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Abstract 

 
This paper considers a panel data model with time-varying individual effects.  The data are 
assumed to contain a large number of cross-sectional units repeatedly observed over a fixed 
number of time periods.  The model has a feature of the fixed-effects model in that the effects are 
assumed to be correlated with the regressors.  The unobservable individual effects are assumed to 
have a factor structure.  For consistent estimation of the model, it is important to estimate the true 
number of factors.  We propose a generalized methods of moments procedure by which both the 
number of factors and the regression coefficients can be consistently estimated.  Some important 
identification issues are also discussed.  Our simulation results indicate that the proposed methods 
produce reliable estimates. 
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1. Introduction 

The use of panel data has been increasingly popular in empirical microeconomic and 

macroeconomic studies.  An important advantage of using panel data is that researchers can 

obtain consistent or unbiased estimates of important parameters controlling for unobservable 

cross-sectional heterogeneity. An example of such heterogeneity, the so-called individual 

effect, is the effect of talent in a model of workers’ hourly earnings.  In order to estimate the 

effect of education on hourly wage rate consistently, researchers need to control for the 

heterogeneity in workers’ talents or skills.  Unfortunately, data containing information on 

individual workers’ talents and skills are extremely rare.  Without such information, it is 

extremely difficult, if not impossible, to control for talent using pure cross-sectional data.  In 

contrast, when panel data are available, a variety of estimation methods (e.g., Hausman and 

Taylor, 1981; Amemiya and MaCurdy, 1986; Cornwell and Rupert, 1988) can be used to 

control for the unobservable individual effects.  Even if individual workers’ talents are 

unobservable, it is possible to estimate the effect of education on hourly wage consistently. 

In this paper we consider a more general panel data model in which the individual effect 

has multiple components and each of these components is time-varying.  Specifically, the 

model assumes that the unobservable individual effects have a factor structure.  For this model, 

we develop appropriate estimation and model-specification methods.  Bai (2005) has 

considered the same panel factor model that we study in this paper (see also Bai and Ng, 2002; 

and Bai, 2003).  His approach is designed for the analysis of panel data with large numbers of 

both time series and cross-section observations, and the regressors are assumed to be strictly 

exogenous to the random error terms in the model.  Kneip, Sickles and Song (2005) also 

consider the same model but with the additional assumption that the factors change slowly and 

smoothly over time.  Our paper is different from these papers in two respects.  First, we focus 

on the case of panel data with a small number of time series observations and a large number of 

cross-section units (big N and small T).  Second, we also consider the case in which some 
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regressors are only weakly exogenous. 

Standard panel data models assume that the unobservable individual effect is a single 

time-invariant component.  However, this assumption may be excessively restrictive in 

practice.  For example, consider a model of hourly wage rates.  It is a well-known fact that 

labor productivity changes over the business cycle.  Accordingly, the productivity of an 

individual’s unobservable talent or skill would also change over the business cycle (Ahn, Lee 

and Schmidt, 2001).  If so, the effect of unobservable talent on hourly wages would vary over 

time because workers’ hourly wage rates depend on their labor productivity.  It is also likely 

that hourly wage rates depend on multiple individual effects.  For example, individual workers’ 

wages would be affected by unexpected changes in macroeconomic variables due to changes in 

monetary or fiscal policies.  However, the effects of these aggregate variables on wages would 

depend on individual-specific characteristics such as the worker’s residential area and 

occupation.  The panel data models that assume a single time-invariant individual effect are 

inappropriate for the analysis of data with such multiple time-varying individual effects. 

 There are many other examples of models that may require multiple time-varying 

effects.  One example is the consumption model based on the life-cycle and 

rational-expectation hypothesis.  This model predicts that current consumption growth depends 

on the unobservable marginal utility of expected life-time wealth.  When consumers’ future 

incomes are uncertain, their marginal utility of wealth varies over time (Altug and Miller, 

1990; Pischke, 1995). Another example is the asset pricing models that assume time-varying 

risk premia (Campbell, 1987; Ferson and Foerester, 1994; Zhou, 1994).  These models can be 

also viewed as panel data models with unobservable multiple time-varying individual effects.  

Finally, our approach can be used for the empirical studies of economic growth based on 

international data (e.g., Mankiw, Romer and Weil, 1992; Islam, 1995; Caselli, Esquival and 

Lefort, 1996).  Individual countries’ economic growth rates could depend on world-wide 

supply shocks such as the oil shocks in the 1970’s, and the technology shocks we have 

 2 
 



witnessed from the rapid development of the information technology industry in the 1990’s.  

However, the effect of such world-wide shocks could depend on country-specific factors such 

as available human capital and natural resources. 

  The model we consider is also related to the issue of cross-sectional dependence, which 

is a growing research area.  Many studies based on cross section data assume that the data are 

cross-sectionally independent.  However, there are many cases in which the independence 

assumption is questionable.  As we have discussed above, the decisions of individual economic 

agents (such as individuals, households, or firms) can depend on common macroeconomic 

shocks. When data contain such common factors, conventional estimators such as ordinary 

least squares (OLS) and instrumental-variables can be biased (Andrews, 2003).  Even in the 

cases where such estimators are consistent, the estimated standard errors of the estimators 

obtained ignoring cross-sectional dependence could be seriously biased (for example, Chang, 

2002).  In response to these problems, many alternative estimation methods have been 

developed (Conley, 1999; Kelejian and Prucha, 1999; Chang, 2002).  The method we develop 

in this paper provides an alternative solution for the analysis of panel data.  Our model can 

allow cross-sectional dependence among individual effects. 

Panel data models with time-varying individual effects and small numbers of 

time-series observations have been studied by Holtz-Eakin, Newey and Rosen (1988), Lee 

(1991), Chamberlain (1992), and Ahn, Lee and Schmidt (2001) [hereafter, ALS].  However, 

these studies, except Lee (1991), only consider cases with a single individual effect.  Lee 

(1991) considered the case of multiple factors, but he made the unnecessarily strong 

assumption that the errors are i.i.d. normal, and he assumed that the true number of factors was 

known. 

The goals of this paper are two-fold.  The first is to investigate estimation methods that 

can produce consistent estimates under quite general assumptions.  We accomplish this via 

GMM as opposed to nonlinear least squares.  The second is to develop an estimation and 
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testing procedure for the correct number of factors. 

  This paper is organized as follows.  Section 2 introduces our model and assumptions.  

Section 3 develops the GMM estimation method for the model.  Section 4 reports our 

simulation results.  Some concluding remarks follow in section 5. 

 

2. Basic Model 

The basic model of this study is given by:  

 ;i i i i i i iy X u u iβ η ε α ε= + = + = Ξ + . (1) 

Here, i (= 1, ... , N) is the cross-sectional index and t (= 1, ... , T) is the time index. 

1( ,..., )i i iTy y y ′=  is the T×1 vector of the dependent variables for individual i, 

1( , ..., )i i iTX x x ′=  is the T×k matrix of time-varying regressors, β  is the k×1 vector of 

coefficients to be estimated, and iε  = 1( , ..., )i iTε ε ′  is the T×1 vector of random errors.  Also iη  

is the T×1 vector of individual effects and iα  is the p×1 vector of unobservable 

individual-specific variables.  The T×p (T > p) matrix Ξ  includes p time-varying factors that 

are common to all individuals.  Note that the elements of iη  vary over time because the 

elements of  vary over time.  The unobservable individual effects have a “factor structure.” Ξ

 Where it helps the clarity of the argument, we will use subscript “o” to refer to “true 

value” of a parameter.  For example,  refers to the true value of p.   For the identification of 

the model (1), we need to define what we mean by the true number of factors, .  We assume 

that 

op

op

( ) [ ( )]i i orank rank E pαα′Ξ = = .  That is,  is the smallest value of the number of factors 

that the factor representation 

op

iαΞ  holds.  The words “smallest value” are important because, if 

the factor representation iαΞ  holds for a given p, it also holds for any greater number of 

factors than p.  To see why, let  be a T×(p+1) matrix of full column rank whose columns 

span the column space of Ξ .  Then, there must exist a (p+1)×p matrix B such that 

*Ξ

*BΞ = Ξ .  

Thus, we have * *
i iα αΞ = Ξ , where *

i iBα α=  has (p+1) components.  Observe that 
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* *[ ( )]i irank E pα α ′ ≤ .  Thus, *
iα  contains some linearly redundant components.  The 

assumption  rules out such redundant components in [ ( )]i irank E pαα ′ = iη . 

 Notice that the rank assumption, ( ) [ ( )]i irank rank E pαα′Ξ = = , applies to ( )i iE αα′ , not 

to ( )iVar α .  This is because we allow some components in iα  to be constant over i.  As we 

discuss below, the model (1) cannot identify the effects of time-dummy variables unless we 

assume that ( ) 0iE α = .  Thus, we need to estimate β  leaving the time effects absorbed by 

iαΞ .  For such cases, one of the columns of Ξ  may capture the time effects, the corresponding 

element in iα  being a constant.               

 In addition to the assumption ( ) ,rank pΞ =  some normalization (parametric 

restrictions) on Ξ   is necessary for identification because, for any nonsingular p×p matrix C, 

* *
i iα αΞ = Ξ , where  and * 1C−Ξ = Ξ *

i C iα α= .  This is the so-called “rotation” problem.  A 

simple normalization we will impose on Ξ  is that ( , )pI′ ′Ξ = Θ − , where Θ  is a (T-p)×p 

matrix of unrestricted parameters.  Imposing this normalization, we are reparameterizing the 

individual-effect components by 1
1 2

−Θ = −Ξ Ξ , * 1
2
−Ξ = −ΞΞ  and *

2iα iα= −Ξ , where 

.1 2( , )′ ′ ′Ξ = Ξ Ξ 1

  If the regressors xit and the individual-specific effects iα  are uncorrelated, the 

coefficient vector β  could be consistently estimated by ordinary least squares (OLS) or 

generalized least squares (GLS).  We do not consider such trivial cases.  Instead we consider 

                                                 
1 The number of restrictions we impose on Ξ  is p2.  In the factor analysis literature, the number of restrictions 

imposed on  to avoid rotational indeterminacy is p(p-1)/2.  The reason why we impose more restrictions on the 

model is that we do not impose any variance-covariance restrictions on the factors.  The usual factor analysis 

assumes that the variance matrix of factors is an identity matrix.  This assumption implies p(p+1)/2 restrictions.  In 

total, the usual factor analysis imposes p

Ξ

2 (= p(p-1)/2 + p(p+1)/2) restrictions on ( iVar )αΞ , which is the same 

number of the restrictions we use. 
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the cases in which Xi and iα  are correlated.  Thus, the model (1) has the flavor of a fixed effects 

model.  The relative sizes of N and T are important to determine an appropriate estimation 

method.  Bai (2005) considers the estimation of the model (1) for the cases in which T is large 

and the regressors in Xi are stochastically independent of the errors.  Instead, in this paper, we 

focus on the cases with relatively small T and large N, and thus asymptotics apply as  

with T fixed.     

N →∞

  To begin with, we assume that the model (1) does not contain time-dummy variables, or 

other variables that vary only over time, and are invariant over individuals.  That is, we assume 

that xit varies over different cross-section units.  This is due to the identification issues that will 

be discussed below.  We also do not include time-invariant individual characteristics as 

regressors, although the coefficients of such variables could be consistently estimated under 

certain circumstances.  But we do use them as instruments in estimation.  These variables will 

be the vector fi below. 

  We define , our set of potential instrumental variables, and 1 2( , ,..., , )i i i iT iz x x x f′ ′ ′ ′= ′ X  = 

.  Using this notation, we make the following Basic Assumptions (BA): 1 2( , ,..., )NX X X′ ′ ′ ′

 

 (BA.1) ( , , )i i iz α ε′ ′ ′ ′  is independent and identically distributed over i, with finite 

moments up to fourth order. 

 (BA.2) ( )i iE z z′  is nonsingular. 

 (BA.3) [ ( )] [ ( )]i i i i orank E z rank E pα αα′ ′= = . 

 (BA.4) 1( | , ) 0i i i TE fε α ×= . 

 (BA.5) (  is of full column rank. , )N oX I ⊗Ξ

 

  Several comments on BA follow.  (BA.1) is a technical assumption for the consistency 

and asymptotic normality of the estimators discussed below.   (BA.1) assumes that data are 

cross-sectionally independent.  However, we can relax this assumption for  and iz iα .  What 
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we really need are just conditions under which the law of large numbers holds for ( , )i iz α′ ′ ′ ; that 

is,    1
1lim ( , ) ( , ) [( , ) ( , )]N

N i i i i i i i i ip N z z E z zα α α−
→∞ = α′ ′ ′ ′ ′ ′ ′ ′ ′ ′Σ = .2

  (BA.2) implies that there is no perfect multicollinearity in zi. 

  (BA.3) is intended to capture the essential feature of a fixed effects model, in the sense 

that iα  is allowed to be correlated with zi in an unrestricted way.  However, it says more than 

that since it implies iα  must be correlated with zi.  (BA.3) is an important identification 

condition for the parameter matrix  (or Ξ Θ ).  If all of the variables in  are uncorrelated with 

both 

iz

iα  and iε , there is no way to discriminate iα  from iε  unless some strong restrictions are 

imposed on the variances and covariances of the components in iα  and iε  (such as the 

diagonality of ( )iVar ε ). 3   Notice that (BA.3) applies to ( )i iE zα′ , not to the covariances 

between  and iz iα .  Thus, we allow cases in which some components of iα  are constant over 

time.  

   (BA.4) assumes that all of the variables in fi and iα  are uncorrelated with any error 

terms in iε  = 1( , ..., )i iTε ε ′ .  But the errors itε  are allowed to be autocorrelated or 

heteroskedastic over time.  Assumptions about the correlations between iε  and iX  will be 

made below. 

  Finally, Assumption (BA.5) rules out certain types of exact multicollinearity that will 

be discussed in detail below. 

    For consistent estimation of the model (1), we need to make assumptions about the 

                                                 
2 We may also allow the error vectors iε  to be cross-sectionally correlated as in Bai (2005).  While here we do not 

consider cases with cross-sectionally dependent data, it could be shown that the GMM estimators we discuss 

below are still consistent and asymptotically normal.  Also the asymptotic variance matrices of the estimators 

could be consistently estimated by the method of Conley (1999).    
3 In general, we cannot identify the columns of Ξ  that correspond to the components in iα  uncorrelated with 

regressors.   However, this is not a serious problem in estimating β .  What we need to control for to obtain a 

consistent estimator of β  are the components in iα  that are correlated with regressors.  We can treat the 

components in iα  uncorrelated with regressors (and the corresponding columns of Ξ ) as parts of the random 

error vector iε . 
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relationship between the time-varying regressors iX  and the random noise error terms itε .   

We consider two types of regressors:  strictly exogenous (SE) and weakly exogenous (WE) 

regressors. In order to distinguish between these regressors, we partition itx  into 

, where , ,( , )it S it W itx x x′ ′= ′

  (SE) , 1 , 2 ,( | , , ..., ) 0it S i S i S iTE x x xε = , t = 1, ... , T. 

  (WE) , 1 ,( | , ..., ) 0it W i W itE x xε = , t = 1, ... , T. 

  With these assumptions made, we can be more explicit about the relationship between 

our model and previous models.  If we view iα   and Θ  as multiple factors and a factor loading 

matrix, respectively, we can easily see that the model (1) is similar to the multi-factor model 

frequently used in empirical finance (Campbell, Lo and Mackinlay, 1997, Chapter 6).  

However, the model (1) is different from the multi-factor model in two aspects.  First, while the 

multi-factor model treats the factors ( iα ) as random variables uncorrelated with the regressors, 

the model (1) allows non-zero correlations between regressors and factors.  This treatment is 

essentially the same as the assumption that the iα  are unobservable parameters (Mundlak, 

1978) and therefore corresponds to a fixed-effects as opposed to random-effects treatment.  

Second, we do not assume a diagonal variance matrix for the error terms. 

  Lee (1991) and Lee and Schmidt (1993) proposed estimation of the model by MLE, 

assuming that the errors itε  are i.i.d. normal.  This leads to a nonlinear least squares estimator.  

However, when T is small (fixed), this is a non-regular problem.  As ALS showed, the 

consistency of the nonlinear least squares estimator depends on the errors being white noise 

(normality is not required), and even if the errors are white noise the nonlinear least squares 

estimator is inefficient, and the variance matrix of the estimate has the sandwich-form because 

the usual information equality does not hold.  When both N and T are large (asymptotics are as 

N and T both go to infinity), Bai (2003, 2005) shows that nonlinear least squares is consistent 

without the white noise assumption. Bai (2005) also shows that the methods of Bai and Ng 
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(2002) can be used to consistently estimate the true number of factors. 

  This paper follows ALS by using a GMM approach that does not rely on the white noise 

assumption and that is consistent when T is fixed.  This paper differs from ALS in that we now 

consider multiple factors and correspondingly we propose methods for choosing the number of 

factors consistently.  This paper also differs from ALS, and from Bai (2005), in that we allow 

some regressors to be weakly exogenous.  Thus our approach can be applied to the dynamic 

panel data model or other models with weakly exogenous regressors.  

 

3. Estimation and Tests  

In this section, we consider the GMM estimation of the model (1).  We also examine two 

methods that can be used to estimate the true number of individual effects iα  (po).   

  We begin with the estimation of β  and Θ  when po is known.  For given p , we define 

   1 1 2 2( ) [ ( ), ( ), ..., ( )] ( , )T p T p T pH H H H Iθ θ θ θ− − − ′= = Θ , (2) 

where jθ  (j = 1, ... , T-p) is the j’th column of ′Θ , ( )vecθ ′= Θ , and ( )j jH θ  is the j’th column 

of ( )H θ .  Observe that the first (j-1) entries of ( )j jH θ  equal zero.  This property of the 

columns of ( )H θ  will be important to understand the moment conditions we can utilize for the 

cases with weakly exogenous regressors.      

  Note that .  Thus, pre-multiplying the model (1) 

by 

( )( ) ( , )( , ) 0T p T T p pH I Iθ −
′′Ξ = Θ Θ − = − ×′

( )oH θ , we can remove the unobservable individual effects from the model: 

   ( ) ( ) ( )o i o i o oH y H X H iθ θ β θ′ ′= + ε′

( )
( )

( )
: :

( )

i i i

i i i
i

T p T p i i T p T p i

H
H

H

H

θ ε ε θ ε
θ ε ε θ ε

θ ε

, (3) 

where, 

   

1 1 1 1 ,*

2 2 2 2 ,*

, ,*θ ε ε θ ε− − − −

′ ′+⎛ ⎞ ⎛
⎜ ⎟ ⎜′ ′+⎜ ⎟ ⎜′ = =
⎜ ⎟ ⎜
⎜ ⎟ ⎜′ ′+⎝ ⎠ ⎝

, 1

, 2
,* :

i T p

i T p
i

iT

ε
ε

ε

ε

− +

− +

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎞
⎟
⎟
⎟
⎟
⎠

; .  
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In the following two subsections, we consider the GMM estimation of the model (3) with 

strictly and/or weakly exogenous regressors.  Some identification issues will be discussed in 

detail in the third subsection.  

 

3.1. Estimation and Testing Using Strictly Exogenous Instruments 

We define: 

   , , 1 ,( ,..., , )S i S i S iT iw x x f′ ′ ′ ′= . (4) 

Here the subscript “S” indicates that the variables in  satisfy the strict exogeneity condition 

(SE) above.  Clearly, under BA and SE, all of the variables in  are uncorrelated with all of 

the errors in 

Sx

,S iw

iε . That is, 

   , 1( ) 0i S i TqE wε ×⊗ = , 

where  is the number of the variables in .  At q ,S iw op p= , these instrumental variables satisfy 

the following moment conditions: 

   ,[ ( )] [ ( ) ( ) ] 0S i o o i o S i T p qE m E H u w , ( ) 1ξ θ β − ×′≡ ⊗ = , (5) 

where ( , )ξ β θ′ ′ ′= , and ( )i iu y Xiβ β= − .  Thus, the parameter vector ξ  can be estimated by 

GMM applied to the moment conditions in (5). 

  Let p denote the number of factors chosen for estimation.  The consistent estimation of 

op , oθ  and oβ  requires the following three identification conditions (I) to hold: 

   

  (I.1) When p < po, there exist no values of θ  and β  that satisfy (5). 

  (I.2) When p = po, oθ θ=  and oβ β=  are the unique solutions for (5). 

  (I.3) When p > po, there exist some θ  and β  that satisfy (5). 

 

Assumptions (BA.3) and (BA.5) imply that all of these three conditions hold.  With p < po, any 
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H matrix cannot satisfy (5), because there is no T×(T-p) matrix H that can completely remove 

o iαΞ  from ( )i ou β .  Thus, under BA, for any H with p < po,  

   , , ,

, ,

[ ( ) ] [ ( ) ( ) ]
( ) [ ( ) ]

S i i S i i o S i o i

S i i o S i o i

E w u H E w u H w X H
E w H E w X H 0,

β β β β
α β β

′ ′ ′ ′= + −

′ ′ ′ ′= Ξ + − ≠
 

even if oβ β= .  Thus, (I.1) holds as long as ,( S i iE w )α′  is of full column. 

  Assumption (BA.5), as well as (BA.3), is crucial for (I.2) to hold.  To see why, we here 

consider two cases in which the assumption is violated, although more detailed discussions of 

these cases will be given in subsection 3.3.  The first and obvious case is the case in which the 

model (1) contains time-invariant regressors and oΞ  contains a time-invariant component.4  

Suppose that ( )i i o T i o o iy X e f iβ γ α′= + + Ξ + ε , where  is a T×1 vector of ones and Te oγ  is the 

vector of the coefficients on the time-invariant regressors if .  For this case,  = oH ( )oH θ  is 

orthogonal to .  Then, we easily see that the conditions (5) hold for any value of γ.  Therefore 

the parameter vector γ is not identifiable.  This is the same problem as in the usual fixed-effects 

model in which the coefficients of time-invariant regressors are not identified.  Of course, 

Te

γ  

can be identified if we can assert on a priori grounds that there is no time-invariant component 

in .  However, if such a priori information is not available, and if the effects of 

time-invariant regressors are not of research interest, it may be advisable to estimate the model 

(1) without using time-invariant variables as regressors so that the individual effects 

Ξ

iαΞ  

absorb the effects of the time-invariant regressors (and thus have a time-invariant component).  

Some further treatment of cases with both time-invariant regressors and time-invariant 

individual effects is given in subsection 3.3. 

  The second case of lack of identification is the case in which iX  contains time-dummy 

variables.  Suppose that ( )i o i o o i iy Xλ β α= + + Ξ + ε , where λ  is the T×1 vector of the time 

                                                 
4 The meaning of this phrase merits some explanation.  The most obvious interpretation would be that a column of 

 is a vector of ones.  Given our normalization, this cannot be true.  The proper meaning is that some linear 

combination of columns of 

Ξ

oΞ is equal to one for all t.  This is equivalent to saying that oH is orthogonal to eT. 
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effects.  Let , so that  *
o odλ λ= + Ξ *

oH λ′  = o oH λ′  for any p×1 vector d.  Then, it is clear that 

whenever oλ  satisfies (5), so does *λ .   This implies that the GMM estimator based on (5) 

cannot identify the time effects.  The non-identification of the effects of the time-dummy 

variables does not cause any problem in estimating the regression coefficient vector β .  We 

can simply estimate β  leaving the time effects to be captured by the factors in Ξ .   

  Notice that (I.3) allows multiple solutions for (5).  Indeed, for any p > po there are 

infinitely many θ ’s that satisfy (5).   For example, consider a case with T = 3 and po = 1.  For 

this case, we have  

   1, 2,( , , 1)o o oθ θ ′Ξ = − ; . 1,

2,

1 0
( )

0 1
o

o
o

H
θ

θ
θ

⎛ ⎞
′ = ⎜ ⎟

⎝ ⎠

Suppose now that for estimation, we choose p = 2 (> po) and * * * *
2 )1( ) (1, ,H θ θ= ′θ .  Then, it can 

be shown that * *( )H θ  satisfies (5) for any *
1θ  if we set * *

2 1, 2,o o 1θ θ θ θ= + . 

  The usual identification condition for GMM is that the moment conditions used should 

hold only at the true values of parameters.  But due to (I.3), our identification conditions are 

weaker than this usual identification condition.  When p > po is chosen for GMM, we are 

unable to consistently estimate θ .  Thus, if θ , as well as β , is a parameter vector of research 

interest, it is important to use the true value of p for GMM based on the moment conditions 

(5).5  Below we introduce two methods by which po can be consistently estimated. 

  When p = po is chosen, the identification of oθ  and oβ  requires that the number of the 

moment conditions in (5) should be no less than the number of parameters in ξ : 

   . ( ) [( ) ] ( )( )T p q T p p k T p q p k− − − + = − − − ≥ 0

                                                 
5 Ahn, Lee and Schmidt (2005) use this model to estimate the time-varying technical inefficiencies of Indonesian 

rice farms.  In the paper, iαΞ  measures farm i’s technical inefficiency.  Thus, the consistent estimation of farms’ 

inefficiencies requires a consistent estimate of Ξ  (or θ ).    
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For this condition to hold,  must be chosen such that q .  However, if q is large, 

imposing all of the moment conditions (5) in GMM might not be desirable, because it might 

cause the finite-sample properties of the GMM estimator to deteriorate.  In practice, it may be 

more desirable to use only a subset of the instruments .  In the next section, we will 

investigate the finite-sample properties of the GMM estimators utilizing all and some of the 

instruments in .   

,S iw p>

,S iw

,S iw

  Under (5) and the assumption that the value of p is correctly chosen, the optimal GMM 

estimator of  ξ , Sξ , among those utilizing the moment conditions in (5), can be obtained by 

minimizing: 

 
1

, 1 , 1 , , 1
1 1 1ˆ ˆ( | ) ( ) ( ) ( ) ( )N N N

S N i S i i S i S i i S iJ p N m m m m
N N N ,ξ ξ ξ ξ

−

= = =

′⎛ ⎞ ⎛ ⎞ ⎛′≡ Σ Σ Σ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

ξ ⎞
⎟ , (6) 

where ξ̂  is an initial consistent estimator of ξ .  Observe that the weighting matrix 

1
1 , ,

ˆ ˆ[ ( ) (N
i S i S iN m mξ ξ−
=

1) ]−′Σ is a consistent estimator of the inverse of 1
1 ,[ ( )N

i S iN Var m ]oξ
−

=Σ .  

Using this optimal GMM estimator, we can also test for the true value of p (po).  The 

overidentifying restriction test statistic by Hansen (1982) is given by .  This statistic 

has the following properties: 

, ( | )S N SJ ξ p

k

 

Proposition 1:  Suppose that the model (1) satisfies BA.  Then, as , N →∞

 (i) for p = po,  , and  2
, ( | ) [( )( ) ]S N S d o oJ p T p q pξ χ→ − − −

 (ii) for p < po,  , , ( | )S N S pJ pξ → ∞

where “→d” means “converges in distribution”, and “→p” means “converges in probability”. 

 

  The proof of Proposition 1 is omitted.  The result (i) is straightforward from Hansen 
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(1982).  The result (ii) is obtained because ,lim ( | ) /N S N Sp J pξ→∞ N is a finite positive number.  

Note that Proposition 1 explains the asymptotic distribution of  only for the cases 

of 

, ( | )S N S oJ pξ

op p≤ .  When op p> , there are infinitely many θ’s that satisfy (5) as discussed above.  

Therefore, the estimator Sξ  suffers from an identification problem.  For this case, the 

distribution of the statistic is generally unknown. 

  Based on Proposition 1, we can consistently estimate po using a sequential testing 

method.   We may begin by testing the hypothesis of po = 0 against the alternative hypothesis of 

po > 0.  If the null hypothesis is rejected, we move to test the null hypothesis of po = 1 against 

the alternative of po > 1.  We continue this procedure until the null hypothesis is not rejected.  

Let p  be the smallest p that we do not reject by the  statistic.  For the consistency 

of 

, ,( |S N S pJ ξ )p

p , the significance level used for the procedure should be appropriately adjusted (Bauer, 

Pötscher and Hackl, 1988; and Cragg and Donald, 1997).  Following the proof of Theorem 5 of 

Cragg and Donald (1997), we can easily obtain the following result: 

 

Proposition 2:  Let bN be the significance level used for the sequential test method.  Choose  

such that  and 

Nb

0Nb → ln( ) / 0Nb N− →  as .  Then, N →∞ p  is consistent. 

 

  Bai and Ng (2002) and Bai (2005) develop alternative methods to estimate p for the 

model with both large N and T.  Cragg and Donald (1997) use similar methods to estimate 

ranks of matrices.  We can also estimate p using their methods.  The criterion functions we can 

use to estimate p are of the form: 

   . (7) ,( ) ( | ) ( ) ( )N S N SS p J p f N g pξ= −

With appropriate choices of f(N) and g(p), a consistent estimate of p can be obtained by 

minimizing the criterion function .  There are many possible choices of f(N) and g(p).  ( )NS p
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Among them, we consider the following Schwarz Criterion: 

 

   Schwarz Criterion (BIC):  f(N) = ln(N) and g(p) = {( )( ) }a T p q p k− − − . 

  

Here,  is an arbitrarily chosen positive number.  Observe that under BIC, (i) , and 

(ii) , as N .  The function g(p) is simply the degrees of freedom of 

.  Let 

a ( )f N →∞

( ) /f N N →∞ →∞

, ( | )S N SJ ξ p p  be the value of p which minimizes the function (7) with the BIC choices of 

f(N) and g(p).  The condition (i) is required to warrant that lim Pr( ) 0N op p p→∞ > = , while the 

condition (ii) is for lim Pr( ) 0N op p p→∞ < =  (Cragg and Donald, 1997).  Observe that for p  

to be greater than po,  > 0 for some *( ) ( )N o NS p S p− *
op p> .  Thus, 

*Pr( ) Pr[ ( ) ( ) 0]o N o Np p S p S p> ≤ − > .  Note also that  

   
* *

, ,

*
,

Pr[ ( ) ( ) 0] Pr[ ( | ) ( | ) ( )( ( ) ( )) 0]

Pr[ ( | ) ( )( ( ) ( )) 0] 0,
N o N S N S o S N S o

S N S o o

S p S p J p J p f N g p g p

J p f N g p g p

ξ ξ

ξ

− > = − + − >

≤ + − > →

*

psince  is a χ, ( | )S N S oJ ξ 2 random variable that is bounded almost surely,  is a 

fixed negative number, and .  Thus, 

*( ( ) ( ))og p g p−

( )f N →∞ Pr( ) 0op p> → .6  Similarly, for any *
op p< ,  

 
* *

, ,
1 ( )Pr[ ( ) ( ) 0] Pr ( ( | ) ( | )) ( ( ) ( )) 0

0,

N o N S N S o S N S o
f NS p S p J p J p g p g p

N N
ξ ξ⎡ ⎤− > = − + − >⎢ ⎥⎣ ⎦

→

*

N

 

because ,  , and  converges in probability 

to a fixed positive number in probability.  This implies that 

( ) / 0f N N → , ( | ) / 0S N S o pJ p Nξ → *
, ( | ) /S N SJ pξ

Pr( ) 0op p< → .  Thus, we obtain 

the following result. 

 

Proposition 3:  Suppose the model (1) satisfies BA.  Then p  is consistent. 

                                                 
6 Notice that this proof does not required the uniqueness of θ  and β  when p > po.  Proposition 2 still holds even 

if θ  and β  are not unique for p > po. 
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 One remark follows on Propositions 2 and 3.  When the optimal weighting matrix 

1
1 , ,

ˆ ˆ[ ( ) (N
i S i S iN m mξ ξ−
=

1) ]−′Σ  is used for the GMM estimation of ξ  as in (6), both the sequential 

test and the criterion-function methods described in the two propositions respectively can be 

used to consistently estimate po.  However, the former method could not be used when the 

parameter vector ξ  is not estimated with the optimal weighting matrix.  In contrast, the latter 

method does not require use of the optimal weighting matrix.  Notice that Proposition 3 holds 

as long as   is an almost surely bounded random variable.  Indeed, the statistic 

 computed with a non-optimal weighting matrix is asymptotically a weighted 

average of independent chi-squared random variables, which is clearly bounded (see, for 

example, Jagannathan and Wang, 1996).        

, ( | )S N S oJ ξ p

p, ( | )S N S oJ ξ

 The computation of Sξ  and  requires an initial consistent estimator of , ( | )S N SJ ξ p ξ  

that can be used to estimate the optimal weighting matrix.   We now consider a simple iterative 

procedure by which a consistent estimator of ξ  can be easily obtained.  Under some 

circumstances, this iterative procedure can also lead to optimal GMM estimators which are 

asymptotically equivalent to Sξ . 

A consistent GMM estimator can be obtained by minimizing (6) replacing the 

weighting matrix by any conformable and asymptotically nonstochastic positive definite 

matrix.  Consider the GMM estimator which minimizes the following function: 

 ( ) ( ) ( )1

, 1 , , 1
1 1ˆ( | , ) ( ) ( ) ,N N

S N i i S i ww S i i S ir A p N H u w H AH H u w
N N

ξ β
−

= =

′⎛ ⎞ ⎛′ ′ ′= Σ ⊗ ⊗Ω Σ ⊗⎜ ⎟ ⎜
⎝ ⎠ ⎝

,β ⎞
⎟
⎠

 (8) 

where ( )H H θ= ,  1
, 1 ,

ˆ N
ww S i S i S iN w w−

= ,′Ω = Σ , and A is a T×T positive definite matrix.  Observe 

that the weighting matrix ( ) 1

,
ˆ

ww SH AH
−

′ ⊗Ω  contains the unknown parameter vector θ .  The 
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usual two-step and iterative GMM procedures estimate the parameters in the weighting matrix 

and the moment function (for example, ( ) 1

,
ˆ

ww SH AH
−

′ ⊗Ω  and 1
1 , ( )N

i S iN m ξ−
=Σ , respectively, 

in our case) sequentially.  In contrast, we estimate θ  in the moment functions in , ( )S im ξ  and 

the weighting matrix ( ) 1

,
ˆ

ww SH AH
−

′ ⊗Ω  concurrently.  Thus, the GMM estimator minimizing 

(8) has a flavor of the continuous-updating estimator of Hansen, Heaton and Yaron (1996). 

  The relationship between continuous-updating GMM and the usual two-step GMM in 

the estimation of model (1) is the same as the relationship between Limited Information 

Maximum Likelihood (LIML) and Two-Stage Least Square (2SLS) in the estimation of a 

system of simultaneous equations.  An important advantage of the LIML estimator over 2SLS 

is that it is invariant to the normalization used to express the simultaneous equations.  The 

continuous-updating GMM estimator that minimizes (8) has the similar property:  It is 

invariant to the normalization of Ξ . 

  While the function (8) is highly nonlinear, the estimation procedure can be simplified 

as follows.  Define: 

   , 1 ,
1ˆ ( ) ( )N

wu S i S i i iw y X
N

β β= ′Ω = Σ − . 

Then, it can be shown that the criterion function (8) equals: 

   ( )1
, , ,

ˆ ˆ ˆ( ) ( ) ( ) ( )wu S ww S wu SN trace H H H AHβ β−′ ′ ′× Ω Ω Ω 1− . (9) 

While the matrix H is a function of θ , we can consider the minimization of (9) with respect to 

H and β .  For given β , the H matrix that minimizes (9) is the matrix of the eigenvectors 

corresponding to the (T-p) smallest eigenvalues of the matrix 

   1 1
, , ,

ˆ ˆ ˆ( ) ( ) ( )wu S ww S wu SA β β− −′Ω Ω Ω . 

(See Magnus and Neudecker, 1999, Chapter 11).  Given H, the β  value minimizing (8) or (9) 

is obtained by: 
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( )

( )

1

1 , , 1 ,

1

1 , , 1

1 1ˆ( ) ( )

1 1ˆ( ) (

N N
i i S i ww S i i S i

N N
i i S i ww S i i S i

H X w H AH H X w
N N

H X w H AH H y w
N N

−

= =

−

= =

⎛ ⎞′⎛ ⎞ ⎛ ⎞⎜ ⎟′ ′ ′Σ ⊗ ⊗Ω Σ ⊗⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
′⎛ ⎞ ⎛′ ′ ′× Σ ⊗ ⊗Ω Σ ⊗⎜ ⎟ ⎜

⎝ ⎠ ⎝
, ) .⎞⎟
⎠

 (10) 

Thus, we can obtain consistent estimates of β  and H by computing β  and H iteratively until 

the results converge.  Let  be the estimate of the unrestricted H obtained from this iterative 

procedure.  Partition 

Ĥ

ˆ ˆ ˆ( ,T p pH H H−
′ ′)′=  such that ˆ

T pH −  is a (T-p)×(T-p) square matrix.  Then, 

 is the value of  that minimizes (8). 1ˆ ˆ ˆ( )p T pH H −
−′Θ = ′Θ

  The GMM estimator obtained by the above iterative procedure is suboptimal.  This is so 

because the weighting matrix used in (8) is suboptimal.  However, an optimal GMM estimator 

can be obtained by the above iterative procedure if the instruments in  satisfy the following 

assumption, which we call the “no conditional heteroskedasticity” (NCH) condition: 

,S iw

 (NCH)  ,( | )i i S iE w εε ε ′ = Σ , for all i.  

This condition holds if the error terms in iε  are stochastically independent of the variables in 

.  Under this assumption,  iSw ,

   , (11) ( ), , ,( ) ( ) (o o S i o o S i S i o o S i S iVar H u w H H E w w H H E w wεβ′ ′ ′ ′⊗ = Σ ⊗ = Σ ⊗ , , )′

where ( )o oH H θ=  and [ ( ) ( ) ]i o i oE u uβ β ′Σ = .  Thus, the optimal weighting matrix will have 

the form of , where 1
,

ˆˆ[ ]ww SH H −′Σ ⊗Ω 1
1

ˆ ˆˆ ( ) ( )N
i i iN u uβ β−
= ′Σ = Σ  is a consistent estimator of Σ .  

An optimal GMM estimator of ξ , say ( , )S S Sξ β θ′ ′ ′= , can be obtained by minimizing (8) with 

the matrix A replaced by .  In addition,  can be used as a model specification test 

statistic.  This statistic simply equals the sum of the first (T-p) smallest eigenvalues of the 

matrix 

Σ̂ ,
ˆ( | , )S N Sr ξ Σ p

   1 1
, , ,

ˆ ˆ ˆˆ( ) ( ) ( ) ( )wu S S ww S wu S Sβ β− −′Σ Ω Ω Ω , 
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and is asymptotically equivalent to  when NCH holds.  An empirical application of 

this iterative method appears in a companion paper of ours (Ahn, Lee and Schmidt, 2005).  

, ( | )S N SJ ξ p

 

3.2      Estimation and Testing Using Weakly Exogenous Instruments 

When weakly exogenous instruments are available (in addition to strictly exogenous ones), a 

more (asymptotically) efficient estimator can be obtained by using them in GMM.  Define: 

   , , , 1 ,( , ,..., )j i S i W i W ijw w x x′ ′ ′= ′ ,  j = 1, ... , T-p. (12) 

where ,j iw  contains qj variables.  Observe that all of the variables in ,j iw  are also included in 

1,j iw + .  However, in practice, one does not need to keep this structure of the instruments.  Only 

subsets of ,j iw could be used for GMM. 

  Clearly, under BA, SE and WE, 

   ,( | ) 0is j iE wε = ,  s ≥  j,  j = 1, ... , T-p. (13) 

Thus, we have the following moment conditions at p = po: 

   

1 1, 1,

2 2, 2,

,

, ,

( ) ( )
( ) ( )

( ( )) :

( ) ( )

o i o i

o i o i

W i o

T p T p o i o T p i

H u w
H u w

E m E

H u w

θ β
θ β

ξ

θ β− − −

0

′⎛ ⎞
⎜ ⎟′⎜≡ =⎜
⎜ ⎟
⎜ ⎟′⎝ ⎠

⎟
⎟

)

.  (14)  

These moment conditions hold because ,( ) (j j o i oH uθ β′  does not depend on 1iε , ... , , 1i jε −  (by 

the structure of H given in (2)), so that ,( ( ) ( ) )j o i o j iE H u wθ β′  = 0. 

  Differently from cases with only strictly exogenous instruments, a simple 

continuous-updating GMM procedure is not immediately available.  Instead, we here consider 

a two-step GMM procedure that can also lead to an optimal estimator under some conditions.  

For this procedure, let  be an arbitrary (T-p)×(T-p) invertible lower triangular 1( ,..., )T pD d d −=
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matrix.  Let DD ′′Θ = Θ  and ( )D vecθ D′= Θ .  With this notation, we can define: 

   1 1 1( ) ( ( ), ..., ( )) ( ( ) , ..., ( ) ) ( )D D D D D D
T p T p T pH H H H d H d H Dθ θ θ θ θ− − −= ≡ θ= .     

Observe that by the construction of ( )D DH θ , ( ) (D D )j j i oH uθ β′  remains uncorrelated with the 

instruments in ,j iw .  Thus, at op p= , we have the following moment condition: 

    ,  (15)  

1 1, 1,

2 2, 2,
,

, ,

( ) ( )
( ) ( )

( ( )) :

( ) ( )

D D
o i o i

D D
o i o iD D

W i o

D D
T p T p o i o T p i

H u w
H u w

E m E

H u w

θ β
θ β

ξ

θ β− − −

′⎛ ⎞
⎜ ⎟′⎜≡ =⎜
⎜ ⎟
⎜ ⎟′⎝ ⎠

0⎟
⎟

D ′where .  In general, the GMM estimator based on the moment condition (14) is 

different from the estimator based on (15).  However, if all of the variables in 

( , )Dξ β θ ′′=

,j iw  are included 

in 1,j iw + , the conditions (15) are one-to-one transformations of those in (14).  Thus, for such 

cases, the optimal GMM estimator based on (14) should be asymptotically equivalent to its 

counterpart based on (15).  

A consistent GMM estimator based on the moment conditions (15) can be obtained by 

minimizing the following criterion function: 

 
( )

( )

1

, 1 , ,1 , 1

1

1 , , ,

1 1ˆ ˆ( | ) ( ) ( ,..., ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( ),

D N D D N D
W N i W i ww ww T p i W i

T p D D D D
j j j wu j ww j wu j j j

r p N m diag m
N N

N H H

ξ ξ

θ β β θ

−

= −

−−
=

′⎛ ⎞ ⎛ ⎞= Σ Ω Ω Σ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

′ ′= Σ Ω Ω Ω

,
Dξ=

,

 (16) 

where  and 1
, 1 ,

ˆ N
ww j i j i j iN w w−

= ′Ω = Σ 1
, 1 ,

ˆ ( ) ( )N
wu j j j i iN w uβ β−

= ′Ω = Σ .  This function can be 

minimized by an iterative procedure.  For given ( )D DH θ ,  the value of β  minimizing 

 equals , ( | )D
W Nr ξ p
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( )

( )

1
1

1 1 , , 1 ,

1 * *
1 1 , , 1 ,

1 1ˆ( ) ( )

1 1ˆ( ) ( )

T p N D D N D D
j i i j j j i ww j i j i j j i

T p N D D N
j i i j j j i ww j i j i j j

X H w w H X
N N

.iX H w w H y
N N

θ θ

θ θ

−
−−

= = =

−−
= = =

⎡ ⎤⎛ ⎞ ⎛′ ′ ′Σ Σ Ω Σ⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
⎛ ⎞ ⎛′ ′ ′×Σ Σ Ω Σ⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

⎞
⎟
⎠

   

Define  1
, , ,

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )j wu j ww j wu jβ β −′Δ = Ω Ω Ω β .  Then, for given β, the solutions for the D
jθ  are 

obtained by minimizing ˆ( ) ( ) ( )D D D
j j j j jH H Dθ β θ′Δ .  Since these functions are quadratic in the 

D
jθ , closed-form solutions exist.  Thus, similarly to the case of strictly exogenous instruments 

only, we can obtain an optimal GMM estimator of β  and *θ  by estimating the two parameter 

vectors iteratively.  The original parameter vector ′Θ  can then be estimated by 1D D−Θ . 

  The above iterative procedure can lead to an asymptotically optimal GMM estimator, if 

we assume the following condition:  

   , , , 1 ,( | , ..., , , ..., , ) ( )is it S it S iT W i W it i is itE x x x x f Eε ε ε ε= , s ≥  t, t = 1, ... , T, for all i. (17) 

This condition implies that the unconditional variances and covariances of the error terms are 

the same as their conditional counterparts given all of the current and past values of weakly 

exogenous regressors, and the time-invariant variables.  This condition has been assumed in 

many empirical studies based on the rational-expectations model (i.e., Hayashi and Sims, 

1983; Keane and Runkle, 1992; and Wooldridge, 1996).  Studies of dynamic panel data models 

also often assume this condition strengthening it with the assumption of no autocorrelation in 

the errors (i.e., Anderson and Hsiao, 1981; Arellano and Bond, 1991; Ahn and Schmidt, 1995; 

and Blundell and Bond, 1998). 

  Under (17), we have:  

 , , , , , , , , , , , ,( ) ( ) ( ) ( )D D D D D D
j o i i k o j i r j j o i i r o j i r i j o r o j i r iE H H w w E H H E w w H H E w wε ε ε ε′ ′ ′′ ′ ′ ′= = Σ ′

, )

, 

where , (D D D
j o j jH H oθ= , and j, r = 1, ... , T-p.  Now, let  be a (T-p)×(T-p) lower triangular 

matrix such that 

*D

* * 1[ ( ) ( )]o oD D H Hθ θ −′ ′= Σ  where [ ( ) ( ) ]i o i oE u uβ β ′Σ = .  Observe that 
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* ( ) ( )o oD H H D Iθ θ −
′ ′Σ =*

T p .  Thus, when *D D= , 

 ( ), 1, 1, ,( ) [ ( ), ..., ( )]D D
W i o i i T p i T p iVar m diag E w w E w wξ − − ,

′ ′= , (18) 

because , ,
D D
j o r oH H′Σ  = 1 if j = r, and , ,

D D
j o r oH H′Σ  = 0 if j ≠ r.  This implies that the weighting 

matrix  in (16) is optimal for GMM based on (15).  1
,1 ,

ˆ ˆ[ ( , ..., )]ww ww T pdiag −
−Ω Ω

 

3.3. Identification 

In subsection 3.1, we have shown that Assumption (BA.5) is important to identify po and oβ .  

The assumption can be violated if the model (1) contains time-invariant regressors and/or some 

variables that vary over time but not over individuals (e.g., time-dummy variables).  In this 

subsection, we reexamine these two cases in detail.  Bai (2005) consider the same cases when  

both N and T are large. 

  Consider the case in which the model (1) contains time-invariant regressors and o iαΞ  

contains a time-invariant component; that is, ( )i i o T i o o iy X e f iβ γ α ε′= + + Ξ + , where eT is a 

linear combination of the columns of oΞ .  As discussed above, the parameter vector γ  is not 

identified for this model.  The non-identification of the effects of the time-invariant regressors 

could be a problem when a researcher wishes to estimate the effects of such variables on the 

dependent variable and test their statistical significance.  There is a way to test the 

insignificance of time-invariant regressors even if o iαΞ  contains a time-invariant component.  

If the variables are important regressors, and if the model (1) is estimated by GMM without 

those variables, the individual effects iαΞ  will absorb the effects of the time-invariant 

regressors, and thus have a time-invariant component.  If so, the matrix H, which is orthogonal 

to Ξ , must be also orthogonal to .  Thus, if a Wald test from the GMM estimation of (1) 

without time-invariant regressors rejects the hypothesis 

Te

( ) 0o TH eθ ′ = , it could be interpreted 

as evidence that time invariant regressors are not important and all of the individual effects are 
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time-varying. 

  There is another way to estimate po consistently even with time-invariant regressors.  

We can do so by estimating the model (1) allowing the coefficients of such regressors to vary 

over time.  To be more specific, we rewrite the model with the time-invariant regressors fi as 

   1 ,( )r
i i T i i i j T j i T j iy X e f u X I f e iβ γ β γ α=′= + + = + Σ ⊗ +Ξ + ε , (19) 

where 1( ,..., )
fkγ γ γ ′= , and fk  is the number of regressors in 1, ,( ,..., )

fi i kf f f ′i= .  If we 

premultiply the model by ( )H θ ′ , we have: 

   *
1 ,( ) ( ) ( ) ( )fh

i i j T p j i jH y H X I f H iθ θ β γ θ= −′ ′= + Σ ⊗ + ε′ , (20) 

where * ( )j T jH eγ θ γ′= .  When ( )( ) 0o T T pH e 1θ − ×′ = , the model (20) cannot identify the original 

parameter vector γ .  However, even for this case, the unrestricted parameter vectors *
jγ  (j = 

1, ... , fk ) can be identified.  Thus, applying GMM to the model (20) treating *
jγ  (j = 1, ... , fk ) 

as unrestricted parameter vectors, we can estimate all parameter vectors and the true value of p 

consistently even if ( ) 1( ) 0o T T pH eθ − ×′ = .  Using the unrestricted GMM regression results, we 

can also test the hypothesis that  ( )( ) 0o T T pH e 1θ − ×′ = .  If this hypothesis is rejected, it would 

imply that the individual-effects iαΞ  do not contain any time-invariant component.  Thus, we 

can estimate the original coefficients jγ ’s consistently by reestimating the model (20) with the 

restrictions * ( )j T jH eγ θ γ′=  at the value of p estimated from the unrestricted GMM. 

  However, for two reasons, the unrestricted GMM method is not a complete solution for 

the non-identification problem.  First, too many parameters are involved in the model (20), 

especially when the number (kf) of time-invariant regressors is large.   This is so because the 

number of the unrestricted parameters to be estimated is k + (T-p)(p+kf), where k is the number 

of time-varying regressors.  Thus, the unrestricted GMM estimates of the model (20) may have 
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poor finite-sample properties.  Second, if the hypothesis ( )( ) 0o T T pH e 1θ − ×′ =  is not rejected, we 

are still unable to estimate the parameter vector γ  consistently. 

 We now consider the case in which the model (1) contains some variables that vary 

over time but not over individuals.  Denote these variables by G, where the tth row of G is tg′ .  

Using these variables, we can rewrite the model (1) as ( )i i o o o iy X G iβ λ α ε= + + Ξ + .  The 

parameter vector λ can be identified if the number of columns of G (kg) is smaller than (T-po).  

For this case, the matrix (  will be generally of full column rank so that (BA.5) holds.  In 

contrast, if k

, )oG Ξ

g > (T-po), λ is not identified.  One example of this case is the case with T 

time-dummy variables (e.g., G = IT).  For such cases, the number of columns of the matrix 

, k( , )oG Ξ g+p,  is greater than T.7  But since [( , )]orank G TΞ ≤ , some of the columns of 

 should be linearly dependent.  Let ( , )oG Ξ 1 2( , )G G G= , where  and  have (k1G 2G g+po-T) 

and (T-po) columns, respectively.  Assume that 2( , )oG Ξ  is full column rank.  Then, for some 

matrices C and D, 1 2 oG G C D= + Ξ .  Then, with 1 2( , )λ λ λ′ ′ ′= , 

 * *
1 1, 2 2,( ) ( ) ( )o o i o o o i oG G d G Cd Dd G iλ α λ λ α λ+ Ξ = + + − + Ξ − ≡ + Ξ α

                                                

, 

for any conformable vector d.  In this case, for any conformable vector λ, there always exists a 

matrix H that is orthogonal to both  and G. oΞ

  Differently from the case in which Xi contains time-invariant regressors, we do not have 

an immediate solution for the non-identification problem of the G-type regressors.  If po is 

known, researchers could use up to (T-po) G-type regressors in estimation.  However, when po 

is unknown, we are unable to determine how many G-type regressors can be used in estimation.  

The GMM estimation with too many G-type regressors would result in biased estimates of po 

and the regression coefficients.  It would be desirable to estimate the model (1) without the 

 
7 The time effects could be identified if we can assume ( ) 0iE α = .  Under this assumption, we can have T 

additional moment conditions [ ( )] ( )i o o o i oE u Eβ λ α= +Ξ = λ . These moment conditions, with the conditions (5) 

or (14), are sufficient to identify the vector of time effects oλ . 
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G-type regressors leaving their effects to be absorbed by iαΞ . 

 

4. Monte Carlo Simulations    

Our simulations are based on the model with two factors: 

 1, 1, 2, 2, 1 1 2 2[2( ) ]it o it o it t i t i ity x xβ β ξ α ξ α= + + + + ε . (21) 

We set 1, 2, 1o oβ β= = .  The two time-varying factors 1tξ  and 2tξ  are drawn from a uniform 

distribution with range between zero and two [U(0,2)], and the two unobservable individual 

effects, 1iα  and 2iα , and the error terms itε  are drawn from N (0,1).8  The two regressors 1,itx  

and 2,itx  are generated by the following process: 

 , ,
x

j it x jt ji ji j itx g vαφ ξ α= + + , 

where 0 1xαφ≤ ≤ ,  j = 1, 2, and the time-invariant components jig  and time-varying 

components ,
x
j itv  are drawn from N(0,1).  Thus both of the regressors 1,itx  and 2,itx  are strictly 

exogenous with respect to the itε .  Two time-invariant variables are additionally generated by 

z
ji f ji ji jif g vαφ α= + + , where 0 1fαφ≤ ≤ , and the z

jiv  are from N(0.1).  In our experiments, 

these two variables, in addition to the time-varying regressors  and , are used as 

instruments.  

itx ,1 itx ,2

Each of our experiments consists of 5,000 independent replications.9  The model (3) is 

estimated by the iterative method introduced in section 3.1.  We consider twenty-one different 

data generating processes varying the values of N, T, xαφ , and fαφ . 

                                                 
)8 As (21) indicates, we generated data multiplying the individual effect components 1 1 2 2( t i t iξ α ξ α+ by two.  The 

sizes of the biases in the traditional within and OLS estimators will be smaller (greater) if the components are 

multiplied by smaller (larger) numbers.     

9 The ξjt are generated only once and they are repeatedly used for each of the 5,000 replications. 
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 We estimate p  using both the sequential test (Proposition 2) and criterion function 

(Proposition 3) methods.  For the sequential method, we have tried two types of significance 

levels: one group depending on both N and T; and the other only on N.  As we have discussed in 

section 3.1, the sequential test method requires us to adjust the significance level with the size 

of N.  We found from simulations that the sequential method could produce better estimates if 

the significance level is adjusted with the size of T as well as that of N, if the regressors and 

individual effects are not highly correlated.  We have tried a number of different significance 

level decision rules.  But to save space, we report only two cases: 

 J1:  ; 1
, 2( / )N Tb T= N

 J2:  . 2 10 /Nb N=

The significance level depends on both  N  and T  for the first case, but only on N  for the second 

case.  The functions 1
,N Tb  and  are chosen so that the significance level equals 10% when N 

= 100 and T = 5.  

2
Nb

 For the criterion function method, we consider three functional forms: 

 AIC:  ,  . 1)( =Nf ( ) 2 [( )( ) ]g p q p T p k= − − −

 BIC1: ( , ) (ln ) /(ln )f N T N T= ,  ( ) 0.75 [( )( ) ]g p q p T p k= − − − . 

 BIC2: ,  ( ) ln( ) / ln(5)f N N= ( ) 0.75 [( )( ) ]g p q p T p k= − − − . 

The AIC criterion is from Cragg and Donald (1997).  As they point out, the estimated p by AIC 

may not be consistent because the value of ( )f N  is fixed at one.  However, we consider AIC to 

compare its performance with that of the two BIC criteria.  Notice that the function f  in BIC1 

depends on both N and T, while that in BIC2  depends only on N.  But the two BIC criteria are 

equivalent if T = 5.  In unreported simulations, we have tried many other functional forms for 

( )f N  and .  But their performances were similar to those of BIC1 and BIC2, especially 

when N is large. 

( )g p

 To quantify the influence of the number of instruments on the GMM estimators, we 
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estimate p using three different set of instruments.  We index these sets by A, B, and C: 

 A: , 1, 1 1, 2, 1 2, 1, 2,( ,..., , ,..., , , )A i i iT i iT iw x x x x f f i ′=   

 B: , 1, 2, 1, 1 1, 2, 1 2, 1, 2,( , , , , , , , )B i i i i iT i iT i iw x x x x x x f f ′=  

 C: , 1, 2, 1, 1 1, 2, 1 2,( , , , , , )C i i i i iT i iTw x x x x x x ′=   

Set A contains (2T + 2) instruments:  f1,i, f2,i, and all of the leads, current and past values of x1,it 

and x2,it.  Thus, for the cases with set A, the number of instruments increases with T.  In 

contrast, the numbers of instruments in B and C do not depend on T.  Both the instrument sets B 

and C contain the individual means, and the first-period and last-period observations of the 

regressors:  that is, six instruments.  But set B contains two additional instruments, 1,if  and 

2,if .  

 Set A contains all the instruments in set B, while all the instruments in C are in B.  Thus 

the GMM estimators of 1β  and 2β  based on sets A and C should be asymptotically most and 

least efficient, respectively, if they are computed with the true value of p.  However, we are 

unable to predict which set of instruments would produce the most reliable estimate of p. 

 Table 1 reports the means and root mean squared errors (RMSE) of the five GMM 

estimators of  p: AIC, BIC1, BIC2, J1 and J2.  The simulation data for this table are generated 

with 1x fα αϕ ϕ= = .  The instruments used are those in set A.  We consider nine different 

combinations of N and T: N = 100, 300 and 500, and T = 5, 7, and 10.  For the criterion function 

methods, we set the maximum value of p at four. 

 When N = 100, all methods tend to overestimate p.  Overall, the BIC2 estimator 

performs the best in terms of both bias and RMSE.  In fact, the performance of the BIC2 

estimator is amazingly good: it picks the correct value of p over 95% of the time, for every 

choice of N and T (although the table does show this fact).  The AIC estimator, followed by J2, 

performs better than the BIC1 and J1 estimators.  The (upward) biases in the estimated p by 
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BIC1 and J1 tend to increase with T.  When N = 300 or N = 500, all of the methods produce 

smaller biases and RMSEs.  The BIC2 estimator still dominates the others, but to a lesser extent.  

The degrees of overestimation by BIC1 and J1 still tend to increase with T, but only mildly so. 

Differently from the cases with N = 100, the J2 estimator has smaller bias and variability than 

the AIC estimator.  The latter estimator has somewhat larger bias and RMSE than the BIC1 and 

J1 estimators.  Nonetheless, the AIC estimator performs reasonably well regardless of T and N, 

despite the lack of any theory predicting its consistency.  This result is consistent with what 

Cragg and Donald found from their simulations.  

 Table 2 reports the means of the relative biases in the estimated 1β  and 2β obtained 

using the values of p estimated by the five selection methods.  The reported numbers are 

relative biases: that is, ,
ˆ100 ( ) /j j o j ,oβ β β× − , j = 1,2.  But the true value of β is one, so the 

relative biases are just bias times 100.  The RMSEs of the estimated coefficients are reported in 

parentheses.  For comparison, the table also reports the results from the ordinary least squares 

(OLS) and the conventional within estimators.   Not surprisingly, the OLS and within 

estimators are biased regardless of sample size.  The relative biases in these two estimators are 

greater than 17 percent in all the cases reported in the table, and greater than 50 percent for 

most of the cases.  In contrast, the GMM estimators have only small biases, even for the cases 

with N = 100.  The relative biases in the GMM estimators are smaller than 1% in any case 

reported.  The RMSEs of the GMM estimators are also considerably smaller than those of the 

OLS and within estimators.  The relative bias and variability in the estimated coefficients by 

BIC1 and J1 are quite comparable to those for the other estimates, even if N is small, despite the 

fact that the two methods tend to overestimate the true number of factors (Table 1).  It appears 

that the GMM estimates of 1β  and 2β  computed with overestimated p are as reliable as those 

by the GMM estimates computed with the true number of factors.   

 The finite sample properties of the GMM estimators of p should depend on the degree 
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of correlation between the individual effects and the instruments (the two regressors, 1,itx  and 

2,itx , and the two instruments, 1,if  and 2,if , that are not regressors, but correlated with the 

effects).  Table 3 reports the finite-sample performances of the GMM estimators of p for three 

cases with different levels of correlation between the effects and the regressors (x), and 

between the effects and the instruments that are not regressors (f).   

For the cases with N = 300 and 500, the biases and RMSEs of the five GMM estimators 

are generally small.  They are also not sensitive to the level of correlation between the 

instruments and the effects. The BIC2 estimator has the smallest bias and RMSE, but only by a 

small margin.  All of the estimators select the correct value of p with high probability, but there 

is a slight tendency to overestimate p. 

 For N = 100, the results are rather different.  The performances of the five GMM 

estimators are still not significantly related to the level of correlation (controlled by fαφ ) 

between the effects and the instruments that are not regressors.  However, the level of 

correlation (controlled by xαφ ) between the effects and the regressors now makes a difference.   

These differences are substantial for all of the estimators except BIC1.  When the correlation is 

high we have a slight tendency to overestimate p, whereas when the correlation is low we have 

a clear tendency to underestimate p.  For example, when xαφ  = 0.2, the BIC2 estimator picks 

the true value of p slightly more than half of the time.10

The results reported in Table 3 provide us some limited guidance for empirical studies.  

If the number of cross-section units is large, all of the five GMM estimators of p perform well, 

although the BIC2 estimator dominates the others by a small margin.  In contrast, for data with 

small N, the BIC2 estimator tends to underestimate the number of unobservable factors when 

the regressors are not highly correlated with the unobservable individual effects.  In practice, 

                                                 
10 Specifically, the estimates of p are exactly equal to two (po) 57.9% of the time, greater than two 0.6% and 

smaller than two 41.5%.  
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we are unable to estimate the correlation between the regressors and the effects, because the 

latter are not observable.  Thus, with small N, researchers may need to estimate the number of 

factors using different criteria (e.g., BIC1 and BIC2, or J1 and J2) as a robustness check.11   

 The results reported in Tables 1-3 are obtained from the simulations using instrument 

set A.  In order to investigate how the number of instruments could influence the finite-sample 

properties of the GMM estimators, we also estimate the number of factors and regression 

coefficients using instrument sets B and C.  The results are reported in Tables 4 and 5.  Table 4 

shows that the GMM estimators computed using a smaller set of instruments tend to 

overestimate p, especially when N = 100, but only by a small margin.  It appears that the 

estimators of p are not overly sensitive to the number of instruments. 

Panel I of Table 5 reports the finite-sample (relative) biases and RMSEs of the GMM 

estimators of the regression coefficients.  The estimators are computed using the estimated 

numbers of factors by the five decision methods.  There is very little bias to discuss.12  For any 

estimator, RMSE generally decreases as N increases.  In addition, the RMSE generally 

increases as a smaller number of instruments are used, even if N is large.  It appears that the 

GMM estimators of the regression coefficients have greater variability when they are 

computed with a smaller number of instruments.  For many cases reported in Panel I, the BIC2 

estimator has the smallest variability.  But as N increases, the RMSEs of the other GMM 

estimators become closer to those of the BIC2 estimator. 

 We also investigate the finite-sample size properties of the t-tests based on the 

coefficient estimates.  Panel II of Table 5 shows the rejection rates (sizes) of the t-tests for the 

hypotheses of 1, 1oβ =  or 2, 1oβ = .  That is, we report the percentages of the 5,000 replications 

                                                 
11 Of course, all of these estimators are valid asymptotically, as N increases with T fixed, and so there is really no 

expectation that any of these procedures should be reliable when N is small. 
12 The largest relative bias is 0.410, and the true value of the parameter is one, so this corresponds to a bias of only 

0.004.  With 5000 replications this bias is significantly different from zero, but it is numerically unimportant. 
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in which the true null hypotheses are rejected.   Ideally, they should be close to 5% since we test 

the hypotheses at a 5% nominal significance level.  Whatever GMM estimator is used, the 

t-tests tend to over-reject the correct hypotheses, especially when N = 100.  The degree of 

over-rejection generally (although not always) falls as N increases.  When N = 100, the actual 

sizes of the t-tests computed with the instruments of set C are closest to nominal size (5%).  

When we use less instruments, the estimators have larger variances (Panel I) but in contrast the 

asymptotic distribution on which the t-test relies is more reliable and so we are closer to 

nominal size (Panel II).  For the cases with N = 300 or 500, the number of instruments used 

does not seem to have any noticeable effect on the size of the test.       

 Our simulation results can be summarized as follows.  First, when the sample size is 

large (N = 300 or more in our experiments), our GMM method estimates the number of factors 

and regression coefficients quite accurately.  The distributions of the estimators are not 

sensitive to the number of instruments used or to the correlations between the unobservable 

individual effects and regressors.  Second, regardless of the sample size, the GMM estimators 

of the regression coefficients computed with estimated numbers of factors have much smaller 

biases and RMSEs than the OLS or the within estimators.  Third, when the sample size is small 

(N = 100 in our experiments), the finite-sample properties of our GMM estimator depend on 

the criterion functions or the significance levels used to estimate the number of factors.  The 

BIC2 and J2 methods provide more reliable estimates when the regressors are not weakly 

correlated with the individual effects.  But if the regressors are only weakly correlated with 

individual effects, the BIC1 or J1 methods would be better alternatives.  Since the individual 

effects are unobservable, in practice, we are unable to estimate the correlation between the 

effects and the regressors.  Thus, when the sample size is small, it would be good practice to 

estimate the number of factors by several different selection methods as a robustness check.  

Fourth, the number of instruments used does not have substantial effect on the biases and 

RMSEs of the GMM estimates of the number of factors.  When N is small, the coefficient 
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estimates may have larger variances if a smaller number of instrumental variables are used.  In 

contrast, the t-tests applied to estimated coefficients would be more reliable with a smaller 

number of instruments.  The t-tests tend to over-reject correct null hypotheses, but the degree of 

over-rejection decreases with the sample size.  

 

5. Concluding Remarks 

This paper has considered a panel model with time-varying unobservable effects.  We consider 

the case of  data with small T and large N.  The model resembles the structural equation model 

which is popularly used in the literature of factor analysis.  But the two models are different in 

two respects.  First, the model we consider has a property of the fixed-effects model in that the 

effects are correlated with the regressors.  Second, we do not impose a diagonal structure on the 

variance matrix of the error terms.  Thus, unless we make some parametric restrictions on the 

correlations between the effects and the regressors, we are unable to use the Jöreskog-type 

(1967) maximum likelihood method to estimate the model.  The GMM method we propose can 

estimate regression coefficients consistently without imposing such restrictions.  The number 

of factors can be consistently estimated by sequential model testing or BIC-type criterion 

function methods. 

  When both N and T are large, the model can be consistently estimated by nonlinear least 

squares (Bai, 2003, 2005; and Bai and Ng, 2002).  However, when the number of time-series 

observations is small, the nonlinear least squares estimator is inconsistent when the error terms 

are not white noise.  The GMM method we propose avoids this problem.  Our simulation 

results indicate that the proposed GMM estimators generally have good finite-sample 

properties unless N is relatively small (e.g. N = 100). 

  The model we consider in this paper could be used in a broad range of empirical 

research.  In addition to the examples discussed in the introduction section, the model can be 

used to estimate the stochastic production frontier model with time-varying technical 
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inefficiencies.  In a companion paper (Ahn, Lee and Schmidt, 2005), we use the model and the 

proposed GMM method to estimate the frontier production function of Indonesian farms.  

Interested readers may refer to that paper.  
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Table 1: Monte Carlo Results for Estimation of Number of Factors 
The simulation data are generated with φxα = φfα = 1.0 and two factors (po = 2).  The instruments used are two 

time-invariant variables and all of the leads and lags of the two time-varying regressors (set A).  

 
AIC BIC1 BIC2 J1 J2  

 
N 

 
 

T p p p p p 

100 5  2.063a 

   (0.253)b
2.033 

(0.190) 
2.033 

(0.190) 
2.090 

(0.321) 
2.090 

(0.321) 

 7 2.040 
(0.202) 

2.157 
(0.412) 

2.015 
(0.122) 

2.148 
(0.417) 

2.100 
(0.341) 

 10 2.008 
(0.089) 

2.636 
(0.930) 

2.001 
(0.032) 

2.240 
(0.555) 

2.070 
(0.367) 

300 5 2.084 
 (0.297) 

 2.007 
(0.084) 

2.007 
 (0.084) 

2.033 
 (0.187) 

2.033 
 (0.187) 

 7 2.069 
(0.266) 

2.025 
(0.158) 

2.001 
(0.032) 

2.040 
(0.210) 

2.027 
 (0.167) 

 10 2.053 
(0.232) 

2.134 
(0.379) 

2.000 
(0.000) 

2.057 
  (0.255) 

2.027 
  (0.173) 

500 5 2.085 
  (0.297) 

2.003 
  (0.055) 

2.003 
  (0.055) 

2.020 
  (0.145) 

2.020 
  (0.145) 

 7 2.079 
  (0.283) 

2.009 
  (0.095) 

2.001 
  (0.032) 

2.020 
  (0.141) 

2.013 
  (0.114) 

 10 2.072 
  (0.272) 

2.062 
  (0.253) 

2.000 
  (0.000) 

2.041 
  (0.212) 

2.020 
  (0.152) 

a Average of estimates. 
b The numbers in (•) are root mean squared errors.
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Table 2: Monte Carlo Results for Estimation of Regression Coefficients 
The simulation data are generated with φxα = φfα = 1.0 and two factors (po = 2).  The instruments used are two time-invariant variables and all of the leads and lags of 

the two time-varying regressors (set A).  

 

  OLS Within AIC BIC1 BIC2 J1 J2 

N T β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

100 5  53.22a 

(0.542)b
74.27 

(0.750) 
 58.22 

(0.588) 
17.34 

(0.190) 
 0.071 

(0.060) 
0.084 

(0.061) 
0.069 

(0.059) 
0.080 

(0.060) 
0.069 

(0.059) 
0.080 

(0.060) 
0.072 

(0.061) 
0.062 

(0.062) 
0.072 

(0.061) 
0.062 

(0.062) 

 7 
65.66 

(0.665) 
79.69 

(0.803) 
51.27 

(0.518) 
54.82 

(0.554) 
-0.031 

(0.043) 
-0.040 
(0.044) 

-0.005 
(0.044) 

-0.028 
(0.046) 

-0.028 
(0.042) 

-0.061 
(0.043) 

-0.003 
(0.044) 

-0.011 
(0.045) 

-0.008 
(0.043) 

-0.035 
(0.045) 

 10 
 81.59 

(0.823) 
100.37 

(1.009) 
 56.77 

(0.572) 
48.96 

(0.495) 
-0.129 

(0.036) 
-0.215 

(0.036) 
-0.023 

(0.040) 
-0.134 

(0.039) 
-0.131 
(0.036) 

-0.221 
(0.036) 

-0.050 
(0.038) 

-0.160 
(0.037) 

-0.032 
(0.037) 

-0.121 
(0.036) 

300 5 
 90.54 

(0.907) 
51.72 

(0.521) 
 35.20 

(0.355) 
61.57 

(0.618) 
 0.007 
(0.034) 

-0.014 
(0.034) 

0.028 
(0.032) 

0.000 
(0.032) 

0.028 
(0.032) 

0.000 
(0.032) 

0.021 
(0.033) 

0.004 
(0.032) 

0.021 
(0.033) 

0.004 
(0.032) 

 7 
78.44 

(0.786) 
57.96 

(0.583) 
62.85 

(0.630) 
66.52 

(0.667) 
 0.030 
(0.023) 

-0.016 
(0.023) 

0.036 
(0.023) 

-0.015 
(0.023) 

0.029 
(0.023) 

-0.023 
(0.023) 

0.041 
(0.023) 

-0.018 
(0.023) 

0.035 
(0.023) 

-0.016 
(0.023) 

 10 
99.15 

(0.993) 
79.55 

(0.798) 
32.14 

(0.323) 
49.58 

(0.497) 
-0.073 

(0.020) 
-0.053 

(0.020) 
-0.072 
(0.021) 

-0.047 
(0.021) 

-0.074 
(0.020) 

-0.058 
(0.020) 

-0.072 
(0.020) 

-0.055 
(0.020) 

-0.073 
(0.020) 

-0.055 
(0.020) 

500 5 
 93.05 

(0.932) 
81.11 

(0.813) 
 35.68 

(0.359) 
70.07 

(0.702) 
0.050 

(0.026) 
-0.048 

(0.026) 
0.040 

(0.024) 
-0.039 

(0.025) 
0.040 

(0.024) 
-0.039 

(0.025) 
0.050 

(0.025) 
-0.043 

(0.025) 
0.050 

(0.025) 
-0.043 

(0.025) 

 7 
66.17 

(0.663) 
59.46 

(0.596) 
47.13 

(0.472) 
37.66 

(0.378) 
-0.009 

(0.020) 
0.043 

(0.020) 
-0.017 
(0.019) 

0.041 
(0.019) 

-0.015 
(0.019) 

0.042 
(0.019) 

-0.013 

(0.019) 
0.048 

(0.019) 
-0.013 

(0.019) 
0.046 

(0.019) 

 10 
88.86 

(0.890) 
73.80 

(0.740) 
44.69 

(0.448) 
56.35 

(0.564) 
-0.028 
(0.015) 

-0.020 
(0.015) 

-0.025 
(0.015) 

-0.021 
(0.015) 

-0.033 
(0.015) 

-0.024 
(0.015) 

-0.032 
(0.015) 

-0.021 
(0.015) 

-0.034 
(0.015) 

-0.022 
(0.015) 

a Average of relative biases in estimates (%). 
b The numbers in (•) are root mean squared errors.



Table 3: Monte Carlo Results for Estimation of Number of Factors with Different 
Correlations between Individual Effects and Instruments 

The simulation data are generated with T = 7 and two factors (po = 2).  The instruments used are two time invariant 

variables, all of the leads and lags of the two time-varying regressors (set A).  

 
AIC BIC1 BIC2 J1 J2 

 

 
 

p p p p p 

N φfα = 1.0      

100 φxα = 1.0  2.040a 

  (0.202)b
2.157 

(0.412) 
2.015 

(0.122) 
2.148 

(0.417) 
2.100 

(0.341) 

 φxα = 0.5 1.877 
(0.418) 

2.074 
(0.396) 

1.712 
(0.570) 

1.920 
(0.552) 

1.807 
(0.586) 

 φxα =0.2 1.790 
(0.503) 

2.029 
(0.417) 

1.555 
(0.729) 

1.850 
(0.602) 

1.732 
(0.635) 

300 φxα = 1.0 2.069 
(0.266) 

2.025 
(0.158) 

2.001 
(0.032) 

2.040 
(0.210) 

2.027 
(0.167) 

 φxα = 0.5 2.069 
(0.268) 

2.026 
(0.161) 

2.001 
(0.032) 

2.038 
(0.197) 

2.025 
 (0.161) 

 φxα = 0.2 2.066 
(0.265) 

2.023 
(0.155) 

2.001 
(0.032) 

2.038 
(0.200) 

2.026 
(0.164) 

500 φxα = 1.0 2.079 
(0.283) 

2.009 
(0.095) 

2.001 
(0.032) 

2.020 
(0.141) 

2.013 
(0.114) 

 φxα = 0.5 2.076 
  (0.281) 

2.010 
  (0.100) 

2.001 
  (0.032) 

2.026 
  (0.164) 

2.018 
  (0.138) 

 φxα = 0.2 2.077 
(0.281) 

2.011 
  (0.105) 

2.001 
  (0.032) 

2.026 
(0.167) 

2.017 
(0.134) 

N φxα = 1.0      

100 φfα = 1.0  2.040 

  (0.202) 
2.157 

(0.412) 
2.015 

(0.122) 
2.148 

(0.417) 
2.100 

(0.341) 

 φfα = 0.5 2.043 
(0.207) 

2.155 
(0.407) 

2.017 
(0.130) 

2.147 
(0.418) 

2.093 
(0.332) 

 φfα = 0.2 2.044 
(0.212) 

2.159 
(0.412) 

2.017 
(0.134) 

2.150 
(0.424) 

2.100 
(0.342) 

300 φfα = 1.0 2.069 
(0.266) 

2.025 
(0.158) 

2.001 
(0.032) 

2.040 
(0.210) 

2.027 
(0.167) 

 φfα = 0.5 2.074 
(0.279) 

2.025 
(0.161) 

2.001 
(0.032) 

2.043 
(0.212) 

2.030 
 (0.176) 

 φfα = 0.2 2.073 
(0.274) 

2.025 
(0.158) 

2.001 
(0.032) 

2.043 
(0.214) 

2.030 
(0.176) 

500 φfα = 1.0 2.079 
(0.283) 

2.009 
(0.095) 

2.001 
(0.032) 

2.020 
(0.141) 

2.013 
(0.114) 

 φfα = 0.5 2.085 
  (0.295) 

2.011 
  (0.105) 

2.001 
  (0.032) 

2.027 
  (0.167) 

2.021 
  (0.148) 

 φfα = 0.2 2.083 
(0.292) 

2.012 
(0.110) 

2.001 
(0.032) 

2.028 
(0.170) 

2.022 
(0.148) 

a  Average of estimates 
b The numbers in (•) are root mean squared errors 
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Table 4: Monte Carlo Results for Estimation of Number of Factors 
with Different Instrument Sets 

The simulation data are generated with φxα = φfα = 1.0, T = 7, and two factors (po = 2).  Three different sets of 

instruments are used.  Set A contains two time-invariant variables and all of the leads and lags of the two 

time-varying regressors ((2T+2) instruments).  Set B includes eight instruments: two time-invariant instruments, 

the individual means, and the first- and last-period values of the two time-varying regressors.  Finally, set C 

contains the same instruments as set B, except the two time-invariant instruments: that is, six instruments.    

 
AIC BIC1 BIC2 J1 J2 

N 
Instrument 

Type P p p p p 

100 A  2.040a 

  (0.202)b
2.157 

(0.412) 
2.015 

(0.122) 
2.148 

(0.417) 
2.100 

(0.341) 

 B 
2.128 

(0.385) 
2.262 

(0.562) 
2.074 

(0.298) 
2.121 

(0.396) 
2.071 

(0.333) 

 C 
2.128 

(0.387) 
2.234 

(0.526) 
2.085 

(0.321) 
2.130 

(0.405) 
2.079 

(0.332) 

300 A 
2.069 

(0.266) 
2.025 

(0.158) 
2.001 

(0.032) 
2.040 

(0.210) 
2.027 

(0.167) 

 B 
2.144 

(0.400) 
2.083 

(0.297) 
2.015 

(0.122) 
2.039 

(0.202) 
2.030 

(0.176) 

 C 
2.141 

(0.396) 
2.085 

(0.300) 
2.026 

(0.161) 
2.045 

(0.219) 
2.032 

(0.182) 

500 A 
2.079 

(0.283) 
2.009 

(0.095) 
2.001 

(0.032) 
2.020 

(0.141) 
2.013 

(0.114) 

 B 
2.161 

(0.427) 
2.048 

(0.224) 
2.007 

(0.084) 
2.026 

(0.161) 
2.019 

(0.138) 

 C 
2.161 

  (0.424) 
2.056 

  (0.245) 
2.011 

  (0.105) 
2.028 

  (0.170) 
2.019 

  (0.138) 

a Average of estimates  
b The numbers in (•) are root mean squared errors 
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Table 5: Monte Carlo Results for Estimation of Regression Coefficients 
with Different Instruments 

The simulation data are generated with φxα = φfα = 1.0, T = 7, and two factors (po = 2).  Three different sets of 

instruments are used.  Set A contains two time-invariant variables and all of the leads and lags of the two 

time-varying regressors ((2T+2) instruments).  Set B includes eight instruments: two time-invariant instruments, 

the individual means, and the first- and last-period values of the two time-varying regressors.  Finally, set C 

contains the same instruments as set B, except the two time-invariant instruments: that is, six instruments.   

 
Panel I: Bias and RMSE  

AIC BIC1 BIC2 J1 J2 
N 

Inst. 
Type β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

100  A -0.031a 

(0.043)b
-0.040 
(0.044) 

-0.005 
(0.044) 

-0.028 
(0.046) 

-0.028 
(0.042) 

-0.061 
(0.043) 

-0.003 
(0.044) 

-0.011 
(0.045) 

-0.008 
(0.043) 

-0.035 
(0.045) 

 B 
0.410 

(0.101) 
0.206 
(0.098) 

0.409 
(0.120) 

0.275 
(0.123) 

0.380 
(0.097) 

0.139 
(0.089) 

0.407 
(0.098) 

0.089 
(0.088) 

0.424 
(0.094) 

0.031 
(0.079) 

 C 
0.247 

(0.142) 
-0.276 
(0.136) 

0.463 
(0.175) 

-0.567 
(0.167) 

0.225 
(0.124) 

-0.119 
(0.118) 

0.173 
(0.133) 

-0.277 
(0.123) 

0.165 
(0.114) 

-0.086 
(0.108) 

300 A 
 0.030 
(0.023) 

-0.016 
(0.023) 

0.036 
(0.023) 

-0.015 
(0.023) 

0.029 
(0.023) 

-0.023 
(0.023) 

0.041 
(0.023) 

-0.018 
(0.023) 

0.035 
(0.023) 

-0.016 
(0.023) 

 B 
-0.111 

(0.055) 
-0.257 
(0.050) 

-0.096 
(0.052) 

-0.182 
(0.041) 

-0.080 
(0.047) 

-0.154 
(0.038) 

-0.128 
(0.048) 

-0.174 
(0.040) 

-0.129 
(0.048) 

-0.167 
(0.039) 

 C 
-0.430 

(0.075) 
-0.418 
(0.062) 

-0.255 
(0.062) 

-0.225 
(0.047) 

-0.168 
(0.055) 

-0.149 
(0.039) 

-0.215 
(0.058) 

-0.158 
(0.040) 

-0.179 
(0.056) 

-0.156 
(0.040) 

500 
 

A 
 

-0.009 
(0.020) 

0.043 
(0.020) 

-0.017 
(0.019) 

0.041 
(0.019) 

-0.015 
(0.019) 

0.042 
(0.019) 

-0.013 

(0.019) 
0.048 

(0.019) 
-0.013 

(0.019) 
0.046 

(0.019) 

 B 
-0.083 

(0.063) 
-0.032 

(0.050) 
0.071 

(0.038) 
-0.031 

(0.035) 
0.041 

(0.031) 
0.002 

(0.031) 
0.043 

(0.031) 
0.012 

(0.032) 
0.056 

(0.031) 
0.002 

(0.031) 

 C 
-0.267 

(0.078) 
-0.448 
(0.084) 

0.032 
(0.045) 

-0.060 
(0.043) 

0.046 
(0.031) 

-0.003 
(0.031) 

0.042 
(0.032) 

-0.024 
(0.033) 

0.047 
(0.031) 

-0.015 
(0.032) 

Panel II:  Size of t-Statistics 
AIC BIC1 BIC2 J1 J2 

N 
Inst. 
Type β1 β2 β1 β2 β1 β2 β1 β2 Β1 β2

100 A 
B 
C 

6.52c 

6.42 
6.10 

6.98 
6.68 
5.96 

6.96 
7.74 
6.94 

7.32 
7.66 
6.42 

6.34 
6.34 
5.66 

6.92 
6.22 
5.70 

7.04 
6.70 
6.10 

7.12 
6.46 
5.82 

6.80 
6.56 
5.62 

7.12 
6.24 
5.62 

300 A 
B 
C 

5.56 
6.70 
6.84 

5.76 
6.04 
5.98 

5.28 
6.34 
6.38 

5.44 
5.82 
5.74 

5.12 
5.78 
5.92 

5.30 
5.32 
5.30 

5.46 
6.00 
6.04 

5.54 
5.72 
5.44 

5.36 
5.90 
5.96 

5.44 
5.54 
5.38 

500 A 
B 
C 

5.76 
6.60 
6.08 

5.88 
6.32 
6.24 

5.56 
5.56 
5.76 

5.44 
5.82 
5.98 

5.48 
5.18 
5.26 

5.44 
5.56 
5.54 

5.56 
5.38 
5.40 

5.48 
5.68 
5.68 

5.50 
5.36 
5.38 

5.48 
5.64 
5.54 

a Average of relative biases in estimates (%).  
b The numbers in (•) are root mean squared errors. 
c Rejection rate of Ho: β1 =1 at 5% significance level. 

 42 
 


