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INTRODUCTION

At first glance, it may seem anomalous for a chapter on expert performance to
appear in a volume on intelligence. But an accumulation of scientific events
indicates that the analysis of expertise in semantically rich knowledge domains is
quite relevant to understanding the nature of intelligence. These events have
occurred in a number of disciplines, particularly cognitive psychology and artifi-
cial intelligence. The first part of this chapter briefly outlines work in these
ficlds. The common theme is the increasing emphasis on the structure of knowl-
edge as a significant influence on intelligence and high-level cognitive perfor-
mance. The latter part of the chapter describes, as an illustration of this, investi-
gations of high and low competence in a knowledge-rich domain, namely, prob-
lem solving in physics.

intelligence has been studied by contrasting individual differences, age dif-
ferences, differences between the retarded and the gifted, and between fast and
slow learners. These dimensions of difference are well represented by the past
research of the contributors to this volume, including ourselves. What have we
learned by investigating intelligent performance along these dimensions? If we
consider speed of processing, memory span, and the use of complex strategies as
three straightforward measures of cognitive performance, the following picture
emerges. More intelligent individuals have faster processing speed, longer mem-
ory span, and use more sophisticated strategies than less intelligent persons
{Belmont & Butterfield, 197 1; Hunt, Lunneborg, & Lewis, 1975; Jensen, 1981).
This is also true of older versus younger children (Chi, 1976) and fast as com-
pared with slow learners. For example, good readers can encode words faster and

7



8 CHI, GLASER, AND REES

have a longer memory span for words than poor readers (Perfetti & Hogaboam,
1975). Thus, over these demensions of comparison, measured intelligence corre-
lates positively with faster processing, more complex encoding and recall, and
the use of sophisticated strategies.

Although this pattern of results occurs reliably, we still do not understand
what the underlying mechanisms are and whether similar mechanisms are opera-
tve in various disciplines and areas of knowledge. This is one reason the analysis
of expertise has emerged as an interesting area of investigation. The study of
expertise forees us to focus on a new dimension of difference between more and
less intelligent individuals—the dimension of knowledge—because expertise is,
by definition, the possession of a large body of knowledge and procedural skill.
The central thesis of this chapter is that a major component of intelligence is the
possession of a large body of accessible and usable knowledge. In the following
section, we briefly outline the literature in two related disciplines that have
gradually come to the same conclusion.

THE FOCUS ON KNOWLEDGE

Cognitive Psychology
Memory Skills

In cognitive psychology, the effects of knowledge on complex skilled perfor-
mance were first explored in the seminal work of de Groot (1966) and Chase and
Simon (1973a, 1973b) in their studies of chess skill. In an attempt to discover
what constitutes skill in chess, de Groot (1966) found that differences in skill
were not reflected in the number of moves the players considered during their
search for a good move, nor in the depth of their search. Both the master and the
novice did not scarch any further ahead than five moves. Both experts and
novices used the same search strategies, that is, depth first with progressive
deepening. In order to capture the essence of skill differences in chess, de Groot
resorted to a different type of task—memory for chess positions. He found that
when masters were shown a chess position for a very brief duration (5 seconds),
they were able to remember the position far better than novice players. This
difference could not be atiributed to superior visual short-term memory on the
part of the masters because, when random board positions were used, recall was
equally poor for masters and novices (Chase & Simon, 1973b).

- In'order to understand the chess masters’ recall superiority, Chase and Simon
attempted to uncover the structures of chess knowledge that the masters pos-
sessed. Using “‘chunks’’ as a defining unit of knowledge structure, Chase and
Simon set out to identify ‘ekperimentally the structure and size of chunks in the
knowledge base of masters and novices. They used two procedures. One was to
record the placement of chess pieces on the chessboard during the recall of
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positions and use 2-second pauses during recall to segment the chunks. A second
procedure was to ask the chess player to copy a position and use head turns from
board to board to partition the chunks. The theoretical rationale underlying both
the pause and the head-turn procedure was the notion that chunks are closely knit
units of knowledge structure. Hence, retrieval of one item of information within
a chunk would lead to retrieval of another in quick succession.

Both master and novice did retrieve pieces in chunks—bursts followed by
pauses—and they reproduced chess positions pattern by pattern, with a glance (or
head turn) for each pattern. These were familiar and highly stereotypic patierns
that chess players see daily, such as a castled-king position or a pawn chain, or
they were highly circumscribed clusters of pieces, often of the same color and
located in very close proximity. The difference between the novice and the expert
chess player was the size of the chunks. The master’s patterns were larger,
containing three to six pieces, whereas the novice’s patterns contained single
pieces. If one counted by chunks rather than pieces, the novice and the master
were recalling the same number of chunks from the board position.

There are limitations with the procedure of identifying chunks by a 2-second
pause and/or a head turn. One limitation is that it does not provide a description
of the complex structure of the chunk, for example, the overlapping nature of
chunks (Reitman, 1976). A more serious limitation is that it does not allow for
the identification of higher-order chunks. The pause procedure permits only the
identification of ‘‘local’” chunks, that is, chunks that are spatially close and
defined by such relations as next to, color identity, piece identity, etc. (Chase &
Chi, 1981).

The existence of higher-order chunks is evidenced in the master’s recall for
sequences of moves (Chase & Simon, 1973a). That is, after viewing all the
moves of a game, a master’s recall of move sequences shows clustering of move
sequences represented by pauses that is similar to the clustering of pieces in the
board-recall task. This says that a given board position generates a sequence of
stereotypic moves. Data from eye-movement studies clearly show that chess
players fixate predominantly on the pieces interrelated by attack and defense
strategy (Simon & Barenfeld, 1969) and that these pieces are typically not
proximally related, as are the local chunk pieces.

The study of expert-novice differences in the use of complex knowledge in
other domains has also revealed higher-order chunk structures. In electronics,
Egan and Schwartz (1979) found that skilled technicians reconstructing symbolic
drawings of circuit diagrams do so according to the functional nature of the
elements in the circuit such as amplifiers, rectifiers, and filters. Novice techni-
cians, however, produce chunks based more upon the spatial proximity of the
elements. In architecture, Akin (1980) found that during recall of building plans
by architects, several levels of patterns were produced. First, local patterns
consisting of wall segments and doors are recalled, then rooms and other areas,
and then clusters of rooms or areas. The hierarchical nature of chunks also has
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been illustrated in the recall of bascball events. High-knowledge individuals can
recall entire sequences of baseball events much better than low-knowledge indi-
viduals (Chiesi, Spilich, & Voss, 1979).

Like the chess results, the expert in several diverse domains is able to re-
member *‘sequences of moves’ much more rapidly than the novice. Also, we
see a similarity between chess patterns, circuit diagrams, and architectural pat-
terns in that functional properties are more important at higher levels, whereas
structural properties (such as proximity and identity in color and form) are more
important at lower levels. And with increasing skitl more higher-order chunks are
developed.

In sum, one aspect of cognitive psychology research has clearly identified the
superior memory capacity of skilled individuals, as exhibited in the large pattern
of chunks, whether they are adult chess players, child chess players (Chi, 1978),
Go players (Reitman, 1976), Gomoku players (Eisenstadt & Kareev, 1975),
bridge players (Charness, 1979), musicians (Sloboda, 1976), baseball fans
(Chiesi et al., 1979), computer programmers (Jeffries, Turner, Polson, &
Atwood, 1981; McKeithen, Reitman, Rueter & Hirtle, 1981), orelectronic techni-
cians (Egan & Schwartz, 1979). Although a number of these studies have uncov-
cred the hierarchical nature of the patterns (Akin, 1980; Chiesi et al., 1979: Egan
& Schwartz, 1979), no work to date has explicitly related the knowledge and
chunk structures of these skilled individuals to the complex skill that they are
able to perform, ’

Problem-Solving Skills

A currently prominent area of research in cognitive psychology is problem
solving. Problem-solving research was revolutionized in the 1960s when re-
scarchers wrned from studying the conditions under which solutions are reached
to the processes of problem solving. Following the contribution of Newell and
Simon’s (1972) theory, problem-solving research proceeded to model search
behavior and to verify that humans indeed solve problems according to means-
ends analyses. Numerous puzzlelike problems were investigated, all of which
mdicated that humin subjects do solve problenss according (0 means-ends
analyses to some degree (Greeno, 1978).

In puzzle problems, sometimes known as MOVE problems, the knowledge
mvolved in solving the problems is minimal. All the knowledge one needs to
solve the problems is given: the initial state, the number and function of oper-
ators, and the final goal state. Solution reguires that a set of operators be applied
to transform one state of knowledge to another, so that eventually the goal staie
can be reached. A variety of puzzle problems have been investigated: the water-
Jug problem (Atwood Masson, & Polson, 1980; Atwood & Polson, 1976; Pol-
son & Jetfrics, Chapter 8, this volume), hobbits and orcs (Greeno, 1974,
Thomas, 1974), missionaries and cannibals (Simon & Reed, 1976), and Tower
of Hanoi (Egan & Greeno, 1974; Simon, 1975).
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The research on puzzle problems, however, offered limited insights iptf’)'lcarn-
ing. Because learning in real-world subject matters requireg the acquisition of
large bodies of domain-specific knowledge, cognitive scientists 1umed~v their at-
tention from knowledge-free problems, like puzzies, to knowledge-filled do-
mains like geometry (Greeno, 1978), physics (Simon & Simon, 1978), ther-
modynamics (Bhaskar & Simon, 1977), programming (Jeffries, Turner, Polsqn,
& Atwood, 1981), understanding electronic circuits (Brown, Collins, & Harris,
1978), and recently, political science (Voss & Tyler, 1981).

Solving real-world problems presents new obstacles that were not encountered
previously in puzzlelike problems. Basically, the exact operators to be u§ed are
usually not given, the goal state is sometimes not well defined, and more impor-
tantly, search in a large knowledge space becomes a serious prob.lem. (The
research on artificial intelligence programs in chess, to be mentioned in the next
section, gives the flavor of this difficulty.) Solving real-world prgblems with
large knowledge bases also provides a glimpse of the power of the huma.n
cognitive system to use a large knowledge system in an efficient and automauc.
manner—in ways that minimize heuristic search. In general, current studies of
high levels of competence by cognitive psychologists appear ‘to Asu‘pporl'the
recommendation that a significant focus for understanding expertise is investiga-
tion of the characteristics and influence of organized, hierarchical knowledge
structures that are acquired over years of learning and experience.

Artificial Intelligence

The goal of artificial-intelligence (Al) research is to make a machine act -
telligently. In this area, the problem of understanding intelligence has become
increasingly focused on the large structure of domain-specific knowledge that is
characteristic of experts. This is in contrast to the early years of the field, when
the creation of intelligent programs was identified with finding “‘pure’
problem-solving techniques to guide a search, for any problem, through the
problem space to a solution, as in the General Problem Solver (Newell, ShAaw, &
Simon, 1960). The techniques elucidated, such as means-ends analysis, are
clearly part of the picture, but it was apparent early on thaF in realislically'
complex domains such techniques must engage a highly organized strucmrg of
specific knowledge. This shift in Al is characterized by Minsky and Papert (c1{ed
in Goldstein & Papert, 1977) as a change from a power-based str:{tegy for
achieving intelligence to a knowledge-based emphasis. They write as follows:

The Power strategy seeks a generalized increase in computational power. It may
look toward new kinds of computers (**parallel”” or *“‘fuzzy’ or “‘associative’” or
whatever) or it may look toward extensions of deductive generality, or informalipn
retrieval, or search algorithms. . .. In each case the improvement sought is in-
tended to be ‘uniform’’—independent of the particular data base.
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The Knowledge strategy sees progress as coming from better ways to express,
recognize, and use diverse and particular forms of knowledge. This theory sces
the problem as epistemological rather than as a matter of computational power or
mathematical generality. It supposes, for example, that when a scientist solves a
new problem, he engages a highly orgunized structure of especially appropriate
facts, models, analogies, planning mechanisms, self-discipline procedures, etc.
To be sure, he also engages **general”” problem-solving schemata but it is by no
means obvious that very smart people are that way directly because of the superior
power of their general methods—as compared with average people. Indirectly,
perhaps, but that is another matter: A very intelligent person might be that way
because of specific local features of his knowledge-organizing knowledge rather
than because of global qualities of his *"thinking’* which, except for the effects of
his self-applied knowledge, might be little different from a child’s {p. 86].

We can now elaborate on this transition in Al research from building pro-
grams that emphasized heuristic search to knowledge-based programs, using
chess programs as examples. The chess problem space can be pictured as a
game tree. Figure 1.1 shows a very simple example of such a tree. Each
node represents a possible position (of all the pieces) during a game, and
cach link leading from a node represents a possible move. At first glance,
the problem might seem fairly simple: Start at the top of the tree and find
a set of paths that force the opponent into checkmate. However, as Shannon
(1950) pointed out, at any given point a player has approximately 30 legal moves
available, so the number of nodes at successive levels of the tree increases
dramatically. In an entire game, each player makes an average of 40 moves
(giving the tree 80 levels), and the number of possible paths to the bottom of the
tree total about 10"™°. Even the fastest computer could not search such a tree
exhaustively, so intelligent choices must be made to limit the exploration se-
verely. There are two basic limitations that can be applied: limiting the number of
moves considered from each node (width of search) and limiting the number of
successive moves that will be considered on each path (depth of search). Both of
these methods require the use of some chess knowledge if they are to be applied
successfully. In the case of depth of search, inasmuch as positions reached are
not final (won or lost), they must be evaluated to determine if they are advan-
tageous or not. In addition, simply cutting off the search at a specified depth can
cause problems (e.g., the cutoff may be in the middle of an exchange of pieces),
so some analysis is required to determine if the search should be deepened.

Full-Width Search

Two general search-based approaches have been followed in attempts to
create chess-playing prk,brams: full-width (brute force) search and selective
scarch. Both limit the depth of search, but in a full-width program, the width of
search is not limited at all, as the name implies. To date, a modification of this
approach has been the most successful. It uses a mathematical algorithm that
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FIG. 1.1. A chess game tree.

climinates from consideration moves by the opponent that are worse than the best
move already found (based on the evaluation of the positions to which they lead)
because it must be assumed that one will make the best possible move. The 1980
world computer chess champion, BELLE by Thompson and Condon at Bell
Labs, and a former champion, CHESS 4.6 by Slate and Atkin at Northwestern,
are both of this type. These programs, and others like them, have a bare
minimum of chess knowledge but make use of a computer’s speed and memory
10 do vast amounts of searching. Although these programs can now beat practi-
cally all human players, they cannot beat the top ranked experts (grand masters).
Estimates of 10 more years of work to reach this level are not uncommon. The
main reason for such slow progress is probably the explosive branching of the
game tree. Each level contains about 30 times as many nodes as the Ie.vel abov'e,
so a large increase in computational power is needed for a very small increase in

depth of search.
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Selective Search

Clearly, grand masters do not play better chess because they outsearch a
computer. The limited size of short-term memory and the amount of time re-
quired to fixate items in long-term memory limit humans to very tiny tree
searches. In fact, de Groot (1965) and Newell and Simon (1972) have shown
through protocol analysis that expert players tend to choose good moves without
any scarch at all and then conduct a limited search to test their choices. This
approach is an example of the second programming method—selective search.
The Greenblatt program (Greenblatt, Eastlake, & Crocker, 1967), the first to
make a respectable showing in human tournament competition, provides an
example of how this approach has been implemented. His program selects moves
for consideration on the basis of *‘plausibility.”” It first generates all of the legal
maoves available from the present position. A plausibility score is then calculated
for each move on the basis of a subset of 50 heuristics (not all are applicable to a
given situation). These heuristics are simply “‘rules of thumb’’ taken from chess
lore for selecting a good move, which have been roughly quantified to allow for
calculating a numerical score. The moves are then ranked in order of decreasing
plausibility, and only the first few are considered. In addition, all of the continua-
tions used to evaluate a move are generated in the same way. Because only a
handful of the possible moves is considered at each node, the game tree is
significantly reduced in size. The size of the search must be reduced still further,
however, so the mathematical algorithm mentioned before is used to “*prune”’
more branches from the tree. The depth of scarch is also limited.

Although expert players do choose a few plausible moves for consideration,
they do not do it through computation and evaluation as does the Greenblatt
program. Rather, they respond intuitively to patterns on the board. As mentioned
carlier, de Groot (1965) has shown that grand masters can reproduce complicated
positions almost exactly after seeing them for only 5 seconds. Apparently, the
years ol practice necessary to become a chess expert result in a very large
knowledge base of patterns of pieces and probably patterns of moves as well.
When experts look at the board and ““see’’ good moves, they are engaging in
pattern recognition. Thus, an obvious direction for chess-program design is to
build production systems that can recognize and respond as human players do
(Simon, 1976y,

Knowledge-Based Chess

There is more to human play than just recognizing a possible next move,
however. The moves of a good player advance toward some goal; they fit into a
plan that looks at least a few moves ahead. An early attempt to give chess
programs simple goals 15 the Newell, Shaw, and Simon program (1938), which
has a series of independent goal modules. Each module can recognize appro-
priate situations on the board and generate moves with specific purposes, such as
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king safety, center control, etc. The purpose of these goals, however, is only to
select a few reasonable candidates for the next move in order to limit the search
tree; there is no overall plan.

A program called PARADISE (Wilkins, 1980) contains the factors we have
discussed that seem to give expert chess players an edge over even the best scarch
programs. It uses an extensive knowledge of chessboard patterns, embodied in
production rules, to establish goals, which are then elaborated into more concrete
plans. Search is used only to check the validity of the plans.

PARADISE does not play an entire game; it plays *‘tactically sharp’’ posi-
tions from the middle game. Tactically sharp simply means that success can be
achieved by winning material from the opponent—a common situation in chess.
The knowledge base consists of some 200 production rules, each with a general
pattern of relationships among pieces as its condition. Most of these rules are
organized around general higher-level concepts necessary for effective play, such
as looking for a THREAT to the opponent’s pieces, looking for a way to make a
square SAFE to move a piece to it, trying to DECOY an opponent’s piece out of
the way, etc. The effect of applying the production rules to a given position is to
suggest a plan or plans with the overall goal of winning material. A given plan
may include calls back to the knowledge base to produce plans to accomplish
subgoals of the original plan (if such a subplan cannot be found, then the overall
plan is scrapped). Plans are thus hierarchically expanded until they are ready for
use. Each plan contains an initial move plus a series of alternative future moves
depending on the types of replies by the opponent. Each plan also contains
information about why it was produced by the knowledge base in the first place.
‘The plan and its associated information are then used to guide a very small tree
search to determine if the plan is feasible.

Productions in the knowledge base are used to generate the defensive moves
used in the search. Calls for additional planning and analysis to expand the
original plan can also be generated by the search. The depth of search is not
artificially limited in this program; instead, analyses are conducted (using the
knowledge base) at the ends of lines suggested by the plans to determine if
termination of the search is proper. Inasmuch as the plans limit the number of
alternatives considered at each node to only a few, the search can go much deeper
than in other programs. Because all of the analysis, planning, and searching is
guided by the knowledge base, altering or improving the play of PARADISE
consists of simply modifying or adding individual production rules. Such a
system seems to have great potential for playing expert chess, if the requisite
knowledge can be determined and coded into the knowledge base or if a self-
learning system can be designed to modify its own base.

In sum, the example of chess programs illustrates the general tendency in Al
toward knowledge-based programming. Even though computers have great ad-
vantages over humans in speed and memory, it seems that knowledge provides
an edge, which pure power can only overcome at great cost, if at ail.
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PHYSICS PROBLEM SOLVING AND EXPERTISE

In this section, we review what is known about how physics problems are solved
and, in particular, how expert physicists solve them as compared to novices. The
first subsection reviews the available empirical evidence, and the second reviews
the resulting theoretical models simulating the way experts and novices solve
physics problems.

Empirical Findings

In the relatively small amount of work done in this area, there are basically three
types of empirical investigation. One examines the knowledge structures of
physics concepts. Shavelson (1974; Shavelson & Stanton, 1975), for instance,
has investigated methods for determining this “‘cognitive structure.”” He de-
lineates three methods that may be used singly or in conjunction: word associa-
tion, card sorting, and graph building. Of the three, word association is the most
venerable and widely used. Using this method, Shavelson (1974) has shown that
students” physics concepts become more interrelated and that their cognitive
structures become more like the course "‘content structure’’ (as determined by a
structural analysis of the instructional materials) at the end of the course than at
the beginning. Thro (1978) has found similar results using the instructors’ cogni-
tive structure as the content structure.

A second type of empirical research is investigation of subjects’ prior concep-
tion of the physical world, with a view toward how that preconception might
affect one’s learning of physics. For example, McCloskey, Caramazza, and
Green (1980) have shown that a sizable number of students who have had no
physics courses, as well as some who have had one or more college courses,
believe that an object once set in curvilinear motion (e.g., through a spiral tube)
will maintain that motion in the absence of any further external forces. Also,
Champagne, Klopfer, and Anderson (1980) have constructed the Demonstration,
Observation, and Explanation of Motion Test (DOE) to test students’ ideas of
motion due to gravity. They have found, similarly, that a sizable number of
students entering a college mechanics course have crroneous ideas about motion
(and that students who had taken high school physics did no better than those
who had not). They also found, however, that results on the DOE alone were of
little predictive value in determining success in the mechanics courses.

The third type of empirical evidence relates specifically to problem solving
and is usually gathered in the context of solution protocols. Careful analyses of
protocols have indicated significant differences between the expert and novice.
The only obvious sirilarities between them are in the macroprocesses they use in
solving physics probléms. According to Simon and Simon (1978), both expert
and novice proceed to solution by evoking the appropriate physics equations and
then solving them. The expert often does this in one step, however, simply
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stating results without explicitly mentioning the formula being used, whereas the
novice typically states the formula, puts it into the appropriate form, and substi-
tutes the values of the variables in discrete steps. McDermott and Larkin (1978)
include another two ‘‘stages’’ prior to the evoking and instantiating of equations,
postulating that solution proceeds in at least four episodes: the first stage is
simply the written problem statement; the second involves drawing a sketch of
the situation; and the third is a ‘‘qualitative analysis’’ of the problem, which
results in a representation containing abstract physics entities. Generating the
equations is the fourth stage. According to Larkin (in press), experts seem to
perform all four processes, whereas the novice may skip the qualitative analysis
stage. Beyond this gross similarity lie much more subtle and salient differences
between the expert and novice protocols, which can now be elaborated.

Quantitative Differences

There are three major differences between the novice and the expert physicist
that are easily quantifiable. The most obvious is time to solution. The speed with
which a problem can be solved depends a great deal on the skill of the individuat.
Simon and Simon (1978) noted a 4:1 difference between their expert and novice.
Larkin (1981) also reported a similar difference between her experts and novices.
This difference is not unlike the speed difference found in chess-playing ability
of the master versus beginner. This is to be expected if we postulate that experts
in general are more efficient at searching their solution space.

Related to solution time is another quantifiable difference: the pause times
between retrieving successive equations or chunks of equations. Larkin (1979)
has claimed that a number of physics equations are retrieved by the experts in
succession, with very small interresponse intervals, followed by a longer pause.
Her novice did not seem to exhibit this pattern of pause times in equation
retrieval. This is interpreted as suggesting that experts group their equations in
chunks so that the eliciting of one equation perhaps activates another related
equation, and thus it can be retrieved faster. (There is also some evidence that the
chunk is associated with a ‘‘fundamental principle’’ of physics, such as New-
ton’s Second Law or Conservation of Energy.) Additional evidence for the
rapidity of equation retrieval by the experts was demonstrated by Larkin (1981)
when she found that experts were four times faster than novices in accessing and
applying equations during problem solving. This suggests to Larkin (1979) that,
for the experts, physjcs equations are siored in chunks or related configurations
so that accessing one principle leads to accessing another principle. This result is
appealing because it is reminiscent of the chess results, where chess pieces were
found to be chunked when the interpiece pause times during recall of a chess
position were examined.

Another interesting aspect of novice problem solving is not only that they
commit more errors than experts but that, even when they do solve a physics
problem correctly, their approach is quite different. It is this difference that we
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want to understand, as well as why they commit errors. Likewise, it is also
interesting to understand the circumstances under which experts make errors.

Qualitative Differences

Qualitative differences between an expert and novice problem solver are
harder to define operationally, especially in empirical studies. However, it is the
qualitative differences that distinguish expertise most noticeably. One prominent
yet elusive difference between the expert and novice is that expert physicists, as
noted before, seem o apply a “‘qualitative analysis’” (Larkin, 1977a, Larkin,
1980; McDermott & Larkin, 1978) or “‘physical intuition’” (Simon & Simon,
1978) to the problem, prior to the actual retrieval of physics equations. There are
several possible interpretations of what constitutes qualitative analysis. One in-
terpretation is that qualitative analysis, occurring usually in the beginning phase
of problem solving, is the construction of a physical representation (i.e., a
representation that has some external, concrete physical referents). This ability to
represent the problem physically in terms of real-world mechanisms was first
noted over a decade ago, although not in the context of the expert-novice distine-
tion. Paige and Simon (1966) observed that when algebra word problems that
corresponded to physically unrealizable situations were presented to subjects, a
tew of them immediately perceived the *‘incongruity’’ in the problem, whereas
others proceeded to evoke equations before realizing that the solution was mean-
ingless (e.g., a negative guantity for the length of a board). The tormer solvers
apparently imagined the physical referents of the objects mentioned.

In physics problem solving, the construction of a physical representation may
be helpful, or even necessary, for several reasons. First, Simon and Simon
(1978) suggested that physical representation provides a basis for generating the
physics equations. Second, physical representation provides a situation that can
be used to check one’s errors (Larkin, 1977a; Simon & Simon, 1978). Third, the
physical representation provides a concise and global description of the problem
and its important features. And finally, we conjecture that the physical repre-
sentation permits direct inferences to be drawn about certain features and their
relations that are not explicit in the problem statement but can be deduced once a
representation is constructed.

However, there is also reason to think that what occurs during qualitative
analysis i1s more than the construction of a physical represeniation, because the
often complex physical configuration and intuition deriving from what happens
in a physical situation may not necessarily lead to correct inferences. As the
aforementioned work of Champagne, Klopfer, and Anderson (1980) and
- McCloskey et al. (1980) have indicated, naive problem solvers must not always
rely on their physical intuition for constructing a representation. However, inas-
much as it is predominantly the experts who construct an elaborate representa-
tion, we postulate that this representation need not correspond directly to a
physical representation, but may be more abstract.
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A second qualitative difference between the expert and the novice observed by
Simon and Simon (1978) is in the number of ‘‘metastatements.’’ Melastatements
are comments made by the subjects about the problem-solving processes. On the
average, their expert made only one metastatement per problem, whereas the
novice made an average of five. They were usually observations of errors made,
comments on the physical meaning of an equation, statements of plans and
intentions, self-evaluations, and so on.

There are several possible explanations for why their expert made fewer
metastatements. First, the expert might be better at recognizing the correctness of
a solution, and thus need not voice any uncertainties, etc. Second, the expert may
have multiple ways to solve a problem (Simon & Simon, 1978), so that the
solution can easily be doublechecked. Finally, the expert might have a well-
structured representation of the problem to check results against.

Another blatant qualitative difference between the solution processes of ex-
perts and novices lies in their solution paths (sequence and order of equations
generated) (Simon & Simon, 1978). The important distinction between the ex-
pert and the novice is that the expert uses a ‘‘working-forward’’ strategy,
whereas the novice uses a “'working-backward’’ strategy. The expert’s strategy
is simply to work from the variables given in the problem, successively generat-
ing the equations that can be solved from the given information. The novice, on
the other hand, starts with an equation containing the unknown of the problem. If
it contains a variable that is not among the givens, then the novice selects another
equation to solve for it, and so on. (These processes and models based on them
are explained more fully later.)

This interpretation of the novice’s performance initially seems counterintui-
tive; that is, the novice’s strategy appears to be more goal oriented and sophisti-
cated. One interpretation of this difference is that experts know that they can
achieve the goal simply by direct calculations of the unknowns from the givens.
Another intepretation is that experts do not require complex planning for simple
problems. They probably have existing routines or production systems that they
can apply directly to the problems. This simple forward-working strategy of the
expert does change, however, to a very sophisticated means-ends analysis of the
goals and planning when the problems become more difficult (Larkin, 1977b).

A puzzling question concerning the difference between the two strategies is
how people change from one to the other. Why is it that the expert can develop a
more efficient system? One possible answer is that over the years the expert has.
built up and stored several fundamental sets of subroutines that can solve several
types of basic problems. In this case, solving a problem becomes a matter of
categorizing the problem inio one or more problem types and applying the
existing subroutines. As we describe later, this ability to categorize the problem
yuickly is faciltitated by a powerful parsing mechanism that translates key words
in the problem statement—words such as ‘‘at the moment,*” *‘catch-up,”’ etc.—
into problem types.
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The second question is how can the expert construct a more cfficient sub-
routine, if one does not already exist for solving a complex problem? We think
that this facility les in the rich internal representation that the expert has gener-
ated, a representation that permits many appropriate inferences to be drawn so
that the problem can be simplified and reduced.

In sum, the analysis of the qualitative aspect of protocol data raises a number
of important questions: Why is the initial **qualitative analysis’” of the problem
important? What kind of representation of a problem is constructed during this
initial stage of analysis? Why are the sequences of equations generated by experts
and novices different? What enables an expert to generate a sequence of
equations that is more efficient? The quantitative analysis of the protocol data
simply confirms a number of intuitions that we already have but cannot explain:
Experts commit fewer errors, they can solve problems faster, and they seem to
store related equations in closely knit chunk structures. Moreover, not one of
these quantitative findings provides any answers to the qualitative questions. Nor
do they answer our questions posed earlier, namely, why are novices less suc-
cessful at solving physics problems, and why are their procedures somewhat
different, even when they are successful? Answering these questions is the focus
ol our own experimental program, which is described in the latter part of this
chapter. These questions also drive current research and theory; we now turn to
considering the current state of theory.

Theoretical Models of Physics Problem Solving

There has been a great deal more theoretical than empirical work done on prob-
lem solving in physics. In this section, we review all of the existing models.
They are of two types: psychological models that explicitly attempt to simulate
human performance and artificial-intelligence models that do not (although they
may contain components that are similar to human performance). Both types of
model are written in the form of computer programs.

Psychological Models

The majority of psychological models discussed here have several things in
common. First, the behaviors they simulate are generally think-aloud protocols
gathered while a person solves a physics problem. Second, except for one case,
most of them solve mechanics problems taken from a first course in physics.
Although these problems are siraightforward, they are by no means simple. They
do require some thought and usually take at least 2 minutes to solve. Third, the
aspects of protocols that the models attempt to simulate are generally the se-
quences of equatiore generated by the solver. Hence, the qualitative aspects of
the protocols (such as the initial analysis of the problem, the metastatements, and
su on) are usually ignored. Finally, the simulation usually takes the form of a
production system.
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To be more specific, the core of several of these models is a symbol-driven
process. The variables representing the knowns and unknown(s) (the answer) in
the problem are simply compared to the variables appearing in the various for-
mulas that the model has in its possession. Two very simple selection criteria can
be applied to produce two diftferent behaviors. On the one hand, a formula can be
sclected in which all variables but one are knowns. That one unknown variable
can then be asserted to be known (tagged as solvable, without any actual alge-
braic or arithmetic computation), and the process can be repeated until the new
known is the answer to the problem. This is a working-forward strategy typical of
experts. On the other hand, a formula can be selected because it contains the
desired unknown. If all the other variables in the formula are known, then the
problem is solved. If not, the unknown variable (the models discussed here
generally discard a formula if it has two or more unknowns) becomes a new
desired variable, and the process is repeated. This is the working-backward
strategy characteristic of novices.

To make these two strategies more concrete, consider the following very
sunple example: There are two formulas available, one relating the variables a,
h. and e, and the other relating d, ¢, and e:

¢ = fla, b) 1.1
d = f(c, ¢) 1.2

Suppose a problem is proposed such that g, b, and ¢ are given (the knowns) and
o 15 the desired answer (the unknown). The forward-working method chooses
Lyuation 1.1 first because a and b are known, allowing the calculation of e.
inasmuch as ¢ and e are now both known, Equation 1.2 can be selected and used
w find . By contrast, the working-backward method chooses Equation 1.2 first
hecause 1t involves the desired unknown d. Since ¢ is unknown, it becomes the
intermediately desired unknown, and Equation 1.1 is then chosen. Equation 1.1
can now be solved for e, which is substituted into Equation 1.2 to find d.

Simon and Simon Models. The first models to be discussed use the two
sirategies just described—working forward and backward. In the Simon and
simon (1978) models, the behaviors of two subjects—one novice and one
cxpert—working a series of kinematics problems (describing motion in a straight
jine without any consideration for the causes of that motion) are simulated by two
very simple production systems. The available formulas are represented in the
conditions of the productions as lists of the variables they contain. The problem
wsell s presented as a list of the known and desired variables it contains. As
explained earlier, the expert productions match the knowns in the problem with
the independent variables in the formulas, whereas the novice productions match
the desired unknown against the independent variable and the knowns against the
dependent variables. The productions are listed in different orders, reflecting the
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fact that the two subjects sometimes used different formulas where both
strategies might be expected to choose the same one. These two versions of the
model simulate the equation-selection behavior of the subjects quite well.

In this theory, there is no need to postulate any differences in the mechanism
by which equations were produced; it is only necessary to specify a difference in
the order in which they were generated. Nor is skill difference attributable to
rivial differences such as the lack of certain formulas. Both the expert and
novice systems contain basically the same set of equations.

Knowledge Development and Means-ends Models.  Two related models are
described in Larkin, McDermott, Simon, and Simon (1980). One is referred to as
the Knowledge Development model, which simulates the expert behavior, and
the other is the Means-Ends model, simulating novice behavior. These models
expand and improve on the Simon and Simon models in several ways to reflect
more accurately human information-processing capacities and the behavior of the
subjects. Three separate memories are present: Long-term memory (LM), work-
ing (short-term) memory (WM), and external memory (EM). Long-term memory
consists of the productions themselves, which contain the necessary physics and
procedural knowledge. Working memory is a small memory limited to about 20
clements, and it is the contents of this memory that the condition sides of the
productions are matched against. External memory represents the pencil and
paper used by a problem solver. The complete problem statement resides in this
EM. and elements can be periodically transferred back and forth between EM
and WM by the actions of certain productions to simulate the changing focus of
attention of a problem solver and the process of recording intermediate results on
paper.

The solution process begins with the problem statement in a coded form that
specifies the objects involved, their attributes and points of contact, instants and
intervals of time, and the desired unknown(s). (The complex problem of natural
language understanding is avoided.) Both models have productions that assign
variables to the necessary elements of the problem so that the appropriate for-
mulas may be selected. As before, the two basic selection strategies—forward
and backward—are employed, but they are more elaborate to simulate behavior
more closely.

The differences between the current and the previous Simon and Simon
models are the most marked in the selection of a formula in the Means-Ends
novice model because novices are observed to do this in several discrete stages,
first selecting a formula, then relating its variables to items in the problem, and
then using it. A formula is originally selected for consideration if it merely
contains a desired quai.. %y. In cases where more than one formula contains the
desired quantity, selectors tailored to represent observed novice preferences pick
one. This model produces the same backward chain of equations as the earlier
model. It then “‘solves’” them by chaining forward, marking each previously
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unknown variable as known until the originally desired variable becomes
“known.’’ (Neither of these models has any actual algebraic manipulation
ability.)

The Knowledge Development model is more similar to the previous Simon
and Simon expert model. This is because experts generally do not exhibit the step
by step behavior of stating an equation and then connecting it to variables in the
problem. Thus, as before, the selectors choose a formula on the basis of the
unknowns and assert that the dependent variable is now known in one step. This
situation can be viewed as a ‘‘collapsed’’ or overlearned version of the novice
model. (This becomes clearer shortly when other models are discussed.) The
main new feature of the model is that when more than one formula can be
selected based on the knowns, information from the problem is used to decide
among them. For instance if a (acceleration) and ¢ (time) are knowns, then both
x = $ar® and v = ar could be selected. If the problem contains an object failing
or rolling from rest, the first is selected. In all other instances, the second is
selected, corresponding to the observed expert preferences. It is in this sense that
the knowledge about the problem is used.

In addition to these differences, the Larkin et al. (1980) models have the
ability to solve more kinds of problems than the previous ones, which were
confined to kinematics. They solve dynamics problems (describing the motion of
a body by considering the forces causing or influencing that motion) using two
basic methods for solving such problems-—Forces and Energies-—and because
they contain more than one solution method, they have an attention focusing
mechanism. If a model is solving a problem using Energies, it should not try a
Force equation halfway through the solution, nor should it select an equation
when it is not through writing a previous one. To accomplish this focusing, goal
elements are included in the conditions of many of the productions. At the
beginning of a solution process, a goal is set (placed in WM and EM) so that only
productions related to that goal can execute. ‘

Able Models. The Able models of Larkin (1981) address a different issue
than strictly simulating the problem-solving processes. Instead, they attempt to
simulate the learning processes, (i.e., how a novice might become an expert). In
the model’s ‘‘naive’’ state, it is called the Barely Able model; after substantial
learning, it is called More Able. The learning process is modeled by a
mechanism for adding procedures that is generally used in adaptive production
systems (Waterman, 1975).

Barely Able starts with a list of equations that can be used in the Forces or
Energy methods and operates with a general means-ends strategy for applying
them that is similar to the previous Means-Ends model. The learning process
itself is quite straightforward: Whenever a production succeeds in applying an
equation to derive a new known value, it creates a new production that has the
previous knowns on the condition side and an assertion of the new known on the



24 CHI, GLASER, AND REES

action side. For example, if Barely Able solves the equation V = V, + at for a,
then the new production will check to see if V,,, V, and ¢ are known and, if so,
assert that « is known. Psychologically, this means that the procedure for finding
the right equation and solving for the unknown becomes automated once the
initial production has been exccuted. Thus, as Able solves more and more prob-
lems, it looks more and more like the Knowledge Development model mentioned
earlier—it becomes forward-working because all the backward-working steps
become automated. ‘

There are two limitations to the Able model. The first is that the learning takes
place in one trial. This is psychologically unrealistic, and a more complicated
learning function probably needs to be built in which some aspects of learning
take place faster than others. The second limitation is that the model does not
provide the capability to concatenate series of productions into one (Neves &
Anderson, 1981). Such a mechanism would allow two or more formulas to be
combined into a single step, as experts are often observed to do.

Model PH632. A model labeled PH632, developed by McDermott and Lar-
kin (1978), has a somewhat different focus than those previously described. Its
purpose is to examine and model in a general way the use of problem repre-
sentations by an expert solver but not to exhibit a detailed psychological model of
the process. It is, again, a production system with external, working, and long-
term memories. The condition sides of the productions can contain goal elements
that keep attention focused on the specific task at hand and that allow the
productions to be organized hierarchically.

A series of four representational stages of a problem is postulated: verbal,
naive, scientific, and mathematical (see also Larkin, 1980). The model assumes
that a problem solver progresses through these stages as a problem is solved.
However, the detailed description ot the model (McDermott & Larkin, 1978)
starts with the naive representation. The naive representation is a sketch depict-
ing the components of the problem and their relationships and is implemented as
a data structure that encodes this information. The scientific representation con-
tains abstract physics concepts such as forces, momenta, and energies (which
must generally be inferred by the problem solver) and is usually depicted as a
free-body diagram. The mathematical representation consists of the equations
relating the variables in the problem that must be solved to produce the final
answer.

Once PH632 has a naive representation, it tries one of the two solution
methods mentioned earlier-—Forces and Energies. If both are adequate, the one
chosen may simply be the first one tried. Once a particular method is chosen, its
productions give the model the ability to scan the sketch qualitatively to deter-
mine where the objects and systems of interest are, whether they are familiar or
unfamiliar, and how they are related. If a system is familiar (e.g., a hanging
block), PH632 can use its knowledye to build a production describing it. 1t the
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system is unfamiliar, an extended analysis is conducted to produce an encoded
version of a free-body diagram. This difference in representation corresponds to
an expert’s tendency not to draw an explicit free-body diagram of a familiar
system. The model makes qualitative checks as it proceeds to determine whether
its representation seems correct and whether its approach is working. For in-
stance, in a statics problem (one with no motion), it checks to make sure all of the
forces are balanced by at least one opposing force. It can also test whether all of
the entities generated in the scientific representation (e.g., forces) can be related
1 the quantities given in the problem statement so the equations can be gener-
ated. )

Once assurance is gained that the model is on the right track, it can write the
cquations for the mathematical representation. Because all of the forces have
already been located and resolved into components in construction of the scien-
afic representation, this step is relatively simple. Unlike the previous models,
PH632 can perform the algebraic and arithmetic operations necessary to produce
the answer.

Amvood. Larkin’s (1980) latest program, Atwood, concentrates on the ver-
bal representation stage, an area generally ignored by the previous models.
Considering the difficulties and complexities encountered by artificial-
mtelligence researchers in building language understanders, Atwood accom-
plishes its task in a surprisingly simple and straightforward way. Because
mechanics problems in general contain a rather small set of basic objects attri-
butes. and relationships, it can simply ignore most of the words in a typical
problem statement and concentrate on the key words.

Basically, Atwood contains a set of schemata that tell it what words to attend
w anid what situations those words may indicate. Thus, it knows that the word
rexd 1» important and that there should be one and only one length associated with
i Pulley is another key word, and Atwood’s schema tells it that there will be a
rope passed over this object and that the rope should have objects connected to
cach end.

Using some rudimentary knowledge of English syntax, Atwood processes the
problem statement word by word, creating nodes for each physics object it
recognizes and connecting these nodes into a semantic net with the help of the
knowledge of their legal relationships contained in the schemata. When tested on
4 set of 22 of the problems collected by Chi, Feltovich, and Glaser (1981),
Atwoud was able to build correct nets for 15 of them, while ignoring roughly two
dnrds of the words they contain.

Summary and Discussion of the Psychological Models. The psychological
madels so far developed focus their attention on the different approaches that
experts and novices take in terms of the sequence of equations they generate—
torward-working versus backward-working. In these models, it is assumed that
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experts are forward working because their initial backward solution procedure
becomes automated with learning. The question of initial problem representation
is generally avoided in these models, perhaps primarily because it is difficult to
obtain empirical information on this process solely through the usual forms of
protocol analysis. As we describe later, other techniques are required for this
purpose.

An alternative theoretical framework is to suggest that novices arc data
driven. They treat the unknown and known variables as literal symbols and plug
them into equations in their repertoire. Experts, on the other hand, are schemata
driven in the sense that their representation of a probem accesses a repertoire of
solution methods. Hence, for the expert, solving a problem begins with the
identification of the right solution schema, and then the exact solution procedure
involves instantiation of the relevant pieces of information as specified in the
schema. This is particularly likely because mechanics problems are overlearned
for the experts, especially experts who have spent a great deal of their time
teaching. Another interpretation is to postulate that novices also solve problems
in a schemata-driven way, except that their schemata of problem types are more
incomplete, incoherent, and at a level hierarchically lower than those possessed
by the experts. In our opinion, the development of psychological models should
proceed in this particular direction, building knowledge structures in the forms of
schemata, in order to capture the problem-solving processes of experts and
- novices. Some empirical evidence for the validity of this interpretation is pre-
sented later.

Artificial Intelligence (Al) Models

Artificial intelligence programs, unlike those previously discussed, are not
specifically intended to model observed behavior or to take into account theories
of human cognitive architecture. Their general aim is to solve physics problems
successfully by any means possible. However, they do contain elements that are
very similar to both human behavior and the previoﬁs psychological models.

One of the main issues addressed by the Al models is representation—how to
represent the knowledge that the program needs in order to form a representation
of the problem and solve it. Indeed, the current recognition in psychology of the
importance of representation probably derives from the early recognition of its
importance in Al and computer science in general. The question of how physics
knowledge is represented is a major research problem, as the rudimentary state of
such representations in the psychological models indicates.

The first phase of a problem solution is reading and understanding (or translat-
ing) the verbal problem statement. Much work has been done on the general
problem of natural I _7uage understanding in Al, and two of the programs to be
described put considerable emphasis on this stage. Both are more detailed and
complex than the simple Atwood (Larkin, 1980) translator because they aim for a
complete translation utilizing all of the information in the problem statement.
Thus. both use esoteric translation processes and have extensive knowledge
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bases of syntactic and semantic information, including specific physics knowl-
edge in a well-organized form to allow a correct physical interpretation of a
problem. Once translation is complete, some kind of language-free, internal
computer model of the problem exists, which can be compared to & naive repre-
sentation,

Issac. Issac (Novak, 1977) is a program that can read the problem state-
ment. It does this for statics problems only. The key feature is the representation
of objects as idealized physics entities. For instance, in a problem that has a man
standing on a ladder, the properties that are important to the solution are his mass
and location on the ladder. He can therefore be represented as a *‘point mass.”’
Bud if he is holding up one end of the ladder, only the point on the ladder he is
holding is important, and he becomes a ‘‘pivot.”” This idealization is accom-
plished in Issac by using Canonical Object Frames (schemata) from the knowl-
edge base. Each one contains the knowledge necessary to abstract the proper
characteristics from the *‘real-life’” object and to use the idealized object prop-
erly in the solution of the problem. This idealization process corresponds only
partially to the formation of scientific representation because no attempt is made
> represent or analyze qualitatively the other essential physics entities in a statics
problem—the forces. Instead, all possible balance-of-forces equations are writ-
ten at each point of contact between objects, resulting in many more equations
than are actually needed for a solution. This illustrates the problems that can arise
if the representation of a problem does not generate an efficient solution.

Newton. Newton (de Kleer, 1977) does not have any language-translation
facility. It solves roller-coaster problers (blocks sliding on curved surfaces), and
they are best represented as a picture of the track, which is provided in a
symbolic form. The key feature of this program is a process of qualitative
analysis referred to as envisionment. Newton envisions, as a human solver
might, what might happen to the sliding block based only on the general shape of
the track. Thus, on an upslope, the block might slow down and slide back, or
continue up. At the crest of a hill, the block might be traveling so fast that it flies
off into space, or it might slide down the other side. Using a series of production
miles that codify such qualitative knowledge, Newton builds a tree of possible
paths for the block that guides further processing of the problem. Some simple
problems may be solved using only this qualitative reasoning. If this is not
possible, then schemata are used that contain knowledge and formulas necessary
w analyze each node of the tree (section of the track) mathematically. In cases
where the value of a particular variable is needed for the answer, the familiar
means-ends process is used to choose the proper formulas.

Mecho.  Another language translator is Mecho (Bundy, Byrd, Luger, Mel-
tish, & Palmer, 1979), which solves problems from kinematics and those with
pulleys. It has also been extended (Bundy, 1978; Byrd & Borning, 1980) without
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ranslation to solve problems in statics and roller coasters in an attempt to make
the problem-solving part as general as possible by encompassing the work of
others (e.g., de Kleer, 1977, McDermott & Larkin, 1978; Novak, 1977). The
salient feature of this program, and perhaps, the key to its extensibility, is a
iwo-level knowledge organization. On the object (lower) level is the physics
knowledge, organized as rules, schemata, and the problem itself. The problem
passes through several stages of representation on the way to a solution. For
example, the natural language-translation feature produces a symbolic repre-
sentation specifying the objects in the problem and their properties. Where
necessary, schemata describing important objects (e.g., a pulley) are cued in
from the knowledge base. Thus, this initial internal representation might be
viewed as naive with elements of a scientific representation. The next general
step is to produce the mathematical representation, which can then be solved
algebraically. This is not a simple step however. The metalevel (upper level) of
the knowledge base contains all of the procedural knowledge necessary for the
entire solution process, organized as a set of rules and schemata. It includes rules
for interpreting the object-level knowledge for use at each step of the process, for
making inferences when needed information is net explicitly stated, for deciding
on a general solution strategy, for selecting equations (means-ends strategy
again), and so on. Although a complete scientific representation is not explicitly
formed, the planning and inferencing powers of the metalevel implicitly use the
elements of such a representation to plan the solution before equations are actu-
ally generated. Thus, in a statics problem, for instance, the planning process
climinates the problem of excess numbers of equations experienced by Issac.

The organization of procedural knowledge into explicit modular form is what
is most interesting psychologically about Mecho. Quite often, such knowledge is
huried in the structure of a program and the assumptions that went into writing it,
making changes difficult and modeling of procedural learning impossible. This
two-level organization also allows the declarative knowledge to be present in
only one form, which can be interpreted by the metalevel for use at each step of
the solution process. By contrast, both Issac and Newton contain separate repre-
sentations of the same physics knowledge for cach step. In a sense, Mecho can
Jearn (though not on its own) and has learned to solve néw problems in a fairly
realistic way psychologically because all that is necessary is to give it other new
picees of procedural and declarative knowledge.

Summary.  Although, as noted, the purpose of these Al programs is not to
mode!l human behavior, it is clear that they contain many psychologically impor-
tant features and ideas. The question of representation of the problem and the
knowledge basc is con. 20n to both fields, and the proposed solutions—stages of
representation, rules, and schemata (often called frames in Al)—are generally
similar. However, because Al is not limited by empirical knowledge of be-
haviors, these programs can venture into areas where psychological model build-
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ers have more difficulty simulating, such as natural language translation, qual-
itative analysis (e.g., envisionment), planning and inferencing processes, and the
actual specification of knowledge organization. The importance of these items to
the success of Al programs emphasizes the need for much more work to deter-
mine empirically how they occur in humans.

EMPIRICAL STUDIES
TOWARD A THEORY OF EXPERTISE

The objective of the series of investigations that we have carried out is to
construct a theory of expertise based on empirical description of expert problem-
solving abilities in complex knowledge domains. In this case, the knowledge
domain is physics, specifically mechanics. There are three basic questions that
guide our efforts. First, how does task performance differ between experts and
novices? This question has been partially answered in the review of empirical
evidence on physics problem solving. To recapitulate, the basic differences
found thus far are: (1) the two groups use different strategies for solving prob-
lems, forward versus backward; (2) they seem to have different chunking of
equations; (3) in an initial phase of problem solving, experts tend to carry out a
qualitative analysis of the problem; and (4) experts are faster at solving problems.
One of our goals is to describe more extensively these differences between
experts and novices.

The second question asks: How are the knowledge bases of skilled and less-
skilled individuals differently structured? It is clear that the skilled individual
possesses more knowledge, but how is that knowledge organized? Again, some
research has already addressed this issue. Simon and Simon (1978) initially
postulated a difference in the knowledge base in terms of the conditions of the
productions. Larkin (1979) has postulated a difference in the way equations are
stored. Experts store them in relation to a high-level principle, but this does not
scem to be the case for novices. In our work and in Larkin’s (1980) model
Atwood, knowledge is postulated to be organized in the forms of schemata.

The third question guiding our work is: How does the organization of the
knowledge base contribute to the performance observed in experts and novices?
The relation between the structure of the knowledge base and solution processes
must be mediated through the quality of the representation of the problem.

A problem representation, as we stated in Chi et al. (1981): *‘is a cognitive
structure corresponding to a problem, constructed by a solver on the basis of his
domain-related knowledge and its organization [p. 121-122].”" We adopt
Greeno's (Riley, Greeno, & Heller, 1981) notion of a representation, which
takes: “'the form of a semantic network structure, consisting of elements and
relations between these elements [p. 23].”” Hence, we hypothesize that at the
initial stage of problem analysis, the problem solver attempts to *‘understand ™’
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the problem (Greeno, 1977), that is, construct a representational network con-
wining elements specifying the initial state of the problem, the desired goal, the
legal problem-solving operators, and their relational structures. From such a
structure, new inferences can be deduced. Hence, the quality, completeness, and
coherence of an internal representation must necessarily determine the extent and
accuracy of derived inferences, which in turn may determine the ease of arriving
at a solution and its accuracy. Therefore, the quality of a problem representation
is determined not only by the knowledge available to the solver, but by the
particular way the knowledge is organized. One way to capture empirically the
difference between the representation of the expert and that of the novice has
been the amount of qualitative analysis occurring in the beginning of the
problem-solving processes.

Because of its apparent overriding influence on problem solution (Hayes &
Simon, 1976; Newell & Simon, 1972), we have focused our studies mainly on
the representation of a problem. We employ methods of tapping knowledge in
ways other than the analyses of problem-solving protocols because, as we see
shortly, the analyses of protocols often provide limited information. However,
the first study we describe examines the protocols of problem solving to see what
kind of information they do provide, as well as the ways they provide a limited
glimpse into the knowledge structure. The next set of studies looks at the
categorization behavior of problem solvers, and the third set looks at the knowl-
edge available to individuals of different skill levels. Finally, the fourth set of
studies examines the features in a problem statement that might elicit the
categorization processes—or to put it another way: What are considered to be the
relevant features of a problem by experts and novices?

Study 1: Protocols of Problem Solving

In this study, we attempted to characterize and contrast—both quantitatively and
qualitatively—the problem-solving processes of experts and novices, beginning
with the reading of the problem through to the checking of the solution. To do so,
the problem-solving protocols of two experts and two novices solving five
mechanics problems were examined. This study (initiated and carried out by Joan
Fogarty) had two specific goals: (1) we wanted to describe some quantitative
parameters of expert and novice problem-solving processes and compare these
data with those existing in the literature; (2) we wanted to contrast some qualita-
tive differences between experts and novices, particularly focusing on the qual-
itative aspects of problem analyses.

The five mechanics problems were taken from Chapter 5 of Halliday and
Resnick (1974). The «.pert subjects were two professors of physics who had
considerable experience -teaching introductory physics. The novices were two
freshmen physics majors (A students) who had just completed a term of under-
graduate physics using Halliday and Resnick (1974) as the textbook, in which
mechinics problems of the type used in this study were taught. Each subject was
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presented with written problems, one at a time, and was instructed to *‘think
aloud’” while solving the problems.

Quantitative Results and Discussion

A variety of quantitative measures can be obtained from protocol data, and
these are elaborated in the subsections that follow.

Errors. On the average, the experts made one out of five possible errors,
whereas the novices made three out of five (Table 1.1). As anticipated, experts
made fewer errors than novices. The fact that one of the experts made two errors
suggests that these problems are nontrivial, yet they are problems that a compe-
tent novice can solve. Novice K. W., for example, solved 4.5 out of the 5
problems correctly.

Solution Times. Solution times were determined by timing the length of the
protocols. Looking only at the correct solution times for the entire problem (see
Table 1.1), the mean solution time for the experts averaged about 8.96 minutes,
whereas the average correct solution time for the novices was 4. 16 minutes. The
magnitude of our solution time for problem-solving protocols is much longer
than that obtained by Simon and Simon (1978). Their problems were selected
from a high school physics text and were limited to kinematics; such problems
can be solved mainly through algebraic manipulation. Our problems were more
complex; they were chosen from a college physics text and involved dynamics,
which requires that forces be explicitly taken into account. Applying the Force
Law requires making some physical inferences before equations can be brought
mto play.

‘The novices in this study actually solved problems faster than the experts.
However, this seems to be an artifact of the great number of errors made by
Novice C. H. That is, Novice C. H.’s only correct solution was problem 1,
which in fact took him longer to solve than the rest of the subjects. But, because
problem 1 happens to be a short problem and because it was the only problem he
solved correctly, his average latency was reduced because it was determined by
the speed of solving that particular problem. Novice K. W.’s solution times, on
the other hand, are actually comparable (averaging 7.01 minutes) to the experts’
(averaging 8.96 minutes).

The only obvious outlier in solution time occurs in problem 2, where Expert
R. E. took significantly longer than Novice K. W. Examining the protocols in
detail, we see that Expert R. E. in this case sought and calculated a value
unnecessarily. When he discovered that the problem was really much simpler
than he thought, the actual protocol for the short solation took only about 1.33
minutes.

Hence, barring unusual circumstances, competent novices not only can solve
these problems, but they can do so in approxinuaiely the same amount of time as
experts. However, if the task had emphasized speed, the experts probably could
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Note. Parentheses around the solution time indicate an incorrect solution. The letter(s) that follow indicate the incorrect part(s)

of the problem.

blems solved correctly.

aThe mean solution time was calculated only for pro
® The subject attempted only Part A of this problem.
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have solved the problems much faster than the novices. We suggest, however,
that protocol data are not a particularly viable way to assess the speed of problem
solving.

Number of Quantitative Relations.  Another quantitative parameter that may
shed some light on skill differences between experts and novices is the number of
quantitative relations generated by the subjects as they solve problems. Table 1.1
also shows the total number of quantitative relations generated by each subject
for each problem. A quantitative relation is defined as any mathematical relation
among physical entities, and it generally takes the form of an equation. Excluded
arc algebraic manipulations of already generated equations and instantiations of
equations (i.e., substituting values for the variables). In general, there appear to
be no systematic differences in the number of quantitative equations generated as
a function of skill. There was greater variability in the number of equations

generated by a given subject for the different problems than between subjects on
the same problem.

“Chunks”’ of Equations. As stated earlier, Larkin (1979) has hypothesized
that experts store physics equations in tightly connected ‘“chunks,’”” whereas
novices store equations individually. To test the *‘chunking’” hypothesis, Larkin
(1979) measured the times during the problem-solving process when quantitative
relations were generated. Her results showed that the expert generated a great
many pairs of equations with short pauses between the equations, whereas the
novice generated fewer equations with shorter pauses.

Using the same analysis, we also examined the distribution of generated
equations over time. For each subject, the time interval between the generation of
cach pair of quantitative relations was calculated for each problem. Our data do
not discriminate between the generation pattern of experts and novices. Il any-
ihing, the results indicated that the opposite was true. That is, the novices seemed
1o have generated a greater number of relations in close succession.

There are substantial individual differences, however. Novice C. H. showed
the strongest degree of chunking or generated the largest number of quantitative
relations in rapid ‘‘bursts.”” How do we account for the discrepancy between our
results and Larkin’s? One interpretation is to hypothesize that a burst of equation
generation might be an artifact of various problem-solving strategies that subjects
may adopt. Our novice subjects, for example, reported that when they get stuck
on a problem, they write down as many related equations as they can think of.
They then look at the equations they have generated to get some hints about how
to proceed. This would produce clusters of equations.

Another strategy, reflecting the style of solution processes of individual sub-
jects, relates to the way equations are generated, which often is all at the same
ime. Novice C. H., for example, would spend a considerable amount of time
generating equations. This pattern of solution processes would necessarily inflate
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the number of equations generated within a short period of time. Perhaps the
generation of equations in bursts may also be the outcome of another artifact,
discussed in the next section: the drawing of free-body diagrams.

Even though we did not replicate Larkin’s (1979) finding that experts tend to
generate equations in clusters, this does not deny the possibility that the storage
of cquations may indeed be different in the knowledge base of the experts and
novices. Qur conclusion is that protocol analysis of equation generation will not
address this particular issue directly. In order to address the issue of how
equations are stored in the knowledge bases of experts and novices, one needs to
design a study where experts and novices are asked to generate or frecly associate
equations outside the context of a problem-solving situation.

Number of Diagrams Generated. Another potentially interesting quantita-
tive measure is the number of free-body diagrams drawn by the subjects. The
construction of free-body diagrams appears to form an important component of
problem solving. Free-body diagrams are partial figures that depict partial
abstractions of the total physical situation. They may be drawn for all or part of
the physical situation and utilize directional arrows denoting the forces acting in a
physical system.

The number of diagrams, including free-body-diagrams, drawn by each sub-
ject for each problem is also shown in Table 1.1. Again, there appear to be no
systematic skill differences, although there seem to be some individual dif-
ferences, with Expert R. E. and Novice C. H. drawing the greatest number of
free-body diagrams. These two individuals also generated the greatest number of
equations and produced the greatest amount of clustering.

Drawing free-body diagrams may inflate the number of equations generated in
clusters. Both novices as well as the experts, though to a lesser extent, utilized
the strategy of constructing free-body diagrams, which is taught and emphasized
in introductory physics courses. By using the free-body diagrams, equations
relating the forces can be generated. Hence, the more frequently subjects draw
free-body diagrams, the more likely they are to have clusters of equation genera-
tion. Therefore, bursts of equation generation may be an artifact of a solver’s
need to generate many diagrams.

The purpose of generating many free-body diagrams is not clear to us. We
speculate that when subjects find a problem difficult, they tend to draw more
diagrams. Each drawing may be seen as an attempt to create a meaningful
representation of the problem. For example, for problems that took the longest to
solve, a large number of diagrams tended to be generated (such as problem 2 for
Expert R. E.). Furthermore, problem 2 was the one that Expert R. E. had some
difficulty with, havin, Jerived a value unnecessarily. Likewise, for Novice C.
H.. problem 3 took the longest time to solve (which he did incorrectly); he also
generated the greatest number of diagrams for that problem. These speculations
need to be confirmed, but it seems that drawing free-body diagrams may be a
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way of helping the subject create a meaningful representation. It may also indi-
cate that the subject is having difficulty going beyond the visual stage of problem
representation.

In Study 5 (this chapter), when four experts and four novices were asked to
solve a problem, the novices generated four times as many (4.7) diagrams as the
experts (1.0 diagrams). The novices had more difficulty solving the problem
correctly (three out of four errors) than did the experts (one out of four errors).
This provides some additional support for the notion that frequent generation of
diagrams is used as an external aid to create a meaningful probiem representa-
tion, especially when subjects are having difficulties.

Summary of Quantitative Measures. The results of this study indicate that
few of the quantitative measures we used meaningfully differentiated the experts
from the novices. The quantitative measures obtained from protocols seem to be
tenuous measures that are confounded with individual differences and the par-
ticular strategies adopted by the problem solver. We now turn to qualitative
analyses of the protocols to locate differences that can be attributed to skill.

Qualitative Results and Discussion

For reasons already indicated and because a great deal of attention has been
devoted to the equation-generation and manipulation stages of problem solving,
we now focus on the initial qualitative analysis stage of problem solving. We
assume that during this stage of processing a representation of the problem is
constructed, that this occurs primarily during reading of the problem, and that it
is completed in the first 30-40 seconds after the problem has been read. We
estimate that this stage takes a very short time because it appears to be analogous
1o the stage of *‘initial analytical assessment’’ that Simon and Barenfield (1969)
talked about for chess problem solving and the stage of ‘‘preconception’ that
expert musical sight readers engage in prior to the actual playing of a musical
picce (Wolf, 1976). The short duration of these initial processes is an important
consideration in determining our subsequent experimental procedure.

Figures 1.2 and 1.3 show two samples of protocols, one from Expert R. E.
and the other from Novice C. H., both on the first part of problem 5. The
protocols have been segmented into four types of episodes: qualitative analysis,
drawing diagrams (which may be either the diagrams depicting the main compo-
nents of the problem or the abstracted free-body diagrams), generating equations,
and manipulating equations.

Before proceeding with the discussion of the protocol data, it may be neces-
sary to clarify a few terms and operational definitions. Any statements in the
protocols that do not relate to drawing diagrams or generating and manipulating
equations were considered to be ‘‘qualitative analyses’’ of the problem. Fur-
thermore, these statements can be a variety of types such as references to plan-
ning, checking of the solution, and so on. We focused specifically on those



1. EXPERTISE IN PROBLEM SOLVING 37

Expert R. E.

(PROBLEM #5) ExperT R. E.
(PrOBLEM #5) CONTINUED)

TAXONOMY OF

EPISODES Puysics PROTOCOLS Taxonomy oF
— Episopes Puysics ProTocoLs
*QUALITATIVE ANALY- Constant velocity—> Frictional "There must be a frictional force » »
force retarding the motion because GENERATE V.S -V % o= 2ax "We have an expression which
515 (INFERENCES) o otherwise the block would accel- . f ° relates several things of
Frictional force opposes force erate down the plane under the . interest to us...all at the
due to weight of block action of its own weight...the same time."
angle ¢ must be related to the
*Friction—>Coefficient of fric- coefficient of friction somehow.” .
tion ~ angle ¢ QUALITATIVE "We can easily solve for x
. providing we know the other
AnALYSTS things in the equation....We
DrawiNG FrRee Bobpy "You would have a normal force ag:dttgmgng .r.)Ut that's not
D perpendicular to the plane, the .
TAGRAM weight down, and the force of
kinetic friction would lie along G ; - pThi : .
JENERATE mgsing + u, Mycaosy = ma This time both mgsing and
the p]gne...the angle between k the frictional force...those
the.we1ght vector and the norTa1 two forces act in the same
to the plane is also angle ¢. direction.”
GENERATE EQUATIONS mgsing - f, =0 “For motion down the plane would MANTPULATE #igsing + ukmgcow_= wha "The masses cancel everywhere
N - mgcose = 0 be mq times sing minus f which b = tang = ond .. .we also know up...uy 15 the
fk = LN = ukmgeose is retarding things and that's k coSh tangent of 4... which 1s the sin
equal to zero. For motion per- s sing of ¢ over the cos of ¢...the
pendicular to the plane, you a = gsing x C——O%gcos.a cq;w s cancel and you're left
would have the normal force act- = 2gsin w11 th th‘; acceleration down the
ing upward, but mgcoss acting gsine plane of...twice gsino.
downward or into the plane and
those two thinags sum to zero.
The only relation you need in QUALITATIVE block slides uniformly "So effectively you have...an
addition is that the force of ANALYSES —f = Fg acceleration...of twice the
kinetic friction is y times the e = mgsing weight... I n the first part
normal and is therefore u times (INFERENCE) . ) ) ) of the problem...friction...
mgcos$ . " . | now in opposite direc- must be exactly equal to gsing
(CHECK ANSWER) tions > and if you have it operating
. o Total Force = F_ + f, = 2ngsing in the opposite direction...”
ALBEGRAIC MANIPU- mgsing - umgcesy = O “So substituting that (f = umgcose) Ftotal .
LATION ng = tang into the first equation, which a = == 2gsing
I've circled, you would then have
mgsing, f which would be u times 2
mgcosd, and all of that would be 0 - Vo© = 2(-2gsing)x "Now let's go ahead and solve
equal to zero, and so what one MANTPULATE -y 2/4 i for...V Final squared was 0.
finds then is that ., the coef- x = Vo~/4gsine V initial squared was what it
ficient of friction must be tang." is...s0 what you end up with
for, for x is Vo squared over
4gsing."

RereaD QuEsTioN A
FIG. 1.2. Expert R. E.’s protocol on problem 5, segmented into episodes.

Draw Free Bopy » “So let's draw the plane again...
the difference is that the fric-
Dracram tional force...acts in the other
- direction. qualitative analysis statements that seemed to generate knowledge not explicitly
mg . . - " . .
stated in the problem (i.e., inferences). (These qualitative analysis statements are
QUALITATIVE e know Egﬁ;gﬂ?lﬁﬁgﬁ&i ot to be confused with qualitative analysis of the protocol data.)
ANALYSLS o for a minute, the final speed... There are several general remarks that can be made about the initial stage of
. is obviously zero." . . s . ate
the protocols. First, contrary to the picture painted earlier, the protocol data
CONTINUED indicate that our novices also spent time analyzing the problem qualitatively.

gls
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Novice C. H.
(ProBLEM #5)

TAXONOMY OF

EP1SODES PHysics ProTocoLs
RAW DIAGRAM "Let me draw a‘picture. An in-
! clined plane with slop angle_¢
N ...and it's (the block) sliding

down the plane with a velocity
...constant velocity."

QUALITATIVE ANALY- Constant velocity "Since it's (the_b]ock) sliding
N iF = down the plane with constant
515 (INFERENCES) V;i:;riét?on velocity, it means the sum of

the forces is zilch so there’s
a, there's got to be some kind
of friction on the thing..."

"1*11 draw a free body diagram.
There's the weight mg, there's
the frictional force, then
there's the normal force per-
pendicular to the plane.

Draw Free Bopy
D1AGRAM

GENERATE EquaTions  force parallel to nlane = "Ok. So I'm going to draw
mgsing trusty axes and resolve weight
Fy = mgeoss into a, into....You've got ¢
f= ufy there so this mgcos¢, and this
: is mgsing...normal force is
going to be equal to mgcose
and friction equals, umm,..u
times the normal force."

“So that frictional force is

MANTPULATE f = umgcoss
equal to umgcose."”

"The block is projected up the
plane with an initial velocity.
So I'm going_to use...equation
for motion V& = Vo2 + 2 times
acceleration times change in
distance."

(BENERATE v = vl + 2a(x-x0)

CONTINUED

During this stage, some inferences about the problem are drawn. A simple count
of the number of propositions that were made, which can be judged to be
inferences, shows that experts average 12.75 propositions and novices average
10.58, which is not feliably different. Consistent with our earlier assertion, the
initial episode of qualitative analysis 1s usually short in duration, taking only one
paragraph in the protocols.
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Novice C. H.
(PrOBLEM #5) CONTINUED

TAXONOMY OF

Ep1sODES PHYsICS ProTocoLs
MANTPULATE x =0 V=20 "Initial position I'm going to
o
2 call 0...fina) velocity equals
Yot _ 0 so I get Vo(sic) over 2a is
2a going to equal the x."
*QUALITATIVE "a is going to be acceleration
due to the frictional force."
ANALYSTS (WRONG)
(INFERENCE)

Draw Free Bopy
D1AGRAM

“Now we've got a different
drawing. We've got mg and the
velocity is up the plane so
frictional force...is down the
plane."

GENERATE iF, = ma "...sum of the forces in my
x direction is going to equal
mass times acceleration."”

MANIPULATE - mgsing + f = ma

! “Sa, you've got mgsine + fric-
mgsing + umgcos = ma

tional force equals the mass

a = g(sing + ucosg) times acceleration, so fric-
B V02 tional force is equal to...
X = 557n% ¥ veosd) u times the normal force...

my m's go out so the accelera-
tion equals g times sing +
ucos¢. So I substitute back
in the other equation."
{Leaves out factor of 2)

FIG. 1.3. Novice C. H.'s protocol on problem 5, segmented into episodes.

The second observation is that, unlike what is commonly believed, the qual-
itative analysis episode often occurs throughout the protocols, not just at the
beginning. For example, the inference episode occurs, on the average, 24 times
throughout each problem for the experts and 14 times for the novices, although
this difference is again not significant. Because of this phenomenon, it is difficult
10 ascertain exactly when the construction of a representation is completed.
These protocols lead us to think that a gross representation is initially con-
structed: refinement, if necessary, can occur later in the protocol.

The third observation is that errors in solution have two sources. One source is
trivial computation error resulting either from faulty manipulation or instantiation
of equations. An example of a trivial computation error occurs in the last episode
of Fig. 1.3. In manipulating the equations, the novice made an error by a factor
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of 2. The other source of solution errors can be traced to either the generation of
wrong inferences or the failure to generate the right inference. The inference
episode with an asterisk beside it in Fig. 1.3 indicates an example of a wrong
inference. We attribute the source of solution errors in general to these incorrect
inferences, even though the incorrect inference in this particular case was not the
cause for the problem’s incorrect solution. This is because the novice was able to
generate all the correct equations. The mistake in this problem arises from the
solver’s failure to complete the solution by substituting for w. Incorrect in-
ferences are relatively easy to detect in the protocols. What is more difficult to
capture is the solver’s failure to generate a necessary inference. This can be
captured only by comparing and contrasting the expert’s and the novice’s pro-
tocols in trying to understand a novice’s error. Our interpretation is that Novice
C. H. did not complete the solution (see the last episode of Fig. 1.3) because he
failed to generatc the inference that the coefficient of friction w is somehow
related to the angle ¢, as did the expert (see the first episode of Fig. 1.2).
Without setting an explicit goal to relate the two (u and angle ¢, Novice C. H.
could not solve the problem, even though he had all the necessary equations.

Hence, in general, we would conclude from examination of the inference
penerating episodes of the protocols that both experts and novices are just as
likely to spend time generating tacit knowledge about a problem and that both
groups are just as likely o do so iteratively across the entire problem-solving
protocols. However, it is the quality of the inferences that matters. Novices are
more likely either to generate the wrong inference or fail to generate the neces-
sary inferences. A large number of the novices™ errors can be traced to this
source.

Studies on the Categorization of Problems

To say that novices either fail to make the appropriate inferences during qualita-
tive analyses, or that they do not generate inferences at all, does not explain the
source of incomplete or erroneous inference making. To uncover this limitation
of the novices, we have to understand the knowledge structure of both experts
and novices and how that knowledge enhances or limits their problem-solving
abilities. Analyzing the protocols of problem solving does not appear to provide
enough information of this kind. Qur research described here, therefore, is con-
cerned with ways of exploring the knowledge of a problem solver through means
other than analyzing solution protocols.

We hypothesize that a problem representation is constructed in the context of
the knowledge available for a particular type of problem. Further, we make the
assumption that the knowledge useful for a particular problem is indexed when a
given physics problem is categorized as a specitic type. Therefore, expert-novice
differences may be related w poorly formed, incomplete, or nonexistent problem
categories. Given this hypothesis, we investigated knowledge contained in prob-
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lem categories. Our first order of business, then, was to determine whether our
initial hypothesis is true. That is, are there reliable categories to which problems
are typed, and, if so, are these categories different for novices and experts?

Evidence already exists to suggest that solvers represent problems by category
and that these categories might direct problem solving. For instance, Hinsely,
Hayes, and Simon’s (1978) study found that college students can categorize
algebra word problems into types and that this categorization occurs very
quickly, sometimes even after reading just the first phrase of the problem state-
ment. This ability suggests that **problem schemata’’ exist and can be viewed as
interrelated sets of knowledge that unify superficially disparate problems by
some underlying features. We refer to the knowledge associated with a category
as a schema. The chess findings of Chase and Simon (1973a, 1973b) can also be
interpreted as showing that choosing a chess move results from a direct associa-
tion between move sequences and a chunked representation of highly stereotyped
(or overlearned) chess pieces or patterns. There is also evidence in studies of
medical diagnosis that expert diagnosticians represent particular cases of disease
by general categories and that these categories facilitate the formation of hypoth-
eses during diagnostic problem solving (Pople, 1977, Wortman, 1972).

Study 2: Sorting Problems

To determine the kinds of categories subjects of different experience impose
on problems, we asked eight advanced PhD students from the physics department
(experts) and eight undergraduates who had a semester of mechanics (novices) to
categorize 24 problems selected from Chapters 5-12 of Halliday and Resnick’s
(1974) Fundamentals of Physics. The subjects’ task was simply to sort the
problems on the basis of similarities in how they would solve them.

Analysis of Quantitative Results. Again, no gross quantitative differences
hetween the two skill groups were produced. For example, there were no signifi-
cant differences in the number of categories produced by each skill group (both
averaged about 8.5 categories), and the four largest categories produced by each
subject captured the majority (about 77%) of the problems. There was also little
ditference in the amount of time it took experts and novices to sort the problems,
although experts tended to take slightly longer, about 40 seconds per problem
(discarding one outlier), whereas novices took about 37 seconds per problem.

The absence of gross quantitative differences in measures such as number of
categories, number of largest categories, and time to categorize, confirms the
notion that there are no fundamental capacity differences between experts and
novices. That is, the novices are not inherently slower, for example, nor do they
have limited abilities to discriminate the problems into eight categories. The lack
of a general quantitative difference points to the necessity of examining the
qualitative differences.



42 CHI, GLASER, AND REES

Analysis of Qualitative Results.  If we examine the nature of the categories
into which experts and novices sorted the problems, they are qualitatively dis-
similar. This difference can be seen most dramatically by observing the two pairs
of problems that the majority of the subjects of each skill group sorted together.
Figure 1.4 shows two pairs of problems that eight out of eight novices grouped
together as similar. These problems have noticeably similar “‘surface struc-
wres.”” By surface structures, we mean either: (1) the objects referred to in the
problem (e.g., a spring or an inclined plane); (2) the key words that have
meaning in physics (e.g., center of mass or friction); or (3) the physical config-
uration that involves the interaction of several object components (e.g., a block
on an inclined plane).

The suggestion that these surface structures are the bases of the novices’
categorization can be further confirmed by examining subjects” verbal jusiifica-
tions for the Latggoncs which are presented in the right-hand column of Fig. 1 4.
The novices’ cxplanations indicate that they grouped the top two problems to-
gether because they both involved “‘rotational things’ and the bottom two to-
gether because they involved “*blocks on an inclined plane.”

For experts, surface structures do not seem to be the basis for categorization.
There is neither a similarity in the key words used in the problem statements nor
in the visual appearance of the diagrams for the problems (Fig. 1.5). No similar-
ity is apparent in the equations used for the problems grouped together by the
majority of the experts. The similarity underlying the experts’ categorization can
only be detected by a physicist. 1t appears that the experts classity according to
the major physics principles (or fundamental laws) governing the solution of each
problem (sometimes referred to as the solution method). The top two problems in
Fig. 1.5 can be solved by the application of the Conservation of Energy Law, and
the bottom two are better solved by the application of Newton’s Second Law (F
= MA). The verbal justifications of the subjects confirm this analysis. We might
refer to these underlying principles as the “‘deep structure’” of the problem,
which is the basis by which experts categorize problems.

In sum, the results of this study uncover several tacets of problem solving that
were not observable from protocol analyses. First, through a sorting task, it
became apparent that categories of problems exist. These categories probably
correspond to problem schemata, that is, unified knowledge that can be used to
solve a particular type of problem. Second, category membership can be deter-
mined rather quickly (between 35-45 seconds). This is the amount of time we
initially alloted to the qualitative analysis episodes of problem solving. Third, the
results also imply that within 45 seconds the experts, at least, can already per-
ceive the solution method applicable to the problem. The possibility that such
categorization proc “sses may occur during problem solving is never evident from
the problem- solving protocols because there was never any cause for solvers to
mention either the principle underlying a problem or the surface structure of the
problem. Only through an alternative task, such as sorting, are we able to detect
the presence of categories that may be related to solution methods.

Diagrams Depicted from Problems Categorized Novices' Explanations for Their Similarity

by Novices within the Same Groups Groupings

Problem 10 (11) Novice 2: “Angular velocity, momentum,
) circular things'

Novice 3: “Rorarional kinematics, angular
E a speeds, angular velocities”
Novice 6: 'Problems that have something
rorating, angular speed’’

Problem 11 (38)

<

G
Problem 7 {23) p Novice 1 “"These deal with blocks on an
incline plane”

Noviee 3. “Inclined plane problems,
coefficient of friction"

Novice 6: “'Blocks on inclined planes
with angles’

#roptem 7 (35)

o o
1

FIG. 1.4. Examples from novices’ problem categories. Problem numbers repre-
sent chapter and problem number from Halliday and Resnick (1974).



Diagrams Depicred from Problems Catergorized

by Experts within the Same Groups

Problem 6 (21)

K = 200 nt/m L
—

Experts” Explanations for Their Similarity

Groupings

Expert.2:
Expert 3:
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“Conservation of Energy”
“Work-Energy Theorem.

They are all straight-forward
problems.”

“These can be done from energy
considerations. Either you should
know the Principle of Conservation
of Energy, or work is lost
somewhere.”’

“These can be solved by Newron's
Second Law”™

“E = ma; Newton's Second Law”

“Largely use F = ma; Newron's
Second Law™

L

FIG. 1.5. Examples from experts’ problem categories. Problem numbers repre-
sent chapter and problem number from Halliday and Resnick (1974).
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Study 3: Sorting Specially Designed Problems

If the interpretation of the previous sorting results is accurate, then one should
be able to replicate the findings and, further, to predict how a given subject at a
specific skill level might categorize a given problem. In this study, we specially
designed a set of 20 problems to test the hypothesis that novices are more
dependent on surface features, whereas experts focus more on the underlying
principles. Table 1.2 shows the problem numbers and the dimensions on which
they were varied. The left column indicates the major objects that were used in
the problem,; the three right headings are the solution methods (or the basic laws)
that can be used to solve them. Figure 1.6 shows an example of a pair of
problems (corresponding to problems 11 and 18 in Table 1.2), which contain the
same surface structure but different deep structures. In fact, the problems are
identical except for the question asked. From the results of Study 2, we predicted
that the novices would group together problems with similar surface features,
such as the two problems shown in Fig. 1.6, whereas experts would not. Instead,
experts would group together problems that have similar deep structures, regard-
less of the surface features. Intermediate subjects might exhibit some characteris-
tics of each skill group.

TABLE 1.2
Problem Categories
Principles
‘ i Momentum
Surface Structure Forces Energy (Linear or Angular)
Pulley with hanging blocks 200
11 l‘)”
14¢ 3ab
Spring 7
18 i6 1
17¢
9 6"
inclined plane 144 3ab
5
Rotational 15 3
13
Single hanging block 12
Block on block 8
Collisions (bullet-""block’’ or block-block) 4
6°
10¢

“ Problems with more than one salient surface feature. Listed muitiply by feature.
 Problems that could be solved using either of two principles, energy or force.
“ Two-step problems, momentum plus energy.
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No. 11 {Force Problem)
A man of mass M1 jowers himself to the ground
from a height X by holding onto a rope passed
over a massless frictionless pulley and attached to
anuother block of mass M2. The ‘mass of the _man
is greater than the mass of the block. What is
the tension on the rope?

No. 18 (Energy Problem)
A man of mass M1 lowers himself to the ground
from a height X byA holding onto a rope passed
over a massless frictionless puiley and attached to
another block of mass MQ. The mass of »the man
is greater than the mass of the block. With what
speed does the man hit the ground?

FIG. 1.6. Sample problems.

The results confirmed our previous interpretations. One novice, who had

rse in mechanics. grouped strictly on the surface structures of the
% e Tis problem calzzofies and the explanatons he pro-
' . the werpai justicanon column

Tl
§ E $ ai WY T @l Tl
Iirdpe Furel O @i, 31 OTE Sealin doti e

completed a cou

\ ior s g ‘ Jusniicanon colu
(far righty. it is evident Wwmat. except for e fourth group \'mcxc ne ﬂ‘{cnum& a
physics principle (* -Conservation of Energy "), the remaining Calcg,ones were all
described by either physics key words (e.g., “*velocity problems’”) or the actuai
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TABLE 1.3
Problem Categories and Explanations for Novice H. P,
Group 1: 2,15 ‘‘Rotation”’
Group 2: 11,12,16,* 19 “*Always a block of some mass hanging down™’
Group 3: 4,10 *“Velocity problems’’ {collisions)
Group 4: 13,217 “*Conservation of Energy"’
Group 5: 6,7,9, 18 “*Spring”’
Group 6: 3,5, 14 ““Inclined plane™

Groups 7, 8, 9 were singletons

@ Problem discrepant with our prior analysis of surface structure as indicated in
Table 1.2.

b Problem discrepant with our prior analysis of solution principles as indicated in
Table 1.2.

physical components contained in the problem (**spring’’). And indeed, he col-
lapsed problems across the physics laws. For example, in Group 5 (Table 1.3),
problem 18 is obviously solvable by the Force Law, whereas problem 7 is
solvable by the Energy Law (see Table 1.2 again). The only category for which
he made any reference to a physics principle is Group 4, which he described as a
“Conservation of Energy’’ category. However, this is to be distinguished from
the expert’s labeling of ‘‘Conservation of Energy’’ because this novice only
labels those problems as ‘‘Conservation of Energy’’ when the term *‘Energy’’ is
actually mentioned in the problem statements themselves, as was the case here.

In contrast, the expert’s classifications are all explained by the underlying
principles, such as Conservation of Angular Momentum, Conservation of
Energy, etc. (See Table 1.4). Furthermore, as predicted, the expert collapsed
problems across the surface similarities. For example, in Group 3, problem 1 is
basically a spring problem, and problem 4 is a collision problem.

Table 1.5 shows the groupings of an advanced novice (an intermediate). His
categorizations of the problems are characterized by the underlying physics prin-
viple in an interesting way. These principles are qualified and constrained by the

TABLE 1.4
Problem Categories and Explanations for Expert V. V.

Crtoap 1 2,13 **Conservation of Angular Momentum’’

Crpvup 2 18 “Newton’s Third Law’’

Laomp 3 1.4 ‘*Conservation of Linear Momentum”’

G 4 19, 5, 20, 16,7 ‘‘Conservation of Energy”’

Goowp ¥ 12,15,9,11,8,3, 14 ““Application of equations of motion”” (F = MA)
L B2 6, 10, 17 *“Two-step problems: Conservation of Linear

Momentum plus an energy calculation of some
sort”’

et

¥ groddem discrepant with our prior-analysis of solution principles as indicated in Table 1.2
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TABLE 1.5
Problem Categories and Explanations for Advanced Novice M. H.

Group |2 14,20 “Pulicy ™’

Group 2: 1.4, 6,10, 12¢ Conservation of Momentum™” (collision)

Group 3: 9, 13,4 17, 18 “Conservation of Energy’” (springs)

Group 4: 19, 11 . “Force problems that involve a massless pulley’” (pulley)
Group 5: 2, 15 “Conservation of Angular Momentum®™” (rotation)

Group 62 7.4 16" “Force problems that involve springs’’ (spring)

Group 7 R, 5.3 “Force problems’” (inclined planc)

Note: Nalic numbers mean that these problems share a similar surface feature, which is indicated
in the parentheses, if the feature is not explicitly stated by the subject.
« problems discrepant with our prior analysis of solution principles as indicated in Table 12.

surface components present in the problems. For example, instead of classifying
all the force problems together (Groups 4, 6, and 7), as would an expert, he
explicitly separated them according to the surface features of the problems. That
is, to him there are different varieties of force problems, some containing pul-
leys, some containing springs, and some containing inclined planes.

To summarize this study, we were able to replicate the initial finding that
experts categorize problems by physics laws, whereas novices categorize prob-
lems by the literal components. If we assume that such categories reflect knowl-
cdge schemata, then our results from the person at the intermediate skill level
suggest that, with learning, there is a gradual shift in organization of
knowledge—{rom one centering on the physical components, to one where there
is a combined reliance on the physical components and physics laws, and,
finally, to one primarily unrelated to the physical components.

Study 4: Hierarchical Sorting

The results of the previous two sorting studies strongly suggest that the prob-
lem categories of experts are different from those of novices. That is, we assume
that the differences lie not only in the ‘‘category labels’’ that subjects of different
skill prefer to use. We assume that problem categories correspond to problem
schemata and, theoretically, that schemata can have subschemata embedded in
them and be embedded in higher-level or superschemata. Hence, if we can
identity some similarity of the contents of schemata at different levels for indi-
viduals of different skills, then perhaps we will have converging evidence that
the schemata of the novices and experts are indeed different and that their
schemata might be the same when different levels are compared.

To test this assumption, a hierarchical sorting task was designed by Christ-
opher Roth. In this..sk, subjects were first asked to sort the problems in the same
manner as in the previous two studies. Then, groups that they had initially sorted
were returned, and they were asked to subdivide each group further if they
wished. The sorting of each group was conducted in a depth-first manner. When
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all lh? discriminations of each group were completed, they were also asked to
c«)mb{ne their initial groups until they no longer wished to make any further
combmations. Subjects’ rationale for each grouping was also recorded.

. Sixteen subjects were run. They ranged from graduate students (experts), to
fourth-year physics and chemical engineering majors (intermediates), to Aj-C
students (novices) who had taken courses in physics (mechanics, electr{city and
magnetism). ,

The 40 problems used in this study were selected from Chapters 5-12 of

Hallid@y and Resnick (1974), as in Study 2, which is the minimum aniouni of
material typically covered in a first-year mechanics course. There are two aspects
of the data to examine: the contents of the groups and the tree structure;‘ W&;,
b.e}ieve that the most naive structures are those generated by the l:l(.)ViCC
C-students (R. R. and J. T.) (Fig. 1.7, top two panels). The circular nodes
rcpresent the groups from the initial sort, and the numbers inside the nodes
indicate how many problems are in that group. The square nodes beneath the
circular nodes are the groups formed when the problems were further discrimi-
nated, and the triangular nodes above the circular nodes indicate the combina-
tions. The tree structures of these two novices have three distinct characteristics
thgt none of the other more skilled subjects exhibited. First, the initial groups
(cxrcula.r nodes) have a greater than average number of categories. (Eight
galegones is the average number derived from Study 2.) The second characteris-
tic is that they either cannot make further discriminations (Novice R. R.)
iuggeéting that their categories are already at the lowest level, or they maké su;:h,
t1r1§ ci_lscrlmmations (Novice J. T.) that each problem is in a category by itself
This 1s remi'niscent of the chess results, where beginning chess players havc;,
chunks consisting of one or two pieces. The nature of the initial categories is
physical configurations, much like what was found in Study 2, such as
“gravity,” “‘pulley with weight,”” etc. When the novice (J. T.) l;reaks the
categories down so that each problem is a category, the descriptions of these
categories are very specific and still bound to the physical configuration. For
example, one of the initial categories of Novice J. T. is *‘tension in rope.”” When
that category was further broken down, one subdivision was specified as *‘ten-
sion with two blocks on incline,”” and another was *‘tension with two blocks and
pulley on incline.”” The most sophisticated tree structures of the experts are
shown in'the lower two panels of Fig. 1.7. The initial circular nodes are generally
the different varieties of physics principles, much like those uncovered in Study
2. For Expert C. D., one group of circular nodes contains Conservation of
Energy, Conservation of Momentum, and Conservation of Angular Momentum
and the other group of three are F = MA, F = MA to find the Resultant Force,
and Simple Harmonic Motion. Each group of three (circled) caiegories wa;
further collapsed to two superordinate categories: Conservation Laws and
Equations of Motion. The subordinate categories for the same subject are gener-
ally discriminations based on physical configurations, such as ‘‘tension prob-
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FIG. 1.7. voupings made by novices and experts on a hierarchical sorting task.
Circalar nodes are the preliminary groups, squares and hexagons are subsequent
discriminations, and triangles are the combinations.
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lems.”’ Hence, from our limited analyses, we could hypothesize that the subordi-
nate categories of the experts correspond to the initial categories of the novices.
Although this study is not definitive in hypothesizing that experts’ categories are
at a higher level than novices’ categories, additional data from Study S converge
on the same notion.

The results of this study can also be interpreted in the framework proposed by
Rosch (1978) of ““basic’’ categories. The term basic can be used loosely to mean
the preferred or dominant categories into which problems were divided by the
subjects. Hence, one could say that the basic categories of the novices corre-
spond to the subordinate categories of the experts.

Studies of the Knowledge Base

If the knowledge bases of the experts are different from those of the novices, in
what ways are they organized differently, and in what way does the knowledge of
experts and novices enhance and hinder their problem-solving processes? These
questions, coupled with the results of the categorization studies, lead us to an
examination of the knowledge bases. The categorization studies show that with-
out actually solving the problems, and in less than 45 seconds, experts can
encode the problem into a deep level of representation, which enables them to
grossly determine the solution method applicable to the problem. We speculate
that such encoding skill necessarily reflects the knowledge-base differences be-
ween experts and novices. The next set of studies asks to what extent and in
what ways are the knowledge bases of the novices less complete and coherent
than the experts.

Study 5: Summaries

With these questions in mind, we attempted to capture what subjects knew
about physics, independent of a problem-solving context. One simple approach
was to ask subjects to summarize a chapter of a physics text. This should reveal
the knowledge they have on a particular topic. We selected Chapter 5 on particle
dynamics from Halliday and Resnick (1974) because subjects in the first protocol
study needed this information to solve the five problems correctly. Furthermore,
this chapter introduced Newton’s three laws, which could be a common theme
that all subjects might mention during their summaries. Hence, we might be able
w make some comparisons,

We asked four experts (two college professors, one postdoctoral fellow who
had never taught lower division physics, and one fifth-year graduate student who
had often taught lower ‘division physics) and four undergraduates (who had just
completed the introductory physics course with a B grade, using Halliday & Ren-
sick as a text) to review the chapter for 5 minutes and then summarize out loud its
unportant concepts. Subjects were run individually, and 15 minutes were allotted
for the summary. The book was available to them while they summarized, so that
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any limitation in their summaries could not be attributed to a retrieval problem.
(Then they were all asked to solve a single problem taken from Chapter 5. These
problem-solving protocols provided the data for discussing the frequency of
diagram drawing mentioned in Study 1.)

Again, we began by looking at various quantitative measures such as the
length of the summaries, the number of quantitative relations mentioned in the
summaries, and so on. Cursory examination of the data suggested once more that
there were no skill differences in any of these quantitative measures. We then
wrned to an examination of the content of the summaries. Since every subject
mentioned Newton's three laws of motion, we compared what they said about
two of them.

Newton’s Third Law appears at the top of Table 1.6, and the bottom of the
table shows one possible way of breaking the law into its component parts. Using
these subcomponents as a scoring criterion, we analyzed the summaries of the
experts and novices to see what proportion of the subcomponents were men-
tioned by each skill group. The results are shown in Table 1.7. The X's in the
tble show the subcomponents of the law that were mentioned by each subject.
Al the bottom of the table are samples of protocols of a novice and an expert. [t is
clear that experts in general make more complete statements about the physical
laws than do novices, even though the textbook was available for them to use.

Table 1.8 represents a similar analysis of Newton’s First Law. Again, experts
mentioned an average of threc subcomponents, whereas novices tended to men-
fion an averiage of two subcomponents at most. It is also interesting to note that

TABLE 1.6
Newton’s Third Law and Its Decomposition

Lo every action there is always opposed an equal reaction; or the mutuial actions of two bodies upon

cach other are always equal, and directed to contrary parts.”’

Components of the Third Law

. The law applics to wo general bodies (or particles)
4. Discussion must mention 2 bodies, and
b. These must be general bodies or particles
(Particular example bodies alone are not sufficient to meet this condition, although example

bodies are allowed to be present)
 Action and reaction refer to Forces exerted by each body on the other, where these forces need

2

not be of any particular type
a. Must be an explicit statement that each body (however body is discussed) exerts a “force’’ on

the other; and
b. “Force' must be in general terms (particular example forces, such as kick, push, alone won’t
do although suc” ~xamples are allowed to be present)
3. Reaction (however stated) is equal in magnitude
4. Reaction (however staled) is opposite in direction
5. Line of action/reaction is in a straight line berween two bodies
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, ' TABLE 1.7
Newton’s Third Law Decomposed into Five Components and Two Sampie Protocols

Novice Expert

KD SB. JW. CH 0OG MV. SD. BP

Reaclion opposite in direction X X X X X X X X
Reaction equal in magnitude < X X X X X X X
Action-Reaction involves two X X X
general bodies
Action-Reaction are general forces X X X
extended by each body on the
vther
{nrection of Action-Reaction is a X
straight line
Fxamples of Subjects’ Summary Protocol
Novice S.B. “*And his third law states that for every action there’s an opposite reaction to it.”
Lapert 0.G. *“The third law . . . states that for every action there is an equal and opposite rea.c-

t.ion, or in other words, if Body A exerts a torce on Body B, then Body B exerts a
force on Body A in a direction which is along the line joining the two points. When
you say bodies in this chapter, you mean they are really particles, point masses.”’

the postdoctoral fellow’s performance (S. D. in Table 1.8) is most *‘novicelike,”
perhaps because he did not have any experience tcaching mechanics. ’

‘The summaries of experts and novices on a given chapter from a physics text
wdicate that experts do have more complete information on physics laws than do
novices. This is not surprising in the sense that one would expect experts to know
mwore. On the other hand, it is surprising because the students have been taught
this knowledge and had the book available. One would hope that, after instruc-
non. students have mastered at least the declarative knowledge of the laws of
physics. However, one obvious deficiency of novices is that they had not. One
cannot automatically assume that all students have mastered the prerequisite
knowledge needed for solving problems. Nor can we assume that the novices’
deficiencies lie mainly in the inadequate strategies or procedural knowledge that
unproves with experience in solving problems.

Up to this point, our data show that novices are deficient in three aspects of
wnowledge. First, very good students, as Study | shows, make errors in problem
sulving only when they have either generated the incorrect inferences or failed to
gencrate the correct inference during the initial encoding or representation-
generation stage of problem solving. We attribute the generation of the wrong
inference to incomplete knowledge in the data base, so that the appropriate
wierence (the right link between certain nodes in the semantic network; Greeno
& Riley, 1981) could not be made. Second, we discovered that whether novices
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TABLE 1.8
Components of Newton's First Law

“Every body persists in its state of rest or of uniform motion in a straight line
unless it is compelled to change that state by forces acting on it.”

Novice Expert

JW. S.B. K.D. CH. §.D. 0.G. MYV B.P

No net unbalanced force X X X X X X X

Rest X X X

Uniform motion X X X X X

Straight line X X X

Examples of Subjects’ Summary Protocol

Novice J.W. “‘The first one is inertia, which is that a body tends to stay in a certain state unless
a force acts upon it.”’

Novice §.B. “First of all there’s, the body wants to stay at rest, the body just, it’s resistance
toward any other motion."’

Expert B.P. “His first law is a statement that a body is moving in a uniform velocity in a given

straight line or statics. It will keep moving or stay where it is unless some external
forces are applied.’’

Expert O.G. “The first law is called the law of inertia. And it states that a body persists in its
motion along a straight line of a uniform rate unless a net unbalanced force acts
upon the body.”’

and experts have the same knowledge base or not, it is organized differently.
That is, we can view the knowledge of problem types as schemata, and the
experts’ schemata center wround the physics principles, whereas the novices’
schemata center around the objects. Finally, a third deficiency in the novices’
knowledge base, at least for B students, is the lack of a certain fundamental
knowledge of physics principles.

These three deficiencies are general in the sense that we do not have a good
grasp of exactly what knowledge is missing from the novices’ data base (except
for the summary study), nor do we have any means for comparing the knowledge
bases. And, most importantly, we have tapped only the declarative knowledge
that the subjects possess. The next study attempts to be more detailed in assessing
the knowledge that subjects do have. It provides a means of comparing the
knowledge bases between subjects and begins to look at the use of procedural
knowledge, because it is the procedural knowledge that will ultimately determine
how well a person can solve a problem.

Study 6. Ela.. yration Study

In this study, we were interested in the knowledge associated with certain
physics concepts. These are concepts generated by the category descriptors pro-
vided by the subjects in the sorting studies. We view these concepts as labels

1. EXPERTISE IN PROBLEM SOLVING b5

designating schemata. Hence, the purpose of this study was to uncover what
knowledge is contained in the schemata of experts and novices. From the sorting
studies, we concluded that the schemata of the experts are principle oriented,
whereas the schemata of the novices are object oriented. But, what we needed to
know is how the schemata of the two skill groups differ. Do the schemata of the
experts contain more information or a different kind of information? Are the
schemata of the novices subschemata of the experts’ schemata as we
hypothesized in Study 4? This study addressed these issues.

Two experts (M. G. and M. S.) and two novices (H. P. and P. D.) were asked
10 elaborate on a selected sample of 20 prototypical concepts that subjects in the
sorting studies had used to describe their classifications. Figure 1.8 gives a
frequency count of those category labels used by the experts and novices in Study
2. The sample of 20 ranged from labels provided by experts (e.g., Force Law) to
thuse provided strictly by novices (e.g., inclined plane). Subjects were presented
with each concept individually and given 3 minutes to tell everything they could
think of about it, and how a problem involving the concept might be solved.

We use two ways to analyze the contents of these elaboration protocols. One
way is to depict the contents of the protocol in terms of a node-link network,
where the nodes are simply key terms mentioned by the subjects that are obvious
physics concepts. The links are simply unlabeled relations that join the concepts
mentioned contiguously. Using this method, the networks of a novice’s (H. P.)
and an expert’s (M. G.) elaboration of the concept *‘inclined plane’’ are shown in
Figs. 1.9 and 1.10. Since we view each of these concepts as representing a
potential schema, the related physics concepts mentioned in the inclined plane
protocol can be thought of as the variables (slots) of the schema. For example, in
Novice H. P.’s protocol, his inclined plane schema contains numerous variables
that can be instantiated, including the angle at which the plane is inclined with
respect o the horizontal, whether there is a block resting on the plane, and what
are the mass and height of the block. Other variables mentioned by the novice
wiclude the surface property of the plane, whether or not it has friction, and, if it
does. what the the coefficients of static and kinetic friction. The novice also
discussed possible forces that may act on the block, such as possibly having a
pulley attached to it. At the end, he also discussed the pertinence of Conservation
of Energy, but this was not elicited as an explicit solution procedure that is
applicable to a configuration involving an inclined plane, as is seen later in the
case with the expert. Hence, in general, one could say that the inclined plane
schema that the novice possesses is quite rich. He knows precisely what variables
need to be specified, and he also has default values for some of them. For
cxample, if friction was not mentioned, he probably knows that he should ignore
inction. Hence, with a simple specification that the problem is one involving an
inclined plane, he can deduce fairly accurately what are the key components and
entities (i.e., friction) that such a problem would entail.

‘The casual reference to the underlying physics principle, Conservation of
Encrgy, given by the novice in the previous example, contrasts markedly with
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the expert’s protocol in which she immediately makes an explicit call to two
principles that take the status of procedures, the Conservation of Energy Princi-
ple and the Force Law (Fig. 1.10). (In Greeno & Riley’s, 1981, terminology,
they would be considered calls to action schemata.) We characterize them as
procedures (thus differentiating them from the way the novice mentioned a
principle) because the expert, after mentioning the Force Law, continues to
cluborate on the condition of applicability of the procedure and then provides
explicit formulas for two of the conditions (enclosed in dashed rectangles in Fig.
1.10). (She also explained the conditions of applicability of Conservation of
Energy, but did so during other segments of the study.) After her elaboration of
the principles and the conditions of applicability of one principle to inclined
plane problems (depicted in the top half of Fig. 1.10), Expert M. G. continued
her protocol with descriptions of the structural or surface features of inclined
plane problems, much like the descriptions provided by Novice H. P. (see Fig.
1.9). Hence, it seems that the knowledge common to subjects of both skill groups
pertains to the physical configuration and its properties but that the expert has
additional knowledge relevant to the solution procedures based on major physics
laws,

Another way of viewing the difference between the novice’s and expert’s
claborations of inclined plane is to look at the description that Rumelhart (1981)
ascribes to schemata of inactive objects. That is, an inclined plane is seen by the
novice as an inactive object, so that it specifies not actions or event sequences but
rather spatial and functional relationships characteristic of inclined planes. Be-
cause novices may view an inclined plane as an object, they thus cite the poten-
tial configuration and its properties. Experts, on the other hand, may view an
inclined plane in the context of the potential solution procedures; that is, not as an
object but more as an entity that may serve a particular function.

An alternative way to analyze the same set of protocols is to convert them
directly into *‘production rules,”” or “‘if-then’” rules (Newell, 1973). Todo so, a
simple set of conversion rules can be used, such as when the protocois manifest
an if-then, if-when, or when-then structure. This transformation is quite
straightforward and covers a majority of the protocol data. Tables 1.9 and 1.10
depict the same set of protocols that were previously analyzed in the form of
pode-link structures. What is obvious from such an analysis is that the experts’
production rules contain explicit solution procedures, such as “'use F = MA’" or
-qum all the forces to 0.”” None of the novices’ rules depicted in Table 1.10
contain any actions that are explicit solution procedures. Their actions can be
characterized as attempts to find specific unknowns, such as ‘‘find mass’’ (see H.
P.'s rule 2 and P. D.’s rule I in Table 1.10).

We alluded to an important difference between the way Conservation of
f:nergy was mentioned by novice H. P. versus expert M. G. The present analysis
suskes this difference more transparent. The difference lies in the observation that
e novice's statement of Conservation of Energy (Rule 8 in Table 1.10) was part
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TABLE 1.9
Expert Productions Converted from Protocols

M.S.

1. IF problem involves an inclined plane
THEN a. expect something rolling or sliding up or down
b. use F = MA
¢. use Newton’s Third Law
2. IF plane is smooth
THEN usc Conservation of Mechanical Energy
3. IF plane is not smooth
THEN use work done by friction
4. IF problem involves objects connected by string and one object being pulled by the other
THEN consider string tension
5. IF string is not taut
THEN consider objects”as independent

MG,

1. (IF problem involves inclined plane)*
THEN a. use Newton's Law
b. draw force diagram
2. (It problem involves inclined plane)”
THEN can use Energy Conservation
3. IF there is something on plane
THEN determine il there is friction
4. 1F there is friction
THEN put it in diagram
5. (IF drawing diagram)®
THEN put in all forces—gravity, force up plane, friction, reaction force
6. (IF all forces in diagram)” .
THEN write Newton’s Laws
7. IF equilibrium problem
THEN a. 3F =0
b. decide on coordinate axes
8. IF acceleration is involved
THEN use F = MA
9. IF *‘that’s done’’ (drawing diagram, putting in forces, choosing axes)”
THEN sum components of forces

« Statements in parentheses were not said explicitly by the subjects but are indicated by the context.

of a description of the condition side of a production rule, whereas the statement
of this principle by both experts (M. 5.°s rule 2 & M. G.’s rule 2 in Table 1.9) is
described on the action side of the production rules.

On the claboratior of an inclined plane (Fig. 1.10), we stressed that the expert
mentioned the conditions of applicability of the Force Law (the statements in the
dashed enclosures). This points to the presence of not only explicit procedures in
the experts” repertoires but also of explicit conditions for when a specific proce-
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TABLE 1.10
Novice Productions Converted from Protocols

H.P.

1. (IF problem involves inclined plane)"
THEN find angle of incline with horizontal
. IF block resting on plane
THEN a. find mass of block
b. determine if plane is frictionless or not
3. IF plane has friction
THEN determine coefficients of static and kinetic friction
4. IF there are any forces on the block
THEN . ..
s. IF the block is at rest
THEN ...
6. IF the block has an initial speed
THEN . ..
7. IF the plane is frictionless
THEN the problem is simplified
8. IF problem would involve Conservation of Energy and height of block, length of plane, height of
plane are known
THEN could solve for potential and kinetic energies
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P.D.

I. (IF problem involves an inclined plane)”
THEN a. figure out what type of device is used
b. find what masses are given
¢. find outside forces besides force coming from pulley
2. IF pulley involved
THEN try to neglect it
3. IF wrying to find coefficient of friction
THEN slowly increase angle until block on it starts moving
4 IF two frictionless inclined planes face each other and a ball is rolled from a height on one side
THEN ball will roll to the same height on other side
s |F something goes down frictionless surface
THEN can find acceleration of gravity on the incline using trigonometry
6. IF want to have collision
THEN can use incline to accelerate one object

@ Suatements in parentheses were not said explicitly by the subjects but are indicated by the context.

dure applies. Another analysis supports this difference. We examined all state-
ments made by the two experts and the two novices throughout the protocols of
the entire set of 20 concepts and recorded all statements made about Conserva-
gon of Energy. Nearly half of each expert’s statements (10 out of a total of 22 for
M. S.: 9 out of 21 for M. G.) were specifying the conditions under which
Conservation of Energy could be used. For example, the following are two
quotes, one from each expert:
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M. S.: “If the [inclined] plane is smooth, of course then you could use Conserva-
tion of Mechanical Energy to solve the problem. 1f it’s not smooth, then you’ve got
(o take into account the work done by frictional forces.”’

M. G.: ““Energy conservation can also be used [in a collision problem| but only for
an elastic collision because no heat is produced.”’

“The novices, on the other hand, made only one such statement between them (1
out of 22 for H. P.; 0 out of 13 for P. D.).

In sum, this study shows that the contents of the schemata are different for the
novices and the experts. First, for an object schema, both experts and novices
possess a fundamental knowledge of the configuration and its properties, but the
experts possess additional knowledge, which may be viewed as also activating
higher level schemata (Rumelhart, 1981) that are relevant to the principle. Sec-
ond, the schemata of the experts contain more procedural knowledge. That is,
they have explicit procedures, which may be thought of as the action side of the
productions. Finally, the experts’ schemata contain much more knowledge about
the explicit conditions of applicability of the major principles underlying a prob-
lem. Hence, this study, coupled with the Summary Study, emphasizes the im-
poverished nature of novices’ schemata, which can seriously hinder their
problem-solving success.

Studies to Identify the Key Features of Problems

The previous studies have suggested that novices in general have knowledge that
is deficient in a variety of ways (perhaps with the exceptions of A students).
Hence, it is important to ascertain whether the difficulties novices encounter in
problem solving also lie in their inability to identify the relevant cues in the
problem, as is the case with poor chess players. The common finding in chess
rescarch is that the poor players have great difficulties seeing the meaningful
patterns on the chessboard. The ability to perceive the relevant chessboard pat-
terns reflects the organization of the chess knowledge in memory. Hence, we
need to determine whether both novice and expert problem solvers have the
ability to identify the relevant cues in a problem and, if so, how this ability
affects problem solving. From the studies we have already discussed, we specu-
late that the difficulties experienced by novices derive from their inability to
generate the appropriate knowledge from the relevant cues.

Study 7: Basic Approach

In this study (designed and carried out by Paul Feltovich), we were interested
in knowing about the reatures that help a subject decide on a *‘solution method,”’
which can be interpreted as one of the three major principles (Conservation of
Energy, Conservation of Momentum, and Force Law) that can underlie a
mechanics problem of the kind we use. Putting it another way, we are attempting
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1o determine the problem features that subjects could have used in eliciting their
category schemata, if the solution methods, at least for the experts, may be
viewed as their schemata of problem types (see Study 3).

Subjects in this study were asked to do three things. First, they were to read
the problem statement and think out loud about the *‘basic approach’” that they
would take to solve the problem. Basic approach was not further defined for
them. Second, they were asked to restate the basic approach explicitly in one
concise phrase. Finally, they were asked to state the problem features that led
them to their choice. Here, we focus predominantly on the last aspect of this
study (see Chi et al., 1981, for additional details).

The subjects were two physicists (J. L. and V. V.) who had frequently taught
introductory mechanics and two novices (P. D. and J. W.) who had completed a
basic college course in mechanics with an A grade. The problems were the same
20 (described in Table 1.2) used for the sorting replication study (Study 3).

Table 1.11 summarizes the key features cited by the experts and novices as
contributing to their decisions about the basic approach to the solution of the
problems. The numbers in the table show the frequency with which each feature
was cited. A feature was included for each skill group only if it was mentioned at
Jeast twice (across the 20 problems), once by each subject or twice by one
subject.

First, analysis of these features shows that there is essentially no overlap in the
features mentioned by novices and experts, except for the object “‘spring.’’ Sec-
ond, the kinds of features mentioned as relevant by the novices are different from
those identified by the experts. Novices, again, mention literal objects and key
werms that are explicitly stated in the problem, such as *‘friction’’ and *‘gravity.”’
This is consistent with the results of the categorization studies. Experts, on the
other hand, identify features that can be characterized as descriptions of states and
conditions of the physical situation, as described implicitly by the problem. In
wine instances, these are transformed or derived features, such as a ‘‘before-and-
after situations’” or *‘no external force.’” Because these features are not explicitly
wtated in the problem, we refer to these as second-order features (or, as we previ-
ously mentioned, generated tacit knowledge).

In sum, the most interesting finding of this study is that the features mentioned
« relevant for suggesting a solution method are different for experts and novices.
Because the subjects used their own words to describe the features, there is often
a lack of consensus concerning relevant features, particularly between the ex-
perts. In Table 1.11, for example, in 14 of the 24 features cited, the experts did
not refer to the same features, whereas this occurred only once for the novices
isce the asterisks). This is consistent with the interpretation that novices must
have greater consensus because they refer to the explicit key terms in the problem
satement itself. Experts, on the other hand, must necessarily show a great deal of
dividual difference because they transtorm the literal surface features into some
sevond-order features based on their individual knowledge bases. However, even
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Key Features Cited by Experts and Novices
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Given initial conditions

Betore-and-after situations

Spring

No external force

Don’t need details of motion

Given final conditions

Asked something at an instant in time
Asked some characteristics of final condition
Interacting objects

Speed-distance relation

Inelastic collision

No initial conditions

No tinal conditions

Energy easy to calculate at two points

No friction or dissipation

Force too complicated

Momentum easy to calculate at two points
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Can compute work done by external force
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Rotational component

Energy yields direct relation

No before and after

Asked about force

NNOO»—NNNOW-—A&NOOA&MB#O’*‘\D

OONFJ-—OC-—UJ'—NOON#AO—-O——-—U\AQ)

>
©

Novices

<
=

Friction
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Inclined plane
Spring

Given masses
Coin on turntable
Given forces

* Force-velocity relation
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*Aster. s indicate features mentioned by only one of the two subjects.
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with such wide individual differences, there was a distinct characteristic to the
experts’ cited features that distinguished them from the novices’ cited features.

Study 8: Judging Problem Difficulty

Even though the experts cited the abstracted features as the relevant cues in
the previous study, it is still possible that the experts transformed the same basic
set of key terms as those identified by the novices. A direct way to ascertain
whether subjects of different skill consider the same set of words important is to
ask them to point out the important words in the problem statements. In this
study, we presented six novices (undergraduates averaging grades of B) and six
experts (graduate students) the same set of 20 problems used earlier and asked
them to judge (using a 1-5 rating) how difficult it was to solve a problem after
reading the problem statement. We then asked subjects to circle the key words or
phrases that helped them make that judgment. Finally, we asked how those
particular key words helped them reach their decision.

The most striking finding is the extensive overlap between the cues that
experts and novices identified as important for deciding on the difficulty of a
problem. If anything, experts identified fewer cues as important compared with
the novices. Table 1.12 presents one of the problems broken down into eight
propositions. There were, on the average, seven propositions per problem. The
propositions containing words chosen by three or more of the novices and
three or more of the experts are indicated by N and E respectively. For 19 of
the 20 problems, the experts and the novices circled the same sets of words or
phrases in the problem statements, which are embedded in 2.7 propositions, on
the average. Only in 7 of the 20 problems did the experts identify additional cues
(ahout 1.6), whereas in 13 of the 20 problems, the novices identified additional
cues (2.1) as important. This result suggests, at least, that novices’ difficulties in
problem solving do not stem from the failure to identify the relevant cues.

TABLE 1.12
Decomposition of a Problem Statement into Propositions
Problem 8

1. A block of mass Ml
N 2. is put on top of a block of mass M2
NE 3. Inorder to cause the top block to slip on the bottom one,
NE 4. a horizontal force FI must be applied to the top block
N S. Assume a frictionless table
NE 6. Find the maximum horizontal force F2

7. which can be applied to the lower block
NE 8. so that both blocks will move together.

N = Propositions indicated by three or more of the novices.
E = Propositions indicated by three or more of the experts.
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The subjects’ responses to both the questions of why these particular cues are
important and how they help in making decisions were classified according to the
following categories: (1) whether the cues refer to one of the three fundamental
principles (*'the cues tell me to use Energy Conservation''); (2) whether the cues
reler to some surface feature of the problem, much like what novices refer to
when they categorize problems (e.g., Fig. 1.8); (3) whether the cues bring their
attention to some characteristic of the problem that is not related to physics (*‘itis
difficult to visualize™” or *‘it has many concepts’’); or (4) whether the cues elicit
some reasons that are unrelated to the specific problem (the problem is difficult
“because 1 have never solved it before’’ or “because it has a lot of words’’).

Table 1.13 is a breakdown of experts’ and novices’ reasons for why a problem
was judged difficult or easy, along with samples of quotes. Consistent with our
previous findings, experts, much more often than novices, rely on the underlying
physics principle when judging the difficulty of a problem (e.g., ‘‘compressing
spring tells me to think Energy’’).They both rely equally often on problem
characteristics, such as whether a problem involves friction or the center of mass.
However, novices are much more likely to rely on superficial nonphysics aspects
of a problem to make their judgements (the third category in Table 1.13), such as
whether “it is abstractly phrased’” and ‘it has a lot of words.”’ Finally, the
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novices often introduce reasons for why a problem is difficult that are not specific
o a given problem, such as *‘I have never done problems like this before.’’
When inferences were generated in the protocols of problem solving (Study 1)
and when second-order features were identified (Study 7), we speculated that
such tacit knowledge was generated from the literal key terms in the problem
statement. Now, we can verify some of these speculations directly by examining
several of the reasons that subjects gave for how particular key terms that they
aircled contributed to their judgment of problem difficulty. Table 1.14 presents
examples of the kind of statements produced by experts. These statements of
reasons can be judged to be inferences generated either directly from the literal
wrms in the problem, such as *‘frictionless, use Conservation of Momentum,’’ or

TABLE 1.13
Proportion of Response Types
Novices Experts
Abstract Principle 9% 30%
“straightforward application of Newton’s Second Law’’
“collision problem, use Conservation of Momentum”’
“no friction, no dissipative forces, just apply Energy Conservation””
Problem Characteristics 33% 35%
““frictionless, problem is simplified”
“massless spring simplifies problem’’
“pulley introduces difficulty
Nonphysics Related Characteristics 40% 28%
“problem is ditficult to visualize”’
“easy calculations but hard to understand’’
““many factors to consider, make problem difficult”
18% 7%

Nonprobiem Related Characteristics
“never did problems like this™
“numibers instead of svmbols ™™
“must consider units’’ - ¢
“diagram distracting”’

« All our problems used symbols for known quantities rather than actual numerical values.

the inferences may be generated from a derived cue, such as ‘‘no dissipative

TABLE 1.14

Inferences Generated from Literal and Derived Cues

tateral Cue

Derived Cue

Inference

Frictionless
Frictionless

Foctionless
Frttonless

fncionless

Center of mass at rest
 enter of mass at rest
Center of mass at rest

Mass and radius of pulley

Mass of pulley
Massive pulley
Compressing spring
Monon

Shp and force

A, + M, collide

3t . stops after distance L
Sped

Merry-Go-Round

No dissipative forces
No dissipative forces
No dissipative system
No dissipative force
No dissipative force
Energy not consumed

Only force is restoring force
No external forces

Pulley must be taken into account

Pulley can’t be neglected

Friction

Rotational motion

Conservation of Momentum

Conservation of Momentum
Conservation of Energy
Conservation of Energy
Conservation Laws
Conservation of Momentum then

calculate new Energy
Newton's Second Law

|M V| =M.V

Relative Momentum = 0

Newton's Second Law for
translation and rotation

Consider Rotational Kinetic
Energy

Rotational Dynamics

Rotational Energy

Rotational Dynamics

Think Energy

Energy Analysis

Conservation of Energy and
Momentum

Work-Energy

Newton’s Second Law to Find
Acceleration then Equation of
Motion

Conservation of Angular
Momentum
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forces.’” These correspond to the second-order features mentioned in the previ-
ous study.

Recall that the purpose of this task was to have experts and novices judge
problem difficulty. The experts, in general, were more accurate at judging the
difficulty of a problem than novices. Accuracy was determined by comparing the
ratings of problem difficulties that subjects gave to our own assessment of how
difficult a problem actually is to solve. The aforementioned examination of the
reasons subjects gave for why a particular problem is difficult, and why those
particular key words were helpful in identifying a problem’s difficulty (Table
1.13), suggests that novices are less accurate at judging a problem’s difficulty
because they rely heavily on nonphysics-related or nonproblem-related features.
Obviously, these are not the reliable factors to consider when one attempts to
solve a physics problem.

In sum, even though the task of this study—requesting sources of problem
difficulty—is slightly different from either a problem-solving task or tasks used
in the other studies (c.g.. sorting), we suspect that the features identified as
relevant are the same as those used in other tasks. Basically, the results show that
the relevant and important key terms in a physics problem can be identified by
novices quite accurately. In this sense, a physics problem is not analogous to a
“perceptual”” chessboard, in which case the beginner cannot pick out the rele-
vant or important patterns. However, the similarity between a chess expert and a
physics expert remains and can be seen in their ability (compared to novices) to
abstract the relevant tacit knowledge cued by the external stimuli. The chess
master’s expertise derives from the ability to abstract or impose a cognitive
structure onto the pattern of black and white chess pieces. Although novice chess
players are just as capable as experts at perceiving the chess pieces per se,
“seeing”’ the relations among the pieces requires fitting one’s schemata to the
configuration of chess pieces. Similarly, the novice physicist is just as capable as
the expert in identifying the key terms in a problem statement. The difficulty
resides in the novice’s limited ability to generate inferences and relations not
explicitly stated in the problem.

GENERAL DISCUSSION

The goal of this chapter has been to contribute to our understanding of high-
level competence in complex domains of human knowledge. Expert individuals
in various areas of knowledge perform remarkable intellectual activities, and
cognitive psychlogists are on the threshold of understanding these feats of mem-
ory retrieval, rapid pc_“eption, and complex problem solving. Since intelligence
is generally measured through tests that assess skill in acquiring new knowledge
in scholastic settings, understanding the nature of the competence attained should
shed light on this ability to learn.
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Early in this chapter, evidence was provided for the necessity to focus on the
organization and structure of knowledge, in both psychological and Al research.
‘This trend toward understanding the influence of knowledge is relatively recent
in contrast to the earlier emphasis on search algorithms and other heuristics for
deducing and retrieving information. The techniques and theories that evolved,
such as means-ends analysis, were intended to be independent of the particular
data base and, as such, have proven to be valuable search heuristics that are
generalizable across different tasks and knowledge domains.

The turn'to a focus on the knowledge base was necessitated in part by the
inability of psychological theories to model human capabilities solely on the
basis of search heuristics and in part by the limitations discovered in attempting
w construct Al programs that would outperform humans, even though the com-
puter’s search capabilities are essentially limitless. Hence, the constraints of
powertul search techniques, when they did not engage an organized knowledge
structure, soon compelled researchers to develop theories and programs that took
account of the role of knowledge structure.

The emphasis on the knowledge base has also changed the direction of re-
scarch. Since knowledge has different degrees of structure depending on an
individual’s experience, it was intuitively apparent that an important problem
was how a particular knowledge base is structured. The obvious choice was to
model the expert’s knowledge, as was done most dramatically in a number of AL
programs. This choice has also led to psychological investigations of developing
structure of novices” knowledge, in contrast to the richly organized structure of
experts’ knowledge.

The research on problem solving generated by this new emphasis has revolved
around understanding the processes of arriving at a solution in the context of the
knowledge available to a solver. In physics, this has ted to the construction of
numerous theoretical models that attempt to simulate the processes of problem
solving, in particular, the knowledge that is necessary to generate a particular
sequence of equations. Other theoretical models constructed by Al researchers
have put more emphasis on the representation of the problem in the context of the
available knowledge.

The important issue of problem representation has also been recognized in the
psychological research. It is conspicuous in protocols of problem solving in the
form of *‘gualitative analysis’’ of the problem, which usually occurs early in the
solution process. Most empirical findings to date have failed to explicate this
initial qualitative analysis, although the consensus has been that a representation
of the problem, constructed at this point, is a significant factor in driving the
solution process. Numerous quantitative differences between the experts and
novices have also been identified, such as solution speed, errors, and equation-
gcneration pattern. None of these measures, however, has succeeded in shedding
much light on understanding the different problem-solving processes of experts
and novices.
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The research from our own laboratory has been oriented toward magnifying
the representational *‘stage’” of problem solving through techniques other than
the analysis of problem-solving protocols. Our findings (Study 1) have em-
phasized that solution protocols provide limited insights to the processes of
representation and, further, produce quantitative measures that are difficult to
interpret because they are subject to large individual differences. These indi-
vidual differences are dictated by a variety of particular strategies that solvers
adopt, such as generating a number of equations when one cannot think of a way
to proceed. Through the use of a sorting task (Studies 2, 3, and 4), we were able
to uncover a potential source of representational difficulty for novices. If we
assume that a problem is represented in the context of the available knowledge,
then novices will undoubtedly have an incomplete and less coherent representa-
tion because of the organization of their knowledge. Their knowledge is or-
ganized around dominant objects (e.g., an inclined plane) and physics concepts
(e.g., friction) that are mentioned explicitly in the problem statement. Experts,
on the other hand, organize their knowledge around fundamental principles of
physics (e.g., Conservation of Energy) that derive from tacit knowledge not
apparent in the problem statement. An individual’s ‘‘understanding’’ of a prob-
lem has been explicitly defined as being dictated by knowledge of such principles
(Greeno & Riley, 1981). Hence, during qualitative analysis of a problem, experts
would understand a problem better than novices because they *‘see’’ the underly-
ing principle.

A person’s understanding of a principle can be evaluated in several ways
(Greeno & Riley, 1981). One way is to have it stated explicitly, as was done by
experts in the Summary Study (Study 5) and in the rationale they provided in the
Sorting Studies (Studies 2, 3, and 4). Another way is to analyze the nature of the
categories into which individuals sort problems; this constitutes an implicit as-
sessment of their understanding of principles. An alternative but consistent in-
terpretation of the Sorting Studies is that experts and novices organize their
knowledge in different ways. Experts possess schemata of principles that may
subsume schemata of objects, whereas novices may possess only schemata of
objects. Some support for this conjecture was provided in both Study 4, on the
hierarchical nature of the sorting categories, and in Study 6, on the elaboration of
the contents of object and principle schemata. Once the correct schema is acti-
vated, knowledge (both procedural and declarative) contained in the schema is
used to process the problem further. The declarative knowledge contained in the
schema generates potential problem configurations and conditions of applicabil-
ity for procedures, which are then tested against the information in the problem
statement. The procedural knowledge in the schema generates potential solution
methods that can b~ used on the problem. Experts’ schemata contain a great deal
of procedural knoWIédge, with explicit conditions for applicability. Novices’
schemata may be characterized as containing sufficiently elaborate declarative
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knowledge about the physical configurations of a potential problem, but they
lack abstracted solution methods.

Our hypothesis is that the problem-solving difficulties of novices can be
autributed matnly to inadequacies of their knowledge bases and not to limitations
in either the architecture of their cognitive systems or processing capabilities
(¢.g-, the inability to use powerful search heuristics or the inability to detect
important cues in the problem statement). This conjecture follows from several
findings. First, similarity in the architecture of experts’ and novices’ cognitive
systems is probably implied by the fact that there are generally no differences
between experts and novices in the number of categories into which they prefer to
sort problems, in the latency required to achieve a stable sort, and in a variety of
other measures. These quantitative measures point to the invariance in the cogni-
tive architecture of experts and novices. Second, novices do show effective
search heuristics when they solve problems using backward-working solutions.
Third, in our last set of studies (Studies 7 and 8), we showed that novices are
essentially just as competent as experts in identifying the key features in a
problem statement. The limitation of the novices derives from their inability to
infer further knowledge from the literal cues in the problem statement. In con-
wast, these inferences necessarily are generated in the context of the relevant
knowledge structures that experts possess.

In concluding this chapter, we would like to speculate on the implications of
the work and theory reported here for a conception of intelligence. The tests of
intelligence in general use today measure the kind of intellectual performance
most accurately called ‘‘general scholastic ability.’’ Correlational evidence has
shown that the abilities tested are predictive of success in school learning. Given
this operational fact, these commonly used tests of intelligence are not tests of
intelligence in some abstract way. Rather, if we base our conclusions on their
predictive validity, we can conclude that they are primarily tests of abilities that
are helpful for learning in present-day school situations. More generally, we can
assume that these intelligence tests measure the ability to solve problems in
school situations, which leads to learning. The problem-solving ability possessed
by the expert learner is a result of experience with the domains of knowledge
relevant to schooling.

If expertise in learning is the ability for representing and solving school
problems, then for a less intelligent learner, a problem representation may be in
close correspondence with the literal details of a problem, whereas for a more
intelligent learner, the representation contains, in addition, inferences and
abstractions derived from knowledge structures acquired in past experiences. As
a result of prior experience in various knowledge domains relevant to schooling,
the representations required for solving school problems are more enriched and
contribute to the ease and efficiency with which learning problems are solved.
We speculate further that the knowledge the expert learner brings to a problem
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would incorporate a good deal of procedural knowledge—how a knowledge
structure can be manipulated, the conditions under which it is applicable, and so
on. Novice learners, on the other hand, would have sufficient factual and declar-
ative knowledge about a learning problem but would lack procedural skill, and
this would weaken their ability to learn from their available knowledge.

A knowledge-based conception of intelligence could have implications for
how individuals might be taught to be more effective learners. Such an attempt
would de-emphasize the possibility of influencing mental processing skill (i.e.,
‘developing better methods for searching memory). Improved ability to learn
would be developed through a knowledge strategy in which individuals would be
taught ways in which their available knowledge can be recognized and manipu-
lated. Improvement in the skills of learning might take place through the exercise
of procedural (problem-solving) knowledge in the context of specific knowledge
domains. To date, conceptions of intelligence have been highly process oriented,
reminiscent of earlier notions of powers of mind. If, in contrast, one did take a
knowledge-emphasis approach to the differences between high and low perfor-
mers in school learning, then one might begin to conduct investigations of
knowledge structure and problem representation in the way that we have begun to
do in the expert-novice studies described in this chapter. This orientation might
provide new insights into the nature of the expert performance we define as
intelligence.
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