Bot Detection: Will Focusing on Recall Cause
Overall Performance Deterioration?

Tahora H. Nazer!, Matthew Davis', Mansooreh Karami®

Leman Akoglu?, David Koelle?, and Huan Liu!

1 Arizona State University, Tempe, AZ 85281 USA
{tahora.nazer ,matt.davis,mkarami,huan.liu}@asu.edu
2 Carnegie Mellon University, Pittsburgh, PA 15213 USA

lakoglu@andrew.cmu.edu
3 Charles River Analytics, Cambridge, MA 02138 USA
dkoelle@cra.com

Abstract. Social bots are an effective tool in the arsenal of malicious
actors who manipulate discussions on social media. Bots help spread
misinformation, promote political propaganda, and inflate the popular-
ity of users and content. Hence, it is necessary to differentiate bot ac-
counts and human users. There are several bot detection methods that
approach this problem. Conventional methods either focus on precision
regardless of the overall performance or optimize overall performance,
say Fi, without monitoring its effect on precision or recall. Focusing on
precision means that those users marked as bots are more likely than not
bots but a large portion of the bots could remain undetected. From a
user’s perspective, however, it is more desirable to have less interaction
with bots, even if it would incur a loss in precision. This can be achieved
by a detection method with higher recall. A trivial, but useless, solu-
tion for high recall is to classify every account (human or bot) as bot,
hence, resulting in poor overall performance. In this work, we investi-
gate if it is feasible for a method to focus on recall without considerable
loss in overall performance. Extensive experiments with recall and pre-
cision trade-off suggest that high recall can be achieved without much
overall performance deterioration. This research leads to a recall-focused
approach to bot detection, REFOCUS, with some lessons learned and
future directions.

Keywords: Social media - Twitter - Social Bots - Bot Detection - Recall

1 Introduction

Bots are prevalent on social media and their malicious actions have been observed
repeatedly. An example of this wide-spread activity of bots was seen during the
US Presidential Election in 2016. Allcott and Gentzkow [1] extensively studied
this event and reported that millions of pro-Trump and pro-Clinton fake stories
were shared on Facebook, in part, by bot accounts. They also provide evidence
that more than 40% of fake news sources use social media to spread their content.

2 T. H. Nazer et al.

Thus, researchers have put great effort into understanding bots and devel-
oping methods to detect them. In supervised bot detection methods, which are
the focus of this work, a labeled dataset of bots and human users is available
prior to training a machine learning classifier. Using these labels, we can learn
characteristics, also know as features (described in detail in Section 2), that dis-
criminate bots from humans and use them to build classifiers that predict class
labels (bot or human). The classifiers are then tested on unobserved datasets
and evaluated using two prominent metrics: precision and recall.

A common theme among previous bot detection methods is attempting to
maximize precision [4,9, 16]. This is one extreme: the sole purpose is to minimize
false positives and avoid mistakenly marking a human user as bot. By doing this,
detection methods avoid removing human users from the site but leave many bots
undetected. The other extreme is eliminating bots from social media at the price
of removing human users. This approach is not preferable either. A method for
finding a trade-off between precision and recall is optimizing for F} score which is
the harmonic mean between precision and recall. Harmonic mean is dominated
by the minimum of its arguments. Hence, F; cannot become arbitrarily large
when either precision or recall is unchanged and the other metric is increased.
This prevents bot detection algorithms from landing on trivial solutions (marking
all users as bots or humans) to gain high F;. However, considering the same
weight for precision and recall in F} prevents us from having control over the final
values of either precision or recall. In other words, two classifiers are considered
equally good if they have the same F; regardless of the fact that one might result
in higher recall and the other one a higher precision. The ideal case is finding
a solution close to optimum F; that allows us to focus on precision or recall
depending on the application.

Maximum F,
@ 9
P=1 R=1
Label only most obvious bots A Recall-Focused | apel all users as bots
Approach

Fig.1: Our goal is having a recall-focused approach close to the optimal F;.

To align with corporate goals (having a large number of active users and
retaining human users by avoiding accidentally suspending their accounts), bot
detection models with high precision are preferable. However, from a user’s per-
spective, both social media users and researchers alike, the preferable situation
is encountering a minimum number of bots. So, in this case, high recall is pre-
ferred. In this work, we focus on developing a supervised algorithm aligned with
a user’s perspective: a REcall FOCUSed bot detection model, REFOCUS. We
use multiple real-world datasets to show how we can find a sweet spot between
blindly optimizing for F; or recall as shown in Fig. 1. We also compare REFO-
CUS with state-of-the-art bot detection models to show that focusing on recall
does not necessarily result in overall performance deterioration in terms of F.

Recall Focused Bot Detection 3
2 Supervised Bot Detection Methods

To use supervised bot detection models, one must identify differences among bot
and human users in terms of features such as content or activity in a labeled
dataset. Then, a classifier is trained on the features and labels to distinguish bots
from humans in an unobserved dataset. Different classification methods can be
used for this purpose such as Support Vector Machines [11], Random Forests [9],
and Neural Networks [8]. We describe some common user features below:

— Content: the measures in this category focus on the content shared by users.
Words, phrases [16], and topics [11] of social media posts can be a strong
indicator of bot activity. Also, bots are motivated to persuade real users into
visiting external sites operated by their controller, hence, share more URLs
in comparison to human users [4, 13, 17]. Bots are observed to lack originality
in their tweets and have large ratio of retweets/tweets [14].

— Activity Patterns: Bots tweet in a “bursty” nature [4, 10], publishing many
tweets in a short time and being inactive for a longer period of time. Bots
also tend to have very regular (e.g. tweeting every 10 minutes) or highly
irregular (randomized lapse) tweeting patterns over time [18].

— Network Connections: bots connect to a large number of users hoping to
receive followers back but the majority of human users do not reciprocate.
Hence, bots tend to follow more users than follow them back [4].

As bots become more complex and harder to detect [5], bot detection meth-
ods incorporate a larger number of features and datasets with more samples of
humans and bots. One of the recent approaches is BotOrNot [6]. This method
exploits 1,150 features from five categories: user-based, friends, network, tempo-
ral, language, and sentiment [16]. The initial model was trained on a dataset of
~40,000 bots and humans and has been updated multiple times using seven more
datasets with total of ~87,000 samples. The strength of this method has encour-
aged researchers to use it to label ground-truth datasets [7]. We will compare
our proposed method with BotOrNot in Section 5.

3 Data for Supervised Bot Detection

To show the robustness of our model with respect to the language, topic, time,
and labeling mechanism, we use three datasets represented in Table 1.

Table 1: Statistics of the datasets used in this study.

Property Arabic Honeypot Social Spambot 1 Social Spambot 2
Tweets 637,435 4,449,395 4,257,918

Retweets 209,703 782,267 754,104

Human Accounts 2,317 1,083 1,083

Bot Accounts 1,978 991 464

Bot Ratio 46.05% 47.78% 29.99%

Labeling Approach Honeypot Manual Manual

4 T. H. Nazer et al.

As seen in Table 1, in this work, we utilize three existing bot detection
datasets. We describe how each of these raw datasets were collected and what
they contain in Section 3.1. Then, we specify how we preprocessed the raw data
using a content-based feature extraction method in Section 3.2.

3.1 Datasets

The first dataset is a honeypot dataset collected by Morstatter et al. [11] which
we refer to as the Arabic Honeypot dataset. It was collected using a network of 9
honeypot accounts which tweeted Arabic phrases, as well as randomly following
and retweeting each other. Any user who followed a honeypot was considered a
bot, because bot behaviors are sporadic and provide no intelligent information
to humans. For collecting a set of human users, the authors manually inspected
users who tweeted same Arabic phrases as some of the bots, then crawled data for
them and other users that the inspected users immediately followed; assuming
that humans only follow other humans and not bots. In August 2018, we re-
crawled this dataset using the tweet IDs shared by the authors.

Additionally, we employ two datasets introduced by Cresci et al. [5] in their
previous work on detecting social bots on Twitter namely: test set #1 and
test set #2. We call these datasets Social Spambots 1 and 2, respectively, in
our work. Each dataset is a combination of social spambots and human users
on Twitter. To collect the human user accounts, Cresci et al. contacted random
users, asked a natural language question, and manually evaluated if the user was
a human. Social Spambots 1 contains these genuine accounts plus social bots that
were discovered during the 2014 Mayoral election in Rome, Italy which were used
to retweet a candidate within minutes of his original posting. Social Spambots
2 includes the genuine accounts and social bots that advertised products on
Amazon.com by deceitfully spamming URLs which point to the products. We
obtained these datasets directly from the BotOrNot Bot Repository [6].

3.2 Feature Extraction

Bot accounts are created by malicious actors to serve specific purposes. Thus,
their content can be a strong indicator to expose such potentially automated
accounts. The problem with using content for bot detection is that the raw text
features are of high dimensionality and sparse. Inspired by the recent advances of
topic modeling, we adopt latent Dirichlet allocation (LDA) [3] to obtain a topic
representation of each user. LDA, which treats each document as a distribution
over topics and each topic as a distribution over the vocabulary in the dataset,
has been proven useful for extracting latent semantics of documents. As such, we
use LDA to extract features from users’ tweet content. In this work, each user
is considered one document and the content of that document is his tweets. We
trained separate LDA models on each of the three datasets and develop classifiers
independently. We follow the assumption that, since bots are naturally more
interested in certain topics, denoting each user as a distribution over different
topics may help to better identify them from regular accounts [11].

Recall Focused Bot Detection 5
4 A Recall-Focused Approach — REFOCUS

A Dot detection classifier generates the probability of being a bot (belonging to
the positive class) for each instance in the dataset. To assign a binary label to
users, a classifier uses a threshold (commonly set to 0.5 [12]) to decide; if the
probability of being a bot is more than the classification threshold then the user
is labeled as a bot, otherwise as a human. Based on the assigned labels, classifiers
can be evaluated using precision (P) and recall (R) defined bellow:

— o, R- 1

Ctp+fpt T tp+fn

Precision and recall can be independently maximized easily. A trivial ap-

proach for increasing the recall is lowering the classification threshold and clas-
sifying more users as bots. Alternatively, increasing the classification threshold
results in labeling most users as humans, with only the unquestionably obvious
bot users labeled as bots, and causes a trivial increase in precision. However,
precision and recall are not independent from each other: increasing one might
result in decreasing the other. One approach for finding a trade-off between pre-
cision and recall is using the Fjg score. Fg is the weighted harmonic mean of
precision and recall [15] and is defined as follows:

(1+6%)PR @)
2P+ R

With 8 values greater than one, § times more weight is put on recall and for

values less than one, 8 times more weight is associated with precision.

Iy =

h .
®®®® e O
S i OO
€2® © ﬁ@@
SESIAN S OF
(a) (b): tn (c): fp (d): tp

Fig. 2: llustration of true negative - (b): tn, false positive - (c): fp, true positive
- (d): tp, and false negative - (e): fn for a classifier trained on dataset (a) when
the classifier labels a subset of users as bots (positive class) - by - and the rest
as humans (negative class) - hg.

4.1 Searching for a Trade-off: Selecting 3

Our goal is optimizing for recall, hence, we utilize F3 with 5 > 1 to find the best
classification threshold: a sweet spot between where F; (overall performance) is
maximized and where R = 1. The framework of our recall focused approach is
presented in Fig. 3. We divide the dataset to 90% T'rain and 10% Test. Then, for
ten iterations, we divide Train to 90% Train; and 10% Val; which are training
and validation sets respectively; Train; is 81% of the whole data and Val; is

6 T. H. Nazer et al.

9%. In each iteration, we train a classifier C; on T'rain;, change the classification
threshold between 0.1 and 0.9 with 0.1 steps, and find the threshold that results
in the highest Fg score on Val;; we call this threshold ¢;. After the tenth iteration,
we get an average of the thresholds ¢; to t1g to find the average threshold ¢. Then
we train a classifier, C', on Train and using ¢, we find the precision, recall, and
F1 score. We repeat this process ten times and report the average of precision,
recall, and F} scores as our final results.

C'is trained on Trainusing threshold ¢

| Train Test

| Train,

C, trained on Train, o
Best threshold: ¢, . Yl Return:
T 10 Fyand associated ¢

| Traing,

Cyptrained on Traing,
Best threshold: ¢;,

Fig. 3: Framework for the proposed bot detection model, REFOCUS.

We need to test different values of 8 in the training phase to find the best
classification threshold using Fj3. As we increase 3, precision has a non-increasing
trend and recall has a non-decreasing trend. This happens because as we increase
B we put more weight on recall in comparison to precision. More formally

Rg, > Rg; and Pg, < Pg, if [(i>f; (3)

Due to this non-increasing pattern of precision with increase of 3, we prefer to
maintain a low [as long as we do not sacrifice the chance of achieving a higher
recall with minor loss in precision. To find the right 8, we start from 8 =1 and
in each step we choose the current 3 as Bop if

(RY = RP) > (B = FY) ()

Meaning that we choose a larger /3 if the gain in R is more than the loss in Fy.

5 Experiments

In this section we empirically investigate the performance of our proposed ap-
proach. First, we investigate the effect of 8 and then, we compare REFOCUS
with baseline bot detection models in terms of P, R, and F}.

5.1 Searching for the Right 3

It is intuitive that using a F3 when 8 > 1 for training a classifier helps us find
the classification threshold that results in higher recall as compared to when
B8 = 1. However, it raises two questions: (1) what is best value of § and can we
increase it indefinitely to reach the highest recall possible? (2) Does the model
trained using 8 > 1 still perform well in terms of F; or we will drastically lose
precision? We answer the first question here and the second one in Section 5.2.

Recall Focused Bot Detection 7

1P A A Y VeyeTR A 1 F e)
09 ¥ 1¢--¢--¢--¢-- 098 L g A A
. y ¢ 2 p 4 *« A
099 X A A A 0.96 I
o S 0.94 A:‘\T‘\'_’_‘
0.7 1 0.98 0.92 . 3
*-- 09 -
06 ["4 --6_— o __o 097 | 088 | .-
0.5 . . ‘ 0.96 . : . 0.86 l l *--
Fl F2 F F4 F5 FL F2 F3 F4 F5 FI F2 F3 F4 F5
(a) Arabic Honeypot (b) Social Spambots 1 (c) Social Spambots 2

Fig. 4: Effect of 8 on precision (P), recall (R), and overall performance (F}). In
each dataset, we change 8 from 1 to 5, use Fg for finding the best classification
threshold in the training phase and report P, R, and Fj on the test set.

We test our model on three datsets: Arabic Honeypot, Social Spambot 1, and
2. The results are shown in Fig. 4. In Social Spambots 1, we do not observe any
change in the overall performance in terms of F as we change the 5. This can
be due to the way this dataset was collected resulting in humans and bots being
quite distinct from each other. This distinction causes the classifier perform well
no matter what the threshold is. Hence, any of the Fj3 scores can be used to find
the best classification threshold. In Arabic Honeypot and Social Spambot 2, we
see some variations in precision, recall, and overall performance. 8 = 2 gives us
the best trade-off between precision and recall because the loss in the overall
performance is smaller that the gain in recall; in other words, the slope of recall
line is larger than the slope of Fj line. Further increase in 8 does not provide
enough gain on recall in comparison to the loss in the overall performance, hence,
we stop at Fb.

5.2 Testing the Overall Performance

For comparing the overall performance of REFOCUS with other bot detection
methods, we need to decide on the number of topics in LDA and the classification
model. Due to the similarity between our feature extraction and the one by
Morstatter et al. [11] we follow their observation that 200 topics generated the
highest F; in the Arabic Honeypot dataset and set number of topics to 200.
We test multiple classification algorithms that are observed to have high
performance in the problem of bot detection [2] to find the best fit for REFOCUS:

Table 2: Performance of REFOCUS when implemented using different classifiers.
Arabic Honeypot Social Spambot 1 Social Spambot 2

Classifier P R R |P R kK |P R R

Decision Tree 0.738 0.746 0.741 | 0.995 0.996 0.996 | 0.933 0.956 0.944
Random Forest 0.460 1.0 0.630 | 0.992 0.996 0.994 | 0.854 0.947 0.897
Logistic Regression 0.603 0.984 0.748 | 1.0 0.996 0.998 | 0.984 0.919 0.950
SVM 0.601 0.983 0.746 | 1.0 0.993 0.996 | 0.924 0.971 0.945

8 T. H. Nazer et al.

Decision Tree, Random Forest, Logistic Regression, and SVM. We use Python
Scikit-learn package [12] for implementation with default settings except max_depth =
1 for Random Forest and maz_iter = 1 for Logistic Regression to avoid over-
fitting. As shown in Table 2, all classifiers achieve very similar (difference less
than 0.5%) F score except for Random Forest that has lower performance. We
choose SVM for the rest of our experiments because it has similar or higher R

and similar F} . Worth mentioning that our method can be built on top of any
classifier to help improve recall without sacrificing the overall performance.

We compare our proposed approach, REFOCUS, with two baselines:

— SVM: REFOCUS uses SVM to train multiple classifiers on subsamples of
the dataset and learns the best recall-precision trade-off using Fjg. Hence,
we compare our method with SVM when its parameters are set to default
and it generates the class labels (1 or -1) using 0.5 as threshold. Users are
represented with 200 LDA topics and we use 10-fold cross validation.

— BotOrNot [6,16]: this supervised bot detection model exploits 1150 features
in six categories: user-based, friends, network, temporal, content and lan-
guage, and sentiment. The model uses a Random Forest classifier and is
trained on multiple publicly available datasets. BotOrNot has been used for
generating ground-truth due to its performance.

We perform two sets of experiments. In the first one, we use the Arabic
Honeypot dataset. We use an LDA model with 200 topics to extract features
from the dataset then we apply REFOCUS and report the results. However,
using this dataset raises the concern that our approach might not perform as well
on non-Arabic tweets. Hence we also perform the second experiment. We follow
the same procedure but use the datasets that were collected by Cresci et al. [5].
These datasets (as explained in Section 3) have three advantages: they are among
the most recent publicly available labeled datasets for bots and include newer
bots, they use manual labeling which is different from the honeypot dataset,
and a majority of the tweets are in English. Hence, by testing our approach
on Cresci’s datasets, we show that our model performs well regardless of the
language of tweets and is resilient to new bots that emerge on social media.

The results are presented in Table 3. For the experiments on Cresci’s datasets,
we do not balance the classes due to small size of the data. Hence, we also include
the ROC AUC in our results. The ROC AUC for a classifier that randomly
assigns labels to instances is 0.5 regardless of the class balance and is a helpful
metric to assess classifiers when the samples of one class are more than the other.
Reserving the class imbalance is also helpful to mimic the real world scenario
where bots are a small portion of all users on social media [16].

In the first experiment, on the Arabic Honeypot dataset, SVM has higher
precision and lower recall in comparison to REFOCUS. The reason is that SVM
only labels a user as bot if the predicted probability of being a bot for that user
is over 0.5. However, our method learns the best threshold for optimizing recall
while reaching a high F;. Hence REFOCUS chooses a lower threshold (0.35 in
this case). This choice results in 2% lower Fy, however, we are willing to tolerate
this loss due to 6% gain in recall. BotOrNot performs considerably worse in this

Recall Focused Bot Detection 9

Table 3: Comparison between REFOCUS and baseline bot detection methods.

Dataset ‘ Method ‘ P R F ROC
Arabic SVM 0.655 0.919 0.765 0.849
Hona ot .| BotOrNot 0.472 0.523 0.496 0.514
yp REFOCUS | 0.601 0.983 0.746 0.849
Social SVM 1.0 0.991 0.995 0.997
Somma | BotOrNot 0.963 0.961 0.962 0.969
p REFOCUS | 1.0 0.993 0.996 0.997
Social SVM 0.986 0.915 0.949 0.996
Somma | BotOrNot 0.954 0.939 0.946 0.957
p REFOCUS | 0.924 0971 0.945 0.996

dataset in comparison to the Social Spambot datasets. The reason is that Social
Spambot datasets have been used in training BotOrNot and it is expected for
classifiers to have lower performance on unseen datasets (e.g. Arabic Honeypot).

In the second experiment, we test our method on two non-Arabic datasets
which are obtained using a manual annotation method to show that our results
are robust to variations in datasets such as language. In Social Spambots 1, SVM
and our proposed approach perform almost identically with an slightly better
recall in REFOCUS. The reason is that the differences between instances in
human and bot classes are well captured by the classifiers to the extent that the
classifier (either SVM or REFOCUS) are very confident in the labeling. Hence,
each instance gets a high probability of being in its actual class and changing
the threshold does not change the classification results much. We also observe
that our approach outperforms BotOrNot. On Social Spambots 2, SVM and
BotOrNot outperform our approach in precision and have lower recall, similar
to the Arabic Honeypot dataset, because they are not is not designed to optimize
on recall. F; of our approach is similar to the baselines.

6 Conclusion and Future Directions

The dominant trend among the previously proposed methods for bot detection
is solely focusing on precision, making sure that no human user is marked as a
bot, or optimizing for F}. In this work, we showed that we can focus on recall
of a bot detection model without sacrificing the overall performance. We tested
our method on three real-word datasets and observed that using F» score in the
training phase results in finding the best classification threshold for optimizing
recall and having high overall performance in terms of Fj. In the future, we wish
to explore the robustness of our method on translated datasets and also measure
its effectiveness in discriminating different types of bots in a dataset.

7 Acknowledgements

Support was provided, in part, by National Science Foundation grant 1461886
and the Office of Naval Research through N000141310835 and N000141612257.
We would like to thank anonymous reviewers for their valuable feedback.

10

T. H. Nazer et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. Journal

of Economic Perspectives 31(2), 211-36 (2017)

Alothali, E., Zaki, N., Mohamed, E.A., Alashwal, H.: Detecting Social Bots on
Twitter: A Literature Review. In: IIT. pp. 175-180. IEEE (2018)

Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of machine
Learning research 3(Jan), 993-1022 (2003)

Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Who is Tweeting on Twitter:
Human, Bot, or Cyborg? In: ACSAC. pp. 21-30. ACM (2010)

Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: The Paradigm-
Shift of Social Spambots: Evidence, Theories, and Tools for the Arms Race. In:
The Web Conference. pp. 963-972 (2017)

Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F.: BotOrNot: A Sys-
tem to Evaluate Social Bots. In: The Web Conference. pp. 273274 (2016)
Khaund, T., Al-Khateeb, S., Tokdemir, S., Agarwal, N.: Analyzing Social Bots
and Their Coordination During Natural Disasters. In: SBP-BRiMS. pp. 207-212.
Springer (2018)

Kudugunta, S., Ferrara, E.: Deep Neural Networks for Bot Detection. Information
Sciences 467, 312-322 (2018)

. Lee, K., Eoff, B.D., Caverlee, J.: Seven Months with the Devils: A Long-Term

Study of Content Polluters on Twitter. In: ICWSM. pp. 185-192. AAAT (2011)
Lee, S., Kim, J.: Early Filtering of Ephemeral Malicious Accounts on Twitter.
Computer Communications 54, 48-57 (2014)

Morstatter, F., Wu, L., H. Nazer, T., Carley, K.M., Liu, H.: A New Approach to
Bot Detection: Striking the Balance between Precision and Recall. In: ASONAM.
pp. 533-540. IEEE (2016)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12, 2825-2830 (2011)
Ratkiewicz, J., Conover, M., Meiss, M., Gongalves, B., Patil, S., Flammini, A.,
Menczer, F.: Truthy: Mapping the Spread of Astroturf in Microblog Streams. In:
The Web Conference. pp. 249-252. ACM (2011)

Ratkiewicz, J., Conover, M., Meiss, M., Gonalves, B., Flammini, A., , Menczer, F.:
Detecting and Tracking Political Abuse in Social Media. In: ICWSM. pp. 297-304.
AAAT (2011)

Rijsbergen, C.J.V.: Information Retrieval. Butterworth-Heinemann, Newton, MA,
USA, 2nd edn. (1979)

Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: Online Human-
Bot Interactions: Detection, Estimation, and Characterization. In: ICWSM. pp.
280-289. AAAT (2017)

Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., Osipkov, I.: Spamming Bot-
nets: Signatures and Characteristics. ACM SIGCOMM Computer Communication
Review 38(4), 171-182 (2008)

Zhang, C.M., Paxson, V.: Detecting and Analyzing Automated Activity on Twit-
ter. Passive and Active Measurement (PAM) LNCS 6579, 102-111 (2011)

