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Abstract

One of the most important problems for an intelligent
tutoring system is deciding how to respond when a stu-
dent asks for help. Responding cooperatively requires
an understanding of both what solution path the stu-
dent is pursuing, and the student’s current level of do-
main knowledge. Andes, an intelligent tutoring system
for Newtonian physics, refers to a probabilistic student
model to make decisions about responding to help re-
quests. Andes’ student model uses a Bayesian net-
work that computes a probabilistic assessment of three
kinds of information: (1) the student’s general knowl-
edge about physics, (2) the student’s specific knowl-
edge about the current problem, and (3) the abstract
plans that the student may be pursuing to solve the
problem. Using this model, Andes provides feedback
and hints tailored to the student’s knowledge and goals.

Introduction
Many different kinds of computer programs have to decide
how to respond when their users ask for help, and some
must even decide when help is needed. Both of these tasks
involve a great deal of uncertainty, especially in the case
of Intelligent Tutoring Systems (ITS), where there is un-
certainty about both the student’s intentions and what the
student knows about the task domain.

The problem we address in this paper is how to decide
what to say when a student needs help solving a problem,
given observations of what the student has done already.
Our solution uses a probabilistic model of the student’s
knowledge and goals to decide between alternatives. We
have developed a procedure that searches the solution space
of the problem the student is working on to find a proposi-
tion that is both part of the solution path the student is prob-
ably pursuing, and that the student is unlikely to know. This
proposition will be the subject of the help given to the stu-
dent. Furthermore, we use a theory of hinting to model the
effect of the help that has been given on the student’s men-
tal state. This framework for responding to help requests is
implemented in Andes, an ITS for Newtonian physics.
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Andes’ tutor usescoached problem solving(VanLehn
1996), a method of teaching cognitive skills in which the
tutor and the student collaborate to solve problems. In
coached problem solving, the initiative in the student-tutor
interaction changes according to the progress being made.
As long as the student proceeds along a correct solution, the
tutor merely indicates agreement with each step. When the
student stumbles on part of the problem, the tutor helps the
student overcome the impasse by providing hints that lead
the student back to a correct solution path. In this setting, a
critical problem for the tutor is to interpret the student’s ac-
tions and the line of reasoning that the student is following
so that it can conform its hints to that line of reasoning.

This paper first describes how Andes’ probabilistic stu-
dent model is created and how it represents various aspects
of the student’s mental state while solving a problem. We
then demonstrate how Andes uses this student model to
generate hints that are both relevant and appropriate to the
student’s understanding of the domain.

The Andes Tutoring System
Andes has a modular architecture, as shown in Figure 1.
The left side of Figure 1 shows the authoring environment.
Prior to run time, a problem author creates both the graphi-
cal description of the problem, and the corresponding coded
problem definition. Andes’ problem solver uses this defini-
tion to automatically generate a model of the problem solu-
tion space called thesolution graph.

The right side of the figure shows the run-time student
environment. The student interface, known as the Work-
bench, sends student entries to the Action Interpreter, which
looks them up in the solution graph and provides immediate
feedback as to whether the entries are correct or incorrect.
More detailed feedback is provided by Andes’ Help Sys-
tem. Both the Action Interpreter and the Help System refer
to the student model to make decisions about what kind of
feedback and help to give the student. The most impor-
tant part of the student model is a Bayesian network (Pearl
1988) that is constructed and updated by the Assessor, and
provides probabilistic estimates of the student’s goals, be-
liefs, and knowledge (Conatiet al. 1997). The student
model also contains information about what problems the
student has worked on, what interface features they have
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Figure 1: The Andes System Architecture. Rectangles are
system modules, ellipses are data structures.

used, and what help they have received from the system in
the past.

The Andes Student Modeling Framework
Inferring an agent’s plan from a partial sequence of ob-
servable actions is a task that involves inherent uncer-
tainty, since often the same observable actions can belong
to different plans. In coached problem solving, two ad-
ditional sources of uncertainty increase the difficulty of
the plan recognition task. First, coached problem solv-
ing often involves interactions in which most of the im-
portant reasoning is hidden from the coach’s view. Sec-
ond, there is additional uncertainty regarding what domain
knowledge the student has and can bring to bear in solv-
ing problems. While substantial research has been de-
voted to using probabilistic reasoning frameworks to deal
with the inherent uncertainty of plan recognition (Char-
niak & Goldman 1993; Huber, Durfee, & Wellman 1994;
Pynadath & Wellman 1995), none of it encompasses appli-
cations where much uncertainty concerns the user’s plan-
ning and domain knowledge. On the other hand, probabilis-
tic approaches to student modeling mostly assume certainty
in plan recognition and use probabilistic techniques to
model uncertainty about knowledge (Andersonet al. 1995;
Jameson 1995).

Andes uses a framework for student modeling that per-
forms plan recognition while taking into account both the
uncertainty about the student’s plans and the uncertainty
about the student’s knowledge state (Conatiet al. 1997).
By integrating these two kinds of information, Andes’ stu-
dent model is able to perform three functions:plan recog-
nition, predictionof the student’s future goals and actions,
and long-term assessmentof the student’s domain knowl-
edge. The framework uses a Bayesian network to repre-
sent and update the student model on-line,during problem
solving (see Conatiet al., 1997, for a discussion of the is-
sues involved in using Bayesian networks for on-line stu-
dent modeling). In the following two sections we describe
the structure of the student model and how it is created.

Generating the solution graph

Like its two predecessors, OLAE (Martin & VanLehn 1995)
and POLA (Conati & VanLehn 1996), Andes automatically
constructs its Bayesian networks from the output of a prob-
lem solver that generates all the acceptable solutions to a
problem. We have based Andes’ problem solver’s rules
on the representation used by Cascade (VanLehn, Jones, &
Chi 1992), a cognitive model of knowledge acquisition de-
veloped from an analysis of protocols of students studying
worked example problems. The rules are being developed
in collaboration with three physics professors who are the
domain experts for the Andes project.

In addition to knowledge about the qualitative and quan-
titative physics rules necessary to solve complex physics
problems, Andes’ problem solver has explicit knowledge
about the abstract plans that an expert might use to solve
problems, and about which Andes will tutor students. Thus,
given an initial description of the problem situation and a
problem-solving goal, Andes produces a hierarchical de-
pendency network including, in addition to all acceptable
solutions to the problem in terms of qualitative propositions
and equations, the abstract plans for generating those solu-
tions. This network, called thesolution graph, represents
Andes’ model of the solution space.

For example, consider the problem statement shown in
Figure 2. The problem solver starts with the top-level goal
of finding the final velocity of the car. From this goal, it
forms the sub-goal of using a kinematics equation, which
involves several quantities including the car’s acceleration
and displacement. Since the acceleration of the car is un-
known, the problem solver forms a sub-goal to find it,
which in turn leads to a goal of using Newton’s second law
applied to the car.

When all applicable rules have fired, the result is a par-
tially ordered network of propositions leading from the top-
level goal to a set of equations that are sufficient to solve
for the sought quantity. This network, including all propo-
sitions and the rules that were used to generate them, is
saved as the solution graph. Figure 3 shows a section of the
solution graph for this problem, showing the relationship
between the goals of finding the final velocity and finding
the acceleration, and the actions that address those goals.

A 2000kg car at the top of a 20o inclined driveway 20m long slips
its parking brake and rolls down.  Assume that the driveway is
frictionless.  At what speed will it hit the garage door?

20o

20m

Figure 2: A physics problem.
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The Assessor’s Bayesian Network

The Assessor’s Bayesian network is automatically gener-
ated each time the student selects a new problem. The
structure of the Bayesian network is taken directly from the
structure of the solution graph. The network contains five
kinds of nodes, shown in Figure 3 using different shapes:

1. Context-Rule nodesmodel the ability to apply a rule in a
specific problem solving context in which it may be used.

2. Fact nodesrepresent the probability that the student
knows a fact that is part of the problem solution.

3. Goal nodesrepresent the probability that the student has
been pursuing a goal that is part of the problem solution.

4. Rule-Application nodesrepresent the probability that the
student has applied a piece of physics knowledge repre-
sented by a context-rule to derive a new fact or goal.

5. Strategy nodes(not shown in Figure 3) correspond to
points where the student can choose among alternative
plans to solve a problem.

To convert the solution graph into a Bayesian network, it
is first annotated with prior probabilities for all the top level
nodes – the rule nodes and propositions that were given in
the problem statement. All other nodes are given a condi-
tional probability table describing the relationship between
the node and its parents. For example, each rule-application
node has as parents exactly one rule node, corresponding to
the rule that is being applied, and one or more goal and/or
fact nodes, corresponding to the propositions that must be
true in order to apply the rule. The conditional probabil-
ity table of a rule-application node captures the assumption
that the student will likely do the consequent action if all of
the antecedent knowledge (Rule, Goals, and Facts) is avail-
able, but if any of the knowledge is not available, the stu-
dent cannot apply the rule.

When a student performs an action in the Andes Work-
bench, the Action Interpreter determines which fact or goal
nodes in the solution graph, if any, correspond to that ac-
tion. If one or more are identified, the Assessor is told to
set the value of those nodes to True, and the entire network
is then re-evaluated to reflect the effects of the new obser-
vation.

In general, evidence that a fact is known causes the prob-
abilities of the antecedents of the corresponding node(s) in
the solution graph to go up, indicating the model’sexpla-
nation for the new evidence. Likewise, the probabilities of
goals and facts that are consequences of knowing the fact
will also go up, corresponding to the model’spredictionof
future actions that have become more likely as a result of
observing the evidence. If the student asks for help, An-
des can use the probabilities produced by the Assessor to
inform its decisions regarding the part of the solution graph
about which to begin hinting.

Procedural help: deciding what to say
In a Wizard of Oz experiment designed to provide infor-
mation about the kinds of help students using Andes might
need (VanLehn 1996), students solved problems on an in-
terface similar to Andes, requesting help by sending a mes-
sage to a human tutor. In this experiment, the most common
help request students made was of the form, “I’m stuck.
What should I do next?” (27 occurrences out of 73 help
requests). The part of Andes’ help system that answers this
kind of help request is called the Procedural Helper.

In most tutoring systems, such as Anderson’s model trac-
ing tutors (Andersonet al. 1995), it is easy to decide what
the topic of a hint should be because the student is only
allowed to follow one solution path. If there are several
correct paths through the solution space, the tutor asks the
student which one the student wants to pursue. Thus, the
tutor always knows what path the student is on, and when



she indicates that she is stuck, the only possible hint is to
point to the next performable step on that path.

In the physics task domain, however, there are many cor-
rect solution paths because inferences can be done in many
different orders. In some problems, there may be more
than one alternative solution strategy that may be brought
to bear, resulting in the application of different physics laws
and the use of different equations. Thus, it is impractical to
keep asking the student which path she is following. In fact,
our own informal analyses of tutoring transcripts indicate
that human tutors rarely ask students what their goals are
before giving a hint. Moreover, Andes seldom forces stu-
dents explicitly to enter all the steps of a derivation in the
interface. These properties of the domain make it very dif-
ficult to know what path the student is pursuing, and where
along that path the student was when she got stuck.

Nonetheless, it would be extremely infelicitous if Andes
gave hints intended to help a student along one part of the
solution path when the student is actually focusing on a dif-
ferent part of the path, or possibly going down a different
path altogether. Thus, Andes uses its Bayesian network to
infer which part of the solution the student is working on
and where she got stuck. This is a form of probabilistic
plan recognition, and it is one of the main reasons for using
Bayesian networks in Andes.

As with any plan recognition task, Andes needs an in-
ductive bias to guide the search through the solution space
for the student’s most likely solution path. The bias that
Andes uses is to assume that the student traverses the solu-
tion graph in depth-first order when generating a solution.
This means that if a student has just identified the displace-
ment of the car in Figure 3 (node F1 in the diagram), they
would not be expected to go on to draw an axis (node F5)
until they had also identified the car’s acceleration (node
F2). Following this assumption, Andes searches the solu-
tion graph depth-first for paths that begin with the student’s
most recent action.

Since we are trying to identify an appropriate part of the
solution to give a hint about, we want to determine where
the student is probably getting stuck. In other words, we
have to find a node that the student is not likely to have
in mind already. The depth-first traversal of the solution
graph therefore will terminate whenever it reaches a node
whose probability is below a certain threshold (currently
0.8). The search will also terminate if it reaches a node
that must be entered before continuing with the rest of the
solution because it is a precondition for applying any other
rule along that path.

The result of this traversal is a set of paths through the so-
lution graph, each beginning with the student’s most recent
action, and terminating with a node that has a probability
of less than .8, or that must be entered. In our example
(Figure 3), suppose that the last action observed is F5. Ad-
ditionally, suppose the probabilities of F3, F6, G2, G3, G4,
G6, and G8 are above .8, and the probabilities of F1, F2,
F7, and G7 are below .8. The set of paths found in the part
of the graph that is shown will be:

1. F5! F3! G4! G2! G3! F1

2. F5! F3! G4! G2! G3! F2

3. F5! F6! G8! G6! G7

Next, Andes must choose one of these paths as the one it
will use to guide the student. To do this, it looks at the joint
probability of all the nodes in each pathexceptthe last node,
which is the one that the student is supposed to be stuck on.
The path with the highest value is chosen as being the most
likely to represent the student’s current path, and thus the
best candidate for procedural help.

In the absence of additional evidence, if the rules associ-
ated with kinematics have higher prior probability than the
rules associated with Newton’s law, then paths 1 and 2 will
be chosen over the third path. However, since these two
paths are identical except for the last node, they will have
exactly the same joint probability. In such a situation, we
need a metric to decide which of the last nodes in each path
is the best candidate for a hint, given that both are on paths
that the student is probably pursuing. We choose the node
with the lowest probability, because it is the one that the
student is most likely to be stuck on.

If, on the other hand, the student has performed some ac-
tions associated with the Newton’s law plan, such as draw-
ing a vector for the weight of the car (not shown in Fig-
ure 3), the third path will be more likely, and node G7 will
therefore be selected as the topic of the hint to be generated.

Generating hints from BN nodes
Evidence from studies of the performance of human tutors
suggests that one of the main reasons human tutors are ef-
fective is that they are able to let students do most of the
work in correcting errors and overcoming impasses, while
providing just enough guidance to keep them on a produc-
tive solution path (Merrilet al. 1992). Likewise, in gen-
erating help from the target node selected by the procedure
described above, Andes tries to encourage the student to
solve the problem on her own by giving hints, rather than
by directly telling her what actions to perform.

Andes’ Procedural Helper uses templates to generate
hints from nodes in the solution graph. For each goal and
fact in its knowledge base, Andes has an associatedse-
quenceof hint templates, ranging from quite general to very
specific. Slots in the templates are filled in with descrip-
tions of the appropriate objects in the problem situation.
When guiding a student towards a particular goal, Andes
begins by using the most general templates to encourage
the student to generate the next solution step with as little
extra information as possible.

For example, suppose that Andes has selected node G7
from Figure 3, representing the goal of drawing all of the
forces on the car, as the topic of its next hint as described
in the previous section. The templates associated with this
goal are:1

(3 “Think about what you need to do in order to have
a complete free body diagram for [ ].”body)

1The numbers before each template indicate the specificity of
the hint. The arguments after each template string tell the system
how to fill in the corresponding slots, indicated by square brackets.



(5 “Draw all the forces acting on [ ] as part of
your free body diagram.”body)

Choosing the first template from this list, and substituting
the appropriate descriptions of objects or quantities from
the problem into the slots, Andes would generate the hint,

Hint 1 “Think about what you need to do in order to have
a complete free body diagram for [the car].”

If the student does not know what to do after receiving
the first general hint, she can select a follow-up question by
clicking one of three buttons:

� Explain Further: Andes will display the next hint in the
hint sequence, which gives slightly more specific infor-
mation about the proposition represented by the node.

� How do I do that?: Andes finds a child of the hint node
that has not yet been addressed, and gives a hint about
that node. If there is more than one child node, it chooses
the one with the lowest probability, assuming that is the
node the student is most likely to be stuck on.

� Why?: Andes displays a canned description of the rule
that was used by the problem solver to derive that node.

In the above example, after seeing Hint 1, clicking on the
“Explain Further” button results in the hint,

Hint 2 “Draw all the forces acting on [the car] as part of
your free body diagram.”

which is a more specific description of the goal in question.
Clicking “How do I do that?” after Hint 1, on the other
hand, might result in the hint,

Hint 3 “Do you know of any [other] forces acting on [the
car]?”

which points to a sub-goal of drawing the forces on the car,
namely drawing the normal force (the word “other” is used
optionally if at least one force has already been drawn).

The discourse model
Another important consideration when generating hints is
the current discourse context. In particular, Andes should
avoid giving a hint that the student has already seen. There-
fore for each node in the solution graph, Andes keeps a
record of what hints about that node it has given the stu-
dent. When the hint selection algorithm selects a node that
has already been mentioned, the Procedural Helper tries to
give a more specific hint than was given last time. If the
most specific hint available has already been given, Andes
will repeat it.

Andes also uses its representation of what the student has
done so far to generate referring expressions. For example,
if the student has defined the acceleration of the car asA,
Andes will refer to it by the variableA, rather than with
its description. So Hint 1 above would be, “To find A, try
using a principle that mentions acceleration.”

Updating the student model after a hint
An ITS must take into account the hints that it has given
when interpreting the student’s actions and updating the

student model. Typically, a student will ask for hints down
to a certain level of specificity before taking the action sug-
gested by the hint. Thus, the student modeler should inter-
pret student actions taken in response to a hint differently
depending on that hint’s specificity.

This problem has been solved differently in different
ITS’s. Many tutors, e.g. (Andersonet al. 1995), assume
that hints affect the knowledge directly. For instance, strong
hints may cause the student to learn the knowledge required
to make the action. Thus, it does not matter whether a stu-
dent’s correct entry was preceded by a strong hint, a weak
hint or no hint at all. If they make a correct entry, then they
probably know the requisite knowledge. This seems a bit
unrealistic to us, especially when the last possible hint is so
specific that it essentially tells the student what to enter (as
often occurs in Andes, the Andersonian tutors, and many
others). Perhaps the most elaborate and potentially accu-
rate method of interpreting hints is used by the SMART
ITS (Shute 1995), which uses a non-linear function derived
from reports by experts, that boosts the level of mastery by
different amounts depending on the specificity of the hint
and the level of mastery before the hint was given.

Our approach attempts to be more principled by mod-
eling a simple “theory” of hints directly in the Bayesian
network. The theory is based on two assumptions:

� Hints from Andes’ Procedural Helper are worded so as
to remind the student of the requisite knowledge, rather
than teach it. (Teaching missing pieces of knowledge is
handled by the Conceptual Help system, which is not
discussed here.) Thus, procedural hints do not directly
cause students to master knowledge.

� A strong hint increases the chance that the student can
guess the next action rather than derive it from her knowl-
edge. Thus, a hint can cause an entry directly.

In other words, hints affect actions directly but not domain
knowledge.

This mini-theory of hints is encoded in the Bayesian net-
work as follows. Whenever a hint has been given for a node,
a new node is attached to the network as its parent, repre-
senting the fact that a hint was given. The conditional prob-
ability table on the target node is modified so that the target
node may be true if it was derived either via the application
of a known rule, or via guessing based on the hint. More-
over, the higher the specificity level of the hint, the more
likely that the target node is true (The specificy levels are
the numbers that appear at the beginning of the hint tem-
plates shown earlier). In operation, this means that when
the student makes the corresponding entry, the hint node
“explains away” some of that evidence, so the probability
of mastery of the requisite knowledge is not raised as much
as it would be if the student made that entry without receiv-
ing a hint.

Evaluations of Andes
In the Fall semester of 1997, an earlier version of Andes
was used in a formative evaluation by students in the intro-
ductory physics course at the US Naval Academy. About



160 students were asked to use Andes in their dorm rooms
to do their physics homework for three weeks. Students
were given a short pre- and post-test to assess the effect
of using Andes on their understanding of physics concepts.
Only 85 students ended up using the system enough to eval-
uate their test results. A multiple regression for these stu-
dents, with post-test score as the dependent variable, shows
a small but significant positive effect of the number of times
a student asked for help (p < :05, R2

= :016). The only
other variable to have a significant effect on post-test score
was the student’s pre-test score.

The small size of the effect of asking for help, together
with reports from students that the hints did not always
seem relevant to what they were thinking about at the time
they asked for help, led us to revise the plan recognition al-
gorithm to its present form. In the version of Andes used in
the first evaluation, the plan recognition strategy was sim-
ply to assume that the goal node with the highest probability
in the entire network was the one the student was address-
ing. However, since there is no temporal information repre-
sented in the Bayesian network, this meant that the system
was ignoring evidence aboutwhenactions had been done.
The version of the procedural help system described in this
paper addresses this problem by using the student’s most
recent action as the starting point in its search for the next
hint target.

Preliminary results from 25 students who used the new
version of Andes in the Spring semester show that the num-
ber of help requests per problem went up from 0.19 in the
Fall to 0.52 in the Spring. Test results for these students are
not yet available as of this writing.

As the project moves forward, we will continue to gather
data from such formative evaluations. These evaluations are
invaluable in both assessing the effectiveness of the system
and suggesting new directions and improvements.

Future work and conclusions
There are several areas of future work planned for the An-
des ITS. These include:

� Improved language generation: for instance, using dis-
course cues and more sophisticated surface generation to
improve the coherence and grammaticality of the output.

� Tutorial planning: a new project (CIRCLE) is looking at
the problem of deciding what kind of response to give to
the student at any given time (e.g. a hint vs. an longer
explanatory subdialog vs. no response).

In this paper we have presented a framework for gener-
ating responses to help requests that is particularly relevant
to domains in which there is uncertainty about the user’s
mental state. We would argue that this uncertainty exists to
some degree in most domains for which help systems are
implemented. Our Procedural Help module performs three
functions: it decides on the most effective topic for its help,
it generates a hint about that topic taking into account the
previous discourse context, and it updates its model of the
user’s mental state as a result of having received the hint.
Furthermore, the integration of these abilities with a general

knowledge assessment tool means that Andes can adapt its
help as the student’s level of knowledge changes over time.
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