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Abstract—This paper explores the behavior similarity of In-
ternet end hosts in the same network prefixes. We use bipartite
graphs to model network traffic, and then construct one-mode
projection graphs for capturing social-behavior similarity of end
hosts. By applying a simple and efficient spectral clustering
algorithm, we perform network-aware clustering of end hosts
in the same prefixes into different behavior clusters. Based on
information-theoretical measures, we find that the clusters exhibit
distinct traffic characteristics which provides improved interpre-
tations of the separated traffic compared with the aggregated
traffic of the prefixes. Finally, we demonstrate the applications
of exploring behavior similarity in profiling network behaviors
and detecting anomalous behaviors through synthetic traffic that
combines Internet backbone traffic and packet traces from real
scenarios of worm propagations and denial of service attacks.

I. INTRODUCTION

As Internet devices and applications continue to grow, it

becomes increasingly important to understand network behav-

ior for efficient network management and security monitoring.

Understanding traffic behavior of backbone networks or large

enterprise networks is a challenging task because of massive

traffic data and the wide diversity of end hosts. While there

exist a body of research work on traffic behavior profiling [1],

[2], [3], [4], these studies mostly focus on traffic behavior

at host-level, application-level and network-level. The studies

on profiling host behaviors [1], [2] shed light on the behavior

patterns of individual end hosts, however the increasingly large

number of end hosts poses significant challenges for such

fine-granularity analysis for backbone networks or enterprise

networks in real-time environments. The application-level

and network-level traffic profiling [3], [4] show aggregated

communication patterns for a given application or a certain

network, however the aggregated or coarse-granularity traffic

profiling often requires further in-depth analysis to uncover

the distinct behaviors of individual end hosts.

To fill the gap between host-level and network-level traffic

behavior profiling, this paper proposes a new perspective of

profiling network traffic by identifying and analyzing behavior
clusters of end hosts in the same network prefixes. Focusing on

clustered traffic behavior in network prefixes not only reduces

the number of behavior profiles for analysis compared with

host-level traffic profiling, but also reveals detailed patterns

for a group of end hosts sharing similar behaviors compared

with network-level traffic profiling.

Towards this end, we introduce a novel approach, namely

network-aware behavior clustering, which contains multiple

steps to discover and make sense of inherent behavior clusters

in networks prefixes. First, we use bipartite graphs to model

social-behavior of Internet end hosts [5], [6]. The social-
behavior of an end host is represented by whom does the
host communicate with? Subsequently, we derive one-mode

projection graphs to capture the social-behavior similarity of

host communications through edges between source (or des-

tination) hosts that talk to the same destinations (or sources).

Third, we apply a simple spectral clustering algorithm to dis-

cover the inherent behavior clusters within the same network

prefixes. Each cluster consists of end hosts that communicate

with similar sets of severs, clients or peers, thus sharing strong

social-behavior similarity.
For each traffic cluster of network prefixes, we use relative

uncertainty concepts in information theory to characterize

and interpret its behavior patterns based on traffic features

such as source ports, destination ports and IP addresses. The

results show that the clustering algorithm extracts behavior

clusters with distinct traffic characteristics from the aggregated

traffic of network prefixes. The distinct patterns of traffic

clusters provide improved interpretations of network traffic,

and illustrate the practical values of our proposed network-

aware behavior clustering of Internet end hosts. In addition,

our analysis also finds that the majority of end hosts stay in

the same clusters over time, which suggests the high temporal

stability of behavior clusters within the same network prefixes.
Finally we use case studies to demonstrate the applications

of behavior clusters in discovering traffic patterns for traffic

engineering or access control list constructions, and in detect-

ing anomalous behavior such as scanning activities, worms

and denial of service (DoS) attacks through synthetic traffic

traces. The synthetic traffic combines backbone network traffic

and real scenarios of worm propagations and denial of service

attacks.
The contributions of this paper are summarized as follows:

• We use bipartite graphs to represent communication pat-

terns between source and destination addresses, and con-

struct one-mode projection graphs to capture the social-

behavior similarity of host communications;

• We explore behavior similarity of Internet end hosts in the

same network prefixes using a simple spectral clustering

algorithm and discover the distinct behavior clusters of

network prefixes;
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• We use relative uncertainty concepts to characterize and

interpret traffic patterns of behavior clusters based on

the distributions of traffic features such as source ports,

destination ports and IP addresses;

• We demonstrate the applications of exploring behavior

similarity in profiling network prefixes and detecting

anomalous traffic patterns such as scanning activities,

worms or denial of service attacks through synthetic

traffic traces.

This paper is organized as follows. Section II discusses

bipartite graphs for modeling data communication in network

traffic and the one-mode projection for capturing social-

behavior similarity of end hosts in the same prefixes. Sec-

tion III is devoted to the spectral clustering algorithm for

discovering behavior similarity of end hosts in the same

prefixes. Section IV describes the datasets used in the study

and presents the distinct characteristics of behavior clusters

and temporal stability of the clusters. Section V demonstrates

the applications of behavior similarity in discovering traffic

patterns in network prefixes and detecting anomalous behav-

iors. Section VI discusses the related work, and Section VII

concludes this paper and outlines the future work.

II. MODELING HOST COMMUNICATIONS WITH BIPARTITE

GRAPHS AND ONE-MODE PROJECTIONS

In this section, we first use bipartite graphs to represent

hosts communications in network traffic, and subsequently use

the one-mode projection of bipartite graphs to capture the

social-behavior similarity of end hosts in the same network

prefixes.

A. Bipartite graphs of host communications

(a) Bipartite graph (b) One-mode projection

Fig. 1. (a) A example of bipartite graphs based on host communications
between the source hosts (a1 - a6) and the destination hosts (b1 - b4); (b)
The one-mode projection on the vertex set of the left-side nodes, i.e., the
source hosts (a1 - a6)

The host communications observed in network traffic of

Internet backbone links or Internet-facing links of border

routers for enterprise networks could be naturally modeled

with a bipartite graph G = (A,B, E), where A and B are

two disjoint vertex sets, and E ⊆ A × B is the edge set [7].

Specifically, all the source IP addresses form the vertex set

A, while the vertex set B consists of all the destination
addresses. Each of the edges, ek in G connects one vertex

ai ∈ A and another vertex bj ∈ B.

To analyze the traffic behavior for network prefixes which

include end hosts with the same network-bits in their IP

addresses, we further decompose the bipartite graph of all

the traffic into a set of smaller disjoint bipartite subgraphs

such that each bipartite subgraph captures the host commu-

nications for a single source or destination IP prefix, e.g.,

GP = (AP ,B, EP) and GQ = (A,BQ, EQ) representing the

bipartite subgraphs of host communications for the source IP

prefix P and the destination IP prefix Q, respectively.

B. One-mode projection of bipartite graphs

To study the behavior similarity of end hosts in the same

network prefixes, we leverage one-mode projection graphs of

bipartite graphs that are used to extract hidden information or

relationships between nodes within the same vertex sets [7].

Figure 1[a] shows a simple bipartite graph that is generated

based on host communications between the six source hosts

(a1 - a6) and the four destination hosts (b1 - b4), while

Figure 1[b] illustrates the one-mode projection of the bipartite

graph on the vertex set of the six left-side nodes, i.e., the

source hosts (a1 - a6). An edge connects two nodes in the one-

mode projection if and only if both nodes have connections

to at least one same node in the bipartite graph. One could

easily draw the one-mode projection graph for the vertex set

of the right-side nodes using the same methodology.

The one-mode projection of the bipartite graphs uses edges

between end hosts in the same prefixes to quantify the sim-

ilarity of their network connection patterns. For example, in

Figure 1[b] the edge between a2 and a3 reflects the observation

that both a2 and a3 talk with the same destination host b3 in

the bipartite graph (Figure 1[a]), and the double edges between

a4 and a6 capture the observation that both a4 and a6 talk

with the destinations b1 and b4. Therefore, given a bipartite

graph GP = (AP ,B, EP) for a source prefix P , we could

construct the one-mode projection graph, G′
AP = (AP , E ′AP ),

where AP consists of all source end hosts observed in P and

{pi, pj} ∈E ′AP if and only if two hosts pi and pj talk with

at least one same destination host. The similar process could

generate the one-mode projection for any destination prefix Q
as well.

To retain the information on the count of all the shared

destinations, we use the normalized weight of the edges in the

one-mode projection graph. Let Npi
and Npj

represent the

numbers of destination hosts for the two hosts pi and pj in

the prefix P , respectively. We then use w{pi, pj} to denotes

the weigh for the edges between two hosts pi and pj in the

one-mode projection,

w{pi, pj} =
|Npi

⋂Npj |
|Npi

⋃Npj |
, (1)

where |Npi

⋂Npj | denotes the total number of the shared

destinations in the bipartite graph between the two hosts pi

and pj , and |Npi

⋃Npj
| denotes the total number of the
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Fig. 2. Visualization of the adjacency matrix for one-mode projections of bipartite graphs for three network prefixes.

unique destinations of pi and pj . Note that w{pi, pi} = 1. The

weighted adjacency matrix of the one-mode projection graph

for the network prefix P then becomes MP = (mi,j)|P|×|P|,
m(i, j) = w{pi, pj}. The similar process could lead to the

weighted adjacency matrix MQ of the one-mode projection

graph for the destination prefix Q.

One interesting observation of the one-mode projection

graphs for host communications lies in the clustered patterns

in the weighted adjacency matrix. The scatter plots in Figure 2

visualize the adjacency matrices of the one-mode projection

graphs for three different network prefixes with 44, 61, and

92 end hosts, respectively. For each prefix, we sort the IP

addresses based on the hosts’ degree (number of neighbors

in the one-mode project graph) in non-increasing order. Both

x-axis and y-axis represent the indices of IP addresses in the

same prefix, and each “+” point (i, j) in the plots denotes

an edge with a positive weight between two sorted hosts

pi and pj in the one-mode projection graph, i.e., m(i, j) =
w{pi, pj} > 0. As shown in Figure 2, each prefix has a

few well-separated blocks that divide end hosts into different

clusters. This observation on the adjacency matrix motivates

us to further explore spectral clustering techniques and graph

partitioning algorithm [8], [9], [10] to uncover these behavior

clusters of end hosts in the same network prefixes.

III. DISCOVERING BEHAVIOR CLUSTERS WITH SPECTRAL

CLUSTERING ALGORITHMS

In this section, we describe a spectral clustering algorithm

for automatic discovery of behavior clusters in network pre-

fixes based on host communications. Figure 3 illustrates the

schematic process of the algorithm from constructing bipartite

graphs based on IP packets to analyzing behavior clusters

of network prefixes. The previous section has discussed the

construction of bipartite graphs and one-mode projection

graphs, and this section is devoted to building similarity matrix

and using spectral clustering algorithms to discover behavior

clusters of network traffic. The next section will analyze

behavior clusters and shed light on the characteristics of these

clusters for in-depth understanding of network traffic.

Clustering algorithms have recently been used to analyze

and profile hosts in campus networks in [1], where an ag-

glomerative clustering algorithm is applied to characterize end

hosts based on traffic features in IP packet headers, such as the

Fig. 3. The schematic process of network-aware behavior clustering
algorithm for discovering behavior clusters of network prefixes

number of distinct destination IP addresses, the daily count of

network traffic volumes in bytes, average TTL (time-to-live)

value, etc. In this study, we focus on the social-behavior of

end hosts in data communications through bipartite graphs and

one-mode projection graphs, and are interested in exploring

the social-behavior similarity of end hosts to discover inherent

traffic clusters in the same network prefixes.

An important starting point of a clustering algorithm is to

define the appropriate similarity metrics between data points.

In this paper we use the weighted edge between two hosts u
and v of the same prefix in the one-mode projection graph

as the similarity measure su,v between u and v, because the

weighted edges capture and quantify the social-behavior simi-

larity of host communications in network traffic. Therefore, the

weighted adjacency matrix of the one-mode projection graphs

for the prefix MP essentially becomes the similarity matrix

SP which will be used as an input to the spectral clustering

algorithm outlined below.

This study applies a simple spectral clustering algorithm

developed in [10] due to its wide applications in graph

partitioning and its small running time. The original spectral

clustering algorithm [10] requires an explicit input of k as

the expected number of clusters. Given the infeasibility of

predicting the optimal number of behavior clusters in network

prefixes without analyzing the traffic data, we therefore aug-

ment the algorithm by adding a step of automatically selecting

an appropriate value of k as the desired number of the clusters

based on the eigenvalue distribution. The detail of this step is

explained in the following algorithm.

Algorithm 1 outlines the major steps of the spectral clus-

2080



Algorithm 1 Algorithm of discovering behavior clusters using

an augmented spectral clustering algorithm

Input: IP packet traces during a given time window and a source
or destination prefix P;

1: Construct bipartite graphs of host communications from data
packets;

2: Generate the one-mode projection of bipartite graphs and its
weighted adjacency matrix MP for end hosts in the prefix P ,
and then obtain the similarity matrix SP ∈ R

n×n for the prefix
P;

3: Let A be the diagonal matrix with A(i, i) =
∑n

j=1 si,j , where
i = 1, . . . , n;

4: Compute the Laplacian matrix L = A−1/2SA−1/2;
5: Find the largest k eigenvalues, λ1, λ2, · · · , λk such that∑k

i=1 λi ≥ α ×∑n
j=1 λn and (λk−λk+1) ≥ β×(λk−1−λk);

6: Use the corresponding k eigenvectors (e1, e2, · · · , ek) as
columns to construct the matrix E = [e1e2 · · · ek] ∈ R

n×k;
7: Construct the matrix Z through renormalizing E such that each

row has a unit length, and consider each row as a point;
8: Run k-means clustering algorithm to cluster the points of Z into

k clusters (Y1, Y2, · · · , Yk)
9: Assign the original IP address pi to the cluster Cj if the row i

of Z is assigned to the cluster Yj .

Output: clusters C1, C2, · · · , Ck, where Ci = {pj |zj ∈ Yj}.

tering algorithm with the augmented change of automatically

selecting k clusters based on the traffic patterns. The input

of this algorithm is IP data packet traces during a given time

window and a source or destination prefix P . The first step

is to preprocess the IP data packets by constructing bipartite

graphs of host communications from data packets, while the

second step is to generate the one-mode projection of bipartite

graphs and its weighted adjacency matrix MP for end hosts

in the prefix P , and then to obtain the similarity matrix

SP ∈ R
n×n.

Next, we compute the Laplacian matrix L = A−1/2SA−1/2,

where A is the diagonal matrix with A(i, i) =
∑n

j=1 si,j and

i = 1, . . . , n. Then in the augmented step we search for the

largest k eigenvalues, λ1, λ2, · · · , λk such that
∑k

i=1 λi ≥
α ×∑n

j=1 λn and (λk − λk+1) ≥ β × (λk−1 − λk). In other

words, the augmented step searches an appropriate value for

k by finding the largest k eigenvalues that account for at least

α of the total variances and stopping at the eigenvalue λk

where the distribution of eigenvalues exhibits a sharp slope

change1. Figure 4 illustrates an example of the distribution

of the eigenvalues for an IP prefix during a one-minute time

window. It is very clear to observe a sharp elbow in the plot

which indicates there exist a few eigenvectors that account for

the majority of the variances in the similarity matrix. In other

words, it shows that there indeed exist a few traffic clusters

that could group end hosts in the same prefixes together based

on their similar social-behavior patterns.

We use the corresponding k eigenvectors (e1, e2, · · · ,

ek) as columns to construct the matrix E = [e1e2 · · · ek]
∈ R

n×k, and subsequently construct the matrix Z through

re-normalizing E such that each row has a unit length.

1In our experiments, we use 0.9 and 2 for the α and β, respectively.
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Fig. 4. Eigenvalue distribution of the similarity matrix for a network prefix

Considering each row as a point, the final step of the algorithm

is to run a k-means clustering algorithm to cluster the points

of Z into k clusters (Y1, Y2, · · · , Yk), and then assign the

original IP address pi to the cluster Cj if the row i of Z is

assigned to the cluster Yj .

The output of this algorithm is a set of k clusters (C1,

C2, · · · , Ck), each of which includes a group of end hosts

sharing similar social-behavior patterns in network traffic. In

the following two sections, we will study traffic characteristics

of behavior clusters discovered by the spectral clustering

algorithm, and then demonstrate the applications of behavior

clusters for discovering traffic patterns and detecting anoma-

lous behaviors.

IV. CHARACTERISTICS OF BEHAVIOR CLUSTERS

In this section we first briefly describe the datasets used in

this study, and then discuss traffic characteristics of behavior

clusters in network prefixes and cluster stability of end hosts.

A. Datasets
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(c) Source addresses
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(d) Destination addresses

Fig. 5. Statistics of CAIDA Internet traffic trace

The datasets used in our analysis are collected from

CAIDA’s equinix-chicago and equinix-sanjose network mon-
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itors [11] on bidirectional OC-192 Internet backbone links

of a large Internet service provider during December 17,

2009. The CAIDA Internet traffic traces are anonymized using

CryptoPAn prefix-preserving anonymization [12] for privacy

reasons, however such prefix-preserving process does not

affect our analysis that explores behavior similarity of end

hosts within the same network prefixes.
Similar to the observations in previous studies [2], Internet

backbone links carry large volumes of network traffic, which

poses a challenging problem for real-time or near real-time

traffic analysis. The total size of the compressed dataset used in

this study is over 200GB. Figure 5[a] shows an average of 8.6
Gbps link usage during a one-hour duration, and Figure 5[b]

illustrates millions of network flows for every minute during

this period. In addition, Figures 5[c][d] show the total numbers

of unique source and destination IP addresses, respectively.

Such a large number of unique IP addresses in the packet

traces makes it very challenging to analyze traffic behavior

at host-level [1], therefore the focus on behavior clusters of

network prefixes becomes an intuitive alternative for scalable

analysis on Internet backbone traffic.
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Fig. 6. Block size distribution of BGP prefixes

In our analysis we use /24 block as the network prefix

granularity for analysis for two reasons. First, /24 is a common

block size of BGP routing prefixes based on the observations

on BGP routing tables. Figure 6 illustrates the block size

distribution of BGP prefixes in a recent snapshot of BGP

routing table from the RouteView project [13]. The /24 blocks

account for over 50% of all the total prefixes on the Internet.

Secondly, the prefix-preserving anonymization process makes

it impractical to map anonymized IP addresses in the packet

traces to the real BGP prefixes, although it is ideal to use BGP

prefixes in the analysis. On the other hand, our methodology

could be applied to BGP prefixes if data packets are not

anonymized in other datasets. Our analysis is applied to both

source and destination prefixes, since the bipartite graphs and

one-mode projection graphs in the previous sections could be

established for both sides. We will be presenting the results

from both source and destination prefixes throughout the rest

of this paper.

B. Distinct traffic characteristics of behavior clusters
The network-aware behavior clustering of end hosts shifts

traffic analysis from host-level to prefix-level clusters, and
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Fig. 7. The number of observed hosts and behavior clusters in all the prefixes
with at least 16 hosts during one-minute time window

increases the granularity of traffic analysis compared with

host-level traffic profiling, thus could successfully reduce the

number of behavior profiles for analysis. Figure 7 illustrates

the size of the prefixes with at least 16 end hosts and the

number of their clusters during a one-minute time window.

As we can see, the number of clusters is much smaller than

the size of prefixes, as each behavior cluster groups many end

hosts together due to their common social-behavior patterns.

This observation holds for other time windows as well.

After obtaining separate behavior clusters, the next question

we ask is do the clusters indeed exhibit distinct behaviors?
Towards answering this question, we study the distributions of

traffic features in each of behavior clusters, and then compare

them with the aggregated traffic of the prefixes. We use an

information-theoretic measure, relative uncertainty (RU ) intro-

duced in [2] to analyze the traffic features in individual clusters

and the aggregated traffic. Given a variable X with a prob-

ability distribution, p(xi) = ni/n, xi ∈ X, i = 1, 2, · · · , m,

where ni is the number of times X is observed with the value

xi, the relative uncertainty (RU ) on the variable X is defined

as follows:

RU(X) =
H(X)

Hmax(X)
=

H(X)
log m

, (2)

where the entropy, H(X), is defined as H(X) =
−∑xi∈X p(xi) log p(xi), and H(X) measures the variety

or diversity in the observed values of X [14]. The rela-

tive uncertainty value RU(X) quantifies the randomness or

uniqueness of the observed values. In general, RU(X) being

1 or approximately to 1 shows that the observed values of X
are closer to being uniformly distributed, while RU(X) being

0 or approximately to 0 indicates that the values of X are

concentrated to one or a few frequently observed values [2].

Our results show that behavior clusters separate different

traffic patterns of the same prefixes for improved understand-

ing and interpretation. Figure 8 shows the distribution of

relative uncertainty on destination IP addresses, source ports,

and destination ports, respectively for all the source prefixes

and their behavior clusters during a one-minute time win-

dow. Compared with relative uncertainty values for network

prefixes, the behavior clusters have much larger percentages

of relative uncertainty values on all of these features being
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Fig. 8. Histograms of relative uncertainty distributions for behavior clusters and the aggregated traffic

0 and 1 or approximately being 0 and 1, which reveal

concentrated patterns on a unique port and IP address, or

random patterns on ports and addresses. This result shows that

the clustering algorithm extracts behavior clusters with distinct

traffic characteristics from the aggregated traffic in the network

prefixes, thus significantly improve the understanding of the

traffic patterns with detailed and meaningful interpretations.

C. Temporal stability of behavior clusters

The second question on the characteristics of behavior

clusters we ask is are the clusters stable over time? In other

words, do end hosts of network prefixes change clusters over
time? To address this question, we study the temporal stability

of behavior clusters and the dynamics of cluster changes for

end hosts over time. Figure 9[a] illustrates the high temporal

stability of behavior clusters for one IP prefix during the one-

hour time window. As shown by the top line in Figure 9[a],

the number of end hosts in the prefix fluctuates slightly over

time, since some hosts do not continuously send or receive

traffic. More importantly, the number of behavior clusters,

illustrated by the bottom line in Figure 9[a], also exhibits

slight fluctuations over time. Similar observations hold for

other prefixes.

In addition, we find the majority of end hosts stay in the

same behavior cluster over time. Figure 9[b] shows the high

percentage of end hosts in the network prefix in Figure 9[a]

without changing clusters over consecutive time windows. In

average, 71.8% of all the end hosts in the traffic traces do

not change clusters during the one-hour time period. These

observations confirm that network-aware behavior clustering

separates end hosts of network prefixes into distinct and stable

behavior clusters.

V. APPLICATIONS

In this section we will demonstrate the applications of

network-aware behavior clustering in understanding traffic

patterns at the network prefix level and detecting anomalous

behavior. We use traffic traces collected from Internet back-

bone links of a large ISP and real traces of worm propagations

and denial of service attacks to generate synthetic traffic for

the study.
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Fig. 9. Temporal stability of behavior clusters in a network prefix

TABLE I
TRAFFIC CLUSTERS OF AN EXAMPLE DESTINATION PREFIX.

Cluster ID Size Flows Patterns
1 20 422 (sip [87], spt *, dip [20], dpt 9050)
2 8 15 (sip [15], spt *, dip [8], dpt 80)
3 8 79 (sip [38], spt 80, dip [8], dpt *)
4 33 33 (sip [1], spt *, dip [33], dpt 445)

A. Discovering traffic patterns in network prefixes

One major motivation of exploring behavior similarity is to

gain a deep understanding of Internet traffic in backbone net-

works or large enterprise networks. Therefore, we first demon-

strate the applications of network-aware behavior clustering

on discovering traffic patterns. The traffic clusters discovered

in each prefix reveal groups or clusters of traffic activities in

the same prefixes, and understanding these patterns could be

used for fine-grained traffic engineering and access control list

(ACL) constructions.

Behavior clusters provide an improved understanding of

traffic patterns in network prefixes compared with the ag-

gregated traffic of network prefixes. For example, Table I

lists four traffic clusters for one destination prefix with 69

active end hosts during one time window. The first cluster

consists of 20 destination hosts (dip [20]) to which 87 source

hosts (sip [87]) talk on destination port 9050 (dpt [9050])

with random source ports (spt *), while the second cluster

consists of 8 hosts to which 15 source hosts talk on destination

port 80. In the third cluster, 38 source hosts talk to 8 hosts

using source port 80. Finally, the last cluster consists of 33
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hosts to which a single source host talks on the destination

port 445 that is associated with well-known vulnerabilities. In

other words, the last cluster is very likely corresponding to

a scanning activity towards these hosts. If the traffic of this

prefix is mixed together for analysis, it becomes very difficult

to interpret and understand since there are multiple behavior

patterns simultaneously occurring within the same prefix.

However, by separating the traffic into different clusters, the

behavior of each cluster becomes much easier to interpret.

More importantly, the patterns discovered by certain clusters

could provide sufficient information for creating appropriate

ACL rules for blocking malicious traffic without affecting

other hosts. For example, we could build a simple ACL rule,

<deny, tcp, a.b.c.d, any, any, eq 445> based on the last cluster

in Table I, where a.b.c.d denotes the scanner, for filtering

further unwanted scanning traffic.

B. Detecting anomalous behavior

1) Detecting scanning activities with behavior clusters of
destination prefixes: One interesting finding on the behavior

clusters of network prefixes is that many prefixes with tens of

end hosts have only a single cluster, i.e., all hosts in each of

these prefixes talk with the same set of hosts. For example,

Figure 10[a] shows one case of such activity towards one

prefix with 23 end hosts in one time window. Upon close

examination, we find that in this case one particular source

IP scans all 23 IP addresses, thus explaining the single traffic

cluster of the network prefix.
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Fig. 10. Behavior clusters formed by scanning activities towards end hosts
in the same prefixes

Detecting such simple scanning scenarios is not surprising,

since many other existing approaches could reveal these pat-

terns. However, the behavior clusters of destination prefixes

are also able to reveal more challenging scanning cases from

the massive traffic data. For instance, Figure 10[b] shows four

behavior clusters of an IP prefix. The first cluster includes nine

end hosts, while the second includes six hosts. Each of the last

two clusters includes a single host since they do not share any

social-behavior similarity with other hosts.

By studying network traffic in each cluster, we find that

the first two clusters are corresponding to two independent

scanning behaviors at the same time. The first cluster is due

to one scanner targeting nine different hosts, while the second

cluster is caused by a different scanner targeting six other

hosts. It is very interesting to note that in terms of packet

counts, the last two small-sized clusters account for 99.76%

of network traffic (6655 out of 6671 data packets), while

the first two clusters, having only nine and seven packets

respectively, accounting for a very small percentage of the

traffic. If traffic analysis is simply focused on the entire

prefix, such low-volume anomalous patterns could simply be

missed. Therefore, this suggests that behavior analysis on host

communication patterns is complementary to existing volume-

based techniques for detecting scanning behavior patterns.

2) Detecting worm behavior in its early phases: To demon-

strate the application of network-aware behavior clustering in

detecting worm behavior, we use real traces of Witty worm

collected by CAIDA [15] and combine it with the backbone

network traffic into synthetic traffic. The behavior clustering

is able to detect a new cluster in one of the prefixes during the

very beginning of worm propagations. Figures 11[a][b] show

behavior clusters of this prefix before and after worm propa-

gations, respectively. An emerging small cluster consisting of

three end hosts marked by the circle in Figure 11[b] is actually

triggered by data packets containing the Witty worms.
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Fig. 11. Emerging behavior clusters formed by worm propagations

Such emerging behavior clusters of a network prefix trig-

gered by worm propagation events or other suspicious activ-

ities serve as strong alarm signals to network operators for

immediate response and in-depth analysis. More importantly,

this approach does not require a large number of packets for

early detections, since the new clusters could be formed by

a very small number of end hosts that share the similarity

of traffic communications with the same set of hosts. This

above example shows that analyzing unusual or emerging

behavior clusters could help detect worm propagations or other

anomalies in their early phases. Such early-detection ability is

very important for attack responses.

3) Detecting DDoS attacks: Detecting and mitigating

DDoS attacks is one of the challenging tasks facing network

operators or security analysts at edge networks due to the

nature of these attacks in saturating network links. However,

we argue that pushing the detection from edge networks to

backbone networks is beneficial, since backbone networks

have sufficient bandwidth and diverse routing paths compared

with edge networks. By combining backbone traffic from
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a large ISP and real cases of DDoS attacks identified in

the previous work [16], we demonstrate the application of

behavior similarity in detecting DDoS attacks in Internet

backbone networks.

Figures 12[a-d] illustrate the behavior clusters of two source

IP prefixes before and during DDoS attacks based on the

synthetic traffic traces. The spectral clustering reveals emerg-

ing clusters or cluster changes during DDoS attacks for both

source prefixes (Figure 12[b] and Figure 12[d]). For the first

prefix, 39 end hosts form an emerging cluster in Figure 12[b],

while in Figure 12[d] the existing cluster of 25 end hosts

of the second prefix in Figure 12[c] is expanded to a much

larger cluster with 52 end hosts. The reason for the abnormal

expansion of the cluster in the second prefix is that the

existing 25 hosts join other 27 hosts in the same prefix in

launching the DDoS attacks while sending normal data traffic

as well. Compared with other methods of detecting DDoS

attacks, the advantage of behavior clusters is to leverage

the small emerging clusters and the dynamics of existing

clusters for capturing interesting events, such that the attacks

could be detected before the traffic arrives at edge networks

and saturates network links connecting edge networks to the

Internet.

VI. RELATED WORK

Most of the prior work have focused on profiling network

behavior of individual end hosts [5], [2], [17], [18], or classi-

fying the roles and communities of end hosts based on their

traffic patterns [19], [20]. In [5], the authors study the host

behavior at the social, functional and application levels for

classifying traffic flows, while [2] builds behavior profiles

of end hosts using traffic communication patterns and [18]

merges packet header data into clusters based on the similarity

of network traffic features. Through the information available

on the web, Trestian et al. develop a traffic classification tech-

nique based on Google search engine [17]. [19] implements

two algorithms to group hosts of enterprise networks into

different roles based on their observed connection patterns.

Similarly, [20] studies the communities of interest (COI) for

hosts communications using traffic data collected from a large

enterprise network. In contrast to these works, our goal in this

paper is to study the social-behavior similarity of end hosts

in the same network prefixes. Similar to our work, in [1] Wei

at el. apply agglomerative algorithms to cluster end hosts into

clusters based on host profiles that consist of a number of

traffic features including daily destination number, daily byte

number, average TTL, TCP and UDP ports, and aggregated

statistics for each destination. Our study is different from [1] in

that we build bipartite graphs based on host communications,

and apply spectral clustering techniques to uncover groups of

end hosts in the same prefixes that share common social-level

behavior patterns.

In addition, several work have studied the aggregated traffic

behavior on the link-level, prefix-level or network-level [21],

[3], [22], [23], [24], [25], [26]. In [21] Soule et al. develop a

histogram-based method for classification of BGP-level prefix

flows and use histograms to capture the entire distribution

properties of highly aggregated flows, while [3] creates a traffic

profile for each network prefix through behavior analysis

of aggregated traffic at the network prefix level. In [22]

Bhattacharyya et al. study traffic dynamics at POP-level and

access-link-level in a major POP (Point-Of-Presence) in a

commercial Tier-1 IP backbone. Lakhina et al. use PCA (Prin-

cipal Component Analysis) to detect, identify, and quantify

network-wide traffic anomalies from the normal background

traffic [23]. [24] and [25] study the network-level behavior

of spammers, while [26] proposes a network-aware clustering

method to identify Web client clusters using BGP routing

information. Different from these work on the aggregated

behavior, our paper focuses on studying the similarity of host

behavior in the same prefixes for network management and

security monitoring.

Recent years have witnessed an increasing interest in IP

address dynamics [27] and block level address usage in the

visible Internet [28]. [27] develops an automated algorithm for

identifying dynamic IP addresses and computing IP volatility

based on Hotmail user-login data, while [28] identifies how

Internet IP addresses are used from active probing, and finds

that contiguous addresses are often used in a similar manner.

Our work extends this work by studying traffic communication

graphs to classify end hosts in the same IP prefixes into

different clusters based on their traffic patterns.

Graph analysis has been widely used in monitoring and

visualizing network traffic [6], studying network traffic be-

havior [4], discovering shared-interest relationships based

on email communication history [29], and localizing bot-

nets members based on the communication patterns used

for command and control [30]. In [6], Iliofotou et al. use

traffic dispersion graphs to model the social-behavior of hosts

where the edges represent the interactions between source

and destination hosts, while [4] uses traffic activity graphs

to capture the interactions among hosts engaging in specific

types of communications. The early work [29] constructs

email communication graphs and employs interest-clustering

algorithms for discovering email users with particular interests

or expertise. [30] develops an inference algorithm to search

botnet communication structures from the background com-

munication graphs constructed from the collected network

traffic. Inspired by these studies, our work also uses graph

analysis to construct the bipartite graphs from host commu-

nication and then to generate the one-mode projection graphs

for uncovering the social-behavior similarity among end hosts.

VII. CONCLUSIONS AND FUTURE WORK

This paper explores network-aware clustering of Internet

end hosts in the same IP prefixes. We use bipartite graphs

and one-mode projection graphs to model host communication

patterns observed on Internet backbone links. By applying

spectral clustering algorithms on the one-mode projection, we

find the clustered behavior of end hosts in the same network

prefixes. We use relative uncertainty concepts to study the

distinct traffic characteristics of behavior clusters, and analyze
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(b) Prefix1 during the attack
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(c) Prefix2 before the attack
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(d) Prefix2 during the attack

Fig. 12. Emerging behavior clusters of two independent source prefixes formed during DDoS attacks

the temporal stability of behavior clusters by examining the

cluster changes of end hosts. Finally, we demonstrate the

applications of behavior similarity in discovering traffic pat-

terns in IP prefixes and detecting anomalous behaviors through

synthetic traffic that combines backbone network traffic and

real scenarios of worm propagations and denial of service

attacks. Our future work includes developing a prototype

system to evaluate the operational feasibility of network-aware

behavior clustering of Internet end hosts in real-time. We

are also interested in applying behavior clustering in other

networks such as online social networks.
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