of objects to represent each ad­
dend. then count the objects in the union of the two
sets. For instance, in order to ItOlve 2 + 3, the child
says, "1,2" while raising two fingers on the left hand'
then "I, 2, 3" while raising three fin,ers on the right
hand; then "1,2,3,4,5," while countmg all the raised
fingers: This strategy is called the SUM strategy be­
cause Its execution time is proportional to the sum of
the two addends. Older children use a more efficient
strategy. the MIN strategy, whose execution time is
propo~tional to the minimum of the two addends. In
follOWIng thil,l strategy, the child first announces the
valu~ of the l~rger addend, then counts on from it.
For mstance, 10 order to solve 2 + 3, the child would
say "3" then say "4,S" while ruing two fingers on one
hand.

Although the SUM strategy is taught in school, the
MIN strategy appears to be invented by the children
themselves. The best evidence for this comes from
a longitudinal study by Siegler and Jenkins (1989).
They interviewed 8 children weekly for 11 weeks each
tim~ ~king them to solve about 15 oraUy pres'ented
addItIon problems. After each problem, the child was
asked how they got their answer. The child was also
toldwhethe~ t~ejr answer was correct, and was given
a gold. st,ar If It :was. Videotapes were analyzed and
the chlld s behaVior on each problem was classified ac-

This research benefited from discussions witb Jeff
Schlimmer and Bob Siegler. It was supported in part
by contract NOOO 14-88-K-0080 from the Office of Naval
Research, Cognitive Sciences Division, and a postdoc­
toral training grant from the Department of Health
and Human Services.

cordi.ng to the stratep used. As far as Siegler~ and
Jen~lDs coul~ determ~ne, t~e onl~ instruction that the
subjects received durlDg thiS penod was their school's
normal instruction on the SUM strategy. Nonetheless
7 of the 8 children began to use the MIN strategy:
Mor~ver, they apJ>.ear to have discovered it during
the VIdeo-taped sessIons. The tapes make it clear that
they receiv~ no help from the experimenter, so the
MIN strategies appear to have been invented by the
subjects themselves.

:rhe issu.e addressed by this paper is explainin, how
chIldren dIscover the MIN strategy. This partIcular
discovery presents a challenge for current theories of
learning. Although a variety of learning methods have
been proposed, many of them are triggered when the
prob~em solver reach~ an impasse, and yet Siegler and

. Jenk10s found no Ilgns of IIDpasses during the dis­
covery of the ·MIN strategy The exact definition of
"impasse" depends on the problem-solving architec­
ture, but roughly speaking, an impasse occurs when­
ever the solver has a goal that cannot be achieved by
any operator that is believed to be relevant to the
task at hand. The essential idea of impasse-driven
learning is to resolve the impasse somehow then ltore
the resulting experience in such a way thai future im­
passes will be avoided or at least handled more ef­
ficiently. Many systems use impasse-driven learninlS
including SWALE (Schank, 1986), OcCAM (PazzaDl:
Dyer " Flowers, 1986), LPARSIFAL (Berwick, 1985),
SOAR (Newell, 1990), SIERRA (VanLehn, 1990) and
CA~CADE (VanLeh~" Jones, in p~). '
. SIegler and JenklDs looked sP«71fically for signs of
IIDpassea and found none. In partIcular, they designed
ItOme of the prob~ems to cause impasses by making one
of the addends very large (e.g., 23 + 1). They found
that "The specific problems on which the children first
used the MIN strategy were 2 + 5, 4 + 1, 3 + I, 1 + 24,
5 + 2, and 4 + 3. These problems did not deviate from
the characteristic II of the overall set in any notable
way."(p. 67) In fact, some of the children had ear­
lier successfully solved exactly the same problem that
they were working on when they discovered the MIN
strategy. Although the impasse problems did cause
subjects who had already invented the MIN strategy
to start using it more frequently, the problems did not
cause those who had not invented the strategy to do
so.

Siegler and Jenkins 60ught signs of impasses by ex­
amining solution times and errors in the vicinity oUbe
discovery events. Solution times were longer than Dor­
mal for the problems where the discovery occurred and
for the problems immediately preceding the discovery
trial. This might suggest some kind of impasse, but er­
ror rates indicated that the problems themselves were
Dot particularly difficult. Siegler and Jenkins suggest

358

, 1

I

>

a reconciliation between their findings and impasse-
driven learning theories: .. .
Two types of strategy changes can be dlstmgulshed:
changes in which the main difference between the
strategies is in the answers themselv~, and changes
in which · the main differences are not 10 the answers
that are generated but rather in the efficiency wi~h
which answers are generated and/or the aesthetic
appeal of the procedures. The first type of strategy
change· may occur primarily as a result. of encoun­
tering impasses, but the second may tYPically occur
for other reasons. (p. 104)
One model in the literature effects a strategy change

whenever it detects an opportunity for improving the
efficiency of a procedure. HPM (Neches, 1987) keeps
a complete trace of its processing, which is constantly
monitored by heuristics such as: "If a 8ubprocedure
produces an output, but ~o other subprocedure re­
ceives that result by the time the overall procedure
finishes, then modify the overall procedure to eliminate
the superfluous computation." Neches demonstrated
that this heuristic and two others sufficed for changing
the SUM strategy into the MIN strategy.

Enroute, two transitional strategies are necessarily
produced by HPM. Siegler and Jenkins sou~ht evi­
dence for these ·transitional strategies in theIr data.
One of the strategies occurred 6 times, all in the proto­
col of the same subject. Moreover, all these instances
occurred after the MIN strategy was invented. The
second transitional strategy predicted by Neches did
not appear at all. These unfulfilled predictions cast

. doubt on the HPM model. The model itself, as Neches
noted, "assumes the relative accessibility of extremely
detailed information about both on-going process and
related past experiences. How can this be reconciled
with known limitations on the ability to report this in­
formation?" (p. 213) Although HPM is computation­
ally sufficient to produce the SUM-to-MIN transition,
it makes dubious empirical and mneumonic assump-
tions. .

The objective of this research has been to gener­
ate a computationally sufficient account of the SUM­
ta-MIN transition that produces only observed tran­
sitional strategies and makes plausible demands on
memory. The result is a problem solver called GIPS
(General Inductive Problem Solver). This paper de­
scribes GIPS and its account of the strategy shifts ob­
served by Siegler and Jenkins (1989).

GIPS is a generalized means-ends analysis (MEA)
problem solver (Jones, 1989) whose ~rimary learning
mechanism is based on Schlimmer's (1987; Schlimmer
& Granger, 1986a, 1986b) STAGGER system, which
uses a probabilistic inductIOn technique to learn con­
cept descriptions from examples. Other systems have
combined inductive concept learners with problem solv­
ers (e.g., Langley, 1985; Mitchell, Utgoff & Banerji,
1983), but they acquire only search-control knowledge:
concepts that indicate which operator to select when
several operators match the current goal. GIPS modi­
fies the descriptions of the operators themselves as well
as the heuristics for selecting operators. Both types of
learning play crucial roles in making the SUM-to-MIN
transition.

Following a brief description of GIPS ~see Jones &
VanLehn, 1991, for a complete description is the main
section of this paper, which presents the IPS account
of the SUM-to-MIN transition.

359

The General Inductive Problem Solver
GIPS' basic problem-solving algorithm is a general­
ized version of MEA borrowed from the EUREKA sys­
tem (Jones, 1989). It is based on ~rying to achieve a
state change. The desired change IS represented by a
TRANSFORM, which is simply a pair consisting of the
current state and some goal conditions. In order to
achieve this transformation, GIPS selects an operator
and attempts to apply it. If the operator's precon­
ditions are met, it is executed and the current state
changes. If some of the preconditions are not met, a
new TRANSFORM is created with them as the goals.
When this transformation is achieved, GIPS returns
to the old TRANSFORM and attempts again to apply
the operator. So far, this is just the standard MEA
algorithm, but GIPS adds two important differences.

In standard MEA, operators are selected if they
reduce the difference between the current and goal
states. In GIPS, selection is determined by selection
concepts. Each operator has a concept that indicates
when it should be selected. If the concept depends
mostly on the current state of the TRANSFORM, then
the operator will act like a forward-chaining inference
rule and fire whenever the state is appropriate, regard­
less of the current goals. If the concept depends mostly
on the goals of the TRANSFORM, then it will act like a
backward-chaining inference rule. Typically, forward
and backward op.erators intermingle during problem
solving, yielding a psychologically plausible blend of
goal-directed and opportunistic behavior.

Each operator has a selection concept. The concept
is represented as set of literals (predicates that mayor
may not be negated), and each literal has two values
associated with it: its sufficiency and its necessity. In
order to evaluate the worth of selecting an operator,
GIPS matches the literals against the current TRANS­
FORM. It determines the subset of literals that match
(M) and fail to match (F), then calculates

Odds(C) II su//iciency(L) II necessity(L),
LeM LeF

where Odds(C) is the prior probability that the con­
cept is worth selecting. This is the same formula used
by STAGGER, Schlimmer's (1987) propositional con­
cept formation system, to estimate the probability that
a given object is an instance of a particular concept.
When all the operators have been matched and their
worth has been calculated, GIPS chooses the one with
the highest. rating.

GIPS adjusts its selection concepts on the basis of its
successes and failures while solving problems. When
a problem is finally solved, for each operator along
the solution path, GIPS adjusts the sufficiency and ne­
cessity values so that the operator will be rated even
higher the next time a similar TRANSFORM occurs.
For each operator that initiated a failure path, GIPS
adjusts the values in its selection concept so that it
will receive a lower value next time. In order to learn,
GIPS must. store the solution path and every opera­
tor that led off it. However, as soon as the problem
is finished and the updating is complet.ed, this infor­
mation can be forgotten. HPM (Neches, 1987) must
store the whole search tree, not just. the solution path,
for an indefinite period. Holland, Holyoak, Nisbett,
and Thagard (1986) describe a technique, called the
bucket brigade algorithm, that achieves the same kind

of update as GIPS without storing any of the solution
path.

The mechanism described so far can learn search­
control knowledge, as do many other machine learning
systems. In order to make the SUM-to-MIN transition,
the system must modify the preconditions of operators
as well. In standard MEA, after an operator has been
selected, its preconditions are matched to the current
state. If all of them match, the operator is executed. If
some do not match, they become subgoals. Thus, pre­
conditions determine the goal structure of the problem
solving. GIPS takes an indirect approach to adjusting
preconditions. In addition to the selection concept,
GIPS provides a second concept, called the ezectdion
concept, which serves as a repository for its experience
in attempting to execute the operator. When values
in the execution concept cross a threshold, appropri­
ate modifications are made to the preconditions. Thus,
GIPS only modifies preconditions when warranted by
a great deal of experience. The next two paragraphs
describe exactly how execution concepts are used.

When an operator is selected, the system matches
the execution concept to the current TRANSFORM in
the same way that selection concepts are matched. If
the calculation returns a value greater than 1, GIPS
attempts to execute the operator. If the value is less
than 1, GIPS follows the standard MEA practice of
matching the preconditions of the operator to the cur­
rent state and setting up subgoals for the unmatched
ones.

When GIPS attempts to execute an operator, it has
no arms and eyes so it cannot tell if its attempt suc- .
ceeds, thus it asks the user. If an operator succeeds,
the values in the execution concept are updated ap­
propriately and the new state becomes current. If an
operator fails, the values are updated and the system
follows the standard MEA routine of matching precon­
ditions and setting up sub goals.

When the sufficiency value for a literal in the execu­
tion concept crosses a threshold, that literal is added
to the operator's preconditions. Thus, GIPS only adds
a literal when that literal has been found time and
time again to be present when the operator executes.
However, GIPS is quick to remove a literal from the
preconditions if it ever finds that the literal is not ac­
tually necessary for the execution of the operator. If
the system successfully executes an operator and not
all of the preconditions are satisfied, it removes the
unmatched literals. There is no sense continuing to
subgoal for an unmatched literal if that literal is not
in fact necessary for executing the operator.

Representation of the Addition Domain
GIPS describes the world as a set of relations between
objects. In the addition domain, these objects and re­
lations include the numbers that are part of the prob­
lem. the state of the problem solver's "hands" while it
is adding, and the value of a counter that the problem
solver keeps "in its head."

GIPS requires 16 operators to represent the addition
domain. There are two particular operators, which we
refer to as the END-COUNT operators, that are in­
volved in most of the strategy shifts. For future refer­
ence, the series of preconditions that the LEFT-END­
COUNT operator acquires appears in Table 1. The 16
operators' selection concepts were initialized so that
the system generates the SUM strategy. The literals
of each operator's selection concept were the precon-

ditions and the goals that the operator could satisfy.
The necessity and sufficiency of these literals were set
so that they would be retrieved in either a backward_
chaining or forward-chaining fashion, depending on the
role of the operator in the domain.

Table 1. A series of preconditions for LEFT-END_
COUNT.

SUM strategy (a):
Raising(Lefthand)
Counting(Lefthand)
1ssigned(Lefthand.=Value)
Counter-value (=Value)

SUM strategy (b):
laising(Lefthand)
Counting(Lefthand)
1ssigned(Lefthand.=Value)
Counter-value (=Value)
Raised-fingers (Left hand. = Value)

SHORTCUT SUM strategy (c):
Raising(Lefthand)
Counting(Lefthand)
1ssigned(Lefthand.=Value)
laised-fingers(Lefthand.=Value)

FIRST strategy (d):
'Raising(Left~and)
Counting(Lefthand)
1ssigned(Lefthand.=Value)

Strate,KY Acquisition in the Addition
Domam
This section presents GIPS' behavior through a series
of different strategies for adding numbers. These strat­
egy shifts arise from the learning algorithm incorpo­
rated into the system, and they correspond well with
the shifts observed by Siegler and Jenkins. Siegler and
Jenkins classified their subjects' behavior into 8 strate­
gies, of which 4 were based on counting (the others in­
volved various kinds of recognition and guessing). In
this section, we describe each of the 4 counting strate­
gies in the order in which they generally appear. How­
ever, it is important to note that children always in­
termingle their strategies, sometimes even on a trial
by trial basis. We will discuss the issue of strategy
variability in the next section.

The SUM Strategy
GIPS' initial strategy for addition is the SUM strategy.
The first thing the system does is assign an addend to
each hand. For example, when adding 2 and 3, the sys­
tem may assign the number 2 to the left hand and the
number 3 to the right hand. However, in this strategy
the order of the addends does not make a difference,
so it could just as easily have switched them. .

Next, the system begins its procedure of countlng
out a set of fingers on each hand. To accomplish this
task the END-COUNT operators initially use a countedter
to determine when a hand is finished being coun
out. For example, the preconditions of LEFT-END­
COUNT demand that the system be raising fingers on
the left hand, and that the value of the counter be

360

equal to the value of the left-hand adden~. These pre­
conditions are set up as subgoals, causmg the selec­
tion of the START-RAISE and START:-~OUNT opera­
tors, which initialize the forward-chamm~ procedure
of raising and counting fingers one at a time. These
operators execute alternately until LEFT-END-COUNT
can execute, when the correct number of fingers have
been counted on the left hand.

After the left hand has been counted, the CL~BBER­
COUNTER operator immediately executes. ThIS oper­
ator executes when all the fingers of a hand have been
raised along with a running count. Its effects are to
zero the value of the counter to prepare it for the next
hand and to mark the current hand as uncounted, be­
ca~ the counter's value has been changed. This en­
tire procedure then repeats with the right hand.

After both hands have been counted, DETERMINE­
ANSWER checks whether it can execute. It can only
execute if both hands are marked as counted, but ex­
ecution of CLOBBER-COUNTER has caused this to be
false. Therefore, the system again attempts to count
up fingers on each hand, this time marking fingers that
are already raised. For this procedure no CLOBB.ER­
COUNTER is necessary, because the number of raised
fingers (rather than the value of the counter) is used
to termmate the count for each hand. Finally, after
each hand has been counted for the second time, GIPS
announces the answer.

As the system repeatedly solves addition problems,
it continuously updates the execution concepts for the
END-COUNT operators. After a while, the concept en­
codes several regularities that are always true when
these operators execute. For example, there are al­
ways two addends in the problem description, and the
number of "marked" fingers is always zero. Most im­
portantly, however, the concept encodes the number
of raised fingers is always equal to the counter va~ue
(which in turn is equal to the goal value for countmg
an addend). Thus, these literals eventually get added
into the preconditions for the END-COUNT operators
(see Table l(b». This action alone does not change
the system's outward behavior, but it proves impor­
tant for later strategies.

The SHORTCUT SUM Strategy
After new preconditions have been added and a num­
ber of addition problems have been solved, the new
literals in the system's execution concepts for LEFT­
END-COUNT and RIGHT-END-COUNT become st.rong
enough t.hat GIPS attempts t.o execute the operat.ors
earlier than usual. At some point, it thinks that the
operators should execute when the number of fingers
raised on a hand is equal to the goal value even though
the system has not yet incremented its count for the
last finger. It turns out that the system can success­
fully solve the addition problem even if it executes this
operator prematurely, so it deletes the condit.ion that
the current counter value must be equal to t.he goal
value in the preconditions of the END-COUNT opera­
tors (see Table l(c».

This change has a direct effect on GIPS' behavior.
When attempting to apply LEFT-END-COUNT, the
value of the counter no longer appears in the precon­
ditions, so it is not posted as a subgoal. This means
that the START-COUNT operator is no longer selected.
Thus, a running count is st.ill kept while raising fingers,
but the counter is not marked for use as the termina­
tion criterion. This means that CLOBBER-COUNTER

361

will not fire and that leads to two changes in strategy.
First, the c~unter is not reset to zero after counting the
left hand, and counting continues from the left hand's
final value. Second, the hands are not marked as .un­
counted 80 there is no need to count up the raised
fingers ~gain after the two hands have initially been
counted. This behavior corresponds to the SHOR~CUT
SUM strategy, which was invented by all 8 of Siegler
and Jenkins' subjects.

The SHORTCUT MIN Strategy
The next shift leads to an intermediate strategy be­
tween SHORTCUT SUM and MIN, which we call SHORT­
CUT MIN. Although Siegler and Jenkins do not classify
SHORTCUT MIN as a distinct strategy from SHORTCUT
SUM, they do note (p. 119) th~t some of their subjects
begin to switch addends durmg SHORTCUT SUM so
that they start countin~ with the larger addend on the
left hand, rather than Just picking whichever addend
appears first in the problem. GIPS can also account
for this behavior.

An important feature of the ~HORTCUT SUM .strat­
egy is that the problem solver s counter value IS not
equal to the number of fingers being raised .on the rig~t
hand (i.e., the second hand). We hYP?theslze tha~ thIS
causes interference and subsequent fallure. Such mter­
ference would not occur with the left hand, because the
number of raised fingers in the SHORTCUT SUM strat­
egy is always equal to the value of the counter for that
hand. We simulated interference between the value of
the counter and the number of fingers raised on the
right hand by causing GIPS to fail sometimes during
the SHORTCUT SUM strategy when it decided to count
the larger addend on its right hand. This caused the
system to update the selection concept for the opera­
tor that initially assigns an addend to each hand, so
that it would prefer to count the smaller addend on
the right hand.

The MIN Strategy
The final strategy shift occurs in a similar m~nne~ to
the shift from SUM to SHORTCUT SUM. At thiS pOlDt,
GIPS has attempted to execute the END-COUNT op­
erators at various times and has been given feedback
each time as to whether it would be able to solve the
current problem if it executed the operator at that
time. Thus, it is slowly learning a "good" concept for
when the END-COUNT operators are executable. One
of the things that proves to be true every time these
operators are executed is that the goal value for count­
ing out a hand is equal to the addend assigned to that
hand.

Eventually, t.he system attempts to fire t.he LEFT­
END-COUNT operat.or without having raised any fin­
gers at all. When it succeeds by doing this, it .deletes
the precondition that the number of fingers raised on
the hand be equal to the goal value (see Table l(d».
The system has learned that it can simply start count­
ing from the goal value for the left hand rather than
start.ing from zero. GIPS also at.t.empts to execute the
RIGHT-END-COUNT operator early, but t.his leads to
failure. Thus, the syst.em begins to exhibit the MIN
strategy, in which the largest number (the left-~and
number) is simply announced .and used to contmue
counting the smaller number as m the SHORTCUT MIN
strategy.

.~------------------------

;

The FIRST Strategy
The only other counting strategy found by Siegler and
Jenkins is the FIRST strategy. It was used on only
6 trials all by the same subject. FIRST is similar
~ the MIN strategy, except that it does not assign
the larger addend to the left hand. Rather, it starts
with whichever addend is presented first, and contin­
ues counting with the second. In GIPS, this strategy
follows from the SHORTCUT SUM strategy when the
system does not learn about ordering the addend.s.
While using the FIRST strategy, the system can still
eventually generate the MIN strategy through the same
type of failure-driven learning that leads from SHORT­
CUT SUM to SHORTCUT MIN.

Summary and Discussion
Both the SUM strategy and the MIN strategy have
three main subgoals: to represent one addend, to rep­
resent the the other addend, and to count the union
of the representations. The SUM-to-MIN transition
involves three independent modifications to the SUM
strategy: (1) The subgoal of representing one addend
changes from explicitly constructing a set of objects to
simply saying the addend. (2) The order of addends
is made conditional on their size 80 that the larger
addend is represented by the easier process. (3) The
process of representing the other addend is run in par­
allel with counting up the union. In the SUM strategy,
representing the other addend is finished before count-
ing up the union begins. . . .

The GIPS account for each of these transltions 15 as
follows. The first transition is caused by correlational
learning of preconditions. GIPS keeps track of which
literals in the situation are correlated with the final
achievement of the goal of representing the first ad­
dend. Eventually, it considers these correlated literals
to be just as essential as the originally specified pre­
conditions. It eventually discovers that the originally
specified preconditions can be ignored as long as the
correlated literals are achieved. '

The second transition is caused by normal failure­
driven learning. The system uses two apparently equiv­
alent methods, but persistent errors in one of them
causes the other one to eventually dominate.

The third transition again involves'a correlational
type of learning .. The COUNT operator is responsible
for incrementing the oral counter. Initially, it is se­
lected only when the subgoal of counting-up an addend
is present. Eventually, correlated relations that .are
present in the current state (i.e., that a finger has Just
been raised) come to dominate the selection concept,
and the operator becomes a forward-chaining o~era­
tor. Basically, the person has developed the hablt of
counting whenever they raise a finger even if that count
doesn't serve any direct purpose. Although GIPS could
learn this habit, we actually gave COUNT a forward­
chaining selection concept in our experiments in or­
der to save time. Given this habit, it serendipitously
achieves the goal of counting the union even when the
counter is no longer used to represent the second ad­
dend.

Although this summary leaves out some crucial de­
tails, it makes it clear that correlational learning is cru­
cial to the GIPS account for the first and third transi­
tions. Ordinary failure driven learning can handle the
second.

Our analysis with GIPS helps clarify several impor-

362

tant, general issues about strategy change. Siegler and
Jenkins observe that, "Not one child adopted a strat­
egy that could be classified as indicating a lack of un­
derstanding of the goals of addition." (p. 107) In this
respect, the subjects are similar to those of Gelman
and Gallistel (1978) who found that very young chil­
dren would invent correct strategies for counting a set
of objects even when unusual constraints were placed
on them to thwart their normal strategy.

The initial knowledge given to GIPS does not include
any explicit principles of addition or counting. As far
as it is concerned, the SUM strategy is just a 80ng that
has to be sung the right way. Bow then does it avoid
developing bad strategies? In the Siegler and Jenkins
study, students were told after each trial whether they
got the problem right. This kind of feedback is crucial
to GIPS' learning. GIPS occasionally attempts to ex­
ecute an operator in situations that would produce a
wrong answer. If it were not told that the execution
was wrong, it would develop wrong strategies. This
demonstrates that an innate understanding of addi­
tion is not necessary for a computationally sufficient
account of the observed competence.

A common misconception about discovery is that a
newly discovered strategy or concept instantly and to­
tally supplants its predecessor. In all protocol-based
studies of discovery (e.g., Kuhn, Amsel, & O'Laughlin,
1988; Siegler & Jenkins, 1989; VanLehn, in press), the
transition between the old strategy and the new one
is gradual. We have not tried to model the. gradual
transition to the use of the MIN strategy With GIPS
because doing it right would require implementingsev­
eral memory-based strategies. However, it is clear that
the probabilistic nature of GIPS' selection and execu­
tion concepts would tend to predict a gradual transi­
tion.

Starting in the eighth week of the study, Siegler and
Jenkins began including "impasse problems," such as
2+23. They had hoped that these would encourage
discovery of the MIN strategy, but they did not, for no
child first used the MIN strategy on an impasse prob­
lem. However, children who had already discovered
the MIN strategy began to use it much more frequently
on the impasse problems and even on the non-impasse
problems that followed the eighth week. GIPS would
tend to do the same thing if it were ~iven impasse
problems. The larger addend would inVite e!rors d~­
ing the SHORTCUT SUM and FIRST strategies, whlch
would lower the values of their selection concepts. The
inclusion of impasse problems would not effect the er­
ror rate of the MIN strategy, 80 it would gradually
become the preferred strategy for all counting trials.

Siegler and Jenkins noticed that some children were
consciously aware that they had invented a new strat­
egy in that they could explain it on the first trial where
they used it, and some even recogniz~ that it was, a
"smart answer," in the words of one chlld. Other chil­
dren denied using the MIN strategy ~ven .when the
videotape showed that they had used It. Slegler and
Jenkins divided children into those who seemed con­
scious of the strategy and those who did not, and mea­
sured the frequency of their subsequent usage of the
MIN strategy. The high awareness group used the MIN
strategy on about 60% of the trials . where they used
any counting strategy. The low awareness group used
the MIN strategy on less than 10% of the trials. This
suggests that being aware of a newl.y discovered strat­
egy facilitates subsequent usage of It.

-- ----- --

:

This finding cannot be modeled by GIPS because
GIPS has no way to distin~u!sh a str~tegy that ca:n be
ex lained from one that IS macce8Slble to conscIous­
nJe. However, the finding could p~obably be mode~ed
by combining GIPS with a symbolIc example-.learmng
system such as CASCADE (VanLehn k Jones, 10 press;
VanLehn, Jones, k Chi, 1991). In the new system,
GIPS would discover a strategy and store a trace of
the strategy's actions in memory. This trace would
be used as an example to be explained by the sec­
ond system. If enough of the. trace can be recalled f?r
the explanation to succeed, It annotates the step~ 10

the trace and perhaps the operators whose executIOns
produced the steps. These elaborations would make it
easier to retrieve the modified operators from memory,
and perhaps hel~ in assigning credit and. ~lame, thus
speeding the adjustment of the preconditions, selec­
tion, and execution concepts. These influences would
increase the usage of the new strategy on subsequent
problems.

To summarize, GIPS achieves its main research ob­
jective, providing a computational account of the sev­
eral strategy shifts observed during the SUM-ta-MIN
transition. It uses plausible local processes, rather
than global optimization techniques as required by the
BPM system. In addition, GIPS uses modest amounts
of storage, in contrast to HPM, which stores com­
plete solution traces for indefinite periods. Most im­
portantly, GIPS produces all and only the transitional
strategies observed in the Siegler and Jenkins study.

_ The G IPS analysis solves a number of puzzles raised by
the Siegler and Jenkins study. These include the abil­
ity to make significant strategy shifts without impasse­
driven learning, and to avoid inventing bad strategies
without assuming innate knowledge of the principles of
addition. Thus, GIPS provides a plausible, computa­
tionally sufficient account. of the discovery of the MIN
strategy. However, Siegler and Jenkins produced a sec­
ond set of findings on the gradual increase in usage of
the newly discovered strategy. We have not yet tried
to model these findings, but GIPS seems to provide an
appropriate framework for doing so.

References
Ashcraft, M. H. (1982). The development of mental
arithmetic: A chronometric approach. DetJeiopmental
Review t 213-236.
Ashcraft, M. H. (1987). Children's knowledge of sim­
ple arithmetic: A developmental model and simula­
tion. In C. J. Brainerd, R. Kail, k J. Bisanz (Eds.),
Formal met/aodlJ in developmental ps,c/aolog,. New
York: Springer-Verlag.
Berwick, R. (1985). The acquisition of syntactic knowl­
edge. Cambridge MA: MIT Press.
Gelman, R., k Gallistel, C. R. (1978). The chi/d'lJ
underlJtand;rlg of number. Cambridge, MA: Harvard
University Press.
~roen, G. J., k Parkman, J. M. (1972). A chronomet­
nc analysis of simple addition. Psychological Review,
79,329-343.

Groen, G., k Resnick, L. B. (1977). Can preschool
children invent addition algorithms? Journal of Edu­
cational PS'lchology, 69, 645-652.
Holland, J. H., Holyoak, K. J., Nisbett, R. E., k Tha­
gard, P. R. (1986). Induction: Processes of inference,
learnin.9, and discovery. Cambridge, MA: MIT Press.
Jones, R. M. (1989). A model of retrieval in problem
lolving. Doctoral dissertation, University of Califor-

363

nia, Irvine.
Jones, R. M., k VanLehn, K. (1991). The Gips model
of strategy acquisitiorl. Manuscript submitted for pub-
lication. .
Kaye, D. B., Post, T. A., Hall, V. C., k DlOeen, J. T.
(1986). The emergence of information retrieval strate­
gies in numerical cognition: A development study.
Cognitiorl and Instruction, 3, 137-166.

Kuhn, D., Amsel, E., k O'Laughlin, M. (1988). The
development of scientific t/ainking skilllJ. New York:
Academic Press.
Langley, P. (1985). Learning to search: From weak
methods to domain-specific heuristics. Cognitive Sci­
erlce 9 217-260.
Mitchell, T~ M., Utgoff, P. E., k Banerji, R. (1983).
Learning by experimentation: Acquiring and refin­
ing problem-solving heuristics. In R. S. Michalski,
J. G . Carbonell, T. M. Mitchell (Eds.), Machine learn­
ing: An artificial intelligence approach. Los Altos,
CA: Morgan Kaufmann.
Neches, R. (1987). Learning through incremental re­
finement of procedures. In D. Klahr, P. Langley, k R.
Neches (Eds.), Production system models of learning
arld develop-merlt. Cambridge, MA: MIT Press.

Newell, A. (1990). Urlified lheoriu of cognition: T/ae
William James lecturelJ. Cambridge, MA: Harvard
U niversit>-. Press.
Pazzani, M., Dyer, M., k Flowers, M. (1986). The role
of prior causal theories in generalization. Proceedings
of the Fifth National Conference on Artificial Intel­
ligence (pp. 545-550). Philadelphia: Morgan Kauf­
mann.
Schank, R. (1986). Erplanation patternlJ: Understand­
ing mechanically arld creatively. Hillsdale, N J: Lawr­
ence Erlbaum.
Schlimmer, J. C. (1987). Incremental adjustment of
representations for learning. Proceedings of the Fourth
International Works/aop on Machine Learning (pp. 79-
90). Irvine, CA: Morgan Kaufmann.
Sclilimmer, J. C., k Granger, R. H., Jr. (1986a). Be­
yond incremental processing: Tracking concept drift.
Proceedings of t/ae Fift/a National Conference on Arti­
ficial Intelligence (pp. 502-507). Philadelphia: Mor­
gan Kaufmann.
Schlimmer, J. C., k Granger, R. H., Jr. (1986b). In­
cremental learning from noisy data. Machine team­
ing, 1, 317-354.

Siegler, R. S., k Jenkins, E. (1989). How children
discover new stmtegiu. Hillsdale, NJ: Lawrence Erl­
baum.
Svenson, O. (1975). Analysis of time required by chil­
dren for simple additions. Acta Psychologica, 39, 289-
302.
VanLehD, K. (1990). Mind bugs: The origins of pro­
. cedural misconceptiorllJ. Cambridge, MA: MIT Press.
VanLehn, K. (in press). Rule acquisition events in
the discovery of problem solving strategies. Cognitive
Science.
VanLehn, K., Jones, R. M., k Chi, M. T. H. (1991)_ A
model of the self-erplanation effect. Manuscript sub­
mitted for_publication.
VanLehn, K., & Jones, R. M. (in press). Integration of
explanation-based learning of correctness and analo~­
ical search control. In S. Minton k P. Langley (Eds.),
Proceedings of the symposium on learning, planning
and scheduling.

~~. ..----------------~------------............................. sd - .____E

