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This article is a review of experiments comparing the effectiveness of human tutoring, com-
puter tutoring, and no tutoring. “No tutoring” refers to instruction that teaches the same
content without tutoring. The computer tutoring systems were divided by their granularity
of the user interface interaction into answer-based, step-based, and substep-based tutoring
systems. Most intelligent tutoring systems have step-based or substep-based granularities of
interaction, whereas most other tutoring systems (often called CAI, CBT, or CAL systems)
have answer-based user interfaces. It is widely believed as the granularity of tutoring decreases,
the effectiveness increases. In particular, when compared to No tutoring, the effect sizes of
answer-based tutoring systems, intelligent tutoring systems, and adult human tutors are be-
lieved to be d = 0.3, 1.0, and 2.0 respectively. This review did not confirm these beliefs.
Instead, it found that the effect size of human tutoring was much lower: d = 0.79. Moreover,
the effect size of intelligent tutoring systems was 0.76, so they are nearly as effective as human

tutoring.

From the earliest days of computers, researchers have strived
to develop computer tutors that are as effective as human
tutors (S. G. Smith & Sherwood, 1976). This review is a
progress report. It compares computer tutors and human tu-
tors for their impact on learning gains. In particular, the
review focuses on experiments that compared one type of
tutoring to another while attempting to control all other vari-
ables, such as the content and duration of the instruction.
The next few paragraphs define the major types of tutor-
ing reviewed here, starting with human tutoring. Current
beliefs about the relative effectiveness of the types of tutor-
ing are then presented, followed by eight common explana-
tions for these beliefs. Building on these theoretical points,
the introduction ends by formulating a precise hypothesis,
which is tested with meta-analytic methods in the body of the
review.

Although there is a wide variety of activities encompassed
by the term “human tutoring,” this article uses “human tu-
toring” to refer to an adult, subject-matter expert working
synchronously with a single student. This excludes many
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other kinds of human tutoring, such as peer tutoring, cross-
age tutoring, asynchronous online tutoring (e.g., e-mail or
forums), and problem-based learning where a “tutor” works
with small group of students. Perhaps the major reason why
computer tutor developers have adopted adult, one-on-one,
face-to-face tutoring as their gold standard is a widely held
belief that such tutoring is an extremely effective method of
instruction (e.g., Graesser, VanLehn, Rose, Jordan, & Harter,
2001). Computer developers are not alone in their belief. For
instance, parents sometimes make great sacrifices to hire a
private tutor for their child.

Even within this restricted definition of human tutoring,
one could make distinctions. For instance, synchronous hu-
man tutoring includes face-to-face, audio-mediated, and text-
mediated instantaneous communication. Human tutoring can
be done as a supplement to the students’ classroom instruc-
tion or as a replacement (e.g., during home schooling). Tu-
toring can teach new content, or it can also be purely reme-
dial. Because some of these distinctions are rather difficult
to make precisely, this review allows “human tutoring” to
cover all these subcategories. The only proviso is that these
variables be controlled during evaluations. For instance, if
the human tutoring is purely remedial, then the computer tu-
toring to which it is compared should be purely remedial as
well. In short, the human tutoring considered in this review
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includes all kinds of one-on-one, synchronous tutoring done
by an adult, subject-matter expert.

In contrast to human tutoring, which is treated as one
monolithic type, two technological types of computer tutor-
ing are traditionally distinguished. The first type is charac-
terized by giving students immediate feedback and hints on
their answers. For instance, when asked to solve a quadratic
equation, the tutee works out the answer on scratch paper,
enters the number, and is either congratulated or given a
hint and asked to try again. This type of tutoring system
has many traditional names, including Computer Aided-
Instruction (CAI), Computer-Based Instruction, Computer-
Aided Learning, and Computer-Based Training.

The second type of computer tutoring is characterized
by giving students an electronic form, natural language di-
alogue, simulated instrument panel, or other user interface
that allows them to enter the steps required for solving the
problem. For instance, when asked to solve a quadratic equa-
tion, the student might first select a method (e.g., completing
the square) from a menu; this causes a method-specific form
to appear with blanks labeled “the coefficient of the linear
term,” “the square of half the coefficient of the linear term,”
and so on. Alternatively, the student may be given a digital
canvas to write intermediate calculations on, or have a dia-
logue with an agent that says, “Let’s solve this equation. What
method should we use?” The point is only that the interme-
diate steps that are normally written on paper or enacted in
the real world are instead done where the tutoring system can
sense and interpret them. The tutoring system gives feedback
and hints on each step. Some tutoring systems give feedback
and hints immediately, as each step is entered. Others wait
until the student has submitted a solution, then either mark in-
dividual steps as correct or incorrect or conduct a debriefing,
which discusses individual steps with the student. Such tu-
toring systems are usually referred to as Intelligent Tutoring
Systems (ITS).

A common belief among computer tutoring researchers is
that human tutoring has an effect size of d = 2.0 relative to
classroom teaching without tutoring (Bloom, 1984; Corbett,
2001; Evens & Michael, 2006; Graesser etal., 2001; VanLehn
et al., 2007; Woolf, 2009). In contrast, CAI tends to produce
an effect size of d = 0.31 (C. Kulik & Kulik, 1991). Although
no meta-analyses of ITS currently exist, a widely cited re-
view of several early ITS repeatedly found an average effect
size of d = 1.0 (Anderson, Corbett, Koedinger, & Pelletier,
1995). Figure 1 displays these beliefs as a graph of effect size
versus type of tutoring. Many evaluations of ITS have been
done recently, so it is appropriate to examine the claims of
Figure 1.

This article presents a review that extends several earlier
meta-analyses of human and computer tutoring (Christmann
& Badgett, 1997; Cohen, Kulik, & Kulik, 1982; Fletcher-
Flinn & Gravatt, 1995; Fletcher, 2003; J. Kulik, Kulik, &
Bangert-Drowns, 1985; J. Kulik, Kulik, & Cohen, 1980;
J. A. Kulik, Bangert, & Williams, 1983; G. W. Ritter, Bar-
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FIGURE 1 Common belief about effect sizes of types of tutor-
ing. Note. CAl = Computer Aided-Instruction; ITS = Intelligent
Tutoring Systems.

nett, Denny, & Albin, 2009; Scruggs & Richter, 1985; Wasik,
1998). All the preceding meta-analyses have compared just
two types of instruction: with and without tutoring. Some
meta-analyses focused on computer instruction, and some fo-
cused on human instruction, but most meta-analyses focused
on just one type of tutoring. In contrast, this review compares
five types of instruction: human tutoring, three types of com-
puter tutoring, and no tutoring. The “no tutoring” method
covers the same instructional content as the tutoring, typ-
ically with a combination of reading and problem solving
without feedback. Specific examples of no tutoring and other
types of tutoring are presented later in the “Three Illustrative
Studies” section.

THEORY: WHY SHOULD HUMAN TUTORING
BE SO EFFECTIVE?

It is commonly believed that human tutors are more effective
than computer tutors when both teach the same content, so for
developers of computer tutors, the key questions have always
been, What are human tutors doing that computer tutors are
not doing, and why does that cause them to be more effective?
This section reviews some of the leading hypotheses.

1. Detailed Diagnostic Assessments

One hypothesis is that human tutors infer an accurate, de-
tailed model of the student’s competence and misunder-
standings, and then they use this diagnostic assessment to
adapt their tutoring to the needs of the individual student.
This hypothesis has not fared well. Although human tu-
tors usually know which correct knowledge components
their tutees had not yet mastered, the tutors rarely know
about their tutees’ misconceptions, false beliefs, and buggy
skills (M. T. H. Chi, Siler, & Jeong, 2004; Jeong, Siler, &
Chi, 1997; Putnam, 1987). Moreover, human tutors rarely
ask questions that could diagnose specific student miscon-
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ceptions (McArthur, Stasz, & Zmuidzinas, 1990; Putnam,
1987). When human tutors were given mastery/nonmastery
information about their tutees, their behavior changed, and
they may become more effective (Wittwer, Nuckles, Land-
mann, & Renkl, 2010). However, they do not change their be-
havior or become more effective when they are given detailed
diagnostic information about their tutee’s misconceptions,
bugs, and false beliefs (Sleeman, Kelly, Martinak, Ward, &
Moore, 1989). Moreover, in one study, when human tutors
simply worked with the same student for an extended period
and could thus diagnosis their tutee’s strengths, weaknesses,
preferences, and so on, they were not more effective than
when they rotated among tutees and thus never had much fa-
miliarity with their tutees (Siler, 2004). In short, human tutors
do not seem to infer an assessment of their tutee that includes
misconceptions, bugs, or false beliefs, nor do they seem to be
able to use such an assessment when it is given to them. On
the other hand, they sometimes infer an assessment of which
correct conceptions, skills, and beliefs the student has mas-
tered, and they can use such an assessment when it is given
to them. In this respect, human tutors operate just like many
computer tutors, which also infer such an assessment, which
sometimes called an overlay model (VanLehn, 1988, 2008a).

2. Individualized Task Selection

Another hypothesis is that human tutors are more effective
than computer tutors because they are better at selecting
tasks that are just what the individual student needs in or-
der to learn. (Here, “task” means a multiminute, multistep
activity, such as solving a problem, studying a multipage
text, doing a virtual laboratory experiment, etc.) Indeed, in-
dividualized task selection is part of one of the National
Academy of Engineering’s grand challenges (http://www.
engineeringchallenges.org/cms/8996/9127.aspx). However,
studies suggest that human tutors select tasks using a cur-
riculum script, which is a sequence of tasks ordered from
simple to difficult (M. T. H. Chi, Roy, & Hausmann, 2008;
Graesser, Person, & Magliano, 1995; Putnam, 1987). Hu-
man tutors use their assessment of the student’s mastery of
correct knowledge to regulate how fast they move through
the curriculum script. Indeed, it would be hard for them to
have done otherwise, given that they probably lack a deep,
misconception-based assessment of the student, as just ar-
gued. Some computer tutors use curriculum scripts just as
human tutors do, and others use even more individualized
methods for selecting tasks. Thus, on this argument, com-
puter tutors should be more effective than human tutors. In
short, individualized task selection is not a good explanation
for the superior effectiveness of human tutors.

3. Sophisticated Tutorial Strategies

Another common hypothesis is that human tutors use sophis-
ticated strategies, such as Socratic irony (Collins & Stevens,
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1982), wherein the student who gives an incorrect answer is
led to see that such an answer entails an absurd conclusion.
Other such strategies include reciprocal teaching (Palinscar
& Brown, 1984) and the inquiry method. However, studies
of human tutors in many task domains with many degrees
of expertise have indicated that such sophisticated strate-
gies are rarely used (Cade, Copeland, Person, & D’Mello,
2008; M. T. H. Chi, Siler, Jeong, Yamauchi, & Hausmann,
2001; Cho, Michael, Rovick, & Evens, 2000; Core, Moore,
& Zinn, 2003; Evens & Michael, 2006; Fox, 1991, 1993,
Frederiksen, Donin, & Roy, 2000; Graesser et al., 1995;
Hume, Michael, Rovick, & Evens, 1996; Katz, Allbritton,
& Connelly, 2003; McArthur et al., 1990; Merrill, Reiser,
Merrill, & Landes, 1995; Merrill, Reiser, Ranney, & Trafton,
1992; Ohlsson et al., 2007; VanLehn, 1999; VanLehn, Siler,
Murray, Yamauchi, & Baggett, 2003). Thus, sophisticated tu-
torial strategies cannot explain the advantage of human tutors
over computer tutors.

4. Learner Control of Dialogues

Another hypothesis is that human tutoring allows mixed ini-
tiative dialogues, so that the student can ask questions or
change the topic. This contrasts with most tutoring systems,
where student initiative is highly constrained. For instance,
although students can ask a typical ITS system for help on a
step, they can ask no other question, nor can they cause the
tutor to veer from solving the problem. On the other hand,
students are free to ask any question of human tutors and to
negotiate topic changes with the tutor. However, analyses of
human tutorial dialogues have found that although students
take the initiative more than they do in classroom settings,
the frequency is still low (M. T. H. Chi et al., 2001; Core
etal., 2003; Graesser et al., 1995). For instance, Shah, Evens,
Michael, and Rovick (2002) found only 146 student initia-
tives in 28 Ar of typed human tutoring, and in 37% of these
146 instances, students were simply asking the tutor whether
their statement was correct (e.g., by ending their statement
with “right?”). That is, there was about one nontrivial stu-
dent initiative every 18 min. The participants were medical
students being tutored as part of a high-stakes physiology
course, so apathy is not a likely explanation for their low rate
of question asking. In short, learners’ greater control over the
dialogue is not a plausible explanation for why human tutors
are more effective than computer tutors.

5. Broader Domain Knowledge

Human tutors usually have much broader and deeper knowl-
edge of the subject matter (domain) than computer tutors.
Most computer tutors only “know” how to solve and coach
the tasks given to the students. Human tutors can in principle
discuss many related ideas as well. For instance, if a student
finds a particular principle of the domain counterintuitive, the
human tutor can discuss the principle’s history, explain the
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experimental evidence for it, and tell anecdotes about other
students who initially found this principle counterintuitive
and now find it perfectly natural. Such a discussion would be
well beyond the capabilities of most computer tutors. How-
ever, such discussions seldom occur when human tutors are
teaching cognitive skills (McArthuretal., 1990; Merrill etal.,
1995; Merrill et al., 1992). When human tutors are teaching
less procedural content, they often do offer deeper explana-
tions than computer tutors would (M. T. H. Chi et al., 2001;
Evens & Michael, 2006; Graesser et al., 1995), but M. T. H.
Chietal. (2001) found that suppressing such explanations did
not affect the learning gains of tutees. Thus, although human
tutors do have broader and deeper knowledge than computer
tutors, they sometimes do not articulate it during tutoring,
and when they do, it does not appear to cause significantly
larger learning gains.

6. Motivation

The effectiveness of human tutoring perhaps may be due
to increasing the motivation of students. Episodes of tu-
toring that seem intended to increase students’ motiva-
tion are quite common in human tutoring (Cordova &
Lepper, 1996; Lepper & Woolverton, 2002; Lepper, Woolver-
ton, Mumme, & Gurtner, 1993; McArthur et al., 1990), but
their effects on student learning are unclear.

For instance, consider praise, which Lepper et al. (1993)
identified as a key tutorial tactic for increasing motivation.
One might think that a human tutor’s praise increases motiva-
tion, which increases engagement, which increases learning,
whereas a computer’s praise might have small or even nega-
tive effects on learning. However, the effect of human tutors’
praise on tutees is actually quite complex (Henderlong &
Lepper, 2002; Kluger & DeNisi, 1996). Praise is even as-
sociated with reduced learning gains in some cases (Boyer,
Phillips, Wallis, Vouk, & Lester, 2008). Currently, it is not
clear exactly when human tutors give praise or what the ef-
fects on learning are.

As another example, the mere presence of a human tu-
tor is often thought to motivate students to learn less (the
so-called “warm body” effect). If so, then text-mediated
human tutoring should be more effective than face-to-face
human tutoring. Even when the text-mediated tutoring is
synchronous (i.e., chat, not e-mail), it seems plausible that it
would provide less of a warm-body effect. However, Siler and
VanLehn (2009) found that although text-mediated human tu-
toring took more time, it produced the same learning gains as
face-to-face human tutoring. Litman et al. (2006) compared
text-mediated human tutoring with spoken human tutoring
that was not face-to-face (participants communicated with
full-duplex audio and shared screens). One would expect
the spoken tutoring to provide more of a warm-body effect
than text-mediated tutoring, but the learning gains were not
significantly different even though there was a trend in the
expected direction.

As yet another example, Lepper et al. (1993) found that
some tutors gave positive feedback to incorrect answers. Lep-
per et al. speculated that although false positive feedback may
have actually harmed learning, the tutors used it to increase
the students’ self-efficacy.

In short, even though motivational tactics such as praise,
the warm body effect, or false positive feedback are common
in human tutoring, they do not seem to have a direct effect on
learning as measured in these studies. Thus, motivational tac-
tics do not provide a plausible explanation for the superiority
of human tutoring over computer tutoring.

7. Feedback

Another hypothesis is that human tutors help students both
monitor their reasoning and repair flaws. As long as the stu-
dent seems to be making progress, the tutor does not in-
tervene, but as soon as the student gets stuck or makes a
mistake, the tutor can help the student resolve the lack of
knowledge and get moving again (Merrill et al., 1992). With
CAl, students can produce a multiminute-long line of rea-
soning that leads to an incorrect answer, and then have great
difficulty finding the errors in their reasoning and repairing
their knowledge. However, human tutors encourage students
to explain their reasoning as they go and usually intervene as
soon as they hear incorrect reasoning (Merrill et al., 1992).
They sometimes intervene even when they heard correct rea-
soning that is uttered in an uncertain manner (Forbes-Riley
& Litman, 2008; Fox, 1993). Because human tutors can give
feedback and hints so soon after students make a mental er-
ror, identifying the flawed knowledge should be much easier
for the students. In short, the frequent feedback of human
tutoring makes it much easier for students to find flaws in
their reasoning and fix their knowledge. This hypothesis, un-
like the first six, seems a viable explanation for why human
tutoring is more effective than computer tutoring.

8. Scaffolding

Human tutors scaffold the students’ reasoning. Here, “scaf-
fold” is used in its original sense (the term was coined by
Wood, Bruner, and Ross, 1976, in their analysis of human
tutorial dialogue). The following is a recent definition:

[Scaffolding is] a kind of guided prompting that pushes the
student a little further along the same line of thinking, rather
than telling the student some new information, giving direct
feedback on a student’s response, or raising a new question
or a new issue that is unrelated to the student’s reasoning
... . The important point to note is that scaffolding involves
cooperative execution or coordination by the tutor and the
student (or the adult and child) in a way that allows the student
to take an increasingly larger burden in performing the skill.
(M. T. H. Chi et al., 2001, p. 490)
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For instance, suppose the following dialogue takes place as
the student answers this question: “When a golf ball and a
feather are dropped at the same time from the same place
in a vacuum, which hits the bottom of the vacuum container
first? Explain your answer.”

1. Student: “They hit at the same time. I saw a video of
it. Amazing.”

2. Tutor: “Right. Why’s it happen?”

3. Student: “No idea. Does it have to do with freefall? ”

4. Tutor: “Yes. What it the acceleration of an object in
freefall?”

5. Student: “g, which is 9.8 m/s"2.”

6. Tutor: “Right. Do all objects freefall with acceleration
g, including the golf ball and the feather?”

7. Student: “Oh. So they start together, accelerate together
and thus have to land together.”

Tutor Turns 2, 4, and 6 are all cases of scaffolding, because
they extend the student’s reasoning. More examples of scaf-
folding appear later.

Scaffolding is common in human tutoring (Cade et al.,
2008; M. T. H. Chi et al., 2001; Cho et al., 2000; Core et al.,
2003; Evens & Michael, 2006; Fox, 1991, 1993; Frederiksen
et al., 2000; Graesser et al., 1995; Hume et al., 1996; Katz
et al., 2003; McArthur et al., 1990; Merrill et al., 1995;
Merrill et al., 1992; Ohlsson et al., 2007; VanLehn, 1999;
VanLehn et al., 2003; Wood et al., 1976). Moreover, exper-
iments manipulating its usage suggest that it is an effective
instructional method (e.g., M. T. H. Chi et al., 2001). Thus,
scaffolding is a plausible explanation for the efficacy of hu-
man tutoring.

9. The ICAP Framework

M. T. H. Chis (2009) framework, now called ICAP
(M. T. H. Chi, 2011), classifies observable student behaviors
as interactive, constructive, active, or passive and predicts
that that they will be ordered by effectiveness as

interactive > constructive > active > passive.

A passive student behavior would be attending to the pre-
sented instructional information without additional physical
activity. Reading a text or orienting to a lecture would be
passive student behaviors. An active student behavior would
include “doing something physically” (M. T. H. Chi, 2009,
Table 1), such as taking verbatim notes on a lecture, under-
lining a text, or copying a solution. A constructive student
behavior requires “producing outputs that contain ideas that
go beyond the presented information” (M. T. H. Chi, 2009,
Table 1), such as self-explaining a text or drawing a con-
cept map. An interactive behavior requires “dialoguing ex-
tensively on the same topic, and not ignoring a partner’s
contributions” (M. T. H. Chi, 2009, Table 1).
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The ICAP framework is intended to apply to observed
student behavior, not to the instruction that elicits it. Human
tutors sometimes elicit interactive student behavior, but not
always. For instance, when a human tutor lectures, the stu-
dent’s behavior is passive. When the tutor asks a question and
the student’s answer is a pure guess, then the student’s behav-
ior is active. When the tutor watches silently as the student
draws a concept map or solves a problem, then the students’
behavior is constructive. Similarly, all four types of student
behavior can in principle occur with computer tutors as well
as human tutors.

However, M. T. H. Chi’s definition of “interactive” in-
cludes co-construction and other collaborative spoken activ-
ity that are currently beyond the state of the art in computer
tutoring. This does not automatically imply that computer
tutoring is less effective than human tutoring. Note the >
in the ICAP framework: Sometimes constructive student be-
havior is just as effective as interactive student behavior. In
principle, a computer tutor that elicits 100% constructive stu-
dent behavior could be just as effective as a human tutor that
elicits 100% interactive student behavior.

Applying the ICAP framework to tutoring (or any other
instruction) requires knowing the relative frequency of inter-
active, constructive, active, and passive student behaviors.
This requires coding observed student behaviors. For in-
stance, in a study where training time was held constant,
if one observed that student behaviors were 30% interactive,
40% constructive, 20% active, and 10% passive for human tu-
toring versus 0% interactive, 70% constructive, 20% active,
and 10% passive for computer tutoring, then ICAP would
predict equal effectiveness. On the other hand, if the percent-
ages were 50% interactive, 10% constructive, 20% active,
and 20% passive for human tutoring versus 0% interactive,
33% constructive, 33% active, and 33% passive for computer
tutoring, then ICAP would predict that the human tutoring
would be more effective than the computer tutoring. Unfor-
tunately, such coding has not yet been done for either human
or computer tutoring.

Whereas the first eight hypotheses address the impact
of tutors’ behaviors on learning, this hypothesis (the ICAP
framework) proposes an intervening variable. That is, tutors’
behaviors modify the frequencies of students’ behaviors, and
students’ behaviors affect students’ learning. Thus, even if
we knew that interactive and constructive behaviors were
more common with human tutors than with computer tutors,
we would still need to study tutors’ behaviors in order to
figure out why. For instance, prior to discovery of the ICAP
framework, M. T. H. Chi et al. (2001) found that scaffolding
was associated with certain student behaviors that would now
be classified as constructive and interactive. Scaffolding is a
tutor behavior referenced by Hypothesis 8. In principle, the
ICAP framework could be combined with any of the eight
hypotheses to provide a deeper explanation of the difference
between human and computer tutoring, but the ICAP frame-
work is not an alternative to those hypotheses.
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Having listed several hypotheses, it may be worth a mo-
ment to clarify their differences. Feedback (Hypothesis 7)
and scaffolding (Hypothesis 8) are distinct hypotheses but
strongly related. Feedback occurs affer a student has made a
mistake or reached an impasse, whereas scaffolding is proac-
tive and encourages students to extend a line of reasoning.
Both are effective because they allow students to experience
a correct line of reasoning wherein they do much of the rea-
soning themselves and the tutor assists them with the rest.
Of the first eight hypotheses listed earlier, these two seem
most viable as explanations for the effectiveness of human
tutoring perhaps because they are simply the proactive and
reactive versions of the same assistance.

Although feedback and scaffolding are forms of adaptiv-
ity and individualization, they should not be confused with
the individualized task selection of Hypothesis 2. In all three
cases, the tutors’ decision about what activity to do next is
based on the students’ behavior, so tutors are adapting their
behavior to the students’. However, the durations of the activ-
ities are different. In the case of individualized task selection,
the tutor decides upon a relatively long activity, such as hav-
ing the student solve a selected problem, read a few pages of
text, study a video, and so on. In the case of scaffolding and
feedback, the tutor decides whether to remain silent, to give
feedback, to give a hint, to do the next step for the student,
and so forth. Shute (1993) captured the distinction using the
terms “macro-adaptive” for computer tutors that have so-
phisticated methods for individualizing task selection and
“micro-adaptive” for tutors that have sophisticated methods
for regulating scaffolding, feedback, and other short-duration
instructional activities.

To summarize, of the hypotheses discussed here, Hypoth-
esis 9 (the ICAP framework) is complementary with all the
others and can potential provide an explanation for how the
tutors’ behaviors affect the students’ learning. Of the other
eight hypotheses—detailed diagnostic assessment, individu-
alized task selection, sophisticated tutorial strategies, learner
control of dialogues, domain knowledge, motivation, feed-
back, and scaffolding—only the last two seem completely
free of contravening evidence. Hypothesis 6 (motivation)
may explain the efficacy of human tutoring, but such an ex-
planation would be complicated. Thus, the best hypotheses
so far are that when human tutors cause larger learning gains
than computer tutors, it is because they are better at scaffold-
ing students and giving feedback that encourages students to
engage in interactive and constructive behaviors as they self-
repair and construct their knowledge. Similar conclusions
were reached in earlier reviews (M. T. H. Chi et al., 2001;
Graesser et al., 1995; Merrill et al., 1992).

The Interaction Granularity Hypothesis

The preceding sections argued that human tutoring was more
effective than computer tutoring because human tutors used
feedback and scaffolding more effectively than computer tu-

tors. This section examines how different kinds of tutors give
feedback and scaffolding. It argues that the key difference is
the granularity of their interaction.

Granularity is a property of the user interface. Although
human tutoring has no constraints on granularity of interac-
tion, different types of computer tutors have different gran-
ularities. Granularity refers to the amount of reasoning re-
quired of participants between opportunities to interact. The
larger the grain size of the user interface, the more reasoning
per interaction. For instance, after an answer-based tutoring
system poses a problem, the next opportunity for interaction
is when the student enters an answer. Thus, the user interface
is designed so that the student does all the reasoning required
for solving the problem between interactions. In contrast, an
ITS gives the students many opportunities to interact with the
tutor while solving the problem. For instance, students may
fill out a form that prompts for intermediate steps, or they may
participate in a dialogue with the tutoring system. Because
the answer-based tutoring system requires more reasoning
between interactions, it has a larger grain size of interaction
than the step-based tutoring system.

To explain some of the nuances of granularity, it is best to
work with an example. Consider the following problem:

In a basket of apples, 40% of the apples have worms, and
25% are rotted inside. Assuming independence, what is the
chance that a randomly selected apple will have a worm but
no rot?

Let us first consider a hypothetical typed dialogue between a
human tutor and a student.

1. Student: I’'m stuck

2. Tutor: Our event is an apple with a worm and no rot,
right?

3. Student: Right.

4. Tutor: Can that event be decomposed into an AND or
an OR or something of two events?

5. Student: I don’t see how.

6. Tutor: Well, if you think of having a worm as one
kind of event, and having rot as another event, then
our event is both having a worm AND having no rot.

7. Student: OK

8. Tutor: Can you write that in symbols, like P(. . .)?

9. Student: P(worm & rot).

10. Tutor: Almost. Check your “rot”

11. Student: P(worm & ~rot)

12. Tutor: Good. Do you know a rule that matches that?

13. Student: P(A&B) = P(A) * P(B)

14. Tutor: Excellent! Now are you sure that it is legal to
apply this rule? What do you have to check?

15. Student: A is worm and B is ~rot.

16. Tutor: As we’ve discussed before, you must always
remember which rules require independence. This is
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one of them. To apply P(A&B) = P(A)*P(B), events
A and B must be independent.

On Turns 10 and 16, the tutor gives negative feedback. On
Turns 6 and 16, the tutor gives an explanation. On all the
other turns, the tutor scaffolds the student by prompting the
next little bit of reasoning that needs to be done. Notice how
little reasoning is covered by each interaction. This particular
dialogue illustrates fine-grained interaction. Human tutoring
doesn’t have to be like this. In fact, the tutor or the student
may give an explanation that covers a whole solution. Such a
long explanation would compose a large-grained interaction.
However, the “user interface” of human tutoring puts no
constraints on the granularity of the interaction.

Now consider a typical answer-based tutoring system. It
would have a box where students can type in an answer. If
0.3 is entered, the student gets positive feedback. If 0.1 is
entered, the tutor might say, “Almost. That’s P(worm & rot).
You want P(worm & ~rot).” Entering any other number might
cause the tutor to say, “Try again.” Note that the tutor only
recognizes attempts at a whole solution, which is a long line
ofreasoning. A typical tutor would also have two buttons. The
Hint button gives some scaffolding, just like the human tutor’s
scaffolding, but intended to power the student’s reasoning all
the way from start to finish. The Explain button presents a
complete solution. Again, both the hint and the explanation
refer to the whole line of reasoning from problem to answer.
In short, the students’ reasoning, the tutor’s explanations, and
all the other interactions permitted by this user interface refer
to a long line of reasoning, so this user interface has a large
granularity of interaction.

Turning now to ITS, we need to distinguish two types.
The first type of ITS will be called a step-based tutoring
system because it is engineered to let users enter the steps
that they would do when solving problems normally, with-
out the tutoring (VanLehn, 2006). For instance, if the tutor
is teaching a procedural skill such as programming a video
recording system (Mark & Greer, 1995), then the user inter-
face simulates the front panel of the device, and students use
the mouse to click in times, select TV channels, and so on.
On the other hand, if students normally work on paper, then
the user interface may provide an electronic form for them
to enter what they should write if they are showing all their
work. For instance, Figure 2 shows a form appropriate for
the rotten apples example, partially filled out by the student
(in italics). Suppose the student gets stuck at this point and
presses the Hint button. The tutor might say, “You seem to be
seeking P(~rot) but the problem provides only P(rot) = 0.75.
Can you think a rule that relates them?” If the student presses
the Hint button enough times, the tutor gives an explanation
for the reasoning required to reach the next step, for example,
“You need to apply the rule P(A) = 1-P(~A), which in this
case is P(~rot) = 1 — P(rot) = 1 — 0.25 = 0.75” The point
is that the students’ entries, the tutor’s hints, and the tutor’s
explanations all refer to a relatively short line of reasoning.
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Goal Rule Result
P(worm & ~rot) P(A&B) = PA) * P(B)
P(worm) Given 0.40

P(~rot)

FIGURE 2 A form used by a hypothetical step-based tutoring sys-
tem for probability.

A step-based tutoring system has a much smaller grain size
than the answer-based tutoring system.

The second type of ITS will be called a substep-based
tutor because it can give scaffolding and feedback at a level of
detail that is even finer than the steps students would normally
enter when solving a problem. For instance, suppose a student
is programming a video recorder to start recording at 2 p.m.,
and the student presses the Hint button. A substep-based
tutor might start by asking, “Are you familiar with military
time, e.g., 1600?” If the student says yes, then the tutor would
say, “This recorder uses military time, so enter 1400.” If the
student says no, then the tutor might provide instruction on
military time using a multientry form such as this:

To convert a morning time to military time, just append the
hours to the minutes, so 9:30 am becomes 0930. To convert
an afternoon time to military time, add 12 to the hours and
append the minutes, so 3:30 pm becomes 1530. For this TV
show, you want to enter a 2:00 pm start time. This is an

time, so you should add ___to ___ hours then append
___minutes, so you finally get , which is what you should
enter into the recorder.

The student fills in the blanks using typing and/or menus.
These entries are not overt when normally operating the
recorder, but they probably correspond to mental inferences.
Thus, they are substeps and not steps.

This example of a substep-based tutoring system uses
a conventional user interface, often called a graphical user
interface (GUI) or WIMP (Windows, icon, menu, and point-
ing) user interface. Other major types of user interface are
command line, touch screen, and natural language dialogue
user interfaces. In principle, the type of user interface is
independent of the granularity of the user interface. How-
ever, all substep-based tutoring systems developed so far have
used a natural language dialogue user interface. Indeed, the
rotten apple dialogue presented earlier could be conducted
by a substep-based tutoring system, and it illustrates the use
of substeps. For instance, the tutor asked for the reasoning
behind a step in Turn 14. Although identifying independence
assumptions is critically important in probability problem
solving, it is not usually done explicitly when students are
just writing steps. Thus, Turn 14 illustrates what a substep
looks like in the context of a natural language dialogue user
interface.

Just to drive home the point that the user interface type
(natural language vs. GUI vs. command line, etc.) is inde-
pendent of the granularity (answer vs. step vs. substep), it



Downloaded by [Arizona State University] at 11:24 07 November 2011

204 VANLEHN

is worth mentioning that step-based tutoring systems some-
times have natural language user interfaces. A good example
is the COVE tutoring system (Roberts, 2001), which is an
ITS where students enter steps by uttering natural language
commands (e.g., “All engines ahead full.”). COVE teaches
conning officers how to steer a naval vessel, so it is important
that the students learn to speak the proper commands. Its
steps are natural language commands, because that is what
the student normally does when driving a ship. However,
COVE does not conduct a dialogue with the trainees about
their reasoning. For instance, it does not ask them why they
decided to issue a specific command. Thus, despite its speech
input, COVE is a step-based tutor and not a substep-based
tutor. Although there are other speech-input step-based tu-
toring systems (e.g., Core et al., 2006; F. Ritter & Feurzeig,
1988; Stottler & Panichas, 2006; Zachary et al., 1999),
there are also speech-input substep-based tutoring systems as
well (D’Mello, King, Stolarski, Chipman, & Graesser, 2007;
Litman et al., 2006; Pon-Barry, Schultz, Bratt, Clark, & Pe-
ters, 2006). The point is that the user interface type is inde-
pendent of the user interface granularity.

This review classifies tutoring systems by their granularity
of interaction and ignores their user interface type (natural
language vs. GUI, etc.). Five grain sizes are used, and they
are ranked by size as follows:

human tutoring < substep-based tutoring < step-

based tutoring < answer-based tutoring

Human tutoring is finer grained than substep-based tutoring
because its granularity is unconstrained. Substep-based tutor-
ing systems have dialogues that are preplanned and sometime
preauthored, so there is always a limit on their granularity.

As argued earlier, human tutoring is thought to be more
effective than computer tutoring because human tutors are
better at giving feedback and scaffolding. As the preced-
ing discussion illustrates, computer tutors also give feedback
and scaffold; they just do so at a larger grain size than human
tutoring. This suggests that a key property that makes one
type of tutoring more effective than other types of tutoring
may be the granularity of the interaction—how much reason-
ing the user interface expects to occur between student—tutor
interactions.

The interaction granularity hypothesis is that the effec-
tiveness of tutoring systems (including human tutoring as
a “system”) increases as the granularity of interaction of
the system decreases. This is presumably due to the partic-
ipants interacting around smaller and smaller pieces of rea-
soning and pieces of knowledge, which makes the scaffold-
ing, feedback, and perhaps even explanations more effective.
Although an earlier statement of this hypothesis referred to
the independent variable as “interactivity” (VanLehn et al.,
2007), interaction granularity is a more accurate name for
it. The interaction granularity hypothesis predicts that the

effectiveness of different types of tutoring should be

human tutoring > substep-based tutoring > step-

based tutoring > answer-based tutoring

The hypothesis could be extended to predict that two tutor-
ing systems that have the same interaction granularity but
are otherwise identical will produce the same learning gains.
In particular, a GUI user interface should produce the same
learning gains as a dialogue-based user interface if they have
the same granularity. For instance, COVE should be no more
effective than a version of it that used menus instead of spo-
ken language as input. Of course, the menu-based version
wouldn’t give students practice in recalling and uttering the
proper naval commands, so the comparison would be fair
only if it were restricted to knowing which command to give
at what time, even if the command were uttered improp-
erly. This prediction has not been tested yet with COVE,
but it is consistent with several experiments in mathematics
(Aleven, Ogan, Popescu, Torrey, & Koedinger, 2004; Corbett,
Wagner, Lesgold, Ulrich, & Stevens, 2006). These experi-
ments showed that when a step-based tutor used a natural-
language interface, it improved students’ mastery of math-
ematical language more than the same tutor using a menu-
based interface, but both methods of entering steps were
equally good at improving students’ problem solving skills
and mathematical understanding, as predicted by the interac-
tion granularity hypothesis.

Scope and Method of the Review

The first subsection explains the criteria for inclusion in the
review. A second subsection describes the review’s methods.

Inclusion and exclusion criteria. To test the hypothe-
sis that types of tutoring are ranked by effectiveness as

human > substep-based > step-based > answer-

based > no tutoring,

only experiments that involved at least two different types
of tutoring were included. For instance, an experiment could
compare human tutoring to no tutoring, or substep-based
tutoring to answer-based tutoring.

There already exist at least a dozen reviews comparing
answer-based tutoring to no tutoring (J. A. Kulik, 1994).
Thus, if a study included only answer-based tutoring and
no-tutoring, it was excluded.

This review covers only experiments that manipulated in-
teraction granularity, as previously defined, while trying to
control for all other variables. Most important, comparisons
were excluded if the control and experimental conditions re-
ceived different content. For instance, studies of Carnegie
Learning’s Cognitive Tutors were excluded because students
in the experimental condition used a different textbook and
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classroom activities than students in the comparison con-
ditions. Given the prominence of these step-based tutoring
systems, it is worth mentioning that What Works Clearing-
house (WWC) recognized that three efficacy studies of the
Carnegie Learning Algebra I treatment met WWC standards
of evidence, and two studies met the standards with reserva-
tions (WWC, 2009, 2010). The results of these studies were
mixed. Using measures selected by WWC, the effect sizes
from these five studies were 0.38 (S. Ritter, Kulikowich,
Lei, McGuire, & Morgan, 2007), —0.18 (Cabalo, Jaciw, &
Vu, 2007), —0.16 (Campuzano, Dynarski, Agodini, & Rall,
2009), 0.04 (Shneyderman, 2001), and —0.07 (J. E. Smith,
2001). Carnegie Learning’s (2010) review of these studies
found moderately large positive effects in measures not se-
lected by WWC. The company’s review also reports moder-
ately large positive effects in several efficacy studies not in-
cluded by WWC. However, none of these studies controlled
for content. The negative results reported by the WWC would
be explained if the standardized exams focused on the tra-
ditional content taught in the control classrooms and the
Cognitive Tutors focused on other content.

Topic has been a strong moderating variable in earlier
meta-analyses of tutoring. For instance, effect sizes were
smaller for reading than for science, technology, engineering
or mathematics (STEM) topics (Cohen et al., 1982; Fletcher-
Flinn & Gravatt, 1995; G. W. Ritter, et al., 2009). To reduce
the variance across studies and thus allow a pattern to emerge,
the subject matter being tutored was constrained to be a
STEM topic. In particular, this review excludes studies of
tutoring of reading, second language, music, and sports.

Moreover, all the studies included here used tasks
that have distinguishable right and wrong solutions. If
there were studies using ill-defined tasks (e.g., design
tasks where the outcome variable is novelty or creativity),
then their findings might differ from those found in this
article.

Only studies of one-on-one tutoring were included. This
excludes studies in which two or more students interacted
simultaneously with the same human tutor or tutoring system.
In one borderline case (Reif & Scott, 1999), two human tutors
circulated among six students doing their physics homework
in a conference room. Students were not interacting with
each other, only with the tutors. The study was included in
this review because its method more closely matched one-on-
one human tutoring than the one-to-many treatments where a
human tutor participates in a discussion among a small group
of students.

For human tutoring, the tutors were required to be adult,
subject-matter experts. Studies of peer tutoring or cross-age
tutoring were excluded. No restriction was placed on the ex-
pertise of the tutor in tutoring itself because there are no es-
tablished measures of such expertise apart from the learning
gains of the tutees. Although it is feasible to include only ex-
perienced tutors, the pattern of the results might not be any
different, because there is little evidence that experienced
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tutors are significantly more effective than inexperienced tu-
tors, given that they are all subject-matter experts (Chae,
Kim, & Glass, 2005; di Eugenio, Kershaw, Lu, Corrigan-
Halpern, & Ohlsson, 2006; Fossati, 2008). The Cohen et al.
(1982) meta-analysis found no relationship between tutor’s
experience and their effectiveness. Clark, Snow, and Shavel-
son (1976) found that giving subject-matter experts training
and experience as tutors did not make them more effective.
Although the expertise of tutors was not used as a criterion
for exclusion of studies, the discussion section reopens this
issue.

Only experiments with random assignment to conditions
were included. Studies with random assignment of classes to
condition were included, even though this is a weaker design
than random assignment of students to condition.

Studies were included only if they reported measures that
allowed an effect size to be calculated. Besides the mean and
total sample size for each condition, either standard devia-
tions, standard errors, mean standard error, the ¢ statistic, or
the F statistic were required.

To match common beliefs about maximally effective
forms of human tutoring, studies of human tutoring were re-
stricted to synchronous human tutoring. Synchronous means
that there are no long delays between turns, as there are
with e-mail or forums. Face-to-face tutoring qualifies as syn-
chronous, and most studies of human tutoring in the review
used face-to-face tutoring. Some studies used other methods
of synchronous human tutoring. Typically, the student and
the human tutor in these studies were in separate rooms or
were separated by a partition. They could both see a common
workspace, but they could not see each other. They commu-
nicated via full-duplex audio (e.g., speaking loudly enough
to be heard over the partition) or a text “chat” interface.
Most of these studies were comparing human tutoring to a
substep-based tutoring, so they arranged for the human tutors
to use exactly the same communication medium as the com-
puter tutor (both spoken or both typed). These studies were
included in the review because existing evidence suggests
that text-based, synchronous human tutoring is slower but
no less effective than face-to-face human tutoring (Siler &
VanLehn, 2009) or audio-mediated human tutoring (Litman
et al., 20006).

The review excludes studies of tutoring with specialized
student populations, such as deaf, blind, or learning disabled
students. Although there a gray area between “learning dis-
abled” and “below grade level” but not disabled, none of the
candidate studies for this review fell into that gray area.

Last, only studies published between 1975 and 2010 were
included.

METHODS

This review attempts to cover all studies that fit the cri-
teria listed in the previous sections. Two searches were
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conducted—an informal search and a formal search. The in-
formal search started by considering four well-known venues
for work on intelligent tutoring systems (the International
Journal of Al in Education, the journal Interactive Learn-
ing Environments, and the proceedings of two conferences,
Intelligent Tutoring Systems and Al in Education). The in-
clusion/exclusion criteria were applied to abstracts in all vol-
umes of these four venues. The selected articles were read,
and their reference lists were searched for more relevant arti-
cles. This recursive search through reference lists continued
until no new articles were found. This search yielded 87
comparisons.

The formal search started by querying ERIC using this cri-
terion: “tutor*” AND “experiment” NOT “peer” NOT “cross-
age” NOT “reciprocal” NOT “reading” NOT “L2” NOT
“spelling” NOT “vocabulary” NOT “autism”. This yielded
1,226 citations. Applying the inclusion/exclusion criteria to
the abstracts filtered out all but 44 publications. The 44 publi-
cations included two publications not found during the infor-
mal search, and they contained eight new comparisons. Next,
PsycINFO was searched with a similar criterion and yielded
197 citations. Applying the inclusion/exclusion criterion to
the abstracts filtered out all but 1 publication, which yielded
no new comparisons. At this point, the formal search was
truncated because it had failed to uncover most of the publi-
cations known to be relevant before the search was conducted
and had located few new relevant ones.

Because the formal search was truncated and the informal
search is not replicable, and only one coder (the author) was
used in applying the inclusion/exclusion criteria, this review
does not meet current standards for meta-analyses (Cooper,
Hedges, & Valentine, 2009). Nonetheless, it is likely that
nearly all the relevant studies have been located and correctly
classified, in part because the author has worked for more than
three decades in the tutoring research community.

Many experiments use multiple assessments of learning.
For instance, an experiment might include both a conceptual
and a quantitative posttest. This review reports the assessment
with the largest effect size.

When an experiment has three or more conditions, each
pairwise comparison produces its own effect size. For com-
pleteness, all of them are reported here. For instance, suppose
an experiment has three groups: human tutoring, step-based
tutoring, and no-tutoring. There are three pairwise compar-
isons, and each is reported in a different table in the Ap-
pendix: The human tutoring versus step-based tutoring is
reported in one table, the human tutoring versus no-tutoring
is reported in a second table, and the step-based tutoring
versus no-tutoring is reported in a third table.

As mentioned earlier, the review compares four types of
tutoring (one human, and three computer) and a no-tutoring
treatment that teaches the same content as the tutoring condi-
tion. Different experiments used different no-tutoring treat-
ments. Most were combinations of reading text and solving
problems without feedback. It would be difficult to develop

a moderator variable or subclassification for the no-tutoring
treatments, as they are often not completely described in
the original sources. Nonetheless, in the Appendix that lists
the individual studies, the no-tutoring controls are briefly
described.

Three lllustrative Studies

The goal of this review is to test the interaction granularity
hypothesis by comparing the effectiveness of five types of in-
struction: human tutoring, substep-based tutoring, step-based
tutoring, answer-based tutoring, and no-tutoring. To clarify
the five types and the hypothesis, this section reviews several
studies that each include at least three types of tutoring.

lllustration 1. Evens and Michael (2006) reported and
integrated all of their studies on tutoring of medical students
who were taking a class on cardiovascular physiology. They
studied different methods for teaching students an opera-
tional mental model of the baroreceptor reflex, which controls
human blood pressure. All students were first taught the ba-
sics of the baroreceptor reflex and then were given a training
problem wherein an artificial pacemaker malfunctions and
students must fill out a table describing the body’s response.
The table’s rows denoted physiological variables (e.g., heart
rate; the blood volume per stroke of the heart, etc.). The ta-
ble’s columns denoted time periods. The students filled each
cell in the table with a +, —, or 0, thus indicating whether the
row’s variable was increasing, decreasing, or constant during
the column’s time period. Filling in a cell counts as a step, so
this was a multistep task. When students had filled in a whole
column, which they could do in any order they wished, they
pressed a Submit button and tutoring on that column began.
When all the cells in that column had correct entries, student
could start on the next column.

Evens, Michael, and their colleagues first developed a
step-based tutoring system, CIRCSIM. When tutoring the
student on a column, it indicated each incorrect step (i.e., a
cell that was filled in incorrectly) and presented a short textual
explanation of the proper reasoning for that step. Because the
student had no opportunity to interact with the tutor as they
read the explanation, the user interface granularity was a step.

Next, Evens, Michael, and their colleagues developed a
substep-based tutoring system, CIRCSIM-tutor. Instead of
the tutor printing a paragraph-long explanation for each
incorrect step, CIRCSIM-tutor conducted a sophisticated,
typed natural language dialogue. Although the default di-
alogue had exactly the same content as the printed explana-
tions of the step-based tutor, it went more deeply into a topic
if the student’s response indicated missing knowledge or a
misconception.

The CIRCSIM team conducted several experiments.
Some used a no-tutoring condition wherein students stud-
ied a text that included examples of the correct reasoning for
solving the pacemaker problem. Some experiments included
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FIGURE 3 Results from Evens & Michael (2006). Note. Condition
names are followed by the table number in Evens & Michael, as the
experiments were not numbered (color figure available online).

human tutors interacting with students via typing. Although
inexperienced tutors were used in one such experiment, the
others used two highly experienced tutors who had studied
transcripts of their own tutoring in order to improve it. If the
interaction granularity hypothesis holds, then the treatments
should be ordered as follows: human tutoring > CIRCSIM-
tutor (a substep-based tutor) > CIRCSIM (a step-based tutor)
> reading text (no tutoring).

Figure 3 summarizes the results from experiments that
used the same assessments and training problems but
different types of instruction. The three most interac-
tive types of tutoring—human tutors, CIRCSIM-tutor, and
CIRCSIM—tied with each other. The no-tutoring (reading)
conditions differed from the CIRCSIM, CIRSIM-tutor, and
human tutor conditions, but these tutoring conditions did not
differ statistically from each other. This pattern is inconsis-
tent with the interaction granularity hypothesis.

lllustration 2. VanLehn et al. (2007) studied conceptual
physics tutoring. Conceptual physics is an open task domain
in that it is often taught “by discussion” instead of by solv-
ing pencil-and-paper multistep tasks. For instance, students
discuss “why” questions such as

As the earth orbits the sun, the sun exerts a gravitational force
on it. Does the earth also exert a force on the sun? Why or
why not?

In this experiment, such question-answering tasks were
treated as multistep tasks. That is, a correct and complete
answer to such a question was decomposed into several key
ideas. Mentioning such an idea was treated as a step. For
instance, two of the key ideas to be mentioned in response
to the question just presented were “Newton’s third law”
and “action-reaction force pair.” Because the steps were in
natural language, students were not expected to use exactly
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those words, but a complete and correct explanation should
contain those two steps along with several others.

In all conditions of the experiment, students first studied a
short textbook. They then worked on several tasks that each
involved answering a “why” question, such as the one just
listed. For each task, the students wrote a short essay as their
initial answer; were tutored on missing or incorrect steps;
and then read a correct, well-written essay.

The treatments differed in how students were tutored when
the essay lacked a step or had an incorrect or incomplete step.
There were five treatments. They are listed next in order of
interaction granularity, with the finest granularity treatment
first:

1. Human tutors who communicated via a text-based in-
terface with student; with a few exceptions, the tutor
was a professional physics tutor who studied transcripts
of his tutoring in order to improve it.

2. Why2-Atlas, a substep-based tutoring system.

3. Why2-AutoTutor, another substep-based tutoring sys-
tem.

4. A simple, step-based tutor that presented the same con-
tent as Why?2-Atlas, but as text instead of dialogue.

5. A control condition that had students merely read pas-
sages from a textbook without answering conceptual
questions.

If the interaction granularity hypothesis holds, then one
would expect the treatments to be ordered by efficacy as 1 >
2=3>4>35.

Figure 4 shows the posttest scores, adjusted for pretest
scores in an analysis of covariance. The four most fine-
grained types of tutoring (numbers 1-4 in the list just pre-
sented) were not reliably different from each other. All four
were higher than the read-only no-tutoring condition (num-
ber 5 in the list) by approximately d = 1.0. Thus, the results of
Experiments 1 and 2 of VanLehn et al. (2007) do not support
the interaction granularity hypothesis.

Surprised by the failure of the interaction granularity hy-
pothesis, VanLehn et al. (2007) conducted five more exper-
iments. The experiments used different assessment methods
(e.g., far transfer; retention), students with different prior
knowledge (with or without a college physics course), and
different numbers of training problems. With one exception,
the same pattern of results was observed in every experi-
ment. The exception was an experiment in which students
who had not taken college physics were trained with mate-
rials that were designed for students who had taken college
physics. In that experiment, human tutoring was more ef-
fective than the step-based tutor. Upon reviewing transcripts
of the tutoring, the researchers concluded that the materials
were too far above the students’ current level of competence.
Although reading the step-based tutor’s remedial text prob-
ably didn’t suffice for comprehension, the human tutor was
able to help explain the content in novice terms. In partic-
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FIGURE4 Results from VanLehn et al. (2007), Experiments 1 and
2 (color figure available online).

ular, the text assumed that readers knew about vectors, but
the novices clearly did not. This interpretation was consis-
tent with later experiments that used completely overhauled
materials designed especially for students who had not taken
college physics and yielded the pattern shown in Figure 4.

lllustration 3. Reif and Scott (1999) compared human
tutoring, step-based tutoring, and no tutoring. All students
in their experiment were in the same physics class; the ex-
periment varied only the way in which the students did their
homework. There were three treatments. (1) One group of
students did their physics homework problems with the aid
of a human tutor. (2) Another group of students merely did
their homework at home as usual. Because they received
no feedback until their papers were returned, this treatment
is classified as no-tutoring. (3) The remaining students did
their homework on a step-based tutoring system. The system
had them either solve a problem or study a solved problem
(example). When solving a problem, students got immediate
feedback and hints on each step. When studying an example,
they were shown equations, vectors, and other inscriptions.
As each was displayed, students were asked to judge whether
it was correct. These judgments counted as steps. Students
were given immediate feedback on their steps and could
ask for hints as well. Thus, both the problem-solving and
example-studying activities count as step-based tutoring.

Figure 5 shows the Reif and Scott results. The human
tutors and the step-based tutor produced learning gains that

IFor the read-only studying condition (number 5 in the list), these last
two experiments used an experimenter-written text instead of a commercial
textbook. Although the interaction granularity hypothesis predicts that no-
tutoring instruction should be less effective than tutoring, students in this
no-tutoring condition had equally high learning gains as students in the other
conditions. It is not clear why they learned so well, but it may be due to a
lack of fatigue because they finished their reading much more quickly than
the other students, who also wrote essays, interacted with a tutor, and so on.
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FIGURE 5 Results from Reif and Scott (1999) (color figure avail-
able online).

were not reliably different, and yet both were reliably larger
than the gains of the no-tutoring group (d = 1.31 for human
tutoring; d = 1.01 for step-based tutoring).

However, the human tutors and the step-based tutor taught
an effective problem-solving method (Heller & Reif, 1984)
that was not taught to the no-tutoring students (F. Reif, per-
sonal communication, October 2009). Thus, part of the large
benefit of tutoring over no-tutoring may be due to a dif-
ference in instructional content rather than a difference in
instructional method. This review is intended to focus only
on differences in method, so from this experiment, the review
includes only the comparison between human tutoring and
step-based tutoring. The no-tutoring condition is ignored as
it appears to have used different content than the other two.

RESULTS

Unlike most meta-analyses, which compare just two types of
instruction, this review compares five types of tutoring, so
there are 10 possible pairwise comparisons. Table 1 shows
them all. Each row presents one pairwise comparison. For

TABLE 1
Summary of Effects
Comparison No. ES % Reliable Table
Answer based vs. no tutoring 165 0.31 40% From Kulik
& Kulik
(1991, Table
3)
Step based vs. no tutoring 28 0.76 68% Al
Substep based vs. no tutoring 26 0.40 54% A2
Human vs.no tutoring 10 0.79 80% A3
Step based vs.answer based 2 0.40 50% A4
Substep based vs. answer based 6 0.32 33% AS
Human vs.answer based 1 —0.04 0% A6
Substep based vs. step based 11 0.16 0% A7
Human vs.step based 10 0.21 30% A8
Human vs.substep based 5 —0.12 0% A9
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instance, human tutoring can be compared to each of the
other four types of tutoring, so human tutoring appears in
four rows (rows 4, 7, 9, and 10). Step-based tutoring can also
be compared to the other four types of tutoring, so it appears
on four rows (rows 2, 5, 6, and 9). In this manner, every type
of tutoring appears in four rows.

Within a row, the number of reviewed comparisons ap-
pears first, followed by the mean of the effect sizes of those
comparisons. The third number is the proportion of the com-
parisons that were reliable (p < .05). The last column of a
row identifies the table in the Appendix listing all the com-
parisons referenced by the row.

The first row of Table 1, labeled Answer-based vs. no-
tutoring, differs from the rest in that it reports a result from
the C. Kulik and Kulik (1991) review. The review divided
computer-based instruction into several categories, one of
which is called answer-based tutoring here. Only that cate-
gory’s mean effect size is reported in the table. The proportion
of reliable comparisons is an estimate. Although Kulik and
Kulik reported that 40% of their comparisons were reliable,
they did not break this down per category. However, studies
of answer-based tutoring dominated the review (165 of 248
studies were classified as answer-based tutoring), so 40% is
used as an approximation in Table 1’s third column.

To interpret the effect sizes in Table 1, let us first find a
meaningful way to display them graphically. Figure 6a is a
conventional display, which shows the effect sizes of Table 1
where each curve has a left end point at zero that represents
the effect size of the treatment compared to itself. Figure
6a makes it hard to integrate the results and determine the
effect size of each type of tutoring. For instance, suppose
we are interested in the efficacy of step-based tutoring in
comparison to tutoring with a lower granularity. There are
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FIGURE 6 Mean effect sizes.

RELATIVE EFFECTIVENESS OF TUTORING 209

two relevant points: step-based tutoring versus no tutoring
(0.76) and step-based tutoring versus answer-based tutoring
(0.40). Although one could ignore the latter point and just
take 0.76 as the effect size, that choice would ignore some
evidence. One could alternatively “raise the baseline” of the
latter point using this approximation:

step-based vs. no = step-based vs. answer-based

+ answer-based vs. no = 0.41 + 0.31 = 0.71

Using this method, the difference between step-based and
no tutoring is now 0.71, which is not far from the 0.76 found
when step-based tutors are compared directly to no tutoring.
This “raising the baseline” method is applied to all such
points in Figure 6b by raising the left end points of four curves
so that they lie on the “vs. no tutoring” curve. Thus, all the
points in Figure 6b are relative to a no-tutoring baseline, given
the crude approximation afforded by adding effect sizes. For
example, Figure 6b has four points that all estimate the effect
size of human tutoring relative to the no-tutoring baseline:

e human vs. no = 0.79

e “human vs. no” = human vs. answer-based + answer-
based vs. no =-0.04 + 0.31 = 0.27

e “human vs. no” = human vs. step-based + step-based vs.
no=0.2140.76 = 0.97

e “human vs. no” = human vs. substep-based + substep-
based vs. no =-0.12 + 0.41 = 0.29

Figure 6b suggests that the interaction granularity hypoth-
esis is only half correct. When the granularity decreases from
answer based to step based, the effectiveness increases from
0.31 to around 0.75. However, further decreases in granu-
larity yield negligible increases in effect size. That is, there
seems to be an interaction plateau—as the granularity of in-
teraction decreases, effect sizes increase, then plateau. Based
on a preliminary review, a conference talk (VanLehn, 2008b)
introduced the interaction plateau hypothesis:

human tutoring = substep-based tutoring = step-
based tutoring > answer-based tutoring

This hypothesis is approximately consistent with the effect
sizes of Table 1 and Figure 6. The interaction plateau hypoth-
esis is also consistent with the illustrative studies described
earlier (Evens & Michael, 2006; Reif & Scott, 1999; Van-
Lehn et al., 2007). Although their no-tutoring groups learned
significantly less than their tutoring groups, their tutoring
groups (step based, substep based, and human tutoring) were
not reliably different.

Figure 6b has more surprises. First, it seems that human
tutors are 0.79 sigma more effective than no tutoring and
not the 2.0 sigma found in the Bloom (1984) studies. The
second surprise is that step-based tutoring is almost as good
as human tutoring, with a 0.76 mean effect size. Although
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the newest technology, substep-based tutoring, has few sta-
tistically reliable studies and a mixture of high and low effect
sizes, Figure 6b suggests that its effect size may also lie
approximately on the same plateau of 0.75 to 0.80.

The main conclusions are that (a) human tutoring (d =
0.79) is not as effective as we once thought, (b) ITS are al-
most as effective (d = 0.76 for step based, and probably for
substep based, too) as human tutoring, and (c) there is an
interaction plateau rather than as steady increase in effec-
tiveness as granularity decreases.

DISCUSSION

Given that the mean effect size for human tutoring is much
less than the 2.0 standard deviations that inspired a whole
field, one might wonder if there is something wrong with
the human tutors in these studies. In particular, were they
expert tutors? The next section examines this question and
briefly reviews the literature on human tutoring expertise.
The following section focuses on studies that had especially
high effect sizes to discern why they were atypically success-
ful. The remaining sections discuss theoretical implications,
limitations, and recommendations for future work.

Expert Versus Novice Human Tutors

There is no accepted definition of an expert human tutor.
However, in many of the reviewed studies of human tutoring,
the authors characterized their tutors as experts, often based
on their years of experience.

The search within the constraints mentioned earlier (e.g.,
STEM content, etc.) uncovered several studies that compared
the effectiveness of novice and expert tutors (see Table A10 in
the Appendix) along with several studies that compared their
behaviors without measuring their relative effectiveness (e.g.,
Cromley & Azevedo, 2005; Glass, Kim, Evens, Michael, &
Rovick, 1999).2 Almost all these studies found that novice
tutors tended to lecture more, and expert tutors tended to be
much more interactive.

The reviewed studies contain little evidence that expert
tutors were more effective than novice tutors. Table A10 lists
the relevant expert—novice comparisons along with several
studies that manipulated the interactivity of the tutors. Al-
though some absolute differences in effectiveness were in the
expected direction, only two of these comparisons showed a
reliable difference in learning gains. Moreover, the Cohen et
al. (1982) meta-analysis found no relationship between tu-
tor’s experience and their effectiveness (given that they were
subject-matter experts). Clark et al. (1976) found that giving

20ne study (di Eugenio et al., 2006) analyzed behaviors of tutors and
compared their effectiveness but was not included in the meta-analysis be-
cause effect sizes could not be computed.

subject-matter experts training and experience as tutors did
not make them more effective.

These findings are consistent with the interaction plateau
hypothesis. Although expert human tutors are more inter-
active than novice tutors, they are often no more effective
than novice tutors. Moreover, constraining human tutors to
be more or less interactive than they would normally be
does not have much impact on their effectiveness. Basically,
once tutoring has achieved a certain interactive granularity
(roughly, step-based tutoring), decreases in interaction gran-
ularity apparently provide diminishing and sometimes even
negligible returns.

Why Did Some Studies Have Such Large
Effect Sizes?

For 25 years, researchers have been seeking solutions for
Bloom’s (1984) “2 sigma problem.” Although one would
expect many of the studies of human tutoring to show a 2.0
effect size, only two studies did. This section discusses those
two studies, which now seem like outliers.

Bloom (1984) summarized six studies of human tutoring
reported in the dissertations of Anania (1981) and Burke
(1983). All six studies had effect sizes close to 2.0. Of these
studies, only Anania’s Experiment 3 was included in this
review because only it involved one-on-one tutoring. The
other five experiments summarized by Bloom involved each
tutor working daily with a group of three students. However,
Anania’s one-on-one experiment did produce an effect size
of 1.95, so let us examine it more closely.

A common explanation for the effectiveness of tutors in
the studies discussed by Bloom is that they were highly
trained, expert tutors. However, the original sources for
Bloom’s review say that the tutors were “undergraduate ed-
ucation majors” (Anania, 1981, p. 58) who “met the experi-
menter each day for one week before the instruction began”
(Burke, 1983, p. 85) for training on both tutoring and the
task domain: probability. This suggests that the Bloom tutors
were not the “super tutors” that they have sometime been
thought to be.

Anania’s third experiment (and the other five Bloom ex-
periments as well) included a third condition, which was
mastery learning in the classroom. That is, after students had
finished classroom instruction on a unit, they took a mastery
test. If they scored 80%, then they were considered to have
mastered the unit and could go on to the next unit. Students
who scored less than 80% had to resume studying the unit
and repeat the mastery test. In all six experiments, the mas-
tery learning students scored about 1.0 standard deviations
higher on posttests than the ordinary classroom students.
Moreover, the tutoring conditions of all six experiments also
involved mastery learning. That is, the tutees took the same
mastery tests, restudied, and so on, but they worked with a
tutor instead of a classroom teacher. However, the mastery
threshold for the tutoring conditions was set at 90% instead of
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80% for the classroom implementation of mastery learning
(Anania, 1981, pp. 44—45). That is, the tutors were holding
their students to a higher standard of mastery than the class-
room teachers. This alone could account for the advantage
of tutoring (2.0 effect size) over mastery learning (1.0 effect
size).

The second outlier study in the studies covered by this
review was one of the baroreceptor experiments of Evens
and Michael (2006, Table 10.3). The experiment found an
effect size of 1.95 comparing human tutors to students who
read the textbook instead. The number of subjects in this
study was small, so the researchers repeated the experiment
a few years later with more subjects and found an effect
size of 0.52 (Evens & Michael, 2006, Table 10.4). Although
the mean learning gains of the tutees were approximately
the same in both experiments, the first experiment’s control
group (N = 9) had a much lower mean gain (0.33) than the
mean gain (1.54) of the second experiment’s control group (N
= 28). In another experiment (Evens & Michael, 2006, Table
18.11) where reading was compared to computer tutoring,
the same type of control group (N = 33) had a gain of 2.0.
Although there were minor differences in the assessments
across experiments, it appears that the mean learning gain of
the control condition from the first, low-powered experiment
may have been unusually low, perhaps due to a sampling
artifact.

At any rate, the 1.95 effect sizes of both the Anania study
and first Evens and Michael study were much higher than
any other study of human tutoring versus no tutoring. The
next highest effect size was 0.82. In short, it seems that
human tutoring is not usually 2 sigmas more effective than
classroom instruction, as the six studies presented by Bloom
(1984) invited us to believe. Instead, it is closer to the mean
effect size found here, 0.79. This is still a large effect size, of
course.

Although Bloom’s 2 sigma article now appears to be a
demonstration of the power of mastery learning rather than
human tutoring, it inspired a generation of research on human
and computer tutoring that has vastly increased our knowl-
edge and was well worth the effort. For instance, the re-
search generated many valuable corpora of transcribed and
analyzed tutorial dialogues that have shed many insights
into human tutoring. Bloom’ 2 sigma challenge inspired
a whole new technology, dialogue-based tutoring, that re-
quired advances in dialogue management and robust lan-
guage interpretation. These and other tutors now serve as
testbeds for conducting well-controlled experiments on mo-
tivation, interaction, collaboration, and many other issues
(see http://www.learnlab.org for examples).

Theoretical Implications

This section constructs an explanation for the observed inter-
action plateau. It starts by reconsidering the two hypotheses
that were deemed most plausible for explaining why human
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tutoring should be more effective than computer tutoring.
It might seem that the two hypotheses would have to con-
flict with the interaction plateau hypothesis, as they were
originally used to motivate the now-discredited interaction
granularity hypothesis. However, with only a few revised as-
sumptions, the two hypotheses lead to a simple explanation
of the plateau.

Hypothesis 7 was that the feedback of human tutoring
helps students detect and repair their knowledge. That is, hu-
man tutorial feedback facilitates self-repair. For instance, if
a student makes hundreds of mental inferences when solving
a problem, and an answer-based tutoring system says that
the answer is incorrect, then any of the hundred inferences
may be wrong. This makes it difficult for students to find the
incorrect inference and repair their knowledge. The answer-
based tutoring system cannot be particularly helpful, because
it too has little idea about which of the hundred inferences is
wrong. On the other hand, if a Auman tutor is eliciting rea-
soning from the student as she works, and the tutor indicates
that the student’s most recent utterance is wrong, then the
student knows that one of the most recent inferences is incor-
rect. There are only a few of them at most, so self-repair is
much easier. Thus, self-repair is much easier when the feed-
back refers to a few inferences (human tutoring) than when
it refers to many inferences (answer-based tutoring). This
was Hypothesis 7’s argument for the interaction granularity
hypothesis.

Now a step-based tutoring system gives feedback on in-
dividual steps, either immediately or when the steps are sub-
mitted. Either way, students can examine the first incorrect
step and know that one of the inferences that led to it must be
wrong. As long as the tutoring system ensures that there is
only a little reasoning required for each step, then compared
to answer-based tutoring, students should find it much easier
to find and fix the inference that caused a step to be flagged as
incorrect. Moreover, step-based tutoring systems usually give
hints that try to make it even easier for students to self-repair
their knowledge. Thus, facilitating self-repair provides one
explanation for the observed interaction plateau if we assume
that debugging the reasoning behind an incorrect step during
step-based tutoring is not much more difficult for students
than debugging the reasoning behind an incorrect utterance
to a human tutor.

Hypothesis 8 was that human tutoring scaffolds students,
where “scaffold” means pushing them a little further along
a line of reasoning via collaborative execution (e.g., prompt-
ing) and coordination (e.g., grounding; sharing knowledge).
For instance, when a human tutor says to the student, “Sounds
right to me. Keep going,” the tutor is indicating mutual un-
derstanding (coordination), accepting the student’s reasoning
(collaborative execution), and indicating who should con-
tinue the execution (collaborative execution). A step-based
tutoring system also scaffolds a student, but in different way.
Whenever students enter a step that the tutor marks as cor-
rect, the student knows that the tutor understood the step
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(coordination) and that the tutor agrees with the reasoning
(collaborative execution). When the student gets stuck, both
a human tutor and a step-based tutor will offer prompts and
hints to get the student moving again. If these fail to get the
student unstuck, then both human and step-based tutors do
some of the reasoning themselves (collaborative execution),
which is called the “bottom out” hint in the ITS literature.
Thus, when the student gets stuck, explicit collaborative ex-
ecution occurs with both human tutoring and step-base tu-
toring. Little of this scaffolding occurs with answer-based
tutoring systems.

Although scaffolding and encouragement of self-repair
probably have direct effects on learning, they may have an
equally strong indirect effect by making it more likely that
students finish problems correctly having done most of the
reasoning themselves. Human tutors almost always get stu-
dents to finish a problem correctly (Merrill et al., 1992).
Many ITS (i.e., both step-based and substep-based tutor-
ing systems) have such strong scaffolding and support for
self-repairs that students often complete problems correctly
(Schofield, 1995), and some ITS even require students to cor-
rectly solve the current problem before moving on to the next
(e.g., Koedinger, Anderson, Hadley, & Mark, 1997). On the
other hand, answer-based tutoring systems offer such weak
scaffolding and feedback that students are usually allowed to
give up after several failed attempts.

This factor (i.e., self-generating a solution vs. quitting)
should have a strong effect on learning. When students solve
a multistep problem correctly doing most of the reasoning
themselves, then they are applying hundreds of knowledge
components. Each time they apply a knowledge component,
they do so in a new context and thus generalize it. They
access it in memory and thus strengthen it. If they fail ini-
tially to retrieve an appropriate knowledge component, then
they usually construct or reconstruct it (recall that we are as-
suming a self-generated correct solution). Similarly, if they
apply a misconception, then they eventually realize their er-
ror and apply a correct knowledge component instead. In
short, when students self-generate a correct solution, they
generalize, strengthen, construct, and debug all the knowl-
edge components required by the solution. Unfortunately,
when they quit early, they miss hundreds of opportunities to
learn.

This explanation, that all self-generated correct solutions
are equally effective, was first proposed by Anderson et al.
(1995), albeit only for step-based tutoring systems. Ander-
son et al. hypothesized that as long as students solved a set
of problems doing most of the reasoning themselves, then
their learning gains would be the same regardless of what
kind of step-based tutoring they had. Anderson et al. sup-
ported this hypothesis by comparing several different ver-
sions of their tutoring systems. For instance, some tutoring
systems offered immediate feedback, whereas other offered
delayed feedback. In most of these experiments, when stu-
dents in all experimental groups were required to complete

all the problems correctly, the experimental manipulations
did not affect their learning gains. On the other hand, the
manipulations did affect efficiency, namely, the time to com-
plete all the problems correctly. Extending the Anderson
et al. (1995) hypothesis to all types of tutoring explains
the observed interaction plateau, given the assumptions
above.

In short, the explanation proposed here for the interaction
plateau is that human tutors, step-based tutors, and substep-
based tutors all provide enough scaffolding and feedback
to get students to self-generate correct solutions for most
problems. Even though step-based tutoring systems require
students to bridge larger gaps than the finer granularity tutor-
ing, students are apparently able to do so most of the time.
This has both direct and indirect benefits. The direct benefit
is that the scaffolding and feedback that gets them to bridge
gaps correctly also causes them to construct or self-repair
their knowledge. The indirect benefit is that, because stu-
dents keep working on a solution instead of giving up, they
encounter more learning opportunities. On the other hand,
when students solve problems with an answer-based tutor or
with no tutor, they often cannot bridge the long gap leading all
the way from the start to the finish of the solution even when
they get some feedback and perhaps even some scaffolding.
When they fail to bridge the gap, they miss opportunities to
learn.

This explanation is consistent with M. T. H. Chi’s (2009)
ICAP framework, which was discussed earlier as Hypothesis
9. According to the ICAP framework, interactive and con-
structive student behaviors can be equally effective, whereas
active and passive student behaviors are less effective. The
explanation proposed here is consistent with ICAP. The ex-
planation predicts that students working with a human tutor
would exhibit mostly interactive behavior and that students
working with a step-based tutor would exhibit mostly con-
structive behavior. On the other hand, students working with
an answer-based tutor or no tutor would often exhibit guess-
ing and quitting, which are active student behaviors at best.

Limitations and Recommendations

When it comes to making practical recommendations, the
conclusions presented here must be interpreted in the light
of the limitations of the review, some of which are due to
the inclusion/exclusion criteria. For instance, the researchers
in these studies all tried to control for content, whereas in
the real world, a tutor hired to help with physics may end
up coaching a student on math or reading. Moreover, these
studies only measured learning gains. Tutors may also boost
students’ motivation and efficiency.

Another limitation is that some of the comparisons in
the review have only a small number of experiments testing
them. More experiments are clearly needed. In particular,
direct comparisons of human tutoring with various types of
computer tutoring would be especially welcome. Although
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thousands of students are covered in these studies, the number
of human tutors involved is considerably smaller, so gener-
alizing to all human tutors is risky.

It is important to note that none of the field studies in this
review completely replaced all classroom instruction with
tutoring. Instead, they replaced or partially replaced just one
activity (usually homework) with tutoring. A classroom has
many instructional activities that can have significant im-
pacts on learning gains, so upgrading just one activity does
not guarantee large overall course learning gains. On the
other hand, if much of the students’ learning goes on during
homework, then replacing paper-based homework with an
ITS can have a large effect size. For instance, in 4 year-long
evaluations, the learning gains of students who used a step-
based physics tutoring system were d = 0.61 higher than
the learning gains of students who did the same homework
assignments on paper (VanLehn et al., 2005).

Within the limitations of this article, one recommenda-
tion is that the usage of step-based tutoring systems should
be increased. Although such tutoring systems are not cheap
to develop and maintain, those costs do not depend on the
number of tutees. Thus, when a tutoring system is used by
a large number of students, its cost per hour of tutoring can
be much less than adult one-on-one human tutoring. One
implication of this review, again subject to its limitations, is
that step-based tutoring systems should be used (typically for
homework) in frequently offered or large enrollment STEM
courses.

Another implication of this review is that human tutors
have room for improvement. From the decades of studies
of human tutoring, a frequent observation, which is some-
times mentioned (e.g., M. T. H. Chi, 1996) but rarely given
the prominence it deserves, is that human tutors miss many
opportunities to help students learn. This is not surprising
given that they are mere humans doing a fast-paced, real-
time, complex task. Although humans can gradually improve
their performance on such tasks, it can take years of inten-
sive, deliberate, reflective practice, and moreover, frequent,
specific feedback on performance seems critical for improve-
ment (Ericsson & Lehmann, 1996). Although some profes-
sional tutors do practice tutoring for 10 or more years, their
practice is not like those of professional athletes, musicians,
chess players, surgeons, and others, because they probably
don’t get frequent, specific feedback on their successes and
failures, as do many other professionals (especially athletes).
For instance, it is likely that few tutors video record and
analyze their performances, looking for opportunities to im-
prove. Thus, one could argue that although the tutors in these
studies were called experts and have many years of tutor-
ing experience, they may not really be as expert as a human
could be given 10 years of constant feedback and reflective
practice.

Compared to improving human tutoring, it should be rel-
atively simple to improve the performance of ITS, that is,
step-based tutors and substep-based tutors. Recent studies
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have found many pedagogical mistakes and missed opportu-
nities in their performance as well (Baker, 2009; Baker, de
Carvalho, Raspat, Corbett, & Koedinger, 2009; Murray &
VanLehn, 2006). Merely finding and fixing the pedagogical
mistakes of existing ITS may produce a 2 sigma effect size.

Such analyses can be partially or even fully automated. For
instance, Min Chi and her colleagues found that a machine
learning technique (reinforcement learning) could be applied
to log data from a substep-based tutoring system in order to
adjust the parameters that controlled its pedagogical decision
making (M. Chi, VanLehn, Litman, & Jordan, 2011, in press).
The improved tutoring system was d = 0.84 more effective
than the original tutoring system. In short, we may soon
see self-improving tutoring systems that monitor their own
processes and outcomes in order to modify their tutoring
tactics and make them more effective.

In short, the bottom line is this: For ITS, although de-
creasing the granularity of the user interface does not seem
to provide additional benefit, reengineering the tutor—student
interactions may provide considerable additional benefit. For
human tutors, although merely interacting more frequently
with students does not seem to provide additional benefits,
years of deliberate practice may allow human tutors to im-
prove their effectiveness. It is worth remembering that no
classroom teacher has been replaced by an ITS, but class-
room instruction is often replaced by human tutoring, for
example, in home schooling. We need both good human tu-
tors and good ITS.

The field’s future work is clear. Tutoring researchers
should retain Bloom’s challenge and strive to develop both
computer and human tutors that are 2 standard deviations
more effective than no tutoring.

The Take-Home Points

For more than 20 years, researchers in tutoring have held a
mental image something like Figure 1: Effect sizes increase
monotonically as the interaction granularity of tutoring de-
creases and culminate in Bloom’s d = 2.0 for human tutoring.
As discussed earlier, Bloom’s d = 2.0 effect size seems to be
due mostly to holding the tutees to a higher standard of mas-
tery. That is, the tutees had to score 90% on a mastery exam
before being allowed to continue to the next unit, whereas
students in the mastery learning classroom condition had to
score 80% on the same exam, and students in the classroom
control took the exams but always went on to the next unit
regardless of their scores. So the Bloom (1984) article is, as
Bloom intended it to be, a demonstration of the power of mas-
tery learning rather than a demonstration of the effectiveness
of human tutoring.

If the familiar image of Figure 1 is no longer supported by
Bloom’s studies, then what is a more accurate image? Figure
6b presents the effect sizes reviewed here. It shows that effec-
tiveness increases from 0.31 (answer-based tutoring) to 0.76
(step-based tutoring), then seems to hit a plateau. Further
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decreases in user interface granularity (substep-based tutor-
ing; human tutoring) do not increase effectiveness. Although
more experimental data would be welcome, the interaction
plateau of Figure 6b appears to be the best image so far of
the relative effectiveness of different types of tutoring.

Perhaps most important, this progress report also shows
that ITS are, within the limitations of this article, just as ef-
fective as adult, one-on-one human tutoring for increasing
learning gains in STEM topics. Lest there be any misunder-
standing due to the unfortunate choice of “tutoring” as part
of the name of such systems, none of the studies reported
here even attempted to replace a classroom teacher with ITS
even though it is not uncommon for a human tutor to replace
a classroom teacher. As argued earlier, ITS should be used to
replace homework, seatwork, and perhaps other activities but
not to replace a whole classroom experience. Nonetheless,
within their limited area of expertise, currently available ITS
seem to be just as good as human tutors.
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APPENDIX
TABLE A1
Step-Based Tutoring Compared to No Tutoring

d Citation and Comments

1.34* (VanLehn et al., 2007, Exp. 2) The SBT coached qualitative physics explanation generation using text as remediation. NT was reading a
textbook.

-0.32 (VanLehn et al., 2007, Exp. 6) The SBT coached qualitative physics explanation generation using text as remediation. NT was an
experimenter-written text.

1.01* (Moreno, Mayer, Spires, & Lester, 2001, Exp. 1) The SBT (Design-a-Plant) coached combinations of stems, roots and leaves. NT was
click-through text and graphics.

0.98* (Moreno et al., 2001, Exp. 2) Nearly the same as Exp. 1.

0.68* (Moreno et al., 2001, Exp. 3) Nearly the same as Exp. 1, but NT was an agent who lectured.

0.61* (VanLehn et al., 2005) The SBT (Andes) coached physics problem solving for a whole semester; NT was paper-based homework; results
aggregated experiments over 4 years.

0.98* (Corbett & Anderson, 2001). The SBT coached Lisp coding. NT was doing coding exercises without any feedback in standard Lisp
environment.

1.00* (Anderson et al., 1995, p. 177) The SBT coached Lisp coding. NT was doing coding exercises without any feedback in standard Lisp
environment.

1.00* (Anderson et al., 1995, p. 183, para. 1) The SBT coached geometry theorem proving. NT was paper-and-pencil homework.

1.00* (Koedinger & Anderson, 1993) The SBT (ANGLE) coached geometry problem solving. NT was paper and pencil. This result was for classes
taught by a project member.

-0.23 (Koedinger & Anderson, 1993) Same as above, but this result is for classes taught by a nonproject teacher.

0.61 (Mendicino, Razzaq, & Heffernan, 2009) The SBT (ASSISTments) coached solving of math problems from standardized tests. NT is
paper-based homework discussed in class the next day.

0.28 (Shute & Glaser, 1990) The SBT (Smithtown) coached microeconomics inquiry. NT was classroom instruction.

1.35* (Mark & Greer, 1995) The SBT coached programming a video recorder. NT was just doing each step as told to do so.

1.27* (Gott, Lesgold, & Kane, 1996) The SBT (Sherlock II) coached troubleshooting. The NT was experience in troubleshooting a test station.

0.70* (Timms, 2007) The SBT (FOSS) coached speed, distance, time problem solving. NT was doing the same exercises without any feedback.

0.94* (Parvez, 2007) The SBT (DesignFirst-ITS) coached UML design. NT was solving UML design problems without feedback.

0.81* (Stankov, Rosic, Zitko, & Grubisic, 2008) The SBT (TEx-Sys) had students construct or debug semantic network representations of
introductory college computer science knowledge. NT had students engage in “traditional teaching and learning processes” for the same
duration (14 weeks).

0.60 Ditto, 8th-grade chemistry for 10 weeks

0.75 Ditto, 8th-grade physics for 7 weeks

1.23* Ditto, College introductory computer science for 14 weeks

0.71 Ditto, College BASIC programming for 14 weeks

1.36* Ditto, 6th-grade mathematics for 7 weeks

0.17 Ditto, 8th-grade mathematics for 7 weeks

0.34 Ditto, Sth-grade mathematics for 5 weeks

1.17* (S. D. Johnson, Flesher, Ferej, & Jehn, 1992; S. D. Johnson, Flesher, Jehng, & Ferej, 1993) The SBT (Technical Troubleshooting Tutor)
coached students troubleshooting simulated avionic electrical systems. The NT students solved the same troubleshooting problems using
real instead of simulated electrical systems.

0.57* (B. G. Johnson, Phillips, & Chase, 2009) The SBT (Quantum Accounting Tutor) coached students as they analyzed transactions. The NT
students used paper and their textbook to solve the same problems.

0.47* (Steuck & Miller, 1997) The SBT (ISIS) taught scientific inquiry in the context of high school biology. This was a yearlong field study
involving 84 sections and 1,547 students. Roughly half the sections used the tutor, and the other half had regular biology labs instead.

0.76 Mean effect size

Note. Effect sizes are bold and followed by an asterisk if the comparison was statistically reliable (»p < .05). Exp. = Experiment; NT = no tutoring; SBT =
step-based (computer) tutoring; UML = Unified Modeling Language.
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TABLE A2
Substep-Based Tutoring Compared to No Tutoring

d Citation and Comments
1.34* (VanLehn et al., 2007, Exp. 2) SSBT (Why2-AutoTutor) coached qualitative physics explanation generation. NT was reading a textbook.
-0.21 (VanLehn et al., 2007, Exp. 6) SSBT was Why2-Atlas. NT was reading targeted text.
—0.44 (VanLehn et al., 2007, Exp. 6) SSBT was Why2-AutoTutor. NT was reading targeted text.
-0.32 (Siler, Rose, Frost, VanLehn, & Koehler, 2002, Exp. 2) SSBT was KCDs; NT was reading targeted text (mini-lessons).
-0.32 (Siler et al., 2002, Exp. 3) SSBT was KCDs; NT was reading targeted text (mini-lessons).
0.96* (Lane & VanLehn, 2005) SSBT (PROPEL) taught novice programming. NT was click-through text.
0.35* (Graesser et al., 2004, Table 1, Exp. 1) SSBT (AutoTutor 1.1) taught computer literacy; NT was rereading the textbook.
0.46 (Graesser et al., 2004, Table 1, Exp. 2) SSBT (AutoTutor 1.2) taught computer literacy; NT was reading the textbook.
0.45 (Graesser et al., 2004, Table 1, Exp. 3) SSBT (AutoTutor) compared to reading a reduced textbook.
0.76* (Arnott, Hastings, & Allbritton, 2008) The RMT taught research methods via a combination of SSBT and ABT. NT was different sections of
the same class but without the occasional tutoring assignments.
1.21* (Hastings, Arnott-Hill, & Allbritton, 2010) Same as above but different population.
0.54* (Craig, Driscoll, & Gholson, 2004, Exp. 1) SSBT (AutoTutor) taught computer literacy. NT was watching a video of an AutoTutor session.
0.71* (Craig et al., 2004, Exp. 2) SSBT (AutoTutor) taught computer literacy. NT was watching a video of an AutoTutor session.
0.53 (Craig, Sullins, Witherspoon, & Gholson, 2006, Exp. 1) SSBT (AutoTutor) taught computer literacy. NT was watching a video of an
AutoTutor session.
0.28 (Craig et al., 2006, Exp. 2) SSBT (AutoTutor) taught computer literacy. NT was watching a video of an AutoTutor session.
-0.07 (Craig, et al., 2006, Exp. 1) SSBT (AutoTutor) taught computer literacy. NT is the AutoTutor agent lecturing and not asking questions.
0.59* (Mendicino & Heffernan, 2007, Exp. 1) SSBT (Ms. Lindquist) coached solving of algebra word problems in class. NT was paper-and-pencil
problem solving without feedback in class.
0.54 (Mendicino & Heffernan, 2007, Exp. 2) SSBT (Ms. Lindquist) used as homework. NT was paper-and-pencil problem solving without
feedback in class. Aggregation of SSBT and CAI conditions reported in (Razzaq, Mendicino, & Heffernan, 2008).
0.65* (Katz, Connelly, & Wilson, 2007, Exp. 2) SSBT was discussion of answers to postproblem reflection questions; NT was extra problem
solving.
0.12 (Gholson et al., 2009) SSBT (AutoTutor) taught computer literacy to 8th graders; NT was same content presented as a monologue.
—-0.20 (Gholson et al., 2009) SSBT (AutoTutor) taught computer literacy to 9th graders; NT was same content presented as a monologue.
0.00 (Gholson et al., 2009) SSBT (AutoTutor) taught conceptual physics to 10th graders; NT was same content presented as a monologue.
-0.13 (Gholson et al., 2009) SSBT (AutoTutor) taught conceptual physics to 11th graders; NT was same content presented as a monologue.
1.67* (Evens & Michael, 2006, Table 18.7) SSBT (an early version CIRCSIM-Tutor) coached medical students on cardiophysiology; NT was
reading a textbook.
0.46* (Evens & Michael, 2006, p. 356) SSBT (final version of CIRCIM-Tutor) coached medical students on cardiophysiology; NT was reading a
textbook.
0.49* (Mendicino & Heffernan, 2007, Exp. 3) SSBT (Ms. Lindquist) was used in class to coach algebra word problem solving. NT was
paper-and-pencil problem solving without feedback in class.
0.40 Mean effect size

Note. Effect sizes are bold and followed by an asterisk if the comparison was statistically reliable (» < .05). ABT = answer-based (computer) tutoring; Exp. =
Experiment; KCD = Knowledge Construction Dialogue; NT = no tutoring; RMT = Research Methods Tutor; SSBT = substep-based (computer) tutoring.

TABLE A3
Human Tutoring Versus No Tutoring

d Citation and Comments
1.95* (Anania, 1981, Exp. 3) HT taught cartography one-on-one. NT was ordinary class.
0.67* (Azevedo, Greene, & Moos, 2007) NT was studying hypertext on blood circulation. HT coached students as they did so.
0.65* (Swanson, 1992) HT taught students how to run an optics experiment. NT was watching a demonstration.
0.66* (M. T. H. Chi et al., 2008) HT coached physics problem solving. NT was students solving problems with a video of a tutoring session that
they could watch and copy from.
0.82* (M. T. H. Chi et al., 2008) HT coached physics problem solving. NT was students solving problems with a textbook available.
0.55* (Azevedo, Moos, Greene, Winters, & Cromley, 2008) NT was studying hypertext on blood circulation. HT coached students as they did so.
0.38* (Bausell, Moody, & Walzl, 1972) HT taught exponential notation. NT was classroom instruction for exactly the same amount of time.
1.95* (Evens & Michael, 2006, Table 10.3) HT were experts who taught medical students about the baroreceptor reflex; NT was reading a textbook.
0.52 (Evens & Michael, 2006, Table 10.4) Same as above, with larger number of subjects (N = 53 here; N = 15 above).
-0.24 (Evens & Michael, 2006, Table 10.6) Same as above, with novice tutors instead of expert tutors. Control condition from Table 10.3 used as
comparison.
0.79 Mean effect size

Note. Effect sizes are bold and followed by an asterisk if the comparison was statistically reliable (p < .05). Exp. = Experiment; HT = human tutoring; NT =

no tutoring.
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TABLE A4
Step-Based Tutoring Versus Answer-Based Tutoring
d Citation and Comments
0.17 (Suraweera & Mitrovic, 2002, Exp.1) SBT (KERMIT) taught database design tutor. ABT was a version that only gave final answer feedback.
0.63* (Suraweera & Mitrovic, 2002, Exp. 2) Same as Exp. 1 but with longer training times.
0.40 Mean effect size

Note. Effect sizes are bold and followed by an asterisk if the comparison was statistically reliable (p < .05). Exp. = Experiment; SBT = step-based (computer)
tutoring.

TABLE A5
Substep-Based Tutoring Versus Answer-Based Tutoring
d Citation and Comments
0.56* (Heffernan, Koedinger, & Razzaq, 2008) SSBT (Ms. Lindquist) coached solving algebra word problems. ABT gave feedback on final answer
but did not require correction of it.
0.41 (Mendicino & Heffernan, 2007, Exp. 1) SSBT (Ms. Lindquist) coached algebra word problems. ABT just gave feedback on final answer but
did not require correction of it. Results briefly reported in Heffernan et al. (2008).
0.45 (Mendicino & Heffernan, 2007, Exp. 2) Same as Exp. 1, but tutoring done as homework instead of classroom work
0.49 Mendicino & Heffernan, 2007, Exp. 3) Same as Exp. 1, with 3 classroom teachers instead of 1.
p p
0.34* (Arnott et al., 2008) The RMT taught half its modules on research methods using SSBT and half using ABT.
-0.34 Hastings et al., 2010) Same as above; different population.
g pop
0.32 Mean effect size

Note. Effect sizes are bold and followed by an asterisk if the comparison was statistically reliable (» < .05). ABT = answer-based (computer) tutoring; Exp. =
Experiment; RMT = Research Methods Tutor; SSBT = substep-based (computer) tutoring.

TABLE A6
Human Tutoring Versus Answer-Based Tutoring
d Citation and Comments
—0.04 (Herrmann, 1982) In the context of a mastery-learning instruction, human or computer tutors give feedback on incorrect answers by pointing

students to the appropriate section of the instructional resources.

TABLE A7
Substep-Based Tutoring Versus Step-Based Tutoring
d Citation and Comments
—0.10 (VanLehn et al., 2007, Exp. 1) SSBT (Atlas) coached qualitative physics explanation. SBT explained the steps that they missed & requiring
them to try again.
—0.37 (VanLehn et al., 2007, Exp. 1) Same as Exp.1 with AutoTutor as the SSBT.
0.41 (VanLehn et al., 2007, Exp. 3) Same as Exp. 1, but with more extensive assessments. SSBT was AutoTutor.
0.55 (VanLehn et al., 2007, Exp. 5) Same as Exp. 1 but with physics novices. SSBT was Atlas.
0.23 (VanLehn et al., 2007, Exp. 5) Same as Exp. 1, but with physics novices. AutoTutor as SSBT
0.11 (VanLehn et al., 2007, Exp. 6) Same as Exp. 5 but with simplified materials. SSBT was Atlas.
—0.13 (VanLehn et al., 2007, Exp. 6) Same as Exp. 5 but with simplified materials. SSBT was AutoTutor.
—0.11 (Weerasinghe & Mitrovic, 2006) SSBT (Kermit-SE) taught database design with substep-based remediation. SBT (Kermit) was identical but
used canned text remediation.
0.11 (Siler et al., 2002, Exp. 1) SSBT (Andes-KCD) used substep-based help while teaching physics. SBT (Andes) used mini-lessons (text)
instead of dialogues.
0.24 (Evens & Michael, 2006, Table 18.7) SSBT (CIRCSIM-Tutor) used substep-based remediation of errors made in a physiology activity. SBT
(CIRCSIM) used text instead of dialogue.
0.80 (Katz et al., 2007, Exp. 1) SSBT was a substep-based discussion of post-problem reflection questions. SBT was same questions followed by
canned text explanation.
0.16 Mean effect size

Note. Exp. = Experiment; SBT = step-based (computer) tutoring; SSBT = substep-based (computer) tutoring.
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TABLE A8
Human Tutoring Versus Step-Based Tutoring

d Citation and Comments
0.24 (Fossati, Di Eugenio, Brown, & Ohlsson, 2008) HT and SBT (iList-1) taught students how to manipulate linked-list data structures.
0.08 (Fossati et al., 2009) HT and SBT (iList-3) taught students how to manipulate linked-list data structures.
—0.34 (Katz et al., 2003, Exp. 2) HT discussed reflection questions after solution of a physics problem. SBT presented such questions and a text
answer and explanation.
—0.28 (VanLehn et al., 2007, Exp. 1) HT coached students to improve their answers to qualitative physics questions. SBT presented correct answers
as click-through text.
1.57* (VanLehn et al., 2007, Exp. 4) Same as Exp. 1, but students had not yet taken college physics. HT was spoken.
0.85* (VanLehn et al., 2007, Exp. 4) Same as above, but HT was typed.
—0.07 (VanLehn et al., 2007, Exp. 4) Same as Exp. 4 with spoken tutoring, but difficulty of material was reduced.
0.62* (Rose, Aleven, Carey, & Robinson, 2005) HT and SBT coached students designing Carnot engines. Data from one human tutor were
excluded.
—0.59 (Evens & Michael, 2006, Tables 18.7 and 10.4) HT coached medical students doing a cardiophysiology exercise. SBT (CIRCSIM) presented
text when students made errors.
0.03 (Reif & Scott, 1999; Scott & Reif, 1999) SBT (PAL) had students alternate between problem solving and checking an example’s steps for
errors. HT coached students doing problem solving.
0.21 Mean effect size

Note. Effect sizes are bold and followed by an asterisk if the comparison was statistically reliable (p < .05). Exp. = Experiment; HT = human tutoring;
SBT = step-based (computer) tutoring.

TABLE A9
Human Tutoring Versus Substep-Based Tutoring

d Citation and Comments
0.09 (VanLehn et al., 2007, Exp. 1) SSBT (Why2-AutoTutor) and HT coached qualitative physics explanations.
—0.17 (VanLehn et al., 2007, Exp. 1) Same as above, but SSBT was Why2-Atlas.
—0.07 (VanLehn et al., 2007, Exp. 5) SSBT (Why2-Atlas) and HT coached qualitative physics explanations to students who had not taken college
physics.
0.25 (VanLehn et al., 2007, Exp. 5) Same as above, but SSBT was Why2-AutoTutor.
—0.71* (Evens & Michael, 2006, Tables 18.7 and 10.4) SSBT (CIRCSIM-Tutor) and HT coached solution of a cardiophysiology problem.
—0.12 Mean effect size

Note. Effect sizes are bold and followed by an asterisk if the comparison was statistically reliable (» < .05). Exp. = Experiment; HT = human tutoring; SSBT
= substep-based (computer) tutoring.

TABLE A10
Expert or Highly Interactive Human Tutoring Compared to Novice or Less Interactive Human Tutoring

d Citation and Comments

0.04 (Fossati, 2008) Expert versus novice tutors.

NS (Chae et al., 2005) Expert versus novice tutors.

0.11 (H. Johnson & Johnson, 1992) Socratic versus Didactic tutoring by the same people.

1.00 (Rose, Moore, VanLehn, & Allbritton, 2001) Socratic versus Didactic tutoring by the same person.

3.01 (Evens & Michael, 2006, Table 10.6) Expert versus novice tutors.

NS (M. T. H. Chi et al., 2001) Compared untrained tutors (who tended to lecture) to the same tutors constrained to only prompt the students.

S (di Eugenio et al., 2006) An expert tutor was more effective than two less expert tutors, but he appeared to teach different content than them.

The novice tutors, by the way, were no more effective than several Step-based Tutors.

Note. Reliable differences are bold. S and NS mean significant and nonsignificant, respectively, but effect size cannot be computed.



