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1. Introduction

Studying examples is a natural and common way of learning, and students use examples extensively
when acquiring new skills [1, 2].  However, the learning benefits of examples are unclear, some studies
showing great benefits [3], but others indicating only ability to solve problems similar to the original
examples [4, 5].

However, self-explaining examples, that is analyzing and generating justifications of example steps,
ordinarily produces both better problem solving performance and better understanding of domain
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Abstract

We present a computational framework for improving learning from examples
by supporting self-explanation - the process of clarifying and making more
complete to oneself the solution of an example.  Many studies indicate that self-
explanation can improve problem solving performance, and that guiding self-
explanation can extend these benefits.  Our goal is developing and testing a
computer tutor — the SE (Self-Explanation) Coach — that can elicit and guide
correct and effective self explanation, and thus improve problem solving
performance in university-level Newtonian physics, a particularly complex and
psychologically challenging domain. The self-explanations elicited by the  SE
Coach address how each component in the example solution can be justified in
terms of (a) the theory of the instructional domain, and (b) the goal accomplished
in the plan underlying the example solution.

The SE Coach provides the student with  a Workbench that interactively
presents examples and provides tools to construct self-explanations using the
instructional domain theory. To guide self-explanation responsively, the SE Coach
relies on a probabilistic student model, from which it assesses the student's
understanding of an example.

The student model consists of a  Bayesian  network that generates its
predictions by integrating information on self-explanations performed  in the
Workbench with information on the student's general domain knowledge and on
the structure of the current example.  By examining this network, the SE Coach
identifies deficits in the student's self-explanations and can provide guidance to
remedy them.



principles [6, 7, 8, 9, 10].  Furthermore, student-generated explanations seem to produce better learning
than externally-provided explanations [7, 11].

This paper presents a computer tutor, the SE (Self-Explanation) Coach, which guides self-
explanation, and thus aims to improve understanding and problem solving in university-level Newtonian
physics, a particularly complex and psychologically challenging domain.

While human tutors have successfully elicited self-explanation [9, 12], the SE Coach is the first
computer tutor aiming to improve learning by guiding self-explanation. Although ELM-PE [13] also
uses examples to facilitate learning, it does not support self-explanation because the system, not the
student, generates the explanations.

The SE Coach is part of the Andes tutoring system for physics, designed for use  by the U.S Naval
Academy Introductory Physics class.  Andes guides students in example study and problem solving.
Within Andes, the SE Coach ensures that students generate appropriate self-explanations so as to
understand each component of an example solution  In particular, the SE Coach focuses on two kinds of
explanations that have appeared useful in self-explanation experiments:   (a) explaining step correctness
using the domain theory (here Newtonian physics); and (b) explaining step utility by identifying what
goal each step satisfies in the plan underlying the example solution.

This paper describes the following components that contribute to the SE Coach's capacity to monitor
and guide the student in the targeted self-explanations:

(1)  A Workbench  (described in Sec. 2) that interactively presents examples, prompts self-
explanations, and provides principled tools for building them.

(2)  A probabilistic Student Model  (described in Sec. 3) that allows the SE Coach to decide when to
elicit further self-explanations.  The student model, (evolving from [14, 15]) consists of a Bayesian
network [16], which assesses the student's example understanding by integrating: (a) Workbench actions
reflecting the student’s self-explanations, (b) estimates of the student's general domain knowledge, and
(c) a representation of the current example.

Sec. 4 illustrates supported self-explanation, including how the SE Coach uses the assessments in
the student model to prompt self-explanations that improve example understanding.

2.  The Workbench

The SE Coach does not process natural language input, and needs other means to assess students'
self-explanation.  These include (a) a simple device to monitor the content and time durations of
students’ attention, and (b) an interface that reminds students to self-explain and provides raw materials
for constructing self-explanations.

2.1 Attention monitoring and control

The Workbench hides example elements with opaque covers (Fig. 1).  As a student moves the cursor
over the screen, the corresponding covers immediately disappear and the text or diagram becomes
visible.  This device has two functions.  First, it allows the student to focus on one element at a time,
thus counteracting a tendency to read rapidly, without thorough processing.  Second, it gives the SE
Coach a record of viewed items with corresponding times.

Low viewing time suggests that little self-explanation has occurred.  Although high viewing time
may reflect more extensive explanations, it may also reflect confusion due to lack of knowledge, or
merely doing something else (such as talking with a friend).  Thus viewing times are suggestive evidence
for self-explanation, with more explicit evidence coming from the additional mechanisms discussed next.

2.2 Supporting useful self-explanations

To remind students that self-explanation may be useful, an explain  icon appears near the
uncovered example part (Fig. 1).  Clicking on this icon produces simple prompts to initiate self-
explanations of correctness and utility.



Figure 1: An example, including a problem and its solution (top). The Workbench presentation
with attention-control panels and explain button (bottom).

 For example, if the student clicks on the explain icon while viewing the solution line 1 in Fig 1,
we choose the tire as the body, the SE Coach presents the prompt menu:

A. This step is useful in solving the problem because …
B. This choice of a body is appropriate because …

Similarly, for solution line 2, The acceleration of the tire is zero, the SE Coach presents:
C. This step is useful in solving the problem because …
D. This value for acceleration is correct because …

2.3 Building correct self-explanations

The Andes tutoring system includes physics and planning rules sufficient to solve problems in the
instructional domain, and thus providing a complete specification of that domain knowledge. The
Workbench guides correct and effective self-explanations by providing explanation-building tools linked
to the Andes’ rule-set.  Fig. 2 illustrates some of these tools.  A rule index shows Andes’ planning and
physics rules (Fig. 2a and 2b). To illustrate rule-index use, suppose a student reads we choose the tire
as the body and selects prompt A above.



Example 1:  why choose body?

If the goal is

to find then  we need to:

because

apply-newton-law

FB

apply-kinematics
apply-newton-law
apply-work-energy
…

  apply-newton-law choose-body
describe-body-properties
describe-forces-on-body
write-ΣF=ma-component-eqns

 choose-body-for-newton

(c)

(a)

choosing a bodye

choose-compound-body
indentifying contact forces
    …
indentifying long-range forces
    …

choose-single-body
(b)

(d)

Example 1:  why choose tire as body?

on

If the current desired quantity is

then a good choice for a body is the object

which the desired force acts.

that is, the

FB

tireNewton’s law applies to one body

choose-body

Figure 2: (a) Plan-rule index.  (b) Physics-rule index. (c) and (d) Templates for applying rules to a
particular example.

The student can use the Planning-rule index (Fig. 2a) to select the goal path leading to "choose-
body-for-newton", thus explaining how this step fits in the goal structure of the plan to apply Newton's
law to this example.  To self-explain more extensively, the student may complete a template (Fig. 2c)
describing how the planning rule behind the selected goal-stack applies to this example.

If the student chooses prompt B above (explaining why the tire is an appropriate choice for the
body), then the hierarchical physics-rule index (Fig. 2b) allows finding a rule that generates this choice
of body.   Again, a rule template (Fig. 2d) supports more extensive self-explanation.

Workbench actions and the student model.  All student’s Workbench actions go to the SE Coach’s
student model, a Bayesian network which uses these actions to provide principled, integrated and
continuously updated estimates of the student's understanding of the current example, as described in the
next section.

3.  The student model for the SE Coach

Fig. 3 shows a student-model fragment for the example in Fig. 1.  The network structure (node
content and links) represents Workbench actions (Fig. 3a), rules in the Andes system (Fig. 3b), and the
example structure (Fig. 3c), including solution steps and rule applications producing them.  Node
probabilities represent dynamic estimates of related student’s knowledge or actions. Value triplets in
Fig. 3 reflect estimates at three points during a student's work (see Sec. 4). This section first describes
the node types in the student model, and then their dynamic interactions.

3.1 Node types and corresponding knowledge in the Bayesian network

Workbench actions: Read-example and Self-explanation (SE) nodes.  Read-example nodes (re-
nodes in Fig. 3a) represent viewing example parts.  Their three values indicate viewing time:  None (not
viewed), Quick  (time sufficient to encode content, but too-short for self-explanation), and Ok  (a
plausible time for self-explanation).

SE nodes represent explicit self-explanation actions in the Workbench, and have binary values
(done/not-done) indicating the corresponding actions have been performed.  Some SE nodes (sel- nodes
in Fig. 3a) represent selecting rule names (as in Fig. 2a and 2b).  Others (inst- node in Fig. 3a) represent
the instantiation of templates (as in Fig. 2d)1.

General domain and planning knowledge: rule nodes.  Rule nodes (r- nodes in Fig. 3b) correspond
to rules in the Andes’ rule-set, the physics and planning rules that produce example solutions and
                                                  

1 The inst-node for goal-setting (Fig.  2c) does not appear in Fig. 3 because it has complex connections in
the network, and because the SE templates for planning rules are least well developed.



explanations. Probabilities for the binary values (known/unknown) of these nodes represent estimates
that a student knows how to use the corresponding rules in the given problem solving context (for an
more detailed description of the semantics of rule nodes see [15]).  These values come from long-term
observations of student’s performance, in both example study and problem solving [15].

Example structure: goal, fact, and rule-application nodes.  Andes includes a problem solver that
uses Andes’ rule-set to generate a principled example structure (see Fig. 3c), including (a) nodes
representing facts and goals in the example solution (g- and f- nodes in Fig. 3c) and (b) rule-application
nodes  (ra- nodes in Fig. 3c) representing application of rules to produce these facts and goals.

The binary values (known/unknown) of goal and fact  nodes encode the student-model estimate of
whether a student knows the corresponding goals and facts. The binary values (done/not-done) of rule-
application nodes encode estimates of whether the student has self-explained how goals and facts derive
from general domain knowledge.  As discussed below, the student-model produces these estimates by
integrating knowledge of Workbench actions with estimates of the student’s long-term knowledge of the
instructional domain.

3.2 Structure of the Bayesian Network

Conditional probabilities for rule nodes.  SE nodes represent Workbench actions designed to guide
the student in using Andes’ rules to generate self-explanations.  Therefore each SE node connects to the
rule node representing the rule that generates the corresponding explanation (e.g. links 1 in Fig. 3).  This
link, with the associated conditional probability table, reflects the fact that doing the Workbench action
increases the estimate that the student knows the corresponding domain rule.

Conditional probabilities for fact and goal nodes.  Fact and goal nodes often have two sources of
input.  First, read-example nodes connect to a fact or goal node reflecting the semantic content of the
viewed element (e.g.  link 2 in Fig. 3).  These links indicate that viewing time influences the probability
of knowing the related content.  Second, a rule-application node connects to the fact or goal produced
when the corresponding rule is applied (e.g. link 3 in Fig. 3).  When a fact or goal node has input from
both a read-example node and rule-application node (like f-tire-is-body in Fig. 3),  then it may be known
either through reading or through applying physics knowledge to earlier results.  These alternate

re -Sxx 
choose tire as body because …

g -force-FB 
known = 0.95 / 0.95 / 0.95

g -apply-Newton-law 
known = 0.89 / 0.91 / 0.91

g -choose-body-for-newton 
known = 0.35 / 0.86 / 0.86

f-tire-is-body 
known = 0.97 / 0.99 / 0.99

sel -apply-newton-law 
done = 0.0 / 1.0 / 1.0

sel -choose-body-for-newton 
done = 0.0 /  1.0 / 1.0

sel -choose-single-body 
done = 0.0 /  0.0  / 1.0

ins t-choose-single-body 
done = 0.0 / 0.0  / 1.0

ra-choose-body-for-newton 
done = 0.42  / 0.88 / 0.88

ra-apply -newton-law 
done = 0.91 / 0.94 / 0.94

ra-choose-tire-as-body 
done = 0.14 /  0.35  / 0.84
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Figure 3: Fragment of the student model relevant to the example in Fig. 1.  (a) Workbench actions
(b) General domain knowledge.  (c) Example structure.  Node-value triplets correspond to the
process-illustration in Sec. 4.



possibilities are represented in the conditional probability table for fact and goal nodes, as shown in
Table 1a.

Conditional probabilities of rule-application  nodes.
Since rule-application nodes reflect application of rules to generate an example solution, each rule-

application node receives input from the corresponding rule node (e.g. link 4 in Fig 3) and from the goal
and fact nodes representing the rule's preconditions (e.g. link 5 and 6). If an example describes the
application of a rule, then the corresponding rule-application node gets input from the read-example
node representing attention to this description (e.g. link 7 in Fig. 3, dotted because no such description
appears in our example - see Fig. 1).  If, however, the example solution presents only the rule-
application result (often the case in real examples), then the rule-application node gets input from the
read-example node representing attention to this result (link 8). This is because students generally start
self-explaining an example part when they read it.

Table 1b, the conditional probability table for rule-application nodes, indicates that the probability
of a rule-application node (i.e., the probability that the student has self-explained the corresponding
inference) depends on both: (a) time spent attending to the result of the rule application, and (b) student’s
knowledge of both of the rule that generated the line and of its preconditions..

Model assessment of self-explanation.  As probabilities automatically update through the Bayesian
network, rule-application nodes reflect the model's assessment of how well the student understands the
inferences required to explain the example.  Thus, these nodes provide direct input to the SE Coach,
from which it can decide when to prompt students for further self-explanation.  The next section
illustrates this process.

4.  Coaching self-explanation

This section describes a hypothetical interaction between a student and the SE Coach, using the
student model to suggest useful self-explanations.

Stage 0 - initializing the model.  For the example in Fig. 1, the student model is set-up by clamping
all the read-example nodes to None and the SE nodes to not-done. These probabilities, propagated in the
network, reduce to 0.0  the probabilities of fact and goal nodes to be known and of application nodes to
be done, indicating that the student currently has no example knowledge.  Rule-nodes in the network
(Fig. 3b) are set to  estimates of student’s long-term knowledge of Andes’ rules. These estimates (left
numbers in the triplets of Fig. 3b) indicate that the student knows the rule r-apply-newton-law, but
probably cannot use the other two rules (r-choose-body-for-newton and r-choose-single-body).

Stage 1 - reading only.  The student quickly reads the example goal and the first line of the solution
and this clamps read-example nodes re-goal and re-S1 to Quick (left values in the corresponding triplets
in Fig 3a). The left numbers in the triples of Fig. 3c result from propagating these probabilities through
in the network.

Even with a Quick viewing time, the student is likely know the goal and fact content (g-force-FB and
f-tire-is-body) of the viewed lines. The high probability of g-force-FB, combined with the high
probability of the rule node r-apply-newton-law, increases the probability that the student applies this
rule and establishes the goal of applying Newton’s second law to this example, as indicated by the

Table 1: Illustrative conditional probability tables for  (a) goal and fact nodes and
(b) rule-application nodes.

(a) g-/f-nodes, p(known) (b)  ra-nodes, p(done)

Rule- Read-example Goal / Fact Read-example (Rule result)
appl- None Quick Ok Rule (pre-cond.) None Quick Ok
done 1 1 1 known known 0.5 0.7 0.9

not-done 0    <1 <1 unknown 0.0 0.0 0.0
unknown known 0.0 0.0 0.0

unknown 0.0 0.0 0.0



increased probability of both the rule-application node ra-apply-newton-law and the resulting goal node
g-apply-newton-law.

However, with Quick reading and poor knowledge of the rule r-choose-body-for-newton, the student
is unlikely to apply this rule and to establish the goal to choose a body for Newton’s law.  Thus
probabilities remain low for the rule-application node ra-choose-body-for-newton and for its output
g-choose-body-for-newton.

Stage 2 - independent self-explanation.  The student now views again line S1, ".…choose the tire as
the body," clicks on the explain icon, selects the prompt,

A. This step is useful in solving the problem because …

and responds to it by selecting the goal stack [top-goal: apply-newton-law, subgoal:  choose-body-for-
newton] in the planning-rules index (Fig. 2a).

In Fig. 3, the center values now represent the state of the Bayesian network. The SE nodes  sel-
apply-Newton-law and  sel-choose-body-for-newton are clamped to done, and the read-example node
read-S1 is clamped to ok.  These probabilities propagate to increase the probability of r-choose-body-
for-newton, a rule that already has a highly probable precondition, g-apply-newton-law.  Thus the rule-
application node ra-choose-body-for-newton, and the corresponding result (g-choose-body-for-newton)
both acquire high probabilities, suggesting that the student now understands the function of choosing a
body in the application of Newton's law to this example.

Stage 3 - coached self-explanation.  When the student tries to move to another task, the SE Coach
checks in the student model if there are  rule-application nodes that have low probabilities, indicating
self-explanation deficits for the current example. In the model including the central numbers  in   Figure
3  one rule-application has a low probability,  ra-choose-tire-as-body.  Therefore the SE Coach seeks to
prompt self-explanation to remedy this deficit. Although prompt content is still being designed, it will
probably start with a general suggestion such as: Review the example solution more carefully. Make
sure that you have understood how each line has been derived. If necessary, the Se Coach can provide
more specific prompts. Link 2 in Fig. 3, between re-S1 and ra-choose-tire-as-body, tells the SE Coach
to prompt self-explanation for line S1.  The low probability of the rule r-choose-single-body suggests
that the student is missing the knowledge necessary to generate the correct self-explanation. Thus the SE
Coach may offer hints to improve knowledge  of this rule.

Prompted by the coach, the student selects from the physics-rule index (Fig. 2b) the rule choose-
single-body and also completes the corresponding template (Fig. 2d).  The corresponding SE nodes (sel-
choose-single-body and inst-choose-single-body) acquire the value done.  Consequently, the
probabilities of  r-choose-single-body and ra-choose-tire-as-body increase, indicating that the student
now has generated all relevant self-explanations, as indicated by the right numbers in the triplets for
rule-application nodes in the Fig. 3c.

5.  Conclusion

The goal of this work is to develop a tutoring framework, the SE Coach, that enhances learning from
examples by guiding self-explanation.  Although self-explanation has been successfully elicited by
human tutors in the domains of Lisp programming [9] and the circulatory system [8], this work
represents the first attempt to improve self-explanation by using a computer system and addressing a
domain as complex and difficult to learn as Newtonian physics.

The SE Coach currently has the following modules: (a) A Workbench that supports correct and
effective self-explanations through prompts to initiate self-explanation and tools to build self-
explanations using the Andes’ rule-set (a specification of the instructional domain).  (b) A Student
Model that uses a Bayesian network to combine in a principled way self-explanation actions in the
Workbench with student’s domain knowledge and knowledge of the example structure.  This combined
information generates a probabilistic assessment of the student understanding of the example.  The SE
Coach uses this assessment to decide whether to elicit further self-explanations.

The student model is currently under development for a small set of examples.  A prototype interface
(with attention-control panels, the explain icon and prototype prompts) was tested and performed well
with individuals in the target audience (students at the U.S. Naval Academy).



The current central challenge is to implement and test a smoothly running coach, that uses the input
from the student model to elicit effective self-explanation.  In addition to the development of coaching
strategies, this effort will require refining probabilities in the network, as we collect more data from pilot
subjects.

The effectiveness of the SE Coach will be evaluated with students at the Naval Academy to assess
whether: (a) actively guiding theory based self-explanation can increase students' problem solving
performance in the challenging domain of Newtonian mechanics (compared to unguided study of
examples); and (b) using a student model to prompt self-explanation produces better results than simple
prompts with tools for building correct self-explanation (the Workbench alone).
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