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1. INTRODUCTION *

In this paper we consider the efficient estimation of panel data models containing

unobserved individual effects. (Here, and throughout the paper, "efficient" actually means

"asymptotically efficient.") The two most widely applied estimation procedures are random

effects (RE) and fixed effects (FE). It is well-known that the consistency of the RE and FE

estimators (as the cross section dimension tends to infinity with the time dimension fixed)

requires the strict exogeneity of the regressors, but that the strict exogeneity assumption

generates many more moment conditions than these estimators use. For example, in a panel

data model with ten strictly exogenous time-varying regressors and six time periods, the total

number of moment conditions available is 360 under RE assumptions and 300 under FE

assumptions. The point of this paper is to establish the efficiency of simple estimators, like

the RE and FE estimators, by providing assumptions under which the efficient GMM

estimator based on the entire set of available moment conditions reduces to the simpler

estimator. That is, we establish the efficiency of simple estimators by showing the

redundancy of the moment conditions that they do not use. We do not provide any new

estimators, but we do provide simplified versions of some existing estimators.

* The second author gratefully acknowledges the financial support of the College of

Business and Dean’s Council of 100 at Arizona State University, the Economic Club of

Phoenix, and the alumni of the College of Business. The third author gratefully

acknowledges the financial support of the National Science Foundation. We would also like

to thank the editor and two anonymous referees for many helpful comments on the previous

versions of this paper. All errors are our own.
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In the models we consider, there will always be an estimator that is no less efficient

than any of the estimators we study, namely the GMM estimator that uses all of the moment

conditions and an unrestricted weighting matrix. Thus, in terms of achieving asymptotic

efficiency, there really is no need to eliminate redundant moment conditions. As a practical

matter, though, it is very useful to consider simpler estimators. GMM with a very large

number of moment conditions is computationally very demanding, and may have poor small-

sample properties. For example, see Tauchen (1986), Altonji and Segal (1996) and Andersen

and Sørensen (1996) for a discussion of the small-sample bias of GMM in very overidentified

problems.

The redundancy of moment conditions in GMM depends on relationships between the

matrix of expected derivatives of the moment conditions and the optimal weighting matrix.

We establish our results under an assumption of no conditional heteroskedasticity, which

implies a simple and tractable form for the optimal weighting matrix. In this case the GMM

estimator is a 3SLS estimator, as considered by Amemiya (1977), Hausman, Newey, and

Taylor (1987), Schmidt (1990) and Wooldridge (1996). Our results are then given by

showing the numerical equivalence of various 3SLS estimators. From these equivalences it

would then be straightforward to make statements about relative asymptotic efficiencies of

feasible GMM estimators.

Section 2 of the paper gives some preliminary results. We give conditions for the

algebraic equivalence of 3SLS and generalized instrumental variables (GIV) in a system of

linear equations, and for the redundancy of instruments in 3SLS. These results are used to

prove the main theorems of the paper, but may also be useful in other settings.

Section 3 gives results applicable to models where the (composite) error is
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uncorrelated with all explanatory variables in all time periods, such as the random effects

model under the strict exogeneity assumption. We establish the efficiency of the generalized

least squares (GLS) estimator by showing its equivalence to the efficient 3SLS estimator.

Section 4 accommodates a time-invariant unobserved effect that can be correlated with

the explanatory variables, which is the essential feature of the familiar fixed effects model.

When the error has the usual random-effects covariance structure, and when the time-invariant

effect is correlated with all of the explanatory variables, we show that the 3SLS estimator is

equivalent to the within estimator. For the Hausman-Taylor model in which the time-

invariant effect is correlated with some of the explanatory variables, the 3SLS estimator is

equivalent to estimators proposed by Hausman and Taylor (1981), Amemiya and MaCurdy

(1986), and Breusch, Mizon, and Schmidt (1989). If the time-varying error has a general

covariance structure, things become more complicated. The 3SLS estimator is equivalent to

an estimator of Kiefer (1980), and to several other new estimators we derive, when all

explanatory variables are correlated with the individual effect. In the Hausman-Taylor model

with general covariance structure, the 3SLS estimator is equivalent to a simplified estimator

whose form depends on whether or not the correlation between the individual effect and the

explanatory variables is time-invariant. If so, we obtain a simple GIV estimator. If not, we

require a new method of handling deviations from means in order to obtain a simple estimator

that is equivalent to 3SLS. This method amounts to taking the residuals from a GLS (as

opposed to OLS) regression of the data on an individual-specific intercept.

Section 5 provides simulation evidence on the finite sample properties of the general

GMM estimator and of some of the simpler estimators considered in the paper. All of the

estimators that are theoretically efficient have small finite sample bias and reasonable finite

3



sample efficiency. However, as would be expected, the unrestricted GMM estimator that uses

all of the moment conditions yields standard errors that are overly optimistic; that is, they

seriously understate the finite sample variability of the estimates, and thus lead to seriously

incorrect inference.

2. PRELIMINARIES

2.1. Setup

We are interested in a linear model of the form

where i=1,...,N indexes the cross-sectional observations, yi = (yi1,...,yiT)′ is a T×1 vector, Xi is

(2.1)

a T×k matrix,β is the k×1 parameter vector of interest, and ui is the T×1 vector of errors.

Because our results are algebraic, there is no real need to introduce sampling assumptions.

Nevertheless, it is useful to think of {(yi,Xi): i=1,..., N} as constituting an independent,

identically distributed sequence of size N drawn from the population. When we refer to

asymptotic results, this is the sampling assumption we have in mind. Importantly, this puts

no restrictions on the dependence within the elements of yi and Xi.

Throughout the paper, for any T×p matrix Mi, we denote M≡ (M1′,..., MN′)′, which has

dimension NT×p. Thus the matrix M is the stacked matrix corresponding to Mi. Then we

can write (2.1) for the entire sample as y = Xβ + u.

A general approach to estimatingβ is to find a set of (say) T×h instruments Wi that

are orthogonal to ui, and then to apply a method of moments procedure. A natural

orthogonality condition is
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Let Σ = E(uiui′) denote the T×T variance matrix of the errors, and defineΩ ≡ IN⊗Σ. Further,

(2.2)

let X, y, and W denote the data matrices. Then the three stage least squares (3SLS) estimator

of β is defined as

Under the orthogonality condition (2.2), an identification assumption, and standard regularity

(2.3)

conditions, plimN→∞ β̂3SLS = β. For purposes of algebraic equivalence results, we simply

assume thatβ̂3SLS exists.

Another familiar estimator is the generalized instrumental variables (GIV) estimator.

This estimator is obtained by premultiplying (2.1) byΣ-½ to prewhiten the errors, and then

applying instrumental variables with instrumentsΣ-½Wi. This leads to the estimator

Generally, the GIV estimator is not consistent under (2.2). The weakest orthogonality

(2.4)

condition that implies consistency (when coupled with identification assumptions) of GIV is

E(Wi′Σ-1ui) = 0. This condition is not generally implied by (2.2), sinceΣ-1 mixes instruments

and errors over time. In some models (e.g., the dynamic panel data model), some of the

instruments are only weakly exogenous, in the sense that Wi,tj is uncorrelated with uis only for

s≥t. Then E(Wi′ui) = 0 holds but E(Wi′Σ-1ui) = 0 does not.

The optimal GMM estimator based on the orthogonality condition (2.2) uses the

weighting matrix E(Wi′uiui′Wi), and the 3SLS estimator is asymptotically equivalent to the

optimal GMM estimator under the assumption
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We refer to this assumption as “NCH”, for no conditional heteroskedasticity. It has been

(NCH)

used recently by Wooldridge (1996) to study 3SLS in the context of a general system of

equations. This assumption will play a very significant role in our analyses, because it allows

us to limit our focus to 3SLS estimators. Perhaps a more proper use of words would be to

use NCH to refer to the stronger assumptions

which imply our assumption NCH. Chamberlain (1987) characterized the optimal

(2.5)

instrumental variables under (2.5), where only the orthogonality condition E(ui Wi) = 0 is

used in estimation. He showed that the optimal instruments areΣ-1E(Xi Wi), and the IV

estimator using these instruments is no less efficient than the 3SLS or GIV estimator.

However, our orthogonality condition (2.2) is stated in terms of zero correlation only, not the

stronger condition (2.5), and so it seems natural to rely on the weaker condition NCH.

2.2. Some Preliminary Results

We now give some preliminary results that will be useful in proving our later results.

The first is a general result on redundancy of instruments in 3SLS. It is the algebraic

equivalence analog of the asymptotic redundancy result of White (1984, Proposition 4.50).

THEOREM 2.1: Let W = [W1,W2]. Suppose W2′X = W2′ΩW1(W1′ΩW1)
-1W1′X. Then W2 is

redundant: β̂3SLS using Wi = [Wi1,Wi2] is the same asβ̂3SLS using Wi1 only.

The proofs of all theorems are given in the Appendix.

We now turn to the relationship between 3SLS and GIV. Even under assumption
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(2.5), neither the 3SLS estimator nor the GIV estimator can be shown to generally dominate

the other (see, for example, Bowden and Turkington (1984, p. 72) and White (1984, pp. 83-

105)). We seek conditions under which the 3SLS and GIV estimators are identical. We first

give an algebraic result, which is the generalization of the familiar result that OLS = GLS if

there is a nonsingular matrix R such thatΩ-1X = XR.

THEOREM 2.2: Suppose that there exists a nonsingular matrix B such thatΩ-1W = WB

(that is,Σ-1Wi = WiB for all i). Then β̂3SLS = β̂GIV.

We first consider the case of common instruments; that is, where the same set of

instruments is used for all t. This is given by:

ASSUMPTION 2.1 (Common Instruments): Wi = IT⊗wo
i , where wo

i is some 1×q vector.

(Note that then Wi is T×h where h = Tq.) As we will see, Assumption 2.1 is applicable to

many panel data models with strictly exogenous regressors since the regressors in each time

period are orthogonal to the errors in all time periods. Other models such as the standard

simultaneous equation model or SUR model also have common instruments.

THEOREM 2.3: For estimating (2.1) under Assumption 2.1 (common instruments), the

3SLS and GIV estimators are the same.

The GIV estimator is just the IV estimator of (2.1) with instrumentsΣ-1Wi. Using

essentially the same proof, it is easy to see that estimators using instruments of the form

ΣδWi for any δ also reduce to the 3SLS estimator. The result of Schmidt, Ahn and

Wyhowski (1992) corresponds toδ = -1/2.
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In a SUR system, OLS = GLS either if there are common regressors in each equation,

or if Σ is diagonal. Theorem 2.3 is a generalization of the first of these results. The

generalization of the second result is as follows. We can use Theorem 2.2 to show that, when

Σ is diagonal and the instruments are of unrestricted form, GIV and 3SLS are identical.

Details are given in an earlier version of this paper (Im, Ahn, Schmidt and Wooldridge

(1996), Theorem 2.3).

3. REGRESSORS UNCORRELATED WITH ERRORS

We now study estimators ofβ in model (2.1) under the assumption that each element

of Xi is orthogonal to each element of ui; thus, we have in mind that

Letting xit denote the tth row of Xi, we can choose the instruments for each t to be the

(3.1)

nonredundant elements of xi
o = (xi1,xi2,...,xiT). Thus, we make the following assumption.

ASSUMPTION 3.1: Wi = IT⊗wo
i , where wo

i contains all nonredundant elements of xo
i .

If there are no time-invariant elements in xit then wo
i = xo

i . Any time-invariant variables (e.g.,

the constant term) only appear once in wo
i . At this point we make no assumptions about the

form of the error covariance matrixΣ.

In this case we would expect the efficient estimator to be GLS, even though our

assumptions are weaker than those required for GLS to be best linear unbiased. This is

shown by Arellano and Bover (1995, p. 34) for the special case thatΣ has the random effects

covariance structure. For completeness we give the general result.
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THEOREM 3.1: The 3SLS estimator using the full set of instruments Wi = IT⊗wo
i equals the

GLS estimator.

Even though it is unsurprising, this is a strong result. The strict exogeneity assumption

implies T2 moment conditions for each time-varying regressor, and T moment conditions for

each time-invariant regressor. The GLS estimator exploits only one moment condition for

each regressor:Σ-½Xi is uncorrelated withΣ-½ui. The GLS moment conditions are a linear

combination of the strict-exogeneity conditions, and the remaining linear combinations are

therefore redundant.

Under the NCH assumption, the 3SLS estimator is the optimal GMM estimator and

our result implies the efficiency of GLS. Without the NCH assumption, GLS makes little

sense and it is not surprising that it is dominated by the efficient GMM estimator.

An important special case is the random effects covariance structure.

ASSUMPTION 3.2 (Random Effects): The T×T matrixΣ can be written as

whereσε
2 andσφ

2 are positive scalars and eT is the T×1 vector with each element unity.

(3.2)

This form of Σ arises from the variance components structure in which uit = φi + εit,

where theεit are assumed to be serially uncorrelated with varianceσε
2, and uncorrelated with

φi. ThenΣ = (σε
2+Tσφ

2)PT + σε
2QT, where PT ≡ eT(eT′eT)

-1eT and QT ≡ IT - PT.

Theorem 3.1 implies that the efficient estimator is GLS. However, one might not wish

to use GLS, perhaps because of doubt as to whether the NCH assumption and random effects

covariance structure are correct. The following result may then be useful.
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THEOREM 3.2: Under Assumption 3.2 (random effects), the 3SLS estimator using

instruments (PTXi,QTXi) equals the 3SLS estimator using the entire instrument set Wi = IT⊗wo
i ,

and therefore also equals the random effects GLS estimator.

This result shows that we can reduce the number of moment conditions significantly,

while ensuring that the GMM estimator is no less efficient than the random effects GLS

estimator. In particular, the GMM estimator using instruments (PTXi,QTXi) and an

unrestricted weighting matrix will be just as efficient as the random effects GLS estimator if

the NCH assumption and random effects covariance structure hold. If these assumptions do

not hold, this new GMM estimator will generally be more efficient than GLS. It would

generally be inefficient relative to the GMM estimator using the full set of moment

conditions, but much more attractive computationally, and perhaps in terms of the finite

sample properties of the estimators.

4. REGRESSORS CORRELATED WITH A TIME-INVARIANT ERROR
COMPONENT

In this section we consider two models where the time-invariant unobserved effect

may be correlated with some or all of the regressors. In the next subsection we consider the

model in which all regressors are time-varying and possibly correlated with the unobserved

effect. Depending on the error covariance structure, this corresponds to the traditional fixed

effects model, or to a model of Kiefer (1980). In the following subsection we then consider

extensions of the Hausman-Taylor (1981) model, in which some regressors are assumed to be

uncorrelated with the unobserved effect. We establish the efficiency of some existing

estimators, but also suggest some new estimators.
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4.1. Fixed Effects-Type Models

In this subsection we consider the unobserved effect model in which uit = φi + εit.

However, we now allowφi and xit to be correlated, so that the model is of the fixed effects

variety. We assume that the regressors xit are strictly exogenous with respect to the time-

varying errorsεit, so that E(Xi⊗εi) = 0. Under these assumptions, only coefficients on time-

varying regressors are identified; thus, for this subsection, xit contains only time-varying

regressors.

As before, we consider estimation of (2.1) by instrumental variables. Now, only

certain linear combinations of Xi are guaranteed to be uncorrelated with ui. Define the T×(T-

1) differencing matrix as

Then, define Wi = L⊗xi
o, where as before xo

i = (xi1,...,xiT) is a 1×Tk row vector; thus, Wi is

(4.1)

T×T(T-1)k. It is well known (e.g., Schmidt, Ahn and Wyhowski (1992)) that the set of

orthogonality conditions available for estimatingβ is E(Wi′ui) = 0.

Under the assumption thatΣ has the standard random effects covariance structure, the

within estimator would commonly be used. The instruments used by the within estimator are

just the deviations from individual means, QTXi (where as before QT is the T×T demeaning

matrix). The following theorem establishes the efficiency of this estimator.
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THEOREM 4.1: Under Assumption 3.2 (random effects structure), the 3SLS estimator using

the instruments Wi = L⊗xo
i is the same as the within estimator.

This result was also stated without proof by Arellano and Bover (1995, p. 34). It is

the analog of the result of Chamberlain (1992) on the efficiency of the within estimator under

conditional mean assumptions.

We next wish to relax the assumption thatΣ has the random effects covariance

structure. Thus we allowΣε = E(εiε i′) to have an unrestricted form, which implies thatΣ =

E(uiui′) is also unrestricted. This effectively gives the setup of Kiefer (1980).

We can apply Theorem 2.1 to show that some of the instruments used in 3SLS are

redundant. Define
_
xi = T-1ΣT

t=1xit and ẍi = (xi1-
_
xi,...,xi,T-1-

_
xi). Then it is clear that (

_
xi,ẍi) is a

nonsingular linear transformation of xo
i , and so (

_
xi,ẍi) and xoi are equivalent as instruments.

THEOREM 4.2: The 3SLS estimator using instruments L⊗xo
i equals the 3SLS estimator

using instruments L⊗ẍi.

This theorem shows that, among the T(T-1)k instruments in L⊗xo
i , the (T-1)k

instruments L⊗
_
xi are redundant. This result may be more understandable if one writes out

the terms involved in the Kronecker products above. A typical element of the expression

(L⊗xi
o)′ui is xi

o′(uit-ui,t+1), and similarly for (L⊗ẍ)′ui and (L⊗
_
x)′ui. The statement that

E[
_
xi′(uit-ui,t+1)] = 0 is correct, but it is redundant because means are irrelevant once the

equation has implicitly been first-differenced.

As with Theorem 3.2, this result can be used to construct a GMM estimator (using

instruments L⊗ẍi and general weighting matrix) that is at least as efficient as 3SLS using the
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same set of instruments, but that is robust to violations of the NCH assumption.

Under these assumptions, other simple estimators are available. One can apply GLS

to the first differenced or demeaned equations. Kiefer (1980) proposed GLS applied to the

demeaned data using (QTΣQT)
-, a generalized inverse of the error covariance of the demeaned

data. Given the singularity of the variance matrix of the demeaned errors, it seems reasonable

that no information is lost by deleting any one equation in the demeaned data. Also,

demeaning and differencing should preserve the same information. To state a precise result,

let β̂3SLS denote the 3SLS estimator from Theorem 4.2, letβ̂KF denote Kiefer's estimator, let

β̂DM be the GLS estimator in the demeaned equation after deleting any one time period, and

let β̂DF be the GLS estimator in the differenced set of equations.

THEOREM 4.3: β̂3SLS = β̂KF = β̂DM = β̂DF.

4.2. Hausman and Taylor-Type Models

Hausman and Taylor (1981) considered a model where certain explanatory variables

are uncorrelated with the unobserved effect. This model offers a middle ground between the

pure random effects and pure fixed effects approaches. Write the model for all T time

periods as

where Xi1 and Xi2 are T×k1 and T×k2 matrices, respectively, of time-varying explanatory

(4.2)

variables, and zi1 and zi2 are 1×g1 and 1×g2 vectors, respectively, of time-invariant explanatory

variables. Other definitions are as before.

The explanatory variables are all strictly exogenous with respect to the time-varying
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error εi, but Xi2 and zi2 can be correlated with the unobserved effectφi. Writing ui = φieT +

εi as before, consider the following orthogonality conditions:

Given the orthogonality conditions (4.3), we have the moment conditions E(Wi
(1)′ui) =

(4.3)

0, with the instruments Wi
(1) defined as follows:

This set of instruments can be expressed in a number of different ways. An equivalent

(4.4)

instrument set (in the sense of leading to the same projection and estimators) is

This distinguishes the instruments in deviations from means space from those in means space.

(4.5)

All of our redundancy results involve the first set of instruments.

Breusch, Mizon and Schmidt (1989) suggested an additional assumption:

This means that, even though the unobserved effect might be correlated with xit2, the

(BMS)

covariance does not change with time. We will refer to this as the BMS assumption. Under

the BMS assumption the additional instruments eT⊗ẍi2 become valid.

If we assume the random effects covariance structure, it is well known that all of the

instruments in deviations from means space are redundant, except for the deviations

themselves, QTXi. This was shown by Breusch, Mizon and Schmidt (1989); see also

Arellano and Bover (1995, Appendix) and Ahn and Schmidt (1995, p. 19). For completeness

we state this result (without proof).
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THEOREM 4.4: Under Assumption 3.2 (random effects), the 3SLS estimator using the full

set of instruments Wi
(2) in (4.5) equals the 3SLS estimator using the instruments Wi

(3) =

[QTXi,eT⊗(xo
i1,zi1)]. Similarly, the 3SLS estimator using instruments Wi

(4) =

[L⊗(xo
i1,x

o
i2,zi1,zi2),eT⊗(xo

i1,ẍi2,zi1)] equals the 3SLS estimator using instruments Wi
(5) =

[QTXi,eT⊗(xo
i1,ẍi2,zi1)].

We now relax the assumption thatΣ has the random effects structure. Instead, we

allow Σ = E(uiui′) to be unrestricted. Interestingly, the BMS assumption now becomes

fundamentally important. Not only does the BMS assumption add to the instrument set, but it

also affects the ways in which the instruments can be used to yield a consistent estimator.

We first consider the case in which the BMS assumption is assumed to hold. The set

of available instruments is Wi
(4) as given in the statement of Theorem 4.4. This set of

instruments can be rewritten in a number of ways that are equivalent, in the sense of leading

to the same projection. One such equivalent instrument set is the following.

We can also consider the smaller instrument set

(4.6)

This leads to the following redundancy result, which is a weaker version of a result given by

(4.7)

Arellano and Bover (1995, p. 38).

THEOREM 4.5: The 3SLS estimator using the instrument set Wi
(4) — or Wi

(6) — equals the

3SLS estimator using the instrument set Wi
(7). That is, the instruments L⊗(

_
xi2,zi2) are

redundant.
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We still have a large number of instruments in deviations from means space, and the

question arises whether we can reduce these simply to QTXi, as is true under the random

effects covariance structure. Explicitly, consider the instrument set Wi
(5) =

[QTXi,eT⊗(xo
i1,ẍi2,zi1)], which yields the efficient 3SLS estimator whenΣ has the random

effects covariance structure, as claimed in Theorem 4.4. Unfortunately, whenΣ does not

have the random effects structure, it is not the case that 3SLS based on Wi
(5) is the same as

3SLS based on the larger instrument sets Wi
(4) or Wi

(6). We can still derive an efficient

estimator using the instrument set Wi
(5), by considering a GIV estimator instead of 3SLS.

THEOREM 4.6: The 3SLS estimator using the instruments Wi
(2) — or Wi

(4) or Wi
(6) —

equals the GIV estimator using the instruments Wi
(5) = [QTXi,eT⊗(xo

i1,ẍi2,zi1)].

Theorem 4.6 is a novel and practically useful result. It shows that, in the case of

unrestricted covariance matrix, we can still obtain an efficient estimator using the same

number of instruments as were necessary whenΣ has the random effects structure. Since the

GIV estimator using instruments Wi
(5) is a 3SLS estimator using instrumentsΣ-1Wi

(5), we do

obtain a 3SLS estimator with a very reduced instrument set; the key to the successful

treatment is filtering of the instruments byΣ-1.

If the model does not contain xi1 or zi, then it reduces to the fixed effects-type model

of section 4.1 with general covariance matrix but with the additional BMS assumption. Then,

the instruments eT⊗ẍi2 are relevant, and the GIV estimator using instruments (QTxi,eT⊗ẍi2) is

more efficient than the estimators discussed in Theorem 4.3.

We now relax the BMS assumption, while allowingΣ to be unrestricted. Without the

BMS assumption, the instruments eT⊗ẍi2 are no longer legitimate. The set of available
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instruments can be written in a number of ways; e.g., see Wi
(1) and Wi

(2) above.

A more subtle implication of the relaxation of the BMS assumption is that a GIV

estimator with QTXi in the instrument set will (in general) be inconsistent. To see why,

observe that the demeaned regressors QTXi are legitimate instruments for GIV only if

E(Xi′QTΣ-1ui) = 0. Clearly

The last term in (4.8) equals zero given strict exogeneity of Xi with respect toεi. The

(4.8)

random effects structure implies QTΣ-1eT = 0 so that both terms on the right-hand side of (4.8)

equal zero. However, for generalΣ, QTΣ-1eT ≠ 0. The BMS assumption implies that every

element of QTXi is uncorrelated withφi, so that E(Xi′QTΣ-1eTφi) = 0 and the expression in (4.8)

equals zero. However, with generalΣ and without the BMS assumption, E(Xi′QTΣ-1ui) ≠ 0 in

general, and QTXi is not legitimate for GIV estimation.

A simple solution to this problem is to replace QT by a different matrix that removes

the effects. Define the T×T idempotent (though not symmetric) matrix RΣ:

We can note that RΣ corresponds to taking residuals in a GLS (as opposed to OLS)

(4.9)

regression on an individual-specific intercept. Clearly RΣeT = 0, and also RΣ′Σ-1eT = 0. Thus

Xi′RΣ′Σ-1eTφi = 0, and E(Xi′RΣ′Σ-1ui) = E(Xi′RΣ′Σ-1εi) = 0 given strict exogeneity of Xi with

respect toεi. Thus, RΣXi are legitimate instruments for GIV.

This discussion motivates the GIV estimator based on the instrument set
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We will call this a modified GIV (or MGIV) estimator, where the name reflects the modified

(4.10)

form of taking deviations from means. The following theorem establishes its equivalence to

the efficient 3SLS estimator.

THEOREM 4.7: The GIV estimator using the instrument set Wi
(8) of equation (4.10) equals

the 3SLS estimator using the instrument set Wi
(1) of equation (4.4).

The GIV estimator based on Wi
(8) is not the same as the 3SLS estimator based on Wi

(8).

However, it is obviously the same as the 3SLS estimator based onΣ-1Wi
(8).

Amemiya and MaCurdy (1986, pp. 877-878) provide an alternative estimator for the

case we are considering — namely,Σ is unrestricted and the orthogonality assumptions in

(4.3) hold, but the BMS assumption is not maintained. Define u¨i = (ui1-
_
ui,...,ui,T-1-

_
ui) = (QT

*ui)′,

where QT
* is QT with the last row deleted. Let f be the (T-1)×1 vector such that Proj(ui|üi) =

f′üi′ = f′QT
*ui. Then the AM estimator is the GIV estimator using instruments

Amemiya and MaCurdy provide conditions under which this estimator is efficient, which are

(4.11)

stronger than our assumptions above.

There is no apparent comparison between the instrument sets Wi
(8) in (4.10) and Wi

(9) in

(4.11). However, perhaps surprisingly, they lead to the same GIV estimator.

THEOREM 4.8: The GIV estimator based on the instrument set Wi
(9) — that is, the

Amemiya-MaCurdy estimator — equals the GIV estimator based on Wi
(8).
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5. SIMULATIONS

In this section we report the results of limited Monte Carlo simulations that compare

the finite sample properties of some of the estimators discussed above. The basis of the

experiment is a regression model of the form of equation (4.2) above. For simplicity we take

k1 = k2 = g1 = g2 = 1. We will consider estimators that do not impose the BMS assumption.

The various estimators rely on three different sets of instruments, as follows: thebig

instrument setWi
(2), defined in equation (4.5), which contains 2T2+T-1 instruments; thesmall

instrument setWi
(3), defined in Theorem 4.4, which contains T+3 instruments; and theMGIV

instrument setWi
(8), defined in equation (4.10), which also contains T+3 instruments. We

consider the following estimators. (i)GMM-BS, which is the GMM estimator using the big

instrument set and an unrestricted weighting matrix; (ii)GMM-SS, which is the same as

GMM-BS except that it uses the small instrument set; (iii)3SLS, which uses the small

instrument set and an unrestrictedΣ matrix (but imposes the NCH assumption on the

weighting matrix); (iv)3SLS-RE, which is the same as 3SLS except that it imposes the

random effects structure onΣ; and (v)MGIV, which uses the MGIV instrument set and an

unrestrictedΣ matrix.1 Several related estimators are not considered separately because they

are the same as those above. For example, 3SLS using the big instrument set and unrestricted

Σ is the same as MGIV, by Theorem 4.7; 3SLS using the big instrument set andΣ of

random effects structure is the same as 3SLS-RE, by Theorem 4.4; and MGIV withΣ of

1 This footnote describes estimation ofΣ. Let ei be the T×1 vector of 2SLS residuals. The unrestricted

estimate ofΣ is S = N-1ΣN
i=1eiei′. For the random effects estimates, the estimate ofσφ

2 is sφ
2 = [T(T-1)]-1 times

the sum of the off-diagonal elements of S. The estimate ofσε
2 is T-1 times the sum of the diagonal elements of

S, minus sφ
2.
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random effects structure is the same as 3SLS-RE, by Theorems 4.4 and 4.7.

We pick β1= β2 = γ1 = γ2 = 1; N = 200 and 500; and T = 5, 8 and 10.2 z1 is an

intercept (z1i ≡ 1). Let φi, fi, ξi, ηit1 andηit2 be independent series, with independence also

over all i and t, whereφ is N(0,1), while f,ξ, η1 andη2 are uniform on [-2,2]. Then xit1 =

0.7xi,t-1,1 + fi + ηit1, xit2 = 0.7xi,t-1,2 + φi + ηit2, and zi2 = fi + φi + ξi.
3 Thus x2 and z2 are

correlated with each other and with the error (uit = φi + εit) through joint dependence onα,

while x1 is correlated with z2 through joint dependence on f.

To construct the time-varying errors, let vit be independent draws from N(0,2), and

defineεi1 = vi1/(1-ρ2)½, andεit = ρεi,t-1 + vit[(1-b)+bx1it/se(x1it)] for t = 2,...,T, where se(x1it) is

the sample standard error of the x1. We consider three cases: (i) b=ρ=0, so NCH and the

random effects structure hold; (ii) b=0,ρ=0.5, so that NCH holds but there is serial

correlation in the idiosyncratic errors; and (iii) b=1,ρ=0.5, so that the NCH condition does

not hold.

Calculations were done in GAUSS. The number of replications was 2000.

For each of the four coefficients, we report the bias and root mean square error

2 We consider T=10 only for N = 500, because with T= 10 there are 209 instruments in the big instrument

set, and with N=200 this would imply singularity of the unrestricted weighting matrix for GMM-BS. The results

for N=500 and T=10 are not displayed in this paper, but are in supplemental tables available from the authors on

request.

3 Initial values xi11 and xi12 were created in such a way as to imply covariance stationarity of x1 and x2.

Thus, for example, ifηi11 is drawn as above, we created xi11 = ηi11/(1-0.72)½ + αi/(1-0.7). We note that this

implies that the BMS assumption holds in the data generating process, even though we do not impose it in

estimation.
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(RMSE). These numbers are of obvious interest to see if any of the estimators are

substantially biased, and to compare their precision. We also report the "average s.e." which

is the average over the replications of the conventionally-calculated standard error, in an

attempt to see whether the standard errors indicated by asymptotic theory are reliable in finite

samples. The "robust s.e." is similarly the average over the replications of the

heteroskedasticity-robust standard error (relevant for the 3SLS, 3SLS-RE and MGIV

estimators only). Finally, "5% size" is the fraction of rejections of the null hypothesis that

the coefficient equals its true value, based on the asymptotic normal statistic given by the

ratio of the coefficient estimate to its (non-robust) asymptotic standard error. If asymptotic

theory is reasonably reliable, we should find the average standard error to be nearly equal to

RMSE and the 5% size close to 0.05.

Table 1 gives the results for the case that the random effects structure holds (b=ρ=0).

For this case our earlier results imply that all of the estimators are equally efficient. None of

the estimators shows any substantial bias. In terms of RMSE, the estimators are quite similar

except that GMM-BS tends to have somewhat larger RMSE, especially for N=200;

presumably this is due to its use of a large number of instruments that are redundant for this

case. 3SLS-RE, which correctly imposes the random effects structure, does not seem to be

significantly better than the other estimators that use the small instrument set. The average

standard error is usually close to the RMSE, indicating the reliability of the asymptotic

standard errors, except for GMM-BS, for which the average standard error is considerably

smaller than RMSE. Thus the asymptotically-valid standard errors are a reasonably accurate

guide to the finite sample variability of the estimates, except for GMM-BS, for which they

are substantially too small. For example, for N=200 and T=8, the asymptotic standard error
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of GMM-BS is on average only about half of its RMSE, though the results are more

favorable for larger N or smaller T. The unreliability of the asymptotic standard errors for

GMM with an unrestricted weighting matrix in heavily overidentified problems is not a

surprise, given the results of earlier studies such as Tauchen (1986), Altonji and Segal (1996)

and Andersen and Sørensen (1996). This problem is also evident in the results for 5% size,

which indicate too many rejections of the true null hypothesis for t-tests based on GMM-BS.

Table 2 gives the results for the case that the NCH assumption holds, but there is

serial correlation in theεit and so the random effects structure does not hold (b=0,ρ=0.5). In

this case, our earlier results indicate that GMM-BS and MGIV are equally efficient, while the

other three estimators are inefficient. The bias of GMM-BS is often larger than that of the

other estimators, but none of the estimators is seriously biased. In terms of RMSE, MGIV is

usually best, which is not surprising given its theoretical efficiency. The three inefficient

estimators (GMM-SS, 3SLS and 3SLS-RE) have larger RMSE than MGIV, by about equal

amounts. 3SLS-RE, which incorrectly imposes the random effects structure, does not seem

any worse than the other inefficient estimators, even though it is theoretically less efficient

than GMM-SS or 3SLS-SS, which use the optimal weighting matrix given their instrument

set. GMM-BS, which is theoretically efficient, has considerably higher RMSE than MGIV,

and is often worse than the inefficient estimators. Once again the average standard errors are

quite close to the RMSE, except for GMM-BS, for which the standard errors substantially

underestimate RMSE. Correspondingly, the t-tests for GMM-BS have size much larger than

5%.

Table 3 gives the results for the case that the NCH assumption fails (b=1,ρ=0.5);

there are both serial correlation and conditional heteroskedasticity. In this case only
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GMM-BS is efficient. Once again, none of the estimators seems seriously biased. In terms

of RMSE, GMM-BS is indeed best, but it is generally not much better than the other

estimators. Its superiority in terms of RMSE must be balanced against the fact that its

standard errors still seriously understate the RMSE, and correspondingly its t-tests reject too

often. For the other estimators, the standard errors are on average quite close to RMSE. For

the 3SLS and MGIV estimators, only the robust standard errors are asymptotically correct,

and they are more accurate but not much more accurate than the non-robust standard errors.

The main results of the Monte Carlo experiments can be summarized as follows. The

GMM estimator using the big instrument set and unrestricted weighting matrix (GMM-BS)

has an acceptably small bias and good efficiency properties, but its standard errors are

unreliable. All of the other estimators do quite well when the NCH assumption and random

effects structure hold. The MGIV estimator is best when the NCH assumption holds but the

random effects structure does not. When the NCH assumption fails, the MGIV estimator with

robust standard errors is still a good alternative to GMM-BS, because it is computationally

simpler, it is nearly as efficient in finite samples, and it generates much more reliable

inferences.

6. CONCLUDING REMARKS

In this paper we have considered 3SLS and GIV estimation of popular panel data

models, under the assumption of strict exogeneity of the regressors with respect to the time-

varying error. The 3SLS and GIV estimators are often equivalent, and we give a general

condition for this equivalence. Under an assumption of no conditional heteroskedasticity of

the errors, we provide a systematic treatment of the estimation problem, starting with 3SLS
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based on the entire set of moment conditions implied by strict exogeneity, and then reducing

the number of moment conditions without loss of efficiency. Thus the simple 3SLS or GIV

estimators that we provide are efficient, even though they rely on only a small subset of the

available moment conditions.

These results are important because the strict exogeneity assumption generates a very

large number of moment conditions. Empirically relevant models can have hundreds of

available instruments, and this can cause computational problems and may call into question

the finite sample properties of the estimates. Our results show the redundancy of most of

these moment conditions. Our focus on 3SLS and GIV is motivated by the fact that the

redundancy results depend on the relationship between the regressors, instruments and

weighting matrix; with a general weighting matrix, such results are generally not possible.

An obvious extension of our paper is to relax the strict exogeneity assumption. Some

results under the assumption of weak exogeneity can be found in Keane and Runkle (1992),

Schmidt, Ahn and Wyhowski (1992), and Im (1994).
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APPENDIX

We will use the following notation. First, for any row vector di, we define D≡

(d1′,...,dN′)′. Second, for any q×p matrix A of full column rank, we define the projection

matrix onto the column space of A by P(A) and the projection matrix onto the null space of

A by Q(A); that is, P(A) = A(A′A)-1A′ and Q(A) = Iq - P(A).

PROOF OF THEOREM 2.1: Since the assumption implies W2′Ω½Q(Ω½W1)Ω-½X = 0, we

obtain

P(Ω1/2W)Ω-1/2X = [P(Ω1/2W1)+P(Q(Ω1/2W1)Ω1/2W2)]Ω-1/2X = P(Ω1/2W1)Ω-1/2X ,

where the first equality results from Amemiya (1985, p. 461). Thus, we can show

W(W′ΩW)-1W′X = Ω-½P(Ω½W)Ω-½X

= Ω-½P(Ω½W1)Ω-½X = W1(W1′ΩW1)
-1W1′X .

PROOF OF THEOREM 2.2: The desired result follows since

Ω-1W(W′Ω-1W)-1W′Ω-1X = WB(B′W′ΩWB)-1B′W′X = W(W′ΩW)-1W′X .

PROOF OF THEOREM 2.3: Σ-1(IT⊗wo
i ) = (IT⊗wo

i)(Σ-1⊗Iq).

PROOF OF THEOREM 3.1: By Theorem 2.3, 3SLS = GIV when Wi is defined as in

Assumption 3.1. Thus, all we need to show is that GIV = GLS; i.e., P(Ω-½W)Ω-½X =

Ω-½X. This is clearly the case since X is in the column space of W.

PROOF OF THEOREM 3.2: Without loss of generality, we setσε
2 + Tσα

2 = 1 and denote

a = σε
2. Observe that

Σ-1(PTXi,QTXi) = (PTXi,a
-1QTXi) = (PTXi,QTXi)diag(Ik,a

-1Ik) .

Thus, Theorem 2.2 applies and the 3SLS estimator using (PTXi,QTXi) equals the GIV

estimator using the same instruments. Thus, our proof can be completed if we can show GIV

= GLS; that is, P[Ω-½(PX,QX)]Ω-½X = Ω-½X, where P = IN⊗PT and Q = IN⊗QT. This is true
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since X is in the column space of (PX,QX).

PROOF OF THEOREM 4.1: It is well known that L and QT span the same space. Thus

we have P(L) = QT, QTL = L, PTL = 0, QTWi = Wi and PTWi = 0. With Σ = aQT + PT, this

implies Wi′ΣWi = aWi′Wi or W′ΩW = aW′W. Thus,

β̂3SLS = [X ′P(W)X]-1X′P(W)y = [X′QP(W)QX]-1X′QP(W)Qy .

However, it is easy to see that QTXi is in the space spanned by Wi = L⊗xo
i ; that is, P(W)QX

= QX.

The following lemma is useful for the proof of Theorem 4.2:

LEMMA 1 : [P(Ẍ)⊗QT]X = [P(Ẍ)⊗QT]QX = QX.

PROOF: Note that when k = 1, X = vec(Xo′) and Ẍ = XoQT. Hence,

[P(Ẍ)⊗QT]X = [P(Ẍ)⊗QT]vec(Xo′) = vec[QTX
o′P(Ẍ)] = vec(QTX

o′) = QX ,

which is also valid when k > 1 by applying this argument to each of the regressors separately.

The third equality results because X¨ consists of the first (T-1)k columns of XoQT which in

turn span the last k columns of XoQT.

PROOF OF THEOREM 4.2: From Theorem 2.1, it is sufficient to show that

(X̄⊗L)′X = (X̄⊗L)′(IN⊗Σ)(Ẍ⊗L)[(Ẍ ⊗L)′(IN⊗Σ)(Ẍ⊗L)] -1(Ẍ⊗L)′X .

Using Lemma 1 and the fact that L = QTL, we can show that the right-hand side equals

(X̄′P(Ẍ)⊗L′)X = (X̄ ′P(Ẍ)⊗L′QT)X = (X̄⊗L)′(P(Ẍ)⊗QT)X = (X̄⊗L)′X .

PROOF OF THEOREM 4.3: To proveβ̂3SLS = β̂DF, it is sufficient to show

(Ẍ⊗L)[(Ẍ ⊗L)′(IN⊗Σ)(Ẍ⊗L)] -1(Ẍ⊗L)′X = (IN⊗L)(I N⊗L′ΣL)-1(IN⊗L)′X .

But, the left-hand side equals

[P(Ẍ)⊗L(L ′ΣL)-1L′]X = [I N⊗L(L ′ΣL)-1L′][P(Ẍ)⊗QT]X = [I N⊗L(L ′ΣL)-1L′]X ,

where the second equality follows from Lemma 1. To proveβ̂DF = β̂KR = β̂DM, we need to

26



show that L(L′ΣL)-1L′ = QT(QTΣQT)
-QT = Qd

T′(Qd
TΣQd

T′)-1Qd
T, where Qd

T denotes any T×(T-1)

matrix that equals QT with one row deleted. Note that QT(QTΣQT)
-QT is invariant for any

choice of g-inverse since Rank(QTΣQT) = Rank(QT) (see Rao and Mitra (1971, Lemma

2.2.6(g))). It is also easy to verify that both L(L′ΣL)-1L′ and Qd
T′(Qd

TΣQd
T′)-1Qd

T are g-inverses

of QTΣQT. Thus, we have

QT(QTΣQT)
-QT = QTL(L ′ΣL)-1L′QT = L(L ′ΣL)-1L′ .

Similarly, QT(QTΣQT)
-QT = Qd

T′(Qd
TΣQd

T′)-1Qd
T.

PROOF OF THEOREM 4.5: Let R = (X,Z⊗eT), H = (X̄2,Z2) and G = (Xo
1,Ẍ2,Z1). From

Theorem 2.1, it is sufficient to show that

(H⊗L)′(IN⊗Σ)(G⊗IT)[(G⊗IT)′(IN⊗Σ)(G⊗IT)]
-1(G⊗IT)′R = (H⊗L)′R .

But the left-hand side equals

(H⊗L)′[P(G)⊗IT]R = (H⊗L)′[P(G)⊗QT]′R = (H⊗L)′R ,

where the second equality results from Lemma 1 and the fact that [P(G)⊗QT](Z⊗eT) = 0 =

(H⊗L)′(Z⊗eT).

PROOF OF THEOREM 4.6: Let R = (X,Z⊗eT) and G = (Xo
1,Ẍ2,Z1). For the 3SLS

estimator using the instruments (G⊗IT),

(G⊗IT)[(G⊗IT)′(IN⊗Σ)(G⊗IT)]
-1(G⊗IT)R = [P(G)⊗Σ-1]R .

Define PΣ = Σ-1eT(eT′Σ-1eT)
-1eT′Σ-1. Then, for the GIV estimator using the instruments

(QX,G⊗eT), a tedious but straightforward calculation shows that

(IN⊗Σ-1)(QX,G⊗eT)[(QX,G⊗eT)′(IN⊗Σ-1)(QX,G⊗eT)]
-1

× (QX,G⊗eT)′(IN⊗Σ-1)R = [MQXD-1XQM + P(G)⊗PΣ]R ,

where M = (IN⊗Σ-1) - (P(G)⊗PΣ) and D = X′QMQX (for more details, see Im (1994)). Thus,

we can complete the proof by showing [MQXD-1XQM + P(G)⊗PΣ]R = [P(G)⊗Σ-1]R.
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Lemma 1 implies

MQX = [(I N⊗Σ-1)-(P(G)⊗PΣ)]QX = [P(G)⊗(Σ-1-PΣ)]QX . (A.1)

Using the fact that PΣPT = Σ-1PT, we can also show

MQX = [P(G)⊗{(QT+PT)(Σ-1-PΣ)}]QX = QMQX . (A.2)

Finally, using (A.1), (A.2) and the equality PΣPT = Σ-1PT, we can show

[MQXD -1XQM + P(G)⊗PΣ]R = [MQXD-1X′QMQ + (P(G)⊗PΣ)](X,Z⊗eT)

= [MQX+(P(G)⊗PΣ)X, (P(G)⊗PΣ)(Z⊗eT)]

= [MQX+(P(G)⊗PΣ)QX+(P(G)⊗PΣ)PX, (P(G)⊗Σ-1)(Z⊗eT)]

= [(P(G)⊗Σ-1)QX+(P(G)⊗Σ-1)PX, (P(G)⊗Σ-1)(Z⊗eT)] = [P(G)⊗Σ-1]R .

The following lemma can be used to prove the next two theorems.

LEMMA 2 : Let RΣ = IT - eT(eT′Σ-1eT)
-1eT′Σ-1. Then, L(L′ΣL)-1L′ = Σ-1RΣ.

PROOF: Note that IT = P(Σ½L,Σ-½eT) = P(Σ½L) + P(Σ-½eT), since (Σ½L,Σ-½eT) is

nonsingular and L′eT = 0. Thus,

L(L ′ΣL)-1L′ = Σ-½P(Σ½L)Σ-½ = Σ-½[I T-P(Σ-½eT)]Σ-½ = Σ-1RΣ .

PROOF OF THEOREM 4.7: Let bi1 = (xo
i1,zi1), bi2 = (xo

i2,zi2) and bi = (bi1,bi2). We wish to

show that 3SLS using [Σ-1RΣXi,Σ-1(eT⊗bi1)] is equivalent to 3SLS using Wi = [L⊗bi,eT⊗bi1].

Arellano and Bover (1995, p. 38) show that 3SLS using [L⊗bi,Σ-1(eT⊗bi1)] is equivalent to

3SLS using Wi. Thus, we can complete our proof by showing that the two sets of

instruments [L⊗bi,Σ-1(eT⊗bi1)] and [Σ-1RΣXi,Σ-1(eT⊗bi1)] lead to the same 3SLS estimator.

Define Wi1 = L⊗bi, Wi2 = Σ-1(eT⊗bi1) and Wi3 = Σ-1RΣXi; and let WA
i = (Wi1,Wi2) and WB

i =

(Wi3,Wi2). Then, what we wish to show is

WA(WA′ΩWA)-1WA′(X,Z⊗eT) = WB(WB′ΩWB)-1WB′(X,Z⊗eT) . (A.3)

This condition can be further simplied. Since Wi1′ΣWi2 = 0 and Wi3′ΣWi2 = 0, for any i,

28



WA(WA′ΩWA)-1WA′ - WB(WB′ΩWB)-1WB′ = W1(W1′ΩW1)
-1W1′ - W3(W3′ΩW3)

-1W3′ .

Further, W1′(Z⊗eT) = 0 and W3′(Z⊗eT) = 0. Thus, the condition (A.3) is satisfied if

W1(W1′ΩW1)
-1W1′X = W3(W3′ΩW3)

-1W3′X .

But W3(W3′ΩW3)
-1W3′X = (IN⊗Σ-1RΣ)X. Further, since W1 = B⊗L, we have

W1(W1′ΩW1)
-1W1′X = [P(B)⊗L(L ′ΣL)-1L′]X = [I N⊗L(L ′ΣL)-1L′QT]X

= [IN⊗L(L ′ΣL)-1L′]X = (I N ⊗Σ-1RΣ)X ,

where the second and fourth equalities come from Lemmas 1 and 2, respectively.

PROOF OF THEOREM 4.8: We will complete the proof by showing (i) that the GIV

estimator using W(
i
8) is not affected if we replace Xi1 by RΣXi1, and (ii) that QT + eTf′Q*

T =

RΣ. Since xoi1 includes all the variables in Xi1, we can easily see that there exists a

conformable matrix C such that (eT′Σ-1eT)
-1eT′Σ-1Xi1 = xo

i1C . Therefore, we have

Xi1 = Xi1 - eT(eT′Σ-1eT)
-1eT′Σ-1Xi1 + eT(eT′Σ-1eT)

-1eT′Σ-1Xi1 = RΣXi1 - (eT⊗xo
i1)C .

This implies that, since W(i
8) includes eT⊗xo

i1, Xi1 and RΣXi1 can replace each other in GIV

using W(
i
8). Thus, we have completed the proof of (i). We now proceed to prove (ii). By

definition, f = (1/T)[E(Q*
Tuiui′Q*

T′)]-1E(Q*
Tuiui′eT) = (1/T)(Q*

TΣQ*
T′)-1Q*

TΣeT . Thus,

QT + eTf′Q*
T = QT + (1/T)eTeT′ΣQ*

T′(Q*
TΣQ*

T′)-1Q*
T = QT + (1/T)eTeT′ΣΣ-1RΣ = RΣ ,

where the second equality results from the proof of Theorem 4.3 and Lemma 2.
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