
In K. Eiselt & A. Ram (Eds), Proceedings of the 16th Annual Conference of 
the Cognitive Science Society. pp.893-898. Hillsdale, NJ: Erlbaum. 1994. 

STEPS: A Preliminary Model of Learning from a Thtor 

Sigalit Ur 
Intelligent Systems Program 

University of Pittsburgh 
Pittsburgh,PA 15260 

(412) 624-8847 
sigalit@pogo.isp.pitt.edu 

Abstract 

This paper describes a prototype of a simulaled physics student 
that learns by interacting with a human tutor. The system 
solves physics problems while showing its work on a work· 
station screen, and the tutor can intervene at cenain points 
during problem·solving to advise the simulaled studenL This 
prototype constitutes an initial cognitive task analysis of the 
skill of learning from a tutor, which prescribes several tutor· 
ing practices that appear to be plausible for both human and 
computer tutors. 

Introduction 
STEPS is a~imulated, !utorabls; physics ~tudcnl. That is, it is a 
machine learning program thatlCarns from feedback and hints 
provided by a a human tutor as it solves physics problems. 
The main motivation for STEPS is to see if it is technically 
feasible to build a simulation-based tutor training system, and 
a preliminary evaluation of its potential for training human 
tutors has been conducted (Ur and VanLehn, 1994). However, 
this paper focuses on what STEPS has taught us about the 
cognitive task of learning from a tutor. 

Although computational theories of human skill acquisition 
exist (e.g. Anderson, 1990; Newell, 1991; VanLehn, Jones 
and Chi, 1992) they do not adequately address interactive 
learning. wherein a learner and a tutor can converse. They 
apply most readily to instructional situations where the learner 
works alone or with minimal supervision. STEPS is an 
extension of one such theory (CASCADE-see VanLehn et 
al .• 1992) to interactive learning. but there are as yet so few 
empirical studies of human-human tutoring, especially from 
the lulee's point of view (see Merrill, Reiser, Ranney and 
Trafton, 1992) that many of the design decisions in STEPS are 
unconstrained by empirical evidence. At this point, we 
cannot claim that STEPS is a theory of interactive learning. 
However, it does provides an initial cognitive task analysis of 
the process of learning from a tutor. 

The benefit of having a computational cognitive task anal
ysis of learning (i.e., a simulated student) is that one can 
readily see how to organize instruction so that it will be 
learned most effectively. In particular, we will indicate an 
number of tutoring practices that optimize STEPS'S learning 
and appear to be plausible prescriptions for both human and 
computer tutors. Moreover, we understand completely why 
the prescribed policies optimize learning (or at least, STEPS's 
learning), which is not the case with the heuristics that are 
currently used for designing the pedagogical components of 
intelligent tutoring systems. 

893 

Kurt VanLehn 
Learning Research and Development Center 

University of Pittsburgh 
Pittsburgh, PA 15260 

(412) 624-7458 
vanlehn@cs.pitt.edu 

First the system is described, and its operation is illustrated 
with several shon sessions. Then we present the tutoring tac
tics suggested by STEPS's design and discuss their suitability 
as prescriptions for human and computer tutoring. 

The System 
STEPS utilizes the simulated physics student embodied in the 
CASCADE system (see VanLehn, Jones and Chi, 1992 for a 
description of an earlier version) as its basic problem-solver, 
and the OLAE interface (Martin and Vanlehn, 1993), on which 
it shows its work and accepts input from the tutor. Both 
systems have been modified, extended and linked to form 
STEPS. The next sections will describe the system's interface, 
problem-solver and learner. 

User Interface 
The STEPS screen is divided into several windows (see 
figure 1): the icon window, which displays icons representing 
physics problems (top bar), the problem window, which 
displays the text and diagram of the current problem (upper 
right), the diagram window, which will contain the free body 
diagram that STEPS constructs (lower right), the solution 
window, where STEPS can write equations (upper left). and 
the dialog window, where STEPS comments about its progress, 
describes new variables it will be using, requests help from 
the tutor, etc. (lower left). 

The tutor chooses a problem LO pose to STEPS by Clicking 
on its icon. The problem description is then presented 
in the problem window, and STEPS starts to solve the 
problem by drawing vectors (representing forces, velocities 
and accelerations) and axes in the diagram window and 
writing equations in the solution window. 

After each problem solving action is displayed on the 
screen, the tutor is given an opportunity to intervene. The 
tutor can cross out an action that STEPS has taken by pointing 
to its representation on the screen. The tutor may also draw 
an arrow in the diagram window or enter an equation in the 
solution window. In the latttt case, the system allows onl? ·;$ 
input that it can parse, enforcing variable names that are 
consistent with the problem-solver's representation. When 
the tutor has said all he wishes to say, he clicks the "Go Ahead" 
butLOn, which passes control back to the problem-solver. 

Problem Solving 
Currently, the problem solver's knowledge covers a subset 
of the material in Chapters 2-5 of a college physics text
book (Halliday and Resnick, 1988), including kinematics and 



I··, ,,'I 
I ,.0.5'4 

--. 

-

A tuck starts tom lISt and moves 
willa constant acceleration 01 
5 m/; Frldilupeedafler4s. 

Figure 1: The OLAE screen 

Newtonian Mechanics, This knowledge is represented by a 
set of rules (e.g. If spring A touches object B then A exerts 
pressure force F on B) and equations (e.g. If X is a massive 
body, close to earth, then W=mg where W is X's weight, m 
is X's mass and g is the gravitational constant). Using this 
knowledge, STEPS can solve quantitative physics problems 
of the kind described in Figures 2-4. These problems are 
available to STEPS as lists of predicates which describe the 
situation, given quantities and sought quantities. 

The declarative rules are used by an agenda-based top
level control structure. At each iteration of the top-level loop, 
possible tasks are proposed. When all possible tasks have 
been queued, one of them is selected for execution, executed, 
and marked as having been tried. This process continues 
until the problem is solved. In the physics domain, the tasks 
are creating variables for given and sought quantities in the 
problem, choosing bodies, choosing methods (e.g., forces, 
energies), drawing the free body diagram, drawing the axes, 
and writing an equation. Once a task has been chosen for 
execution, the rules that implement it are enabled, and these 
fire until quiescence, which signals the next iteration of the 
top-level loop. 

STEPS' progress is visible on the screen as it draws arrows 
on the free body diagram and writes equations. Each time 
that the problem solver displays another step in the solution, 
it pauses and asks the tutor, "Go ahead?" If the tutor answers 
yes, the problem solver continues from exactly where it left 
off. However, the tutor can also cross out equations or 
arrows, or add new equations or arrows before answering 
yes. When this occurs, STEPS (a) deletes all the goals of the 
problem solver, (b) handles the tutor's inputs, (c) reconstructs 
the problem solving goals, then (d) resumes problem solving, 
This same four-step process also occurs after the problem 
solver has gotten stuck and asked the tutor for help. 

The tutor's input often changes the state of the problem 
solving so much that it is impossible to continue problem 
solving from where it left off. That is why STEPS deletes the 

894 

Table 1: STEPS'S top-level algorithm 
Cet problem fro. t.utor 
Rep.at until problem .olved 

Generate next .tep (if known) 
Cet tutor'. advice 
It (cue 11 tutor .uqqeoted .tep 

Try to derive tutor'l .tep 
el.e if Tutor era •• ed out .tep 

if (ca •• 2' Tutor a1.0 .u9ge.tad alternative .tap 
Derive tutor'l .tep 
Try to find dlverqence betveen derivation. 
Delate rule at divergence 

el •• if (ca.e 3) Can modify era •• ed-out .tap 
Generate Jlodified atap 

if Tutor approve. it 
Try to derive it 

_1 •• (caee 4' 
Mark atep for later learn1n; 

It any .tepa lUrked for later learn1nq 
Find f1ret prevlouely unuaed rule 1n derivat10n and delete it 

goals before handling the tutor's input and reconstructs goals 
afterwards. Goal reconstruction (VanLehn and Ball, 1991) 
is simple in STEPS' agenda-based control structure. The 
system checks if new tasks have become possible given the 
tutor's input, then chooses which task to execute in the usual 
way. Sometimes a tutor may leave the most recently written 
equation alone and modify an arrow or equation written 
earlier. In this case, STEPS assumes that all the reasoning 
taken since the modified action is now suspect, so it mentally 
crosses those results out. 

The tutor may take several actions before giving control 
back to STEPS, and how STEPS learns from this input depends 
on what the specific actions are. !able 1 summarizes STEPS'S 
algorithm, and the next section describes in more detail STEPS' 
methods for learning new rules and deleting old ones. 

Learning 
When the tutor demonstrates what the next action should be 
(case 1 in Table I), and the system realizes that it cannot 
generate this action using its current set of rules, it tries to 
learn new rules that would enable generation of the action 
in future using Explanation-Based Learning of Correctness 
(VanLehn et al., 1992). The system tries to derive the correct 
action using a set of overly general rules that are part of 
its knowledge base. If it is successful, it creates (using 
Explanation-Based Generalization (Mitchell et al., 1986» 
new rules that are more specific than the overly general rules 
but general enough to apply to more than this specific problem. 
These new rules become part of the system's knowledge base. 
There is fairly good evidence that this is how human students 
learn new rules in this task domain (VanLehn, Jones and Chi, 
1992; VanLehn and Jones, 1993). 

When the tutor supplies negative feedback on an action, 
the system assumes the incorrect action was a result of an 
incorrect rule. What happens next depends on whether the 
tutor supplied an alternative, correct action, 

If the tutor has supplied a correct alternative action (case 
2 in Table I), the system attempts to derive it using its 
rules. If the attempt is successful, the system traces through 
the derivation of the correct action and the derivation of 
the incorrect action, then deletes the rule that caused the 
derivations to diverge. This is a standard machine learning 
technique for handling negative feedback (Sleeman et al., 
1982). However, there is as yet no evidence that human 

• 



students use it because no fine-grained (e.g., protocol) studies 
of learning from a tutor have been conducted. Nonetheless, it 
is clear that human students do learn from negative feedback 
(e.g., Anderson, Conrad and Corbell, 1989) and this is a 
relatively simple, parsimonious mechanism that does the job. 

When no additional feedback is given, STEPS first considers 
generating its own action to replace the crossed-out one. If it 
decides it should (case 3 in Table 1) it syntactica1ly modifies 
its old action and then asks the tutor for confirmation. If the 
tutor confirms that STEPS' new action is correct, then learning 
continues just as if the tutor had supplied the correct action. 

On the other hand, STEPS can decide that the tutor supplied 
no correct action for the crossed-out action because there is 
no such correct action (case 4 in Table 1). In this case, the 
standard machine learning assignment-of-blame technique 
wiIJ not work, so STEPS must use a risker approach. It marks 
the incorrect action as something it needs to think about once 
problem solving has been done, and proceeds. When the 
problem has been solved, the system isolates the derivation of 
the incorrect action and deletes the first rule it finds that has 
not been used successfully in a previous problem. Obviously, 
the success of this tactic depends heavily upon the set of 
problems the system has been exposed to. 

Illustrations 
In this section, we illustrate STEPS' operation by presenting 
problems to it in pairs. The first problem of each pair gives 
it the opportunity to learn some new rules, and the second 
allows it to demonstrate what it has learned. 

The first pair of problems demonstrates the learning of new 
rules via EBLC. In the first problem, the system is required to 
solve a simple problem involving a block resting on a spring 
(see figure 2(a». The system draws the free body diagram 
for the problem (see figure 2(b». The free body diagram is 
incomplete, since the force exerted by the spring on the block 
is missing because the system does not know about this type 
of force. The system then derives an erroneous instantiation 
of Newton's First Law, stating that mg = O. The tutor 
intervenes at this ' point, and draws an arrow originating at 
the block, pointing upwards. He then indicates to the system 
that it should continue. The system, faced with a hint by the 
tutor, decides to try to explain the hint to itself. It does so 
by activating its overly-general rules and trying to derive the 
action of drawing an arrow like the one drawn by the tutor. 
It succeeds in doing so by employing rules that suggest that 
a spring is an instance of a pusher, that pushers push, and 
that pushes can be forces. Once the system has succeeded in 
deriving the tutor's suggested action, it adds new rules to its 
knowledge base. These new rules (shown in figure 2(c» are 
the result of applying EBL to the derivation. 

STEPS assumes that the reasoning it engaged in after leaving 
out the spring force is suspect, so it crosses out the equation 
it generated, and attempts to generate another equation. This 
time it produces a correct instantiation of the First Law. 

The third problem describes a situation where a force 
was applied for a short period of time (see figure 3(a». This 
situation triggers a common misconception in human students 
- the belief that an agent that moves a body imparts impetus 
to the body (Halloun and Hestenes, 1985). The system draws 
the free body diagram shown in figure 3(b), which contains 

895 

the force that the man exerts on the block. The tutor promptly 
crosses out the arrow representing this force, and clicks the 
"Go Ahead" bullon. Because the tutor has not supplied a 
corrected version of the crossed-out force and STEPS cannot 
see how to do so, the system decides that the action just 
should not have generated at all. Thus, it continues solving 
the problem, but when it has finished, it searches for the rule 
that should be blamed for deriving the action of drawing the 
crossed-out force. The system walks backward along the 
derivation tree of the action, looking for a rule that has never 
been used in a problem that was correctly solved. The first 
such rule is indeed the rule embodying the misconception, and 
this rule is marked as incorrect. The next problem, involving 
a rocket that fires its engines for a short period, is solved 
correctly-the system docs not draw the "impetus" force. 

In the fifth problem, a rocket that is accelerating in a 
direction opposite to the direction of its motion (see fig
ure 4(a». The system's knowledge, base contains an incorrect 
rule, which states that if a body is moving in direction X, its 
acceleration is also in direction X. This is one manifesta
tion of the misconceptions caused by lack of differentiation 
between velocity and acceleration (Halloun and Hestenes, 
1985; Reif, 1987). The system starts drawing the free body 
diagram and produces the acceleration arrow shown in fig
ure 4(b). The tutor intervenes, and crosses out the incorrect 
(downward pointing) acceleration arrow. The system tries to 
fix the arrow using a simple repair heuristic: Try reversing 
the direction of an arrow. It draws the acceleration arrow, 
this time pointing upwards, and asks the tutor "Should it go 
this way?" The tutor confirms, and the system decides to try 
to explain to itself why this is true by deriving the correct 
action - drawing the acceleration arrow pointing upwards. 
Using the correct rule, which states that when the body is 
slowing down, the direction of its acceleration is the opposite 
of the direction of its motion, the system derives the correct 
action. It then tries to find which rule was responsible for 
the incorrect action. This is done by walking backward along 
both derivation trees (the incorrect action's and the correct 
action's) simultaneously, and finding the point where they 
diverge. The bad rule is assumed to be the first rule at the 
divergence point in the incorrect action's derivation, and it 
is marked as incorrect. The next problem, which holds the 
possibility of making the same mistake, is solved correctly. 

Thtoring Tactics Indicated by STEPS 
As we have demonstrated, STEPS learns to solve physics 
problems while receiving much the same information as a 
human student would. We cannot yet show that everything 
it does is matched by human behavior, however many of its 
learning mechanisms are plausible and have some indepen
dent support in the learning literature. Since this is the case, 
we may assume that tutoring tactics that help STEPS learn;·;JS 
more effectively should also be employed by human and 
machine tutors. Moreover, we can now explain why these 
tactics are more effective. In this section, we will discuss 
these tutoring tactics. 

Immediate Feedback. It is much easier for STEPS to learn 
from immediate negative feedback than from delayed negative 
feedback. When faced with delayed negative feedback, which 

-



A bloclt of _ ... 18 r .. t1ng 
on a apring. What 18 the 
pr ••• ur. on the apr1ng? 

(a) Problem description (b) Flee body diagram generated 
by StEPS for Problem 1 

Figure 2: Problem 1 

In tbl. atwood.·. _c:b1De. t!w _ •• of 
both block. 1. a. & MD puahed on. of 
tIw bloc:lt. upward with (o~"" F aDd 
.tart .. the .. cb~ 1a .otloa . llhat 1a 
the t.,..lon 1D the "rift9 aftar the .. n 
••• DO lonpr tCNCb1nC)' t.be box? 

I 

If 

Then 
If 

Then 
If 

Then 
If 

Then 

A is a spring and 
B is an object and 
A touches B 
A exerts a pressure force F on B 
B is a body and 
3 a pressure force F exerted on B by A 
magnilude(F) = pressure(A) 
A exerts a pressure force F on B and 
the value of function X applied to A is y 
the value of function X applied to F is y 
the position of A relative to B is x 
and A exerts a pressure force F on B 
the direction of force F is x 

(c) New rules learnt 

(a) Problem description (b) Free body diagram generated by SlEPS 

Figure 3: Problem 3 

A rocket of mass m slows its landing by 
employing its engines with force T. What is 
the acceleration of the rocket? 

(a) Problem description (b) Acceleration arrow generated by SlEPS 

Figure 4: Problem 5 

896 

---



refers to an action that is not the last action, STEPS mentally 
crosses out the actions it took since the incorrect action. 
However, this is not always sufficienL In many cases an 
incorrect action results in erroneous conclusions that are 
not manifested in actions but reside in working memory. 
STEPS does not try to comb through its memory searching for 
conclusions that are rendered suspect by the tutorial input, so 
subsequent errors are possible. 

Several studies indicate that immediate feedback is better 
for human learners than delayed feedback (Anderson, Conrad 
and Corbett 1989; Lewis and Anderson, 1985). Anderson's 
initial explanation for this effect was that delaying feedback 
makes it harder for the student to recall the reasoning that 
led to the incorrect action, thus making it more difficult 
to locate and repair the incorrect knowledge. However, 
in view of the fact that students can often reconstruct their 
reasoning from the scratchwork visible on the paper or screen, 
Anderson's current explanation is simply that immediate 
feedback prevents students from wasting time going down 
unproductive paths (Anderson et al., 1994), so delay does not 
affect the probabHity of learning from the feedback, only the 
efficiency. 

STEPS is consistent with Anderson's latest explanation, in 
that it has no more trouble locating the incorrect knowledge 
when feedback is delayed than when it is immediate. Thus, 
delaying feedback wastes STEPS's time but does not affect 
whether it will learn from the feedback. 

However, the development of STEPS suggests that there 
is a subtle penalty for using delayed feedback. When a 
tutor points out an "old" error to a human student, the 
student must retract the conclusions of his reasoning from 
that point onwards (which is what STEPS does), or engage in 
a complicated process of dependency-directed backtracking 
that would leave both his internal memory and his external 
memory (the page) disordered, and may confuse him in future 
reasoning. Either way, subsequent errors that the student 
makes may not be due to knowledge flaws, but to incomplete 
retraction of obselete inferences. The tutor should either take 
this into account when responding to any subsequent errors 
that the student makes, or start the problem over from the 
beginning, or move to a new, similar problem. 

In short, STEPS "teaches" the tutor that delayed feedback 
is just as likely to be successful as immediate feedback 
(although it does waste some time), but it may complicate 
the interpretation of any subsequent errors while solving the 
problem. This is a rather non-obvious tutoring tactic, so 
tutors who are not using the tactic already may find it a 
difficult discover even while practicing tutoring with STEPS. 
This is why we believe that STEPS and other simulated 
students cannot stand alone as tutor training devices. They 
must be accompanied by instruction on tutoring that explicitly 
mentions considerations like the ones discussed here. 

Low Content Negative Feedback. Whenever STEPS takes 
an action that is basically correct but has some details wrong, 
the tutor can either cross out the action and give a correct 
version (high content negative feedback), or just cross out the 
action (low content negative feedback). 

Low content negative feedback is often used in tutoring. 
Human tutors often initiate an episode of negative feedback 

897 

with a low content indication, such as an overly long pause 
(Fox, 1993). Many intelligent tutoring systems' first level 
of negative feedback consists of beeping, highlighting the 
incorrect action, or issuing some other low content indicator. 

In STEPS, if the tutor uses low content feedback, then the 
learner has to solve two problems that it would not otherwise 
have to solve. First it must decide whether the action was 
crossed out because its details are wrong or because the 
whole thing is wrong (e.g., a non-existent force). STEPS uses 
problem-specific heuristics to make this decision. If it selects 
the details-are-wrong interpretation, then it faces the second 
problem, deciding which details are wrong. STEPS uses 
syntactic heuristics to guess a corrected version of the action, 
and then asks the tutor if it is correct. If it solves this second 
problem correctly, it finally has a corrected action, so learning 
proceeds just as if the tutor had entered that action in the 
first place. Thus, low content feedback has no advantage 
for STEPS over high-content feedback. It only increases the 
chance that STEPS will misinterpret the feedback. 

STEPS's behavior is consistent with human data. McK
endree (1990) showed that low content feedback caused less 
learning than feedback that provided some indication about 
what was wrong. 

STEPS does not "teach" tutors to avoid low content neg
ative feedback, because STEPS can sometimes learn from 
it. However, it does 'teach" tutors to follow up low content 
negative feedback carefully in order to make sure that the stu
dent has learned from it. For instance, if the tutor intended a 
details-are-wrong interpretation and STEPS does not propose 
a correction, then the tutor should make the correction at the 
first opportunity. 

Using the Student's Vocabulary. In human-human tutorial 
interaction, the usual complexities of understanding dialogues 
exist, though somewhat mitigated by the use of technical 
words and symbols. STEPS sidesteps these issues by re
stricting tutorial input in several ways. The tutor can only 
refer to entities such as forces, accelerations and equations by 
pointing to them, thereby precluding misidentification of the 
intended referent, a common source of misunderstanding in 
natural language dialogues. In addition, STEPS announces the 
meaning of each new variable as it is created, and expects the 
tutor to use these variable names. Without these conventions, 
the STEPS interface would be complicated immensely. A 
tutor working with a human student could impose these con
ventions on herself by pointing to the graphic representations 
of entities she is referring to and using the same variable 
names as the student whenever possible. Such restrictions 
in human-human interactions could help students avoid some 
of the problems of disambiguating tutorial input, and free 
students' cognitive resources for the important learning task. 

Avoiding Shortcuts. A tutor may be tempted to collapse 
several reasoning steps into one resulting action. Consider 
the problem presented in Figure 2(a). The problem-solver 
has not yet learned about pressure forces, so it omits the force 
exerted by the spring on the block and generates an erroneous 
equation. The tutor could decide to intervene by proposing 
the correct equation: P - mg = O. (Indeed, this is exactly 
what the two pilot subjects did - see (Ur and VanLehn, 1994).) 

--

:- . . J' " 



STEPS cannot understand this intervention, because it docs 
not know what P stands for. In order to be able to understand 
the tutor's comment, STEPS would have had to guess that 
the equation is an instantiation of Newton's Law, therefore 
addends in the equation represent forces, so there must be 
a force missing from the diagram. It would then have to 
search for the missing force. This chain of reasoning would 
be extremely hard to produce. In the first problem described 
above, the tutor chose to draw in the missing force on the free 
body diagram, and this gave STEPS sufficient infonnation to 
learn about pressure forces and to generate a correct equation 
on its own. 

Human students may have similar difficulties in under
~tanding tutors when they engages in ''reasoning leaps." 
Catrambone (1993a. 1993b) has shown that human students 
also learn better from examples where shortcuts are avoided. 

The tutoring tactic suggested by STEPS's solution is dif
ficult to Stale precisely because it depends on the details of 
STEPS explanation algorithm. However, the gist of it is that 
the tutor should always take the same small steps that the 
student does. This is arguably a reasonable convention for 
tutors to learn. 

Summary. We have discussed four tutoring tactics that 
STEPS encourages tutors to practice: (a) Delaying feedback 
can cause subsequent errors on the problem. so consider 
restarting the problem or going to a new problem when 
feedback has been delayed significantly. (b) Follow up low 
content feedback carefully to make sure that the student did 
not misinterpret it. (c) In order to make it easier for the 
student to understand which objects in the problem you are 
referring to, use the student's names for variables and other 
problem-specific tenns, and use pointing whenever possible. 
(d) When demonstrating a line of reasoning, avoid skipping 
steps and use steps as small as the student uses. These four 
tutoring tactics could easily be employed as design policies for 
the pedagogical component of an intelligent tutoring system. 
Unlike other prescriptive work. these pieces of advice are 
each based on a computational model that indicates exactly 
why each tactic improves learning. 

Acknowledgements 
The implementation of STEPS was simplified immeasurably 
be the use of code from CASCADE (by Ted Rees) and OLAE 
(by Joel Martin and Jonathan Rubin). We would like to 
thank Stellan Ohlsson and Alan Lesgold for their valuable 
comments on drafts of this paper. This research was supported 
by the Cognitive Sciences Division of the Office of Naval 
Research under grant number NOOOI4-93-1-1161. 

References 
Anderson, J. R. (1993). Rules oJthe Mind. Lawrence Erlbaum 

Associates, Hillsdale, NJ. 

Anderson, J. R., Conrad, F. G., and Corbett. A. T. (1989). 
Skill acquisition and the LISP tutor. Cognitive Science, 
14(4):467-505. 

Anderson. J. R., Corbett, A. T .• Koedinger, K. R., and 
Pelletier. R. (1994). Cognitive tutors: Lessons learned. 
Submitted for publication. 

898 

Catrambone. R. (1991). Helping learners to acquire subgoals 
to improve transfer. In Proceedings oJthl! Thirteenth An
nual ConJerence oJ the Cognitive Science Society. pages 
352-357, Hillsdale, NJ. Lawrence Erlbaum Associates. 

Catrambone. R. (1993). The effects of labels in training 
examples on transfer to novel problems. In preparation. 

Fox, B. A. (1993). ThI! Human Tutorial Dialogue Project: 
Issues in thl! Design oJ Instructional Systems. Lawrence 
Erlbaum Associates, Hillsdale, NJ. 

Halliday. D. and Resnick, R. (1988). Fundamentals oJ 
Physics. Wiley and Sons, New York, NY. 

Halloun, I. A. and Hestenes. D. (1985). Common sense 
concepts abut motion. American Journal oJ Physics, 
53(11):1056-1065. 

Lewis, M. W. and Anderson, J. R. (1985). Discrimination of 
opertaor schemata in problem solving: Learning from 
examples. Cognitive Psychology, 17{l):26-65. 

Martin, J. and Vanlehn, K. (1993). OLAE: Progress toward 
a multi-activity, Bayesian student modeler. In Bma, 
S. P.. Ohlsson, S., and Pam, H., editors, Artificial 
Intelligence in Education. 1993: Proceedings oJ AI-ED 
93, pages 410-417, Charlottesville, VA. Association for 
the Advancement of Computing in Education. 

McKendree, J. (1990). Effective feedback content for tutoring 
complex skills. Human-Computer Interaction,5(4):381-
413. 

Merril, D. C., Reiser. B. J., Ranney, M., and Trafton, J. G. 
(1992). Effective tutoring techniques: A comparison of 
human tutors and intelligent tutoring systems. Journal 
oJthl! Learning Sciences, 2(3):277-305. 

Mitchell. T. M., Keller. R. M., and Kedar-Cabelli. S. T. 
(1986). Explanation-based generalization: A unifying 
view. Machine Learning. 1(1):47-80. 

Newell, A. (1990). Unified Theories oJ Cognition. Harvard 
University Press. Cambridge, MA. 

Reif. F. (1987). Interpretation of scientific or mathematical 
concepts: Cognitive issues and instructional implica
tions. Cognitive Science. 11(4):395-416. 

Sleeman. D., Langley, P., and Mitchell, T. M. (1982). Learn
ing from solution paths: An approach to the credit 
assignment problem. AI Magazine. 3(2). 

Ur, S. and VanLehn, K. (1994). STEPS: A simulated.tutorable 
physics student. Submitted for publication. -

VanLehn, K. and Ball, W. (1991). Goal reconstruction: 
How Teton blends situated action and planned action. In 
VanLehn, K., editor,ArchitecturesJor Intelligence, pages 
147-188. Lawrence Erlbaum Associates, Hillsdale, NJ. 

VanLehn. K. and Jones, R. (1993). What mediates the 
self-explanation effect? Knowledge gaps, schemas or 
analogies? In Polson, M. C., editor. Proceedings oJ 
the Fifteenth Annual ConJerence oJ thl! Cognitive Sci
ence Society, pages 1034-1039, Hillsdale, NJ. Lawrence 
Erlbaum Associates. 

VanLehn, K., Jones, R., and Chi, M. T. H. (l992). A model of 
the self-explanation effect. The Journal oJ the Learning 
Sciences. 2(1): 1-59. 

c 


